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ABSTRACT 

 This dissertation explores applying multi-model deep learning to address 

a triad of real-world problems covering some aspects of SDGs: disaster mitigation, 

drug discovery, and system control. By harnessing deep learning techniques, this 

research strives to offer innovative solutions that transcend traditional boundaries 

and substantially improve each domain. 

 In disaster mitigation, the research presents a novel multi-model deep 

learning architecture for enhancing tsunami early warning systems. Concerning the 

threat of the giant tsunami caused by megathrust earthquakes in the Mentawai 

island area, we are collaborating with the National Research and Innovation Agency 

Indonesia (BRIN) to develop tsunami tides prediction in the shallow water area, 

which has ambient noise level-dependent property. From this case, we develop deep 

learning using an RNN model that accommodates time series data. 

 In the case of drug discovery, the study investigates the potential of deep 

learning to expedite the identification of protein-ligand binding pairs. By 

amalgamating various data sources of molecular structure and its properties, our 

preliminary experiments show that a 3D-CNN-based network can identify protein-

ligand binding specificity. The current inventions are the pdbind filtered protein-

ligand dataset and comprehensive evaluation of the ResNet variant to classify the 

binary over internal and external datasets.  

 Additionally, the dissertation delves into applying multi-model deep 

learning in autonomous system scenarios, especially self-driving cars and surface 

vehicles. As part of research sustainability from master research, this study uses a 

combination of CNN, RNN, Reinforcement Learning, and algorithms to 

accomplish specific tasks. 

 The outcomes of this research reveal the heuristic performance of its 

application. By leveraging the versatility of deep neural networks, the dissertation 

demonstrates the capacity to extract intricate patterns from heterogeneous data 

sources using multiple preprocessing and create holistic models that outperform 

traditional methods. The synthesis of insights from tsunami mitigation, drug 

discovery, and system control highlights the overarching versatility of multi-model 

deep learning in solving a range of intricate real-world challenges. 



iv 

 

ACKNOWLEDGMENTS 

Thanks to Allah SWT, who eased all of my work in this Doctoral Program despite 

many big obstacles things happened in the process.  

To my nuclear family members, Wakiyo, Dwi Lestari, Ulfanie, and Kasirah, 

without whom this document would not exist in its present form. 

To Nambo sensei, I am so grateful for your guidance. Sensei's kindness is so 

limitless. I hope we can always collaborate to create high-quality research. 

To the lab-mate members, especially Hamid-san, it is a pleasure to be able to work 

together despite the short time. I owe you a favor, Hamid-san. I hope we can work 

together in the future. 

To Mext Scholarship, I am grateful for all of the allowances for sponsorship. 

To my valuable friends, Mery Diana, Afwan, Erik, Kholqillah, Danu, Hari, Hendra, 

Jono, Dedi, Firman, and Arbi, I thank you for your help and material and moral 

support in this Doctoral Program. 

To my Vietnamese friend, Loc-san, who helped me share knowledge in drug 

discovery, I want to say thank you for your help and support. 

To all of the support from branch family members, acquaintances at Kanazawa 

University, and Indonesia friends in the Gakusee Community,  I am grateful for all 

your support. 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

CONTENTS 

DECLARATION OF ORIGINALITY ................................................................... ii 

ABSTRACT ........................................................................................................... iii 

ACKNOWLEDGMENTS ..................................................................................... iv 

CONTENTS ............................................................................................................ v 

LIST OF FIGURES ............................................................................................... vi 

LIST OF FORMULAS .......................................................................................... ix 

LIST OF TABLES .................................................................................................. x 

DECLARATION OF AUTHORSHIP ................................................................... xi 

CHAPTER 1: INTRODUCTION ......................................................................... 13 

1.1 Background ............................................................................................ 13 

1.2 Research Questions ................................................................................ 14 

1.3 Research Objectives ............................................................................... 16 

1.4 Research Contribution ............................................................................ 17 

1.5 Dissertation Overview ............................................................................ 18 

CHAPTER 2: RESEARCH PHILOSOPHY, APPROACH, AND METHOD .... 20 

2.1 Research Philosophy and Approach ....................................................... 20 

2.2 Research Method .................................................................................... 21 

3.1 Foreword ................................................................................................ 22 

3.2 Published Paper ...................................................................................... 22 

CHAPTER 4: PAPER 3: End-to-End Time Distributed Convolution Neural 

Network Model for Self-Driving Car in Moderate Dense Environment .............. 48 

4.1 Foreword ................................................................................................ 48 

4.2 Published Paper ...................................................................................... 48 

CHAPTER 5: PAPER 4: Protein-Ligand Pair Binding Prediction Using Wide 

Resnet For Virtual Drug Screening ....................................................................... 64 

5.1 Foreword ................................................................................................ 64 

5.2 Published Paper ...................................................................................... 64 

CHAPTER 5: RESEARCH SUMMARY ............................................................. 81 

5.1 Reflections .............................................................................................. 81 

5.2 Conclusion and Future Works ................................................................ 81 

5.3 Contribution as Co-author Papers .......................................................... 82 

REFERENCES ...................................................................................................... 83 



vi 
 

LIST OF FIGURES 

1.1 Research Foundation Overview 6 

3.1 General block diagram of designed system 28 

3.2 Preprocessing block diagram 28 

3.3 Butterworth filter frequency response on 0.01Hz cutoff frequency 29 

3.4 Model network layers design 30 

3.5 Computational graph representation of RNN basic form, including 

training loss computation 31 

3.6 General block diagram of A LSTM and B GRU 32 

3.7 Component of OBU Sipora 33 

3.8 Periodic tide data acquisition 34 

3.9 Tsunami caused by an earthquake with the variability of magnitude 34 

3.10 Block diagram process of tsunami injection 35 

3.11 Training data set 36 

3.12 Robust scaler input transformation 36 

3.13 Min–max scaler input transformation 36 

3.14 Low-pass filter Butterworth output 37 

3.15 Data set composition 37 

3.16 Model train versus validation loss (from LSTM training process) 38 

3.17 Data test 38 

3.18 Sequence prediction test on tsunami data injected induced by 

earthquake on mag. 7.8 

39 

3.19 Error distribution of tides prediction of Vanilla RNN model 40 

3.20 Density distribution normalized graph of MSE distribution on 

L1000-P250 

40 

3.21 Error distribution of tides prediction of LSTM model 41 

3.22 Error distribution of tides prediction of GRU model 41 

3.23 Vanilla RNN VS LSTM VS GRU training time for one epoch 

distribution 

42 

3.24 Loss function graph of Time distributed based model training 43 



vii 
 

3.25 Z-score tsunami spike identification on the data test with magnitude 

7.8 44 

3.26 Comparison of z-score processed 45 

3.27 Tides embedded synthetic tsunami induced by earthquake with a 

magnitude of 6.4 

46 

4.1 Project working flow 52 

4.2 Example of the arbitrary route generated randomly in the Carla 

environment. 

54 

4.3 Design of Time Distributed model which comprised of 5 stacked 

Conv2D layer and LSTM. 

55 

4.4 The sample image, captured through the front view camera in 

Carla’s environment. 56 

4.5 Loss function graph of Time-distributed based model training. 57 

4.6 Steering angle distribution in training data. 58 

4.7 Brake and speed limit distribution value on the designated routes in 

simulation. 

58 

4.8 Percentage of encountered traffic light distribution and direction 

distribution experienced by the agent on the designated routes. 

58 

4.9 The output of HSV converter from RGB images before getting into 

the CNN layer. 59 

4.10 Sample of visualization activation after pass-through from the first 

to the second layer of CNN. 59 

4.11 Sample of visualization activation after pass through the third to the 

fourth layer of CNN. 60 

4.12 Sample of visualization activation after pass through the fifth layer 

of CNN. 60 

4.13 Sample of output classification using the trained model. 60 

5.1 Three dimensions construction Protein-Ligand Pair Complex on 

1a28 into 3D grid structures. 69 

5.2 Translation and scaling transformation of protein-ligand pair 1a28 

voxel. 70 



viii 
 

5.3 Grid box of protein-ligand 1a28 pair voxel. 70 

5.4 The implemented WRN network model in this paper. 71 

5.5 Representation of Identity Block implemented in this work.  72 

5.6 B(3,3) residual function model accuracy comparison on the different 

L1 filters with ACC as accuracy and VAL as validation. 74 

5.7 B(3,3) residual function model loss comparison on the different L1 

filters with ACC as accuracy and VAL as validation. 74 

5.8 B(3, 1, 3) residual function model accuracy comparison on the 

different L1 filters with ACC as accuracy and VAL as validation. 75 

5.9 B(3, 1, 3) residual function model loss comparison on the different 

L1 filters with ACC as accuracy and VAL as validation. 75 

5.10 Model loss comparison on the different L1 filters with ACC as 

accuracy and VAL as validation 78 

5.11 Model loss comparison on the different L1 filters with ACC as 

accuracy and VAL as validation. 78 

5.12 ROC Graph of the highest AUC score in the experiments 79 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF FORMULAS 

1 Hidden unit in RNN 31 

2 Input gate LSTM 32 

3 Forget gate LSTM 32 

4 Output gate LSTM 32 

5 Cell candidate LSTM 32 

6 Current cell state 32 

7 Current hidden state LSTM 32 

8 Output LSTM 32 

9 Update gate GRU 33 

10 Reset gate GRU 33 

11 Hidden state candidate GRU 33 

12 Hidden state GRU 33 

13 Output GRU 33 

14 Z-Score 35 

15 Set of observation action pairs 56 

16 3D-CNN  71 

17 State residual block with identity mapping 72 

 

 

 

 

 

 

 

 

 



x 

 

LIST OF TABLES 

1 List of papers, publication status and authorship xi 

2 List of workshop paper, publication status and authorship xii 

3 Median of MSE distribution for each of model configuration 43 

4 Tsunami tides identification for each model 44 

5 Means of performance comparison among the model 57 

6 Mean of performance comparison of time distributed model to 

ground truth data and stacked cnn model 61 

7 The fastest test of an agent on a different model 62 

8 Hydrophobic/Polar classification of the 20 amino acids. 69 

9 Performance measurement of basic resnet with identity function 

(prec. = precision, sens. = sensitivity) 76 

10 Performance measurement of wrn with residual function of b(3,3) 

(prec. = precision, sens. = sensitivity) 77 

11 Performance measurement of wrn with residual function of b(3,1,3) 

(prec. = precision, sens. = sensitivity) 77 

12 Model performance top-5 f1 measurement ranking 78 

 

 

 

 

 

 

 

 

 



xi 
 

DECLARATION OF AUTHORSHIP 

Table 1. List of papers, publication status and authorship 

Papers Year Title Publication Author/s 

1 2023 

Tsunami Tide 

Prediction in Shallow 

Water Using 

Recurrent Neural 

Networks: Model 

Implementation in the 

Indonesia Tsunami 

Early Warning 

System 

Journal of 

Reliable 

Intelligent 

Environments, 19 

Pages, 

Link 

Willy Dharmawan, 

Mery Diana, Beti 

Tuntari, I. Made 

Astawa, Sasono 

Rahardjo, and 

Hidetaka Nambo 

2 2023 

Dynamic Path 

Planning for 

Unmanned Surface 

Vehicles with a 

Modified Neuronal 

Genetic Algorithm 

Applied System 

Innovation, No. 6, 

109, Pages 19, 

Link  

Nur Hamid, Willy 

Dharmawan, and 

Hidetaka Nambo 

3 2021 

End-to-End Time 

Distributed 

Convolution Neural 

Network Model for 

Self-Driving Car in 

Moderate Dense 

Environment 

Jurnal Teknologi 

Infomasi, 

Komunikasi dan 

Elektronika, Vol. 

2, No.1, pp.8-13, 

Link 

 

Willy Dharmawan, 

and Hidetaka 

Nambo 

4 2022 

Protein-Ligand Pair 

Interaction Prediction 

Using Wide Resnet 

For Virtual Drug 

Screening 

Proceedings of 

the 22nd 

APIEMS, ID: 

OTH023 

Willy Dharmawan, 

Pham Thi Loc, Nur 

Hamid, and 

Hidetaka Nambo 

https://doi.org/10.1007/s40860-023-00214-8
https://doi.org/10.3390/asi6060109
https://ejurnal.bppt.go.id/index.php/jtike/article/view/4904


xii 
 

5 2022 

Autonomous 

Evacuation Boat in 

Dynamic Flood 

Disaster Environment 

International 

Conference on 

Advanced 

Computer Science 

and Information 

Systems, pp. 117-

122, doi: 10.1109/ 

ICACSIS56558. 

2022.9923446 

Nur Hamid, Willy 

Dharmawan, and 

Hidetaka Nambo 

6 2023 

Neural Network-

based Genetic 

Algorithm for 

Autonomous Boat 

Pathfinding 

2022 International 

Conference on 

Advanced 

Computer Science 

and Information 

Systems, pp. 497-

502, doi: 10.1109/ 

ICKII58656.2023. 

10332606 

Nur Hamid, Willy 

Dharmawan, and 

Hidetaka Nambo 

 

Table 2. List of workshop paper, publication status and authorship 

Papers Year Title Publication Author/s 

1 2023 

Developing self-

driving car simulation 

wrapper for deep 

learning purposes 

IEEJ Electronic 

Library,  Link 

Willy Dharmawan, 

Hidetaka Nambo. 

I hereby certify that the authorship, as stated above, is an accurate record of the 

papers presented as part of this dissertation. 

Willy Dharmawan  

January 2024 

https://www.bookpark.ne.jp/cm/ieej/detail/IEEJ-20211210E00701-005-PDF/


13 

 

CHAPTER 1: INTRODUCTION 

1.1 Background 

 Artificial intelligence (AI), particularly machine learning, stands as a 

testament to the collaborative nature of modern research. This groundbreaking field 

operates at the intersection of computer science, mathematics, neuroscience, and 

other domains, giving rise to an interdisciplinary research landscape [1]. The quest 

for AI advancements is not only propelled by theoretical frameworks but is deeply 

rooted in the utilization of external data. Improving the performance of traditional 

machine learning, Deep Learning can take advantage of a diverse range of datasets, 

harnessing the power of real-world information to enhance the robustness and 

applicability of their models [2,3]. The symbiotic relationship between 

interdisciplinary collaboration and the incorporation of external data establishes a 

solid foundation for the evolution of AI, paving the way for innovative solutions to 

complex problems and pushing the boundaries of what is achievable in the realm 

of artificial intelligence [4].  

 Deep learning has demonstrated profound efficacy in addressing and 

solving a myriad of real-world problems [1].  Many corporations, including Google, 

Microsoft, Nokia, etc., study it actively as it can provide significant results in 

different classification and regression problems and datasets [5]. One of the primary 

strengths lies in its ability to automatically extract intricate patterns and 

representations from vast and diverse datasets, enabling the development of models 

that can tackle complex challenges across various domains.  

 The domains of science and engineering are currently experiencing a 

profound shift towards transformative, transdisciplinary, and translational research 

methodologies, capturing substantial and escalating attention from researchers and 

scholars alike. This evolving paradigm signifies a departure from conventional, 

siloed approaches as the scientific community recognizes the transformative 

potential that lies at the intersection of diverse disciplines. Some areas [5] are 

sustainability research [6], translational public health and translational medicine 

[7,8], biomedical research [9], and transformative digitalization [5]. 
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 In this dissertation report, we will go through transdisciplinary artificial 

intelligence research with the goal of high-quality scientific research and 

application in artificial intelligence, which highlights the importance of our research 

and raises the research's impact. Some of our works collaborate with several 

government institutions and Universities, such as Infrastructure Technology 

Centers Ports and Coastal Dynamics, BPPT (Assessment and Application of 

Technology Research Organization)/BRIN (National Research and Innovation 

Agency), Kumamoto University, and Haiphong University of Medicine and 

Pharmacy Vietnam.  

 Our research foundation (refer to Fig. 1.1) is comprised of development, 

empowerment, and sustainability communities and partnerships, which align with 

the United Nations' SDGs (sustainable development goals). This modified 

methodological foundation framework [10] (Fig. 1.1) is designed to cover the 

sustainability of the research and push the transdisciplinary AI research progress 

toward both conceptual and practical. 

1.2 Research Questions 

 Despite the variety of deep learning model implementations on various 

transdisciplinary knowledge, deep learning has some problems corresponding to 

the data type configuration of the input model and prediction. Based on the case 

presented in this dissertation, we can define our problem: 

a. Sensor type input data (single array data) for regression problem (Paper 1: 

Tsunami Tide Prediction in Shallow Water Using Recurrent Neural 

Networks: Model Implementation in the Indonesia Tsunami Early Warning 

System). 

• Using input-output (Lookback-Prediction) pair model configuration, 

can the model predict the tide and tsunami spike through data pattern 

learning? 

• The primary issues of tide model prediction are prediction error and 

prediction time. Will the model be reliable in training and predicting 

processes denoted by Mean Square Error and Time elapsed? 
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• The main problem with our tide dataset is that it does not contain 

tsunami tide. This problem is caused by the unavailability of tsunami 

data in shallow water, which affects the output prediction of tides. Will 

this input data limitation have insufficient representability? 

b. Multimodal sensor data (images, input direction state, speed limit, current 

speed, traffic light state) (Paper 3: End-to-End Time Distributed 

Convolution Neural Network Model for Self-Driving Car in Moderate 

Dense Environment) 

• The empirical approach implemented by Nvidia shows a great system 

performance [11] that can achieve 90% autonomy value. Nevertheless, 

we believe that in a more complex environment, steering angle alone is 

not enough for vehicle control. Lack of control, such as throttling and 

braking systems, will limit the potential application of the model. How 

do we solve this limitation? 

• Many factors in the self-driving car environment cannot be reflected 

solely through a single front-view camera sensor. How do compact 

parameters define the state of car driving? 

• The End-to-End temporal-based setup problem is an issue regarding 

how to set a temporal model on time steps. If we try to use a standard 

dense layer sequentially, the weights and biases might be changed, and 

it makes the output flattened with each time step mixed. How do we get 

the output layer separately by time steps?  

c. Three-dimensional grid structures of protein and each feature definition 

(Paper 4: Protein-Ligand Pair Interaction Prediction Using Wide Resnet 

For Virtual Drug Screening) 

• What kind of features should be added along the grid structures data to 

represent the model? 

• What type of deep learning model is used for capturing these binding 

pocket data structures? 

• Will the proposed model be robust when tested outside of the reference 

dataset? 
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1.3 Research Objectives 

 For each paper presented in this dissertation, we can define the aim of our 

research as follows. 

Paper 1: Tsunami Tide Prediction in Shallow Water Using Recurrent Neural 

Networks: Model Implementation in the Indonesia Tsunami Early Warning System. 

• We maximize the lookback-prediction configuration by maximizing the 

GPU memory availability to define the best-set look-back and prediction 

parameters. Also, the tide prediction presented in the paper is a univariate 

time forecasting problem, which is relevant to the efficacy of RNN [12, 13]. 

• Despite the fact that the RNN training phase cannot take advantage of 

parallel computation in GPU [14], we experiment with various RNN-based 

model structures to achieve a closed real-time prediction in the inference 

time. 

• We can consider the tide prediction as a regression case. Therefore, z-score 

analysis toward variability of the tsunami triggered by earthquake 

magnitude is required. This analysis is used to evaluate the sensitivity of the 

current algorithm. 

Paper 3: End-to-End Time Distributed Convolution Neural Network Model for 

Self-Driving Car in Moderate Dense Environment. 

• The central aim of this project is to develop an End-to-End DNN-based 

autonomous car model that can map states and images into necessary car 

control, such as steering angle, braking, and throttling. Making a set of 

discrete values from car control that can map the continuous value of the 

sensor is implemented to create a smoother driving experience. 

• We address this compact state parameter with the implementation of a 

discrete state such as go left, right, go straight, and lane follows and define 

these into three parameters: output, steering angle, throttle, and brake. This 

setup is done to achieve end-to-end self-driving cars with multi-modalities. 

• We implement a distributed layer to wrap the model. This layer is added to 

get output separately by time steps. 
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Paper 4: Protein-Ligand Pair Interaction Prediction Using Wide Resnet For Virtual 

Drug Screening. 

• In this preliminary paper, we simplify the features representation by 

adopting Ken Dill's lattice protein folding model as features, which 

classifies the residue of the protein-pair ligand. This definition is the first 

approach to prove the ability of deep learning models for the case of protein-

ligand prediction classification. 

• The target of the research is to understand the capability of a model of a 

stacked convolutional neural network with a residual layer on protein-ligand 

binding identification. 

• We can identify the robustness of the proposed model by comparing the 

performance on the external dataset. This process is also used to validate 

our dataset. 

1.4 Research Contribution 

 In this dissertation document, we can summarize the research contribution 

of each of the papers. 

Paper 1: Tsunami Tide Prediction in Shallow Water Using Recurrent Neural 

Networks: Model Implementation in the Indonesia Tsunami Early Warning System. 

• Combination of multistage preprocessing and RNN-based deep-neural 

network on tide data for solving tide prediction modeling in shallow water 

cases. This model is intended to get a better tide prediction and human 

interpretation. 

• The suitable tides preprocessing for shallow water cases that can reduce the 

noise of the tides data and accommodate the neural network input. 

• Empirical insight of various RNN models, vanilla RNN, LSTM, and GRU, 

approach on a case of tsunami detection based on tide prediction. 

• Experimentations on defining look-back and forward parameter scenarios 

on shallow water tides prediction models. 

• Z-score analysis toward variability of the synthetic tsunami triggered by 

earth magnitude. This analysis evaluates the sensitivity of the current model. 
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• Prototype application implemented in Indonesia Early Warning System 

Server in Indonesia. 

Paper 3: End-to-End Time Distributed Convolution Neural Network Model for 

Self-Driving Car in Moderate Dense Environment. 

• The alternative of the PilotNet Model, an end-to-end time distributed-based 

model for self-driving cars, is a combination of the CNN FCN-LSTM 

approach with multiple inputs and states and multiple output predictions. 

Light context-based spatial using depth-separable convolution is also tested 

in this research [15] as part of range model completion on a self-driving car 

case. 

• Early prototype version of a self-driving car wrapper using the Carla 

simulator as an engine. This wrapper is developed to help autonomous car 

developers and programmers implement their deep learning algorithms in 

the Carla simulator (refer to paper workshop 1, Table 2). 

Paper 4: Protein-Ligand Pair Interaction Prediction Using Wide Resnet For Virtual 

Drug Screening. 

• Post-processing pdbbind dataset for deep learning. 

• A comprehensive evaluation of deep learning configurations experiment on 

protein-pair ligand prediction. 

1.5 Dissertation Overview 

 While Chapter 2 focuses on the research foundation of this dissertation, 

Chapters 3, 4, and 5 are about published papers with roles as leading authors. In 

Chapter 6, we talk about conclusions and recommendations for future works. 

Finally, Chapter 7 gives information for co-author contribution.  
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Fig. 1.1 Research Foundation Overview 
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CHAPTER 2: RESEARCH PHILOSOPHY, APPROACH, AND 

METHOD 

2.1 Research Philosophy and Approach 

 The baseline of our research agenda always follows the global goals, SDG 

(Sustainable Development Goals). Our work should contribute to helping solve 

global problems or advance global aspirations. This approach also refers to a new 

generation of transdisciplinary, transformational, and translational AI/Data Science 

(DS) [4]. Based on this foundation, we aim to highlight the novelty and importance 

of our research, as well as raise the research impact.  

 This SDG’s contribution is done in our research by collaborating with 

some institutions, such as the National Research and Innovation Agency (BRIN), 

Indonesia Government, Haiphong University of Medicine and Pharmacy Vietnam, 

and some private companies in the past. The main point of collaboration is to 

enhance the global partnership for sustainable development. 

 The research baseline is accomplished by dividing the research schema 

into two goals: long-term and short-term. The long-term refers to continuous 

research, which becomes the research scheme’s primary focus. This long-term 

research has a higher achievement and requires perpetual exploration to get a good 

result. Drug discovery presented in this dissertation is part of the long-term agenda. 

It takes a lot of time to do a post-processing dataset. However, as part of SDG’s 

good health and well-being, we also should submerge in the drug discovery problem. 

This starting point will later be used to develop Denovo ligands from specified 

protein binding on drug discovery. The design ligand will help to identify lead 

compounds for the specificity of the protein. This result is substantially supportive 

when the designated lead compounds are toxic and scarce. 

 The self-driving car research is also part of the long-term research agenda. 

It is the working continuity from 2018 (Master Degree Research) as part of research 

sustainability. However, the trend of the research has declined in 2021 [16]. 

Nevertheless, our work contributes to self-driving car-wrappers further developing 

self-driving car simulation. 
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 In comparison, the short-term study refers to the current problem, which 

requires faster solutions for specific applications. Tide prediction on shallow water 

cases is a progressed problem for deploying cable-based tsunameters (CBTs) close 

to the Sipora shallow water area. It requires faster implementation as a disaster 

cannot wait at a specific time. 

 Nevertheless, the heuristic aim is not only part of our research philosophy. 

A sustainable innovative methodology has also become the central part of our 

research in deep learning to achieve better performance compared to the previous 

methods. 

2.2 Research Method 

 All of the developmental work can be separated into five major works: 

simulation development, data capturing, model training and validation, 

hyperparameter setup, and testing and evaluation. These works are accomplished 

using Python programming in Jupyter lab environments. 
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CHAPTER 3: PAPER 1: Tsunami Tide Prediction in Shallow Water 

Using Recurrent Neural Networks: Model Implementation in the 

Indonesia Tsunami Early Warning System 

3.1 Foreword 

 The starting point of this research is based on the threat of the giant 

tsunami caused by megathrust earthquakes in the Mentawai island area [20]. The 

subduction zone of this area has the characteristic of a low water depth of about 

80m, which is considered to have considerable ambient noise. Therefore, it requires 

Mathematical modeling that can represent dynamics from nonlinear behavior (Time 

Series Modelling). 

 Moreover, the unavailability of tsunami datasets in shallow water raises a 

problem, particularly a classification problem. Therefore, we design the model for 

the regression case. With the help of Infrastructure Technology Centers Ports and 

Coastal Dynamics BPPT Indonesia for providing tsunami synthetic, we used z-

score to identify the spike of the tides. 

3.2 Published Paper 

Tsunami Tide Prediction in Shallow Water Using Recurrent Neural 

Networks: Model Implementation in the Indonesia Tsunami Early Warning 

System 

Willy Dharmawan, Mery Diana, Beti Tuntari, I. Made Astawa, Sasono Rahardjo, 

and Hidetaka Nambo 

3.2.1 Abstract 

Near-field tides prediction for tsunami detection in the coastal area is a significant 

problem of the cable-based tsunami meter system in north Sipora, Indonesia. The 

problem is caused by its shallow water condition and the unavailability of an 

applicable model or research for tsunami detection in this area. The problem 

foundation of shallow water area is its ambient noise level dependent property that 

requires preprocessing to improve its feature representation. Moreover, because this 



23 

 

shallow water is close to the land area, we must consider a model that can 

accommodate low prediction time for a Tsunami Early Warning System. Therefore, 

we propose a recurrent neural network (RNN) model because of its reliable 

performance for time series forecasting. Our report evaluates variants of the RNN 

model (the vanilla RNN, LSTM and GRU models) in tides prediction and z-score 

analysis for tsunami identification. The GRU model overwhelms the other two 

variants in error scores and time processed (training and prediction). It can achieve 

median error score distribution of 7.8 × 10−5 on the L1000-P250 configuration with 

time prediction under 0.1 s. This lower-time prediction is necessary to ensure the 

early warning system is going well. Moreover, the GRU model can identify all 

synthetic tsunami tide spikes (compared with the ground truth result) from 

magnitude 7.2–8.2 by applying a z-score on the GRU’s prediction. 

Keywords · Recurrent neural network · Deep neural network · Shallow water body 

· Tides prediction · Tsunami early warning system 

3.2.1 Introduction 

 There is already quite much proof of how devastating the tsunami 

impacted the land of Indonesia, which brought in significant loss of material and 

human lives. Take one of the recent tsunami events as an example [17], tsunami 

Palu Dongala (2018) records a total loss of 20.89 trillion rupiahs and 4340 people 

died. tsunami Palu Dongala (2018) records a total loss of 20.89 trillion rupiahs, and 

4340 people died. Moreover, the impact will be worsened because of the stop of the 

economic growth in the post-disaster. 

 One of the attempts to reduce the number of tsunami strike victims, 

Indonesia has developed a Tsunami Early Warning System (TEWS), which started 

in 2005 [18] (post-Aceh’s tsunami). Recently, predicated on the president’s 

instruction, article 5 number 93 2019, as part of strengthening disaster mitigation, 

the Agency for the Assessment and Application of Technology or BPPT Indonesia 

developed Cable Based Tsunami-meter (CBT) [19]. This system will adopt the 

SMART concept, Scientific Monitoring, And Reliable Telecommunication, which 

incorporates a monitoring function of the tsunami, earthquake, climate, ocean 

condition, and sea level with telecommunication capabilities. 
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 Concerning the threat of the giant tsunami caused by megathrust 

earthquakes in the Mentawai island area [20], BPPT initiated the deployment of the 

CBT system in Sipora. The subduction zone of this area has a characteristic of a 

low water depth of about 80 m, which consider having considerable ambient noise 

[21, 22]. Multiple occurrences of bottom bounce path in the sound channel and 

uncertain seafloor properties, including sound speed, density, and attenuation, make 

continental shelves environment has significant external noise, which muddles up 

the data measurement retrieved from Bottom Pressure Recorder (BPR). This 

ambient noise level-dependent feature makes shallow water environments more 

challenging to analyze and model [21]. 

 Meanwhile, tides prediction is a time series problem in which the output 

is the sequence prediction within some margin of error. The traditional modelings 

are mainly parametric based, such as AutoRegressive (AR) [23], exponential 

smoothing [24, 25] or structural time series model [26]. However, it has also been 

found that many of these real-time series modelings seem to follow nonlinear 

behavior [27] and are insufficient to represent their dynamics [27–29]. Therefore, 

another approach using a different mathematical representation of the nonlinearity 

present in the data is suggested to overcome this problem [27, 29, 30]. 

 Notably, the emergence of artificial neural networks (ANN) adopting this 

approach have been widely used for the prediction of various complex system [31–

33]. They can identify and learn the complicated nonlinear relationship between 

system variables, showing more accurate results than linear regression techniques 

[34].  

 Among these various techniques, recurrent neural network (RNN) can 

detect a pattern in the data sequence [35]. This ability differentiates from 

Feedforward Neural Networks, which pass information through the network 

without cycles. The RNN has cycles and transmits information back into itself, 

which extends Feedforward Networks to account for previous information. Despite 

this advantage, RNN suffers from vanishing or exploding gradient in long-term 

dependency [35]. This problem motivated the introduction of long–short-term 

memory units (LSTMs) [36] for handling the vanishing gradient problem. LSTM 
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has become popular in time series forecasting [36]. Compared to deep Boltzmann 

machines, graph-structured recurrent neural networks, and convolutional neural 

networks, LSTM-NN-based deep learning performs better [37] for time series 

forecasting. It can extract robust patterns for an input feature space and effectively 

handle Multiple Input Multiple Output System (MIMO) systems in Deep Neural 

Networks (DNN). Moreover, the LSTM system can take nonlinear systems due to 

their specialized LSTM cell that performs better after learning. However, LSTM 

has some drawbacks related to its complicated unit and more data necessary to learn 

effectively [38]. Therefore Gated Recurrent Unit is proposed as a simpler hidden 

unit to compute and implement [38]. 

 Nonetheless, recent research on time forecasting shows unforeseeable 

CNN [39–41] to solve time series problems. However, this problem is still limited 

to the classification as output, not time sequences which is the output of tides 

prediction. In addition, the wide range variability of the data set must also be 

experimented with for a solid model hyperparameter. 

 Based on all these studies, we select RNN as our model foundation. Some 

factors that support this are as follows: 

• Tides prediction is a univariate time forecasting problem relevant to the 

efficacy of RNN [12, 13]. 

• The output of tides prediction is temporal-dependent sequence data. RNN 

is suitable for sequence learning from the features [42, 43]. 

• Though for the training phase, RNN still cannot take advantage of parallel 

computation in GPU [44], RNN can still achieve a closed real-time 

prediction in the inference time, which is around one second or less, 

depending on the GPU. 

Thus, our work is considered novel since the unavailability of tides prediction 

model and study in shallow water areas for tsunami prediction purposes. Our 

contribution will be as follows: 

• Combination of multistage preprocessing and RNN based deep-neural 

network on tide data for solving tide prediction modeling in shallow water 
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cases. This model is intended to get a better tide prediction and human 

interpretation. 

• The suitable tides preprocessing for shallow water cases that can reduce 

the noise of the tides data and accommodate the neural networks input. 

• Empirical insight of various RNN models, vanilla RNN, LSTM, and GRU, 

approach on a case of tsunami detection based on tide prediction. 

• Experimentations on defining look-back and forward parameter scenarios 

on shallow water tides prediction models. 

• Z-score analysis toward variability of the synthetic tsunami triggered by 

earth magnitude. This analysis evaluates the sensitivity of the current 

model. 

 Finally, solving this near-field tsunami forecasting in the coastal area is 

urgently required to reduce casualties. Indonesia experienced a tsunami caused by 

coastal volcano eruptions in 2018 [45]. Furthermore, Sumatra island’s coastal 

region, especially Mentawai island, has considerable potential for megathrust 

earthquakes and landslides [46]. Therefore, the RNN tides prediction model 

proposed in this paper can become the required solution to mitigate this problem. 

3.2.2 Related Works 

 National oceanic and atmospheric administration (NOAA) developed the 

tsunami detection algorithm under the deepocean assessment and reporting of 

tsunamis (DART) project using cubic polynomial [47]. While in [34], Beltrami tried 

to find a more efficient alternative tsunami detection algorithm by proposing an 

artificial neural network (ANN). Both of these algorithms use the data from the 

bottom pressure recorder (BPR) as a sensor to collect the sea level in the deep sea. 

Based on the comparison [48], ANN methodology can predict tide and other regular 

patterns in the wave better than the DART. 

 Before [48], Barman et al. [49] utilized non-linear regression in ANN to 

calculate the estimation time arrival (ETA) for predicting the tsunami travel time in 

the Indian Ocean. The ANN model could perform the rapid computation for ETA. 

The model proved its robustness in developing a real-time tsunami warning system 

for the Indian Ocean. 
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 These efficacies of ANN encourage data-driven forecasting tsunami [50]. 

Romano et al. [50] utilized spatial values of maximum tsunami heights and tsunami 

arrival times (snapshots) computed through the TUNAMI-N2-NUS model. They 

achieved good accuracy and near-instantaneous fore forecasting of the maximum 

tsunami heights and arrival times for the entire computational domain. 

 Another variant of ANN is also adapted to estimate tsunami inundation 

[51]. Fauzi and Mizutani applied two machine learning models, a convolutional 

neural network and a multilayer perceptron, for real-time tsunami inundation 

forecasting in the Nankai region of Japan. They experimented using the 

hypothetical future Nankai megathrust earthquake with Atashika and Owase Bays 

in Japan as the study cases. The results show that the proposed methods are high-

speed (less than 1 s) and comparable with nonlinear forward modeling. 

 Besides tsunami mitigation, another natural disaster, such as an 

earthquake, is also predicted usingANN [52–54]. In the most recent [55], Kishore 

et al. used the LSTM to model the sequence of earthquakes. They used the trained 

model to predict the future trend of earthquakes and compared the LSTM with an 

ordinary Feed Forward Neural Network (FFNN) solution for the same problem. 

The result showed that the LSTM neural network was found to outperform the 

FFNN in the task of modeling the sequence of earthquakes. 

 Compared to all the previous work, our study regarding tsunami detection 

in shallow water case is considered a premiere. The challenging part of BPR data 

in shallow water areas is the muddled ambient noise, which requires signal 

processing to filter these out from the expected features. Various RNN networks 

are evaluated, serving as context learners that forecast the upcoming tides. Finally, 

the z-score will identify the tsunami spikes from the set of predicted tides. 

3.2.3 Methodology 

o General algorithm design 

 This project defines the primary solution through a block diagram 

comprising preprocessing, training model architecture, and tsunami identification. 

Preprocessing sequences involve feature scaling, vector shape matching, and 
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denoising. The training model architecture consists of the RNN stacked model and 

the dense layer, which map the features into a serial data prediction. Finally, the 

system will identify the tsunami from the prediction sequence of tides by smoothed 

z-score methodology, as shown in Fig. 3.1. 

 

 

Fig. 3.1 General block diagram of designed system 

o Preprocessing 

 The first part of the section (Fig. 3.2) is a scaler based on a percentile that 

will improve distribution data scaling. The process is unaffected by significant 

marginal outliers, which commonly occur in a noisy data environment. From this 

section onward, 0–1 normalization is required to match the RNN input layer. 

Eventually, the processing system applies a lowpass filter to reduce ambient noise. 

The LPF design parameter follows [56] Oceanographical Engineering Textbook 

allowing tsunami data to be captured with a frequency less than or equal to 0.01 Hz. 

The order of the filter is also set to 9 to reduce stopband ripple maximally, as shown 

in Fig. 3.3.  

 

Fig. 3.2 Preprocessing block diagram 
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 On the other hand, based on the general block diagram section (Fig. 3.1), 

we can write the system in pseudocode. Before utilizing the function, training data 

are fitted into the scaler to capture data traits (mean, variance, interquartile range, 

etc.). This trait can be saved into.bin format and loaded in the function. 

 

 

Fig. 3.3 Butterworth filter frequency response on 0.01Hz cutoff frequency 

o Model architecture 

 The target of the design model (Fig. 3.4) is a vector of future predictions. 

This mechanism can be achieved by applying a stack of RNNs, followed by a dense 

layer. A drop-out layer shall be attached to the sequence to reduce overfitting cases. 

 Some variables define each of the functions. The input x needs to be in 

three-dimensional size, in which the vector should be reshaped into (ℎ𝑒𝑖𝑔ℎ𝑡 ×

𝑤𝑒𝑖𝑔ℎ𝑡 × 1). The 𝑛_𝑢𝑛𝑖𝑡𝑠  represents the number of hidden units denoting the 

number of dimensional output space while the 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 symbolizes the number 
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of data input that becomes the previous data context. Finally, the predicted output 

is an array with time sequence size mapped using a dense layer. 

 

Fig. 3.4 Model network layers design 

o Model prediction algorithm 

 This part (Algorithm 2) defines the basic algorithm to train and test the 

model prediction. The windowing LSTM with look-back variation value becomes 

the core of the algorithm. The program’s first segment defines the number of look 

− backs, the number of predictions and reshapes input x into three-dimensional 

input (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), and y into two-dimensional information. 

The look – back parameter is the number of data points in prior timesteps, which 

become part of this project analysis. Finally, the model predicts the tide, then 

𝑑𝑎𝑡𝑎_𝑖𝑛𝑝𝑢𝑡 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 variables are updated. 
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3.2.4 Technical background 

o Recurrent neural network 

In most of the literature, a hidden unit in RNN can be formulated as follows [57]: 

ℎ(𝑡)  =  𝑓 (ℎ𝑡−1, 𝑥(𝑡);  𝜃) (1) 

Referring to the (1) equation, h is a hidden unit function, x(t) is the current input, 

and θ is the parameter of the function f . This equation is recurrent because ℎ at time 

𝑡 refers to the same definition at time 𝑡 − 1. There are several examples of the 

design pattern of RNN, yet to ease the exposition, we focus on the basic form of 

recurrent networks, hidden-to-hidden recurrent connection, which refers to Fig. 3.5 

[58] 

 

Fig. 3.5 Computational graph representation of RNN basic form, including 

training loss computation 

 From Fig. 3.5, we can see that the idea of RNN is to pass or connect 

previous information to the present task. This process is beneficial because it needs 

sequence information to be processed, such as a video frame.However, in this 

“long-term dependencies” case, Hochreiter [59] and Bengio [60] found some 

fundamental reasonswhy it is difficult. Therefore, basic RNNs fail to learn “long-

term dependencies”. Nevertheless, the variants of RNN architecture called gated 

RNNs, including LSTM and Gated Recurrent Units (GRUs), are introduced to 

tackle this problem. Especially, LSTM, which was introduced by Hochreiter and 
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Schmidhuber [59], has been quite popular nowadays, as many researchers use it 

because of the efficacy in many different applications [58]. 

 LSTM introduces a new element called cell state c, which comprises the 

forget gate (𝑓𝑡), input gate (𝑢𝑡), and output gate (𝑜𝑡). According to its name, forget 

gate determines whether the previous data is diminished. In contrast, the input gate 

evaluates the information to be carried over in the sequence, and the output gate 

decides the next hidden state value from the previous data. We can define each of 

the gates in the following equation: 

𝑢𝑡  =  𝜎(𝑊𝑢ℎ𝑡−1 +  𝐼𝑢𝑥𝑡  +  𝑏𝑢) (2) 

𝑓𝑡  =  𝜎(𝑊𝑓ℎ𝑡−1 + 𝐼𝑓𝑥𝑡  +  𝑏𝑓 ) (3) 

𝑜𝑡  =  𝜎(𝑊𝑜ℎ𝑡−1 + 𝐼𝑜𝑥𝑡 + 𝑏𝑜) (4) 

Each of the formulae at the time step 𝑡 , 𝑊𝑓 , 𝑊𝑢 , 𝑊𝑜 , 𝐼𝑓 , 𝐼𝑢  and 𝐼𝑜  are weight 

parameters on the corresponding gate, while variables, 𝑏𝑓 , 𝑏𝑢  and 𝑏𝑜 , are bias 

alongside the gate. Thus, the cell candidate (𝑐̃𝑡), current hidden state (ℎ𝑡 ), and 

current cell state (𝑐𝑡) can be formulated as below: 

𝑐̃𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑐ℎ𝑡−1  +  𝐼𝑐𝑥𝑡  +  𝑏𝑐) (5) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑢𝑡 ⊙  𝑐̃𝑡 (6) 

ℎ𝑡 = 𝑜𝑡 ⊙  𝑡𝑎𝑛ℎ(𝑐𝑡) (7) 

𝑦𝑡  =  𝜎(𝑊𝑦ℎ𝑡 + 𝑏𝑦) (8) 

where variables, 𝑊𝑐 and 𝐼𝑐, represent weight parameters on the cell and variable 

𝑏𝑐 is bias alongside the cell.  

 

Fig. 3.6 General block diagram of A LSTM and B GRU 
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 In comparison with LSTM (shown in Fig. 3.6), GRU replaces the three’s 

LSTM gates into two gates: the update 𝑧𝑡 and reset 𝑟𝑡 gates. The update gate helps 

themodel control the new state’s number from a copy of the previous state, while 

the reset gate intuitively controls how much past information to forget. The GRU 

unit is defined as the set of the equation below: 

𝑧𝑡  = 𝜎(𝑊𝑧 𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (9) 

𝑟𝑡 = 𝜎(𝑊𝑟 𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (10) 

ℎ𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊ℎ 𝑥𝑡 + (𝑟𝑡 ⊙  ℎ𝑡−1)𝑈ℎ + 𝑏ℎ) (11) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙  ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃  (12) 

𝑦𝑡  = 𝜎(𝑊𝑦 ℎ𝑡  +  𝑏𝑦) (13) 

From empirical insight [61], GRUs overcome LSTM network performance for low 

complexity sequences and vice versa. This performance [61] corresponds to the size 

of the learning rate for each complexity rate (low and high) of seed strings. LSTM 

networks perform better for similar forecasting on higher complexity of seed strings. 

o Data Acquisition 

 INA CBT Sipora consists of two sensors on Ocean Bottom Unit (OBU) 

and an optical cable under the sea (Fig. 3.7). One sensor is the Bottom Pressure 

Recorder (BPR), a pressure transducer measuring tide periodically. Three 

parameters are captured per second, DateTime, water column height, and 

temperature (Fig. 3.8). 

 

Fig. 3.7 Component of OBU Sipora 
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Fig. 3.8 Periodic tide data acquisition 

o Testing data 

The testing data preparation consists of modelling shallow water tsunamis using the 

Tunami-F1 model [62] and injecting the tsunami model into actual capture data. 

The work of Infrastructure Technology Centers Ports and Coastal Dynamics BPPT 

Indonesia helped the tides prediction model for tsunami identification by providing 

shallow water tsunami data tests. They simulate dummy tsunamis generated by an 

earthquake ranging from 6.4 to 8.2 magnitude (Fig. 3.9). 

 

Fig. 3.9 Tsunami caused by an earthquake with the variability of magnitude 

 After the tsunami-generated by earthquake variabilities are produced, the 

modeled tsunami is injected into the test data. Some steps are to follow for injecting 

tsunami data into data tests and real-time captured tide data. The process starts by 

interpolating the tsunami-generated data by matching the model time sampling. The 

resulting wave will have zero paddings conforming to the array dimension. Finally, 
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the modeled tsunami superposes test data, which yields injected tsunami waves, as 

presented in Fig. 3.10. 

 

Fig. 3.10 Block diagram process of tsunami injection 

o Tsunami identification 

 Because of the low amount of the actual shallow water tsunami data set 

(only one was generated), the model cannot be expected to solve the classification 

problem. Instead, the generated data prediction will use a smoothed z-score to 

determine the tides as a tsunami or not. Z-score is a standard methodology used in 

forecasting problems to identify the trend from the prediction. This score indicates 

how many standard deviations an observation on each 𝑖 is above or below the mean: 

𝑍𝑖 = (𝑥𝑖  −  𝑥̅)/𝜎 (14) 

3.2.5 Result and analysis 

All test procedures are performed through Python 3.8 with Keras, Tensorflow, 

numpy, pandas, scikit-learn, and matplotlib third-party library. On top of that, these 

program specifications are supported by GPU Nvidia A6000 as part of the computer 

platform in Artificial Intelligence Laboratory Kanazawa. After obtaining the results, 

we performed two analyses to evaluate our designed performances. Those are 

look−back prediction and z-score tsunami identification analysis. 

o Preprocessing procedural testing 

 In Fig. 3.11, the training data set comprises input data, a periodic tidal 

wave captured continuously every second for 5 days. Later, these data go into two 

scalers, robust, and min–max scaler. A robust scaler transforms the data input by 

removing the median and scaling the data according to the interquartile range (IQR) 
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(Fig. 3.12). The IQR ranges between the 1stquartile and 3rdquartile. This process 

makes the distribution of data robust to outliers. A min−max scaler is then applied 

to adjust the value range from 0 to 1, which is required for LSTM input data.  

 

Fig. 3.11 Training data set 

 

Fig. 3.12 Robust scaler input transformation 

 

Fig. 3.13 Min–max scaler input transformation 
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 After that, the Butterworth filter refines the normalized waves to reduce 

data noise form (shown in Fig. 3.13). From Fig. 3.14, data noise is decreased 

heavily into a smoother appearance. 

 

Fig. 3.14 Low-pass filter Butterworth output 

o Model and validation data set 

We sample six daily Sipora tides log data from Sipora OBU and divide them into a 

5:1 ratio of a data set for training and testing. This testing data become the basis of 

dummy data for the superposition of tsunami-generated earthquake variation. 

 

Fig. 3.15 Data set composition 

 There are 401,696 data points for the training set and validation. These 

data are split into 0.8 training and 0.2 test data (Fig. 3.15). Arbitrarily, we choose a 

configuration from a particular model to represent the “Training loss VS Validation 

loss” output. The training process uses Mean Squared Error (MSE) as a loss 

function. It converges with a training loss of 1.11 × 10−4 and a validation loss of 

2.23 × 10−4. The difference in these numbers indicates that the model is neither 

underfitting nor overfitting because of its small margin in the region 10−4 (refer to 

Fig. 3.16). 
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Fig. 3.16 Model train versus validation loss (from LSTM training process) 

 This model training is finished with 100 epochs and batch size 256-this 

process executes 100 units of the RNN stacked model. Adam optimizer is also 

applied with the learning rate 1𝑒−3 and decay rate 1𝑒−5 to improve convergence 

speed. 

o Testing data preparation 

Afterwe collect the necessary model data, the trainingmodel is saved into .h5 format. 

Then, the model is tested with an external data set referred to as the B section. 

Before the prediction, the data test embedded tsunami synthetic are prepared by 

using the explained algorithm in the methodology part, section 5 (Fig. 3.17). 

 

Fig. 3.17 Data test 

 When all necessary data tests are gathered, the upcoming process will be 

a prediction. From this prediction, we can compute the error rate for performance 
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evaluation. Moreover, prediction and data input are also plotted to know how well 

the RNN model filters out the ambient noise (Fig. 3.18). 

 

Fig. 3.18 Sequence prediction test on tsunami data injected induced by earthquake 

on mag. 7.8 

o Look-back variation analysis 

A set of look-back and prediction parameter configurations is tested. Moreover, to 

choose the look-back parameter,we need to empirically assess the computer’s 

capability to execute multiple arrays related to GPU resources. In this experiment, 

the composition number of look-back and prediction points that can be executed 

maximally is 1000 nodes of look-back and 1000 predictions. Higher configuration 

points can raise Out of Memory (OOM) errors caused by insufficient memory. 

Initially, vanilla RNN networks are implemented to see how classic RNN work in 

the tide prediction application. In this experiment, as the input data will be 

continuous tides with temporal dependent, we apply a stateful setting on the RNN 

networks. Consequently, the network can learn the previous batches. Mini batches 

are also done for the input to ensure all the sequences are processed. 

 Vanilla RNN shown in Fig. 3.19 can achieve a median from MSE score 

distribution of 1.14 ×  10−4 on Look-back 1000 and Prediction 250 configuration. 

The median of the MSE score distribution is used as a pointer because the mean of 

the MSE score is skewed as a result of outliers, as shown in Fig. 3.19. It also can 
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be seen that each ratio L250-P250, L500-P100, and L500-P500 has the same range 

of 10−4 as the most minimum median in the MSE distribution. On the other hand, 

the other’s ratio shows MSE scores in the range of 10−2 and 10−3. Besides its 

performance, from Fig. 3.19, L1000-P50, L1000-P500, and L1000-P1000 

configurations are missing because “NaN” errors occur during prediction. We 

consider this instability to be caused by vanilla RNN’s insufficient representability 

for capturing the complexity of the tides. 

 

Fig. 3.19 Error distribution of tides prediction of Vanilla RNN model 

 

Fig. 3.20 Density distribution normalized graph of MSE distribution on L1000-

P250 

 Surprisingly, according to Fig. 3.20, LSTM has a similar  MSE 

distribution on our tides prediction with vanilla RNN on the ratio of L1000-P250. 
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However, compared to vanilla RNN, the LSTM model tremendously improved the 

median MSE score (Fig. 3.21) by reaching 7.96 × 10−5 on a ratio of L500-P250. 

On the same ratio, L1000-P250, it also shows improvement to 8.14 × 10−5.Other 

ratios denote better scores than the vanilla RNN model. 

 

Fig. 3.21 Error distribution of tides prediction of LSTM model 

 

Fig. 3.22 Error distribution of tides prediction of GRU model 

 Finally, the GRUmodel shows the best performance compared to the 

others. It can pull off themedian in the error score distribution to 7.8 × 10−5 on 

the L1000-P250 configuration (Fig. 3.22), which is also smaller than the other two 

models (vanilla RNN and LSTM). Overall performance, GRU exhibits a higher but 
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close error score to the LSTM model (9 configurations higher than the LSTM model 

(Table 3)). This improvement in error score indicates that the tides prediction 

problem has a low complexity sequence which, in this case, GRU has better 

performance and efficiency (Table 3 and Fig. 3.23). 

 

Fig. 3.23 Vanilla RNN VS LSTM VS GRU training time for one epoch 

distribution 

Table 3 Median of MSE distribution for each of model configuration 
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 This efficiency refers to the training and prediction time. As for the 

context of tides prediction in the tsunami application (Fig. 3.22), our model should 

predict as fast as possible to ensure enough time for the information to be conveyed 

on the shore. Nonetheless, the training time for one epoch depends on the layer type, 

number of hidden units, network depth, input data dimension, and model 

hyperparameter. From our experiments, GRU shows remarkable efficiency in 

training and predicting time. All GRU model configuration accomplishes the 

training process for under 90 s per epoch (Fig. 3.23). This result is also directly 

proportional to the prediction time of one sequence output which set off all the 

configurations under 0.1 s (Fig. 3.24). Second best in efficiency, The LSTM model 

finishes the training process for one epoch up to 302 s and prediction of 0.352 s 

(Fig. 24). This performance evaluation is relevant to the [61] for less complex 

sequence problem. The last model, vanilla RNN, is the palest in time performance 

compared to others. It takes up to 1490 s to finish one epoch training and 1.14 s to 

predict the sequence of tides. Nevertheless, this performance showcases validation 

on RNN model comparison, which is relevant to the previous research [33, 36, 58, 

61]. 

 

Fig. 3.24 GRU VS LSTM time prediction 

o Z-score analysis 

Z-score detects significant variations of the spikes from the expected tides. This 

methodology can work using the means and standard deviation of normal tides. 
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Then, the threshold value is applied to the standard deviation as a margin to the 

expected tidal wave distribution. 

 This methodology is tested on the divergence of tsunami synthetic. In this 

experiment,we empirically set the threshold of 2.7 of standard deviation as it shows 

the test’s false error. The fluctuation can be identified by “1” as a rising tide and 

“−1” as a downward spike (Fig. 3.25). 

 

Fig. 3.25 Z-score tsunami spike identification on the data test with magnitude 7.8 

 Our experiment also evaluates the z-score on each model prediction. 

Table 4 shows the performance of the tides predictionmodel processed in z-score 

to identify a surge of tides or tsunami caused by an earthquake of various magnitude. 

The shallow water tsunami of LSTM and GRU prediction can be completely 

identified in corresponding to the number of peaks detected in ground truth 

prediction. Still, vanilla RNN prediction misses two tsunami tides on magnitude 7.4 

as shown in Fig. 3.26. 

Table 4 Tsunami tides identification for each model 
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 Furthermore, the z-score methodology cannot identify tsunami spikes in 

the magnitude 6.4–7 range. This outcome is supported by the fact that thewaves 

embedded in the tsunami on that range are blended exceptionally well; the 

waveform is hardly noticed. The z-score can determine the number of fluctuations 

caused by the synthetic tsunami in the other magnitude span. The higher the 

magnitude cause, the easier z-score can recognize the sudden change of tides. 

Moreover, it can detect the tsunami’s initial surge on the majority of magnitude 

except for magnitude 7.2 and 7.4 (only for vanilla RNN),which is vital to 

knowwhen the tsunami starts (shown in Fig. 3.27). 

 

Fig. 3.26 Comparison of z-score processed 
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Fig. 3.27 Tides embedded synthetic tsunami induced by earthquake with a 

magnitude of 6.4 

3.2.6 Conclusion and future works 

Applying a time series model to tide prediction problems on shallow water requires 

multiple mechanisms to identify tsunami spikes. The procedures start from the 

preliminary operation on the input waves. Two-step features scaling, robust, and 

min–max scaler are applied to capture the wave’s distribution and adjust to 

theRNNvariant input array requirement. Then, the Butterworth filter with 9 order 

and 0.01Hz cutoff frequency work in the sequence to filter out the ambient noise. 

This process continues to the time series model prediction of RNN and its variation. 

Finally, the z-score will determine whether these waves are possibly tsunamis. 

 We find that tides prediction is a low-complexity sequence problem 

corresponding to the performance evaluation of GRU, which is better than the 

LSTM model. GRU score lowest MSE median of 7.8×10−5 on the L1000-P250 

configuration. It also exhibits the best efficiency by accomplishing the training 

process for under 90 s per epoch and the prediction process for under 0.1 s for all 

test configurations. Besides, in z-analysis, GRU and LSTM prediction show 

complete identification of tides.This result indicates that the GRU model suits the 

tides prediction problem. 
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 Incorporating a z-score in the surge of tides identification is due to the 

limitation of actual tsunami data in shallow water areas on newly deployed CBT 

Sipora, in which the model needs sufficient data for classification problems. In the 

future, incorporating an accelerometer in time series data input and prediction will 

improve the tides prediction model and cover the lack of capability in determining 

tsunami spikes caused by lower earthquake magnitude. 

 In addition, it is also worth mentioning recent developments of a deep 

transformer model [63–65], which has shown state-of-the-art performance in time 

series forecasting problems. This algorithm introduces the self-attention method, 

which can overcome the “short-term memory” problem over infinite long 

sequences [64]. This approach should also be included in the next study to find a 

better tides prediction model to improve efficiency and accuracy. 
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CHAPTER 4: PAPER 3: End-to-End Time Distributed 

Convolution Neural Network Model for Self-Driving Car in 

Moderate Dense Environment 

4.1 Foreword 

 Supervised learning of spatial based autonomous car requires images as 

an input as well as a state of the current condition. Therefore, we need to capture 

images from the designated environment. Generally, we start to develop an 

autonomous car environment using Carla based simulator as well as adding and 

modifying the program so that it can capture and label the program automatically. 

While we finish the program, we make a batch-based trainer, to make an h5 model. 

Then, we test the model and grab the evaluation parameter for analysis. 

4.2 Published Paper 

End-to-End Time Distributed Convolution Neural Network Model for Self 

Driving Car in Moderate Dense Environment 

Willy Dharmawan, and Hidetaka Nambo 

4.2.1 Abstract 

 Vehicle control in Autonomous Car requires the following command to 

make sure that the car can accomplish a specific task, such as taking a turn, stop on 

the traffic light, following lanes, and changing lanes. This serial command indicates 

that a self-driving car should not be addressed as a context-based problem that 

theoretically needs a temporal system that can accommodate multiple frames. 

 Based on this added complexity of the problem, we propose a network 

that can accommodate the sequential input of images. Thus, we apply a time 

distributed model of Convolutional Neural Network (CNN), to recognize a visual 

problem, followed by LSTM that can capture temporal state dependencies. 

 By modifying the Carla environment, we can capture frame per frame 

images with detailed information of throttling, speed, steering angle, brake, and 

some states such as direction, speed limit, and traffic light state. We use the Carla 
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control agent so that it can automatically capture all of the images from the camera 

and those of information. We demonstrate that this rough approach can perform 

well in the Carla environment with moderate dense traffic. It can reach the 

destination faster than the ground truth and standard convolution model in just 

93.978 seconds. Although the driver agent performance is a bit rough with around 

13.27 of speed above score, it shows a better steering control, which means better 

stability.  

Keywords—Time Distributed, LSTM, CNN, Carla, Autonomous Car 

4.2.2 Introduction 

 Autonomous car system, which split up into spatial perception and control 

module, has become a part of the development of vehicle control rule-based 

solution [66], [67], [68], [69], [70], as well as a traditional solution [71]. Then, in 

the recent year, Nvidia proposed a newer solution [72,73], applying a high 

dimensional feature extraction using Convolutional Neural Network (CNN) and 

map the result into steering control. 

 This efficacy of learning action policies from mapping pixel images is 

appealing because it directly mimics the demonstrated performance, without 

accounting to the agent environment. Even though it can learn vehicle control from 

the input of images, we think that self-driving car does not just rely on single 

information of images. It is a sequence problem that requires multiple data of 

images. It shows in [74] that a sequential based model has slightly better accuracy 

in comparison to just CNN based model. This result shows in the implementation 

of Fully Connected Network-Long Short-Term Memory (FCN-LSTM) architecture 

on discrete action driving experimentation. Therefore, in this work, we explore a 

time distributed based model which combines CNN and LSTM, accommodating 

multiple input and multiple outputs.  

 The differences of time distributed model with stacked CNN are the 

LSTM layer part and sequential input in time steps. The agent will learn a control 

parameter from the subsequent information. The model extracts the high dimension 

features, and LSTM will determine the importance of each feature. From this 
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process, the model will yield the control parameter. This methodology fits with the 

autonomous car problem because it is a sequential problem that needs multiple 

images to know the best policy.  

 Many factors in the self-driving car environment cannot be reflected 

solely through a single front-view camera sensor. So that, we address this problem 

into a discrete state such as go left, right, go straight, and lane-follow and define 

these into three parameters output, steering angle, throttle, and brake. Also, the 

Carla environment provides some parameters, such as direction state, speed, speed 

limit, and traffic light state in the lane. Thereby, we can just simply make some 

adjustments on the code and create a program to acquire our training data and test 

our model. In contrast, it requires another algorithm or mechanism to get those 

specific states of the agent. 

 There is also a problem regarding on how to set a temporal model on time 

steps. If we try to use a standard dense layer sequentially, the weights and biases 

might be changed, and it makes the output flattened with each time step mixed. 

Thus, we use the time distributed layer to wrap the model, to get output separately 

by time steps. 

 We evaluate this proposed model by comparing it to a spatial based model 

and ground truth data on how it differs in test performances in the town environment. 

The experiment results show that time Distributed model has better stability in 

steering angle in comparison to just a regular stacked CNN model. However, this 

combination of CNN-FCN-LSTM does not perform well in controlling speed, 

because it has the highest score in above speed control. Consequently, it can reach 

the predefined destination faster than the ground truth and CNN based model. 

4.2.3 End-To-End Self Driving Car 

 End-To-End Learning has been known as a straight forward way and more 

into brute force technique for solving a complex problem by taking advantage of 

deep learning structure [75]. It comprises of several layers that constitute an 

artificial neural network, which imitates a distributed approach to solve a problem.  
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 The autonomous car is one of the remarkable examples of a complicated 

problem. To define this particular system, Alexandru Serban et al. create a multi-

layers diagram [76]. It starts with the extraction of sensor fusion data to get relevant 

features (e.g., object detection), then the car will have information on the 

surrounding environment (world model). From this onward, the system will 

generate a behavior model that is useful for decision making in the planning layer. 

Finally, the control layer interfaces the control through the actuator. 

 The end-to-end learning model simplifies these multilevel problems. The 

first attempt in 1989, Autonomous Land Vehicle in a Neural Network (ALVINN) 

[77], manages to do well in simple roads with few obstacles. It just comprised of a 

shallow network that predicted actions from pixel inputs. Nevertheless, this 

successful show the potential of neural networks for autonomous navigation. 

 With the development of deep learning, mainly CNN based model [78], 

Nvidia proposed a similar idea that fully utilizes convolutional networks [73][79] 

to extract the features from driving images. This stacked convolutional layer is 

adjusted so that it can map the high dimensional features into vehicle control, a 

steering angle. It shows a successful result with a straightforward scenario such as 

highway lane following and driving in obstacle-free courses. 

 Following that basis, this mechanism expands with a multi-modal multi-

task framework [72], which combines CNN based networks with FCN-LSTM. 

They address end-to-end steering control with new speed prediction. They use 

Udacity and SAIC dataset to evaluate their model and shows that their model has a 

better mean absolute error in steering angle prediction. 

 The recent works focus on the variation of CNN based model on various 

performance evaluation. There is an ablation test of imitation learning in a 

successive percentage introduced by F. Codevilla et al. [80]. On multi-task learning, 

S. Chowdhuri et al. [81] presents multi-modal multi-task learning with a 

comprehensive evaluation of multiple types of datasets. This model develops into 

Multi-task learning from Demonstration (MT-LfD) [82] combining ResNet and 

Soft Attention to measure visual affordance. 
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 Our work wraps the multi-modal and multi-task function with the Nvidia 

basis model on context learning. Driving behavior becomes the evaluation 

parameter. These parameters are defined through the accessible information in 

testing simulation. 

4.2.4 Methodology 

o Working Flow 

 

Fig. 4.1. Project working flow 

 This work (Fig. 4.1) starts from setting up and overwritten simulator 

program tailoring up to the test designed. It requires an understanding of the Carla 

environment to add some of the codes into Carla’s python classes. Some of these 

classes are roaming_agent, basic_agent, local_planner, and autonomous_controller. 

These sections are essential parts to adjust to implementing an autonomous car 

algorithm. 

 All of these modifications are also useful for helping the user in capturing 

and labeling the data to create a training set and test set, which commonly requires 

a lot of time. When the dataset is ready, predefined hyperparameters need to be 

configured, such as number of epochs, learning rate, batch size, loss function, etc. 

Later, the obtained data is trained and validated with the ratio of 7:3, follows K-fold 

crossvalidation recommendation to get a good proportional dataset. The 

engineering process is taken place in the tuning process to achieve the best model 

performance. 

 After all parts of the design are set, training and data validation, as well as 

testing model, are executed. We track and save the results to multiple training logs. 

Through these saved data, the model is analyzed and evaluated. 
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o Simulation Environment 

 In this work, we simulate the model in Carla Simulator [83] version 0.9.5, 

which has a numerous improvement in comparison to 0.8.4 version, such as python 

API, waypoint ID, autopilot system, etc. We also use a navigation-based 

Proportional Integral Derivative (PID) controller, which employs a control loop on 

sensor feedback for the autonomous system. It is hardcoded AI that works imitating 

the human driver, such as stopping when red light, running while green light, 

keeping the speed up in the different lane, and distance up to the front car. Moreover, 

we can record all acquired data, such as agent states and parameters, images, and 

configuration information. 

 Specifically, we emulate the model in the Town02 map with clear noon 

weather conditions. By detail, the weather parameter has cloudiness 15, 

precipitation 0, wind intensity 0.35, sun azimuth angle 0, and sun altitude angle 75. 

We also set up an overall number of vehicles into 50 random means of transport, 

ranging from regular cars, bicycles, motorbikes, and trucks. These vehicles spawn 

in different positions. Their movement is also spreading randomly and follow the 

way of an expert agent moved. So, it follows the traffic rule and speed limit. 

 In the environment, there are varieties of landmarks, such as buildings, 

trees, warehouses, high buildings, open space areas, and many more. All these 

landmarks are part of selfdriving car challenges, how the agent can withstand the 

irregularities in the environment as well as keeping the lane and distance with non-

player vehicles while maintaining the rule such as speed limit and traffic light. 

 Non-player vehicles have deterministic behavior. This kind of unrealistic 

nature will make an expert agent easily derives its policy. As our test focuses on 

driving experience on a different model to the target goal, we don’t put stochastic 

nature to these vehicles. Instead, apart from the standard capture (without added 

noise), temporal noise is added to the expert agent to cover all of the possible states 

in the test session. 

 All of these data are captured on the PC with a slightly higher spec, i7 

6700 3.4 GHz, ram 16 GB, GPU 1080 GTX in python 3.7. The PC is also equipped 
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with 3rd parties library for training and testing purposes (Tensorflow-gpu, Keras, 

and library dependencies). Our test on this computer can achieve performance 

around 30 to 115 fps depends on the non-player crowd. 

 

Fig. 4.2. Example of the arbitrary route generated randomly in the Carla 

environment. 

o Model Architecture 

 The design of our model architecture comprised of Long-term Recurrent 

Convolutional Network design [80] with some tuning and idea of the Pilotnet model 

[73]. It includes three control parameter which defines the state of the autonomous 

agent. 

 Firstly, we crop and resize the input image into 66 x 200 x 3, adhering 

Nvidia designed model [73] as it has been tuned in that way to achieve a good result. 

Then, it follows with HSV convert, to remove noisy information. After that, the six 

stacked convolutional layers will extract images into high level features of data. 

The main differences between normal and time distributed are: 

• Time distributed is a wrapper which applies time slice of an input. In other 

words, the layer put on a dense layer on n timesteps depends on the 

configuration. 
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• The weights and biases will not change until the batch of the sample 

concerning time steps shifts into another distribution. This part is also 

consequent with a standard layer without time steps. 

 After flattening the output of CNN, the four states (direction, speed limit, 

speed, and traffic light state) are concatenated. In the following part, LSTM will 

function as a context descriptor on the sequence of images. Finally, a fully 

connected layer will map these into the driving control parameter. 

 

Fig. 4.3. Design of Time Distributed model which comprised of 5 stacked 

Conv2D layer and LSTM. 

o Training Data Acquisition 

 Consider a controller that interacts with the environment over discrete 

time steps. At each time step 𝑡, the controller receives an observation 𝑜𝑡 and takes 

an action 𝑎𝑡 . The training data is a set of observation action pairs with respect to: 
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𝐷 =  {〈𝑜𝑡, 𝑎𝑡〉}𝑡=1
𝑁  (15) 

generated by the expert agent. The assumption is that the expert has accomplished 

the driving from a certain point until it reaches the destination. The autonomous 

agent will mimic the path or lane that the expert usually used to reach the goal. 

 We make our recorder to capture the driving images and another 

parameter. We use the sensor RGB or front view camera provided by Carla. To 

avoid redundancy in image acquisition, we sampled ten frames per second (FPS) 

for every episode. 

 There are three types of images that we captured, training data in default 

setup condition with another vehicle, without vehicle and noise added. These three 

differences in the dataset are necessary for the sake of covering all the possible 

positions of the agent so that it can recover from an unwanted situation or place. 

We acquired this data by randomly set up start location and stop location. 

 

Fig. 4.4. The sample image, captured through the front view camera in Carla’s 

environment. 

4.2.5 Result And Analysis 

 In this section, we provide the result of our test simulation, which started 

from model training until experiment analysis. 

o Model Training and Validation 

 After a long process of data acquisition, we obtained 101,360 images with 

detail such as frame number, speed, throttle, brake, speed limit, traffic light state, 
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direction, simulation time, etc. Then, we filter out into just six parameters, which 

have a composition of direction state, traffic light state, speed limit state, and speed 

as 𝑋, while throttle, steer and brake work as 𝑌. Using Keras, we train our model 

with the following configuration. 

Table 5. Time Distributed Based Model Configuration 

 

 In this training process, the total number of parameters is 802,199. We use 

the Early stopping module to reduce overfitting as well as get the best number of 

epochs in training before it stops improving. In our first experiment with the Nvidia 

model, the training ends after it reaches 40 epochs, with training loss 0.0054 and 

validation loss 0.024. The result shows that the model can converge very well. 

Furthermore, it can achieve training loss ~ validation loss, which means that the 

model is neither overfitting nor underfitting. 

 

Fig. 4.5. Loss function graph of Time-distributed based model training. 

o Route Data Statistics 

 We also compile data statistics of the route which the agent passes. Based 

on Figure 5, the road dominantly shows a straight path with some movement of 

steering angle. In Fig. 6, it also indicates that the PID or the ground truth agent is 
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braking quite often in the test route, as there are many vehicles around, even though 

it experiences red light not so often. On the other hand, the course mostly has a lane 

with a 30 Km/h speed limit with dominance in the lane-follow path. 

 

Fig. 4.6. Steering angle distribution in training data. 

 

Fig. 4.7. Brake and speed limit distribution value on the designated routes in 

simulation. 

 

Fig. 4.8. Percentage of encountered traffic light distribution and direction 

distribution experienced by the agent on the designated routes. 
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o Visualization Activations 

 One of the means to know how our deep CNN can successfully classify 

or predict the input images is by knowing what our CNN model sees the input. We 

can visualize the intermediate actions with Keras model that we have trained and 

take batches of images as input. This representation also gives a view of how our 

CNN model decomposed images into a visual concept of features. 

 

Fig. 4.9. The output of HSV converter from RGB images before getting into the 

CNN layer. 

 

Fig. 4.10. Sample of visualization activation after pass-through from the first to 

the second layer of CNN. 
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Fig. 4.11. Sample of visualization activation after pass through the third to the 

fourth layer of CNN. 

 

Fig. 4.12. Sample of visualization activation after pass through the fifth layer of 

CNN. 

 

Fig. 4.13. Sample of output classification using the trained model. 

o Test Simulation 

 We run the simulation and arbitrarily set up the route concerning the map 

of Town02. We use a PID based autonomous sensor (manually coded Artificial 
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Intelligent (AI)) as a ground truth. We evaluate the performances of time distribute 

model by comparing with ground truth, and CNN based [73] data test simulation. 

The data is sampled through ten of successful driving from setup position A to B. 

Through all of this round of the simulation, we calculate steering score, which we 

obtain from a mean of summing absolute steering value. There are also speed above 

and below the score, obtained through calculating the mean of the difference 

between speed and speed limit value.  

 A higher steering score means that the agent moves more agitated, and the 

speed score indicates haste of the agent. Consequently, a higher speed below the 

rating shows how good the agent can stick to the speed limit concerning the current 

lane. Conversely, higher in speed above score, point out that the car cannot keep up 

with the speed limit. 

Table 6. Mean of performance comparison of time distributed model to ground 

truth data and stacked cnn model 

 

 According to Table 2, ground truth result shows an excellent example of 

performance with zero total crossed lines, low steering score, and low-speed control. 

The agent can also control the speed limit problem very well, by having a high low 

speed below the score and low speed above score, which adheres to the traffic rule. 

Although time generally distributed inferior in comparison to this ground truth data, 

the model poses a better result in comparison to stacked CNN. It has a better 

steering score, and speed score compares to stacked CNN, but it has low control in 

the speed limit, which causes to cross lines many times. Consequently, the time 
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distributed agent shows a peculiar result in the time of reaching the destination. It 

remarks the best time to reach the goal. This unexpected behavior comes from how 

time distributed agent handles the speed in every lane with a different speed limit. 

 In the following table, a time distributed agent can achieve 93.978 s in 

the same route with good steering score and speed score. Nevertheless, it traverses 

the line 8 times with a high speed above score. Whereas stacked CNN can achieve 

the best time 98.29 with a slightly high steering score, but it is more stable by not 

crossing the line at all. 

Table 7. The fastest test of an agent on a different model 

 

4.2.6 Conclusion And Future Works 

 In this paper, we develop and evaluate end-to-end time distributed based 

model, a combination of CNN FCN-LSTM with multiple input and states, and 

multiple-output prediction. There are four states included in this test, direction, 

speed limit, traffic light, and speed. There is also a parameter that we predict from 

all these states, Steering, Braking, and Throttling. Basically, from our experiment, 

these three parameters are sufficient to define the movement of the cars. 

 Experiments show that the time distributed agent can reach the destination 

exceptionally faster than the PID control based navigation and stacked CNN based 

model. As a result, it yields a low speed below the score and a higher speed above 

score. Though, it also displays that the agent is less agitated and better speed score 

than the stacked CNN model. 

 Overall, from the steering and speed score, the result indicates that time 

distributed model slightly better than the stacked CNN model. Still, it suffers from 
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speed limit management problems. Although finished faster in some cases is the 

top priority, stability in casual car driving would be far more critical. 

 On the other hand, we find that we should add more variables into the data 

set, such as weather and day (night, afternoon and morning), to know the robustness 

of time Distributed model toward a change of visual light perception and noisy 

environment. This robustness should also be tested with a stochastic nature non-

player agent with a more comprehensive evaluation of driving performance.  

 Another thing that we concern about is the absence of pedestrians, which 

is also part of the city environment. While on our test, Carla 0.9.5 still not yet 

provides pedestrian features, so that in the future work, this part should be added. 
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CHAPTER 5: PAPER 4: Protein-Ligand Pair Binding Prediction 

Using Wide Resnet For Virtual Drug Screening 

5.1 Foreword 

 This research is encouraged to be part of the artificial intelligence research 

agenda as part of dedication toward humanity, with a goal of accelerating lead 

compound discovery. In our experience, a big challenge in drug discovery is that it 

takes much time to preprocess raw data and train the model (a total of ~1.5 years). 

Therefore, the research paper presented will be a preliminary research approach to 

the protein-ligand binary classification case. 

5.2 Published Paper 

Protein-Ligand Pair Binding Prediction Using Wide Resnet For Virtual Drug 

Screening 

Willy Dharmawan, and Hidetaka Nambo 

5.2.1 Abstract 

 Deep Learning approaches have successfully addressed diverse problems, 

specifically drug discovery. Some models such as Front Propagated Wave, Multiple 

Neural Networks (NN) including Convolutional Neural Networks have been 

applied to different data representations of the input. Most of the algorithms seem 

to apply these model bases for heuristic purposes. Therefore, a comprehensive 

evaluation of the model structure and a combination of the residual network are 

necessary to improve the predictor performance further. Specifying the proper 

model hyperparameter in deep learning is needed for binary classification problems, 

especially in the case of drug-target binding affinity prediction. Some approaches 

can be exerted, such as filter size variation, adding more depth, model configuration 

exploration (learning rate, regularization function, backward algorithm, etc.), to 

changing the network width and residual function part. This paper focuses on 

finding the best hyperparameter setting on a wide ResNet model, including the 

depth and wide changing variability. From our experiment, adding the width of the 

network can improve the area under the curve to a 0.991 score compared to the 
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ResNet model with identity functions of 0.987. It is also shown that wide ResNet 

with B(3, 1, 3) configuration shows the best performance in our experiment set. 

Keywords: Deep Learning, Drug Discovery, Wide Resnet, binary classification, 

Drug Target Binding Affinity Prediction. 

5.2.2 Introduction 

 Over the past few years, an efficient way of mining large-scale chemistry 

data from vast amounts of available compound activity and biomedical data [84, 

85] has become a crucial problem in Drug Discovery. Apart from the established 

methodology used in Quantitative Structure-Activity Relationship (QSAR), such as 

Support Vector Machine (SVM) [86], Random Forest (RF) [87], Neural Networks 

(NN) [88], Deep Learning (DL) has started to be researched.  

 Basically, DL utilizes continuous improvement of computer power to 

accommodate the increased amounts of data. Compared to the previous 

methodology, which relies on single-layer NN, DL is more flexible. It can be 

tailored into multi-layer networks to solve a more complex problem.  

 Drug Discovery is a lengthy and costly process that uses various tools 

from various fields. Some areas [89], including genomics, proteomics, cellular and 

organismic methodologies, are developed to facilitate this process. This molecular 

recognition between proteins or receptors with ligands plays a vital role in 

biological processes, such as enzyme catalysis. There are many ways DL can assess 

this recognition part. One of them is structural prediction which stimulates the grand 

challenge of the protein folding problem [90]. 

 A protein is a sequence formed by a combination of 20 amino acids. The 

protein folding problem dictates its three-dimensional atomic structure from this 

amino acid chain. This work is the first part of assessing how DL, which in our case 

is a three-dimensional Convolutional Neural Network (3D-CNN) based model, can 

capture the volumetric context of protein-ligand binding. This work adopts Ken 

Dill’s [91], Hydrophobic-Polar (HP) protein folding model that becomes features 

in defining protein and ligand structure.   
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 The process of how we use these features consists of three phases, 3D 

coordinates construction or Voxelization, features symbolization, and 3D box 

modeling. Through the Protein Data Bank (PDB) data, we extract and interpolate 

the coordinates to create voxel data of protein. Each point in the grid coordinate 

will be mapped into an integer value that defines the HP symbol. Finally, we model 

it into a 3D box of protein-ligand binding by removing the unwanted point from a 

certain distance to the binding pocket between protein and ligand. These matrix 

features will become a dataset for a wide ResNet (WRN) model designed in this 

project. 

 The raw dataset comprises pairs of protein-ligand complex, taken from 

the pdbind version 2018 dataset [92, 93, 94, 95, 96] using the refined set, which is 

more selective [94] compared to the general set. To simplify the extraction and 

simulation, we filter into a single chain of amino acids in the dataset. 

 In this paper, we try to find the best hyperparameter setting on the residual 

network, including L1-layer input size, depth, and wide variability. Two types of 

residual blocks become our reference, considering minor errors on the CIFAR-10 

test [97], B(3,3), and B(3,1,3). These various residual block convolution operations 

are applied to the stacked 3D-CNN-based model. We evaluate and validate the 

model with binary cross-entropy and k-fold cross-validation. Stochastic gradient 

descent Nesterov is also used to improve training accuracy. 

 Besides, regardless to the protein-ligand binding overall structure, we also 

test the scaling ratio and filtering number of atom for the further evaluation of deep 

learning capability for the increase number of missing features. The range of each 

parameter is determined empirically. The range of scaling factor is 1 to 4, whereas 

the maximum distance from the center to outermost atom is 10 – 16.      

 Each different L1-layer input setting of the test experiments captures some 

performances parameter such as precision, sensitivity, and specificity, which are 

later used to determine F1 and Area Under Curve (AUC). From our experiments, 

WRN with a configuration of B(3,1,3) K4 Depth 10 shows the best result compared 

to another design with an F1 score of 0.9688 and AUC of 0.989. In addition, this 

configuration can achieve 0.99 AUC in the L1-64 configuration. 
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5.2.3 Related Works 

 Assessing the interaction between protein and ligand through scoring 

function based on forcefields or knowledge from existing protein-ligand complex 

structures is very important in molecular docking programs. One of the works using 

machine learning techniques is eMatchSite [98]. It offers robustness toward 

structure distortion and high accuracy of binding sites. However, it uses a template-

based system, which may not work well on unseen data. 

 Binding site detection can also be solved using advanced deep learning, 

such as CNN. One of the examples is researched by Ragoza et al. [99]. He tried 

constructing protein-ligand binding coordinates into a 3D voxel with a resolution 

of 0.5 Å. By adopting a multi-layer CNN-based Caffe DL framework, his scoring 

outperformed Autodock Vina [100] on the CSAR inter-target pose-prediction 

dataset [101] but has bad performance in the intra-target ranking of poses. 

Following that, in the same year, A CNN-based protein-binding site predictor, 

Deepsite [102], reports a better accuracy than Fpocket [103] and Concavity [104] 

on the sc-PDB database of the binding site. 

 Another approach to protein-ligand prediction, Marta M. [105] proposed 

a protein-ligand binding affinity predictor called Pafnuci. It works as a scoring 

function and reports a reliable prediction of relevant features, which outperforms 

all state-of-the-art functions tested by the CASF-2013 author [106]. In addition, a 

predictor on a CNN-based framework, KDEEP [107], which includes the 

pharmacophoric properties of protein structure into voxel, can achieve a better score 

in binding affinity prediction than another method against the experimental value 

provided by PDBind [108].  

 Finally, L. Pu et al. [109] published protein-ligand binding pocket 

classification using Deep3D. It successfully detects and classifies Nucleotide and 

Heme-binding sites with 95% accuracy. They achieve this result by employing a 

multi-layer 3D-CNN on a protein-binding pocket grid similar to VGG-network 

architecture.  
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 Regardless of the primary purpose of ligand-protein binding pocket 

interaction prediction, which is identifying physiological ligands for orphans 

receptor [108], our works concentrate on evaluating a deep learning model in 

capturing protein-ligand binding sites features through 3D coordinates of atom. 

Most of the paper does not comprehensively assess on DL sides and sticks to one 

framework of a deep learning network. While in our project, we are profoundly 

focusing on using the diverse hyperparameter setting of the network model and 

residual connection application for protein-ligand binary classification. 

 The reason for applying residual connection to the deep learning model is 

to overcome difficulties of the deeper NN model, such as exploding/vanishing 

gradient and degradation [97]. The transfer learning will also become more efficient 

because it can utilize the extracted features better than the inception architecture 

[109]. Also, the deployed residual link can speed up network convergence [110]. 

5.2.4 Methodology 

 Assessing the interaction between protein and ligand through scoring 

function based on forcefields or knowledge from existing protein-ligand complex 

structures is very important in molecular docking programs. One of the works using 

machine learning techniques is eMatchSite [98]. It offers robustness toward 

structure distortion and high accuracy of binding sites. However, it uses a template-

based system, which may not work well on unseen data. 

o HP Model 

 Ken Dill proposed an on-lattice protein folding model in 1985 [91] to 

simplify the tertiary structure of PSP (Protein Structure Prediction). This HP model 

utilizes hydrophilic (attracted to water) and hydrophobic as a generalization of 

amino acids, which are represented as the two-symbol alphabet “H” (Hydrophobic) 

and “P” (Polar). 
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Table 8.  Hydrophobic/Polar classification of the 20 amino acids. 

 

o Voxelization Protein-Ligand Binding Box 

 We start constructing the protein-ligand complex pair structure using 3d 

coordinates in PDB data. After that, using the Table I model, we map the amino 

acids into HP representation. Later, these symbols will be encoded into integer 

encoding, which acts as features. 

 

Fig. 5.1. Three dimensions construction Protein-Ligand Pair Complex on 1a28 

into 3D grid structures. 

 The next stage is scaling and translating the protein-ligand pair voxel. This 

transformation is done to adjust the protein-ligand voxel for the grid box model. 

Finally, some grid points are filtered according to the set max distance. 
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Fig. 5.2. Translation and scaling transformation of protein-ligand pair 1a28 voxel. 

 

Fig. 5.3. Grid box of protein-ligand 1a28 pair voxel. 

o CNN Over Volume (3D CNN) 

 CNN, introduced by LeCun [111], is primarily used to process the data 

with a grid-like topology. These neural networks use convolution in place of general 

multiplication described in the artificial neuron section. Typically, a convolutional 

network comprises three stages [112]. The first stage, the convolutional layer, 

perform convolutions to yield a set of linear activation. In the second stage, the 

convolved features run into non-linear activation functions. Finally, through the 

pooling layer, the features are down-sampled. 

 Refer to Goodfellow et al. [112], assume that a three-dimensional feature 

F convolves with a three-dimensional kernel K corresponding to the following 

formula, 
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𝐾 ∗ 𝐹(𝑖, 𝑗) = ∑ ∑ ∑ 𝐾(𝑚, 𝑛, 𝑐)𝐼(𝑖 + 𝑚, 𝑖 + 𝑛, 𝑐)

𝑁

𝑛

𝑀

𝑚

2

𝐶=0

 (16) 

 From the equation, we can infer that M, N, and C are height, width, and 

channel, while (i,j) are convolution pointers. 

o Wide-Resnet 

 Introduced by S. Zagoruyko and N. Komodakis [97], the wide residual 

network addresses the deep residual network, diminishing feature reuse, which 

makes the network very slow. This problem starts from identity mapping, which 

allows training very deep networks and becoming vulnerable to not learning 

anything during training. As the gradient flow over identity mapping or residual 

block, it is possible to avoid learning useful representations or get little information. 

They propose widening ResNet blocks to overcome this problem. 

 

Fig. 5.4. The implemented WRN network model in this paper. 
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 From their report [97], WRN provides an effective way of improving 

performance compared to a deeper network. It shows a more efficient number of 

depth and processing time. For instance, their model improves over [30] by having 

50 times fewer layers and is twice faster. 

 

Fig. 5.5. Representation of Identity Block implemented in this work. 

 According to Fig. 5.4, We can state residual block with identity mapping 

as in [97]: 

𝑥𝑖+1 = 𝑥𝑖 + ℱ(𝑥𝑖, 𝒲𝑖) (17) 

where 𝑥𝑖+1 and 𝑥𝑖 respectively are input and output of the i-th unit in the residual 

network, ℱ is residual function parametrized by 𝒲. Report [14] has shown various 

residual block has been tested on CIFAR-10, B(3, 3), B(3, 1, 3), B(1, 3, 1), B(1, 3), 

B(3, 1), and B(3, 1, 1). Residual blocks of B(3,3), (3,1,3), and B(3,1) are the three 

best results in different block type tests, achieving a score of less than 6% error on 

the CIFAR-10 test. 

o Data Set Preparation 

 As explained in the introduction section, the dataset is the 2018 version 

[92, 93, 94, 95, 96] which consists of 16,151 protein-ligand pair complexes, filtered 

out into 4,463 for the refined set. In our experiment, we filter out the single 
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polypeptide chain in the protein to ease the feature extraction of amino acid and 

protein-ligand interaction model training. Therefore, we sum up 3,496 protein-

ligand pairs for training and validation. In addition, we also prepared 350 pairs of 

data for test sessions excluded from the training process. 

o Test Environment and Configuration 

 Model training and testing were configured in a Linux environment with 

the GPU of Nvidia RTX A6000. The program was also deployed with a framework 

of TensorFlow-Keras in python 3.6. 

 On the other hand, according to [97] performance result, the experiments 

consist of three different model types with hyperparameter variability as follows: 

1. B(3,3): original (basic) 3 x 3 convolution layer 

2. B(3,1,3): original (basic) with additional 1x1 convolutional layer. 

3. Basic Resnet with identity connection. 

 The model was trained under a hyperparameter of 1000 epochs, batch size 

of 128, and loss function of binary cross-entropy. Moreover, to get a better result, 

the test employed Stochastic Gradient Descent (SGD) Nesterov with a learning rate 

of 0.0001, momentum of 0.9, and decay rate of 0.0001. Finally, the model 

checkpoint feature is used to achieve the best training model. 

5.2.5 Result and Analysis 

o B(3,3) Residual Connection 

 All the models are tested in different hyperparameter settings, such as 

depth d (10, 16, 30) and widening factor k (2, 4, 8). The model is validated using k-

fold cross-validation of 0.8 training and 0.2 testing data composition over three 

different L1 filters, 16, 64, and 256. Fig. 6 shows one of the model training with a 

configuration of k 2, d 10. The validation accuracy for each filter respectively is 

0.941, 0.954, and 0.956, which shows that the trained model is neither underfitting 

nor overfitting. 

 In addition, based on the graph in Fig. 6, the validation test on each of the 

L1 filter sizes has closed each other, especially on the size of 64 and 256. This result 
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also applies to the different model settings. These indicate that the size of the L1 

input doesn’t significantly affect the model training accuracy and loss of B(3,3) 

residual connection. 

 

Fig. 5.6. B(3,3) residual function model accuracy comparison on the different L1 

filters with ACC as accuracy and VAL as validation. 

 

Fig. 5.7. B(3,3) residual function model loss comparison on the different L1 filters 

with ACC as accuracy and VAL as validation. 

o B(3,1,3) Residual Connection 

 The same experiment configuration from the previous residual test is also 

applied in B(3,1,3) residual connection. Compared to B(3,3) residual connection, 

the accuracy discrepancy and loss of the L1-16 layer becomes clearer among other 
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sizes. The model converges toward the training data before 100 epoch and yields 

validation loss of 0.949, 0.962, and 0.96 for L1-16, L1-64, and L1-256. 

 

Fig. 5.8. B(3, 1, 3) residual function model accuracy comparison on the different 

L1 filters with ACC as accuracy and VAL as validation. 

 

Fig. 5.9. B(3, 1, 3) residual function model loss comparison on the different L1 

filters with ACC as accuracy and VAL as validation. 

 We can infer from Fig. 7 and Fig. 9 that a further increased number of 

epochs will make the line deviate from convergence. However, the saved model 

will be the last best update model because of the model checkpoint feature. 

o External Data Testing 

 To understand which model can work well in capturing the protein-ligand 

binding site feature, we test the arbitrary chosen filtered data testing outside the 
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training and validation set with our best-saved model. Moreover, we also make a 

comparison to the identity residual or basic resnet. 

 Besides, in this premiere report, we restrict the grid box size to 8 x 8 x 8 

x 2, which is smaller than the previous research [108]. All the atoms inside this grid 

box are mapped into the HP model to become the features. 

 The testing session used 350 pairs of protein-ligand data outside the 

training dataset. These data are augmented into positive and negative data with a 

ratio of 1:1. The program’s execution applies arbitrarily chosen random seeds so 

that the result will be more consistent. 

Table 9. Performance measurement of basic resnet with identity function (prec. = 

precision, sens. = sensitivity) 

 

 After multiple model testing on the test dataset, we capture and calculate 

some key performances such as F1 and AUC. F1 score can be computed using 

precision and sensitivity, while AUC is from True Positive Rate (TPR)/Sensitivity 

and False Positive Rate (FPR). 

 Later, we filter out some best score performances for each residual 

connection (mark with orange color), ResNet D10 L1-256, B(3,3) K2D10 L1-64, 

B(3,3) K4D10 L1-256, and B(3, 1, 3) K4D10 L1-64-256. However, in the entire 

experiments, the residual connection of B(3,3) K4D10 L1-256 shows the best 

performance overall. 

 Referring to [113], going deeper in the network means higher capacity, 

which should demonstrate improvement in experimental performance. However, 

based on our test, smaller resolutions of grid box cause degradation of performance 

of the higher number of layers. This case means more features are necessary to 

achieve better performance. 
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Table 10. Performance measurement of wrn with residual function of b(3,3) 

(prec. = precision, sens. = sensitivity) 

 

Table 11. Performance measurement of wrn with residual function of b(3,1,3) 

(prec. = precision, sens. = sensitivity) 
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 An insufficient sample of data occurrence can also be seen in Fig. 5.7 

and Fig. 5.9. Longer convergence process of validation test leads to data underfit. 

Nevertheless, the best-saved model can overcome this problem by saving the last 

best model performance, which won’t update the worse version. 

 

Fig. 5.10. Model loss comparison on the different L1 filters with ACC as accuracy 

and VAL as validation. 

 

Fig. 5.11. Model loss comparison on the different L1 filters with ACC as accuracy 

and VAL as validation. 

Table 12. Model performance top-5 f1 measurement ranking 
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 Overall, fig. 10 shows that adding wide or k can improve F1 performance 

better than without k. ResNet with a wide of 4 and a residual network of B(3, 1, 3) 

can achieve the highest F1 score, 0.9688. Besides, wide-ResNet has better 

performance for each depth, which confirms that the protein-ligand binding 

prediction model can achieve better accuracy by going wide. Nonetheless, the 

degradation performance of each of the models can still be seen for an increased 

number of depths. 

 On the other performance parameter, Fig. 5.11 shows the corresponding 

result to fig. 10. WRN with residual of B(3,1,3) parameter of k=4 and L1-filter size 

16 yield 0.991 AUC. Despite its performance degradation, the wider network (k=6) 

also produces a closed result with k=4. 

 

Fig. 5.12. ROC Graph of the highest AUC score in the experiments 

5.2.6 Conclusion And Future Works 

 Our report focuses on the evaluation performance of multiple models of 

residual networks on protein-ligand binding binary classification problems with 

hyperparameter setting variability. Wider networks with two types (B(3,3) and B(3, 

1, 3)) of residual connection are proposed [97]. Eventually, we also compare the 

performance result with the basic residual network (ResNet with identity function). 

The experiments use F1 and AUC as the key parameter for assessment. 

 Our tests indicate that making a wider network improved the model 

performance. This result can be seen in the overall performance of WRN on each 
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depth. The model of B(3,1,3) K_4_D_10 points out an AUC of 0.991 and F1 of 

0.9688 on L1 sizes of 16 and 256. 

 On the other hand, performance degradation occurs on the deeper network 

(16 depth). Based on this practical result, we assume that the lower dimension of 

the voxel decreases the number of features which reduces the complexity of the 

dataset. Consequently, the shallower model depth shall perform better in this 

scenario. 

 Nevertheless, additional experiment scenarios should be inserted in future 

works. Variability of voxel size scenario can assist the work to get a better model 

hyperparameter, which affects the prediction performance. The second course of 

action can be adding noise to the dataset experiment. In this way, we can evaluate 

the model’s robustness. Finally, adding another block module, such as Squeeze-

and-Excitation (SE) block [114] or using a better way to scale up the network [115], 

are also encouraged to get a more efficient and improved performance of the model. 
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CHAPTER 5: RESEARCH SUMMARY 

5.1 Reflections 

 Despite the overstretching work presented in this paper, we aim to apply 

transdisciplinary, transformational, and translational artificial intelligence to show 

more impactful work and improve research quality. Even though a three-year 

doctoral degree is still insufficient to achieve more optimal output for all the papers 

presented in this dissertation, the research cornerstone has been established. 

Research sustainability should be carried out to have more optimized results on 

each of the case solutions. 

5.2 Conclusion and Future Works 

 For each paper presented in this dissertation, we can summarize these 

papers as follows: 

Paper 1: Tsunami Tide Prediction in Shallow Water Using Recurrent Neural 

Networks: Model Implementation in the Indonesia Tsunami Early Warning System. 

• Our collaboration shows the successful implementation of multi-stage 

preprocessing, RNN regression, and z-score identification for artificial 

tsunami identification in shallow water areas of north Sipora. 

• Despite its unavailability data test (shallow water tsunami), we 

accomplished this project using shallow water synthetic tsunami data. If 

actual shallow water tsunami data is available, we can extend this project 

into a classification case for further performance evaluation and analysis. 

• The next direction of the deep learning model for this case is to use a multi-

transformer [63-65] for another performance comparison.  

Paper 3: End-to-End Time Distributed Convolution Neural Network Model for 

Self-Driving Car in Moderate Dense Environment. 

• In this paper,  we develop and evaluate an end-to-end time distributed-based 

model, a combination of CNN FCN-LSTM with multiple inputs and states 

and multiple output predictions.  

• The agent (car) behavior is evaluated on particular pre-defined performance 

parameters, such as steering score, speed score, speed below the score, 
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speed above score, driving duration to the designated position, and total 

crossed traffic lines. 

• For further development, multi-modal input transformers should be applied 

in more complex driving environments. 

• To achieve transformative and translational research, simulation to reality 

becomes the next direction of this research, including collaboration for 

developing a real self-driving car. 

Paper 4: Protein-Ligand Pair Interaction Prediction Using Wide Resnet For Virtual 

Drug Screening. 

• This preliminary paper has shown the potential of deep learning ability in 

binary classification for protein-ligand binding prediction. Despite the 

preliminary research approach to this problem, we contribute to new post-

processing protein-ligand pdbbind. The subsequent publication will attach 

the validation of this dataset through benchmarking with another available 

dataset. 

• This research becomes the cornerstone of our research in drug discovery. 

We are still progressing this research with additional features and algorithm 

improvements.  

5.3 Contribution as Co-author Papers 

 In all co-authored papers, I was involved as lead researcher adviser for the 

majority, recommending the research direction.  Moreover, I was also involved in 

the literature review, writing, and analysis of all these papers. In addition, in this 

autonomous surface vehicle, I was involved in the majority of the progress of the 

translational development of the surface vehicle prototype. The target goal of this 

creation is to implement surface autonomous vehicles virtually and practically in a 

real-world environment.  
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