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Abstract

In this thesis, we introduce a two-stage approach for order selection in model-
free predictive control method which is utilizes measured input/output data
from the storage data directly computes the control input and does not use any
mathematical model as in conventional methods. The capability of model-free
predictive control has been already demonstrated in nonlinear systems us-
ing linear and polynomial regression for data storage. However, identifying
the appropriate order that aligns with the actual system order remains a pri-
mary challenge, selecting an incorrect order may result in increasing redundant
terms, ultimately leading to instability issues. In this study, we employed the
Singular Value Decomposition (SVD) order selection technique, combined with
the Bayesian Information Criterion (BIC), to identify the appropriate input
and output orders of the system as well as the optimal horizon order in predic-
tive control. This combined technique was subsequently applied to determine
the appropriate order for model-free predictive control. Our findings confirmed
the effectiveness of the proposed method using numerical simulations in both
linear and nonlinear systems and then we extend these findings to compare ef-
fective of £;-minimization approach and Singular Value Decomposition (SVD)
with the model-free predictive control. Our numerical simulation results indi-
cate that there is no significant difference between the two methods for linear
systems, while for nonlinear systems, the approach utilizing €;-norm minimiza-
tion shows superior performance.
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Chapter 1

Introduction

Model-free predictive control operates within a just-in-time (JIT) modeling
framework utilizing short-length data from the stored input/output data of the
controlled system to estimate future input sequences. To simplify this model,
linear algebraic equations, including the £;-minimization approach, have been
employed, and extended to a polynomial regression model. The primary chal-
lenge in this approach lies in selecting the appropriate order. The use of an
inappropriate order on an unknown system can deteriorate its performance,
making the selection of an appropriate order a challenging task. In this thesis,
the challenge is to determine the optimal approach for selecting the appropriate
order for an unknown system.

1.1 Previous and Related Researches

Model predictive control (MPC) is one of the most popular control techniques
in industrial systems, especially in chemical processes [1, 2]. A prerequisite
for this method requires a mathematical model that can represent the dynam-
ics of the controlled system and predict its future behavior. In principle, the
accuracy performance of the prediction depends on the precision of the math-
ematical model. Hence, several system identification methods need to be used
to obtain a precise mathematical model [3]. However, the dynamic behavior in
most industrial processes is nonlinear, rendering the construction of accurate
mathematical models difficult.

To overcome such issues, model-free predictive control was proposed by
Stenman in 1999 [4], also known as Just-In-Time (JIT) modeling [5, 6, 7,
8], which constantly updates the mathematical model based on online mea-
surements of input/output data. This method utilizes the past and present
recorded input/output data of the query point to estimate a local linear model
[6, 7]. JIT modeling is also known as model-on-demand [8, 9], lazy learning
[10], or instance-based learning [11]. JIT modeling can be applied to a wide
range of industrial applications, including steel industry [12, 13, 14, 15], PID
parameter tuning [16, 17], soft sensors in industrial chemical processes [18].

Model-free predictive control in a JIT modeling framework was initially
proposed as a data-driven control method that is independent of accurate



mathematical models [19, 20, 21]. This method uses short-length data from
recorded input/output data of the controlled system to estimate future input
sequences using locally weighted averaging (LWA) techniques. This method
can be used in several applications, such as treating discretized input systems
[22], inverted pendulum systems [23, 24], and parallel mechanisms with pneu-
matic drives [25]. To simplify this model, linear algebraic equations, such as
least-norm squares [26], ¢;-minimization approach [27], have been applied, as
opposed to model-free-predictive control instead of local linearly weighted av-
erage (LWA) method [21]. Moreover, the efficiency of the least-norm squares
method, ¢;-minimization and LWA of model-free-predictive control was com-
pared in Ref. [28], extending the short-length data to a polynomial regression
model [29, 30, 31]. Furthermore, polynomial-regression based on model-free-
predictive control has also been applied to multi-input multi-output (MIMO)
nonlinear systems [32], controlled systems attached by False Data Injection
(FDI) [33], and autonomous underwater vehicles [34]. Although this method
can be used in several applications, short-length data becomes longer when
the order of polynomial increases, rendering some of the data in the systems
unnecessary, while causing the performance of estimating future input to be
volatile and out of control.

1.2 Motivations and Objectives

Although the approach based on the Bayesian Information Criterion (BIC)[35]
can effectively determine appropriate orders, this method has the drawback
of considering all conditions. In contrast, the Singular Value Decomposition
(SVD) method can proficiently identify the optimal order of input and output,
yet it lacks the capacity to determine an appropriate order for horizon in the
predictive control. Therefore, the present study aims to combine the strengths
of these two techniques to identify the appropriate order of input and output
for the system and evaluate an appropriate order for model-free predictive
control without having to evaluate all possible orders. This can be achieved
by utilizing the SVD technique to identify the appropriate input and output
order, while at the same time employing the BIC-based technique to determine
the optimal horizon in the predictive control.

1.3 Outline of The Dissertation

This dissertation is organized as follows. Chapter 2, we describe the model-free
predictive control in detail. Chapter 3 explains order selection in model-free
predictive control through a two-stage approach which is combines the ad-
vantages of Singular Value Decomposition (SVD) and Bayesian Information
Criterion (BIC). This chapter also describes the algorithmic steps of the two-
stage techniques for model-free predictive control, moreover, the effectiveness
of this technique using numerical simulations in both linear and nonlinear sys-
tem will be discussed. Chapter 4 , we extend our investigation to compare



the performance of Singular Value Decomposition (SVD) and ¢;-minimization
approach in optimizing the input of model-free predictive control. Addition-
ally, some simulations will be discussed. In Chapter 5, we present conclusios
summarizing the research findings and a plan for future works.






Chapter 2

Model-Free Predictive Control

Consider the discrete-time system

y(t) = (D) + €, (2.1)

where y € R is the output of the system,

[y(t—n) |
D] e
x(1) = 3((:_’”)) e R (2.2)
it - 1)

is the regression vector consisting of the output and input to the system u € R,
and € is the independent and identically distributed (i.i.d.) noise. We assume
that n and m are unknown order in the nonlinear function f, respectively. The
control objective is to use h-step future input sequence

u(t)
ue(t) = : e R (2.3)
ut+h-1)
so that h-step future outputs
yt+1)
yp(=| i |eR (2.4)
y(t+h)

can track the desired reference trajectory

rit+1)
r(t) = : e R". (2.5)
r(t+ h)

5



Assumption 1 There exists a steady-state for a given r(f) that satisfies

§(t) = r(t) (2.6)

when €(f) = 0. In other words, there exist * and u(f) that satisfy this condition
when ¢ > *, as follows

[ r(t—n) |
0= fwa, xo=|1"0 (27)
(- 1)]

To achieve the control objective, the model-free predictive control was in-
troduced in Ref. [19]. This method utilizes vectors a; and ¢; (i = 1,...,N)
constructed from stored past input and output {u(z), y(¢)} of the system (2.1).
Furthermore, it employs a query vector b that integrates the most recent in-
put trajectory up(r), output trajectory y, (1), and the reference trajectory r(z).
These are defined as follows:

—yp(ti)-
yf(ti) € Rn+m—1+h, m> 2’
a; = |up()] (2.8)
yp(ti)
gyf(ti)_
EXG]
r(t) c Rn+m_l+h, m> 2,
b = {luy,®) (2.9)
Yo (1)
| 7() ]
¢, = ut)eR", (2.10)

e R, m=1,

e R, m=1,

where u(t) is specified in (2.3), and y.(¢) is also given in (2.4). Furthermore,

u(t —m+ 1)
u,() = : eR"™, m>2, (2.11)
u(t—1)
(y(t —n+1)
y,(t) = : e R (2.12)
y(1)

In earlier studies on model-free predictive control [19, 20, 21], the input se-
quence @¢(t) that achieves the control objective is determined as a linear weighted

6



average (LWA) of corresponding ¢; to selected a; close to b. Yamamoto|26]
demonstrated that @¢(f) can be expressed as @¢(f) = Cw, using the least-norm
solution of Aw = b with matrices A and C constructed from a; and ¢; which are
close to b. Furthermore, by eliminating the need to explicitly choose the near-
est neighbors of b, Yamamoto[27] proposed the model-free predictive control
based on £;-norm minimization, as outlined in Algorithm 1;

() = Co (2.13)
@ = argmin|wl|; subject to Aw = b, (2.14)
where

A = [a] aN] c R(n+m—1+h)><N, (2'15)
C = |e1 -+ en]|eR™, (2.16)

wi
w = |:|eR" (2.17)

WnN
The ¢,-norm is defined as |[w||; = |w;| + - -+ + |wyl|. It is known that £;-norm

minimization frequently results in sparse solutions. In this context, “sparse”
denotes a solution vector in which a substantial proportion of its components
are either zero or nearly zero. This implies that only a limited number of
components possess non-zero values. There have been numerous algorithms
proposed for ¢;-norm minimization [36], and tools are currently available to
solve such problems [37].

To cope with the nonlinearity of the controlled system, a polynomial re-
gression expression is introduced as in [31]. First, we define the pseudo-tensor
® as removing duplicated terms in the usual tensor (Kronecker) product ®.
For example,

[a b]T@b[a b]T:[a2 ab bz]T (2.18)
la b ®la o] =[ ab ab B (2.19)

Using the polynomial regression model expression, we can reformulate the
model-free predictive control as follows:

al = a'®a; , a =a (2.20)
b* = b"'®b;, , b =b (2.21)

7



Algorithm 1 Model-Free predictive control algorithm
1: Define n, m, h, and N.

2: Construct A in (2.22) and C in (2.16) from the storage data.

3: while r < max(n,m) do

4: Measure output y(#) and apply an appropriate input u(z) in the system
and increment the time as t « 7+ 1.

5: end while

6: repeat

7: Measure output y(f) and construct a query vector b in (2.23).

8: Estimate @ by solving ¢;-norm minimization (2.14).

9: Apply the first element of @¢(t) = Ci to the system input u(r).

10: Increment the time as t « ¢+ 1.
11: until a terminate condition is met.

where i =0,1,2,--- ,N, P=1,2,---

al al ... a]

A =" "2 TNert¥ (2.22)
al af al
.
b,

b = |b2|eRE (2.23)
[bp]

where

(2.24)

P P
- P - 2)!
K=14+ P+n+m+h 2:1+ P+n+m+h-2)
szl n+m+h-72 P(n+m+h-2)!

is the polynomial regression elements. As the polynomial order increases, K
also increases. Moreover, certain data in A and b may not be essential to the
system and could potentially lead to divergence. Therefore, It is neccassary to
select the relevant data for the polynomial regression elements.



Chapter 3

Order Selection in Model-Free
Predictive Control

3.1 Probabilistic Model Selection

Normally, if we increase the model order to fit all the data obtained from a
system, this may lead to over-fitting and subsequently to suboptimal system
performance. To avoid such issues, there are many model selection criteria,
of which the most popular are the Akaike information criterion (AIC) [38],
the Bayesian Information Criterion (BIC) [35] and Generalized information
criterion (GIC) [42]. All three criteria introduce a penalty for the complexity
of the models while rewarding the system efficiency as follows

Probabilistic Model Selection = N - log(MAE) + K - n, (3.1)

where N is the number of available data, K is the polynomial regression ele-
ments, 7 is coefficient of penalty term, and MAE is the mean absolute error of
the output prediction defined by

1 T
MAE = ; le(t)], (3.2)

where e is the error between the reference r(f) and the output y(¢), and T
is the time interval under consideration. The value of MAE is the one that
determines system efficiency. The appropriate order is given by the smallest
probabilistic model selection criterion.

To provide a clearer understanding, we evaluated the performance of the
order selection criteria through three cases of probabilistic model selection

Table 3.1: Probabilistic Model Selection criterion

Criterion n
AIC 2
BIC log(N)
GIC v € [3:6]




0 100 200 300 400 500

0 100 200 300 400 500
t

Figure 3.1: Stored data of the linear system (3.3) where the input u(f) is a uniform
random sequence: the measured output y (top) and the input u (bottom)

based on (3.1) and Table 3.1 in the model-free predictive control of the linear
system, specifying the output order n = 2 and the input order m =1,

y(t + 1) = y(t) - 0.16y(t — 1) — L.5u(?) + €(?) (3.3)

where € is an i.i.d. Gaussian random noise with a zero mean and a variance
o? = 0.05. As shown in Fig. 3.1, we generated input/output data when an
input u(t) following a uniform distribution between —5 and 5 was applied to the
linear system (3.3). We stored a total of 500 samples of the input/output data
specifically for the model-free predictive control. In the model-free predictive
control, the square signal

0  200i <1< 50+ 200i

1 50 +200i <t < 100 + 200i
r(t) = , . (3.4)
0 100+ 200i <t < 150 + 200i

-1 150 +200i < ¢ < 200 + 200i
i=0,1,2,---

was used as the reference trajectory.

We conducted Algorithm 1 using a grid search method, evaluating all com-
binations of n = 1,2,3, m = 1,2,3, and h = 1,2,3 with P = 0. Table 3.2
illustrates that while using the three cases of probabilistic model selection
for determining the correct order, examining all 27 possible order combina-
tions is required. As shown in the table, the optimal order is (P,n,m,h) =
(0,2,1,1), which matches with the linear system (3.3). Our results showed
that MAE = 0.0405, BIC = —1578.94, AIC = —1595.78, GIC3 = —-1591.78,
GIC4 = —1587.78, GICS5 = —1583.78, and GIC6 = —1579.78 which are graph-
ically depicted in Fig. 3.2. It is clear that the application all of three cases
of probabilistic model selection criterion in conjunction with the model-free

10



Table 3.2: Results of MAE and BIC when applying model-free predictive control
to the linear system (3.3) across 27 combinations of n, m, and h. Bold
indicates the optimal value

(n,m,h) | K | MAE | BIC AlC GIC3 GIC4 GICS GIC6

(1,1,1) | 3 |0.0494 | —1484.82 | —1497.41 | —1494.41 | —1491.41 | —1488.41 | —1485.41
(1,1,2) | 4 | 0.0470 | —1497.23 | —1518.21 | —1513.21 | —1508.21 | —1503.21 | —1498.21
(1,1,3) | 5 | 0.0523 | —1431.55 | —1461.03 | —1454.03 | —1447.03 | —1440.03 | —1433.03
(1,2,1) | 4 | 0.0412 | —1569.84 | —1586.63 | —1582.68 | —1578.68 | —1574.68 | —1570.68
(1,2,2) |5 | 0.0411 | —1559.01 | —1584.28 | —1578.28 | —1572.28 | —1566.28 | —1560.28
(1,2,3) | 6 | 0.0405 | —1553.55 | —1587.28 | —=1579.25 | —=1571.25 | —=1563.25 | —1555.25
(1,3,1) | 5 | 0.0411 | —1550.95 | —1586.10 | —1581.10 | —=1576.10 | —=1571.10 | —1566.10
(1,3,2) | 6 | 0.0412 | —1550.95 | —1580.60 | —1573.60 | —1566.60 | —1559.60 | —1552.60
(1,3,3) | 7 | 0.0411 | —1539.39 | —1577.48 | —1568.48 | —1559.48 | —1550.48 | —1541.48
(2,1,1) |4 | 0.0405 | —1578.94 | —1595.78 | —1591.78 | —1587.78 | —1583.78 | —1579.78
(2,1,2) | 5 | 0.0406 | —1565.17 | —1590.44 | —1584.44 | —1578.44 | —1572.44 | —1566.44
(2,1,3) | 6 | 0.0405 | —1552.92 | —1586.61 | —1578.61 | —1570.61 | —1562.61 | —1554.61
(2,2,1) | 5 | 0.0406 | —1570.41 | —1591.47 | —1586.47 | —1581.47 | —1576.47 | —1571.47
(2,2,2) | 6 | 0.0407 | —1557.72 | —1587.20 | —1580.20 | —=1573.20 | —1566.20 | —1559.20
(2,2,3) |7 |0.0405 | —1546.87 | —1584.78 | —1575.78 | —1566.78 | —1557.78 | —1548.78
(2,3,1) | 6 | 0.0405 | —1566.36 | —1591.79 | —1585.79 | —=1579.79 | —1573.79 | —1567.79
(2,3,2) |7 |0.0406 | —1552.69 | —1586.55 | —1578.55 | —1570.55 | —1562.55 | —1554.55
(2,3,3) | 8 | 0.0406 | —1540.33 | —1582.63 | —1572.63 | —1562.63 | —1552.63 | —1542.63
(3,1,1) | 5 | 0.0405 | —1572.29 | —1593.51 | —1588.51 | —1583.51 | —1578.51 | —1573.51
(3,1,2) | 6 | 0.0406 | —1559.00 | —1588.65 | —1581.65 | —1574.65 | —1567.65 | —1560.65
(3,1,3) | 7 |0.0405 | —1546.75 | —1584.83 | —1575.83 | —1566.83 | —1557.83 | —1548.83
(3,2,1) | 6 | 0.0426 | —1540.88 | —1566.34 | —1560.33 | —1554.34 | —1548.34 | —1542.34
(3,2,2) | 7 | 0.0431 | —1522.43 | —1556.32 | —1548.32 | —1540.32 | —1532.32 | —1524.32
(3,2,3) | 8 | 0.0435 | —1505.03 | —1547.35 | —1537.35 | —1527.35 | —1517.35 | —1507.35
(3,3,1) | 7 | 0.0419 | —1542.46 | —1572.13 | —1565.13 | —1558.13 | —1551.13 | —1544.13
(3,3,2) | 8 |0.0441 | —1504.48 | —1542.58 | —1533.58 | —1524.58 | —1515.58 | —1506.58
(3,3,3) | 9 | 0.0437 | —1497.06 | —1543.59 | —1532.59 | —1521.59 | —1510.59 | —1499.59

predictive control is an effective way to determine an appropriate order. Al-
though the three cases of probabilistic model selection criteria can determine
the optimal order of the system, the various coefficients of the penalty term
are influenced by the number of data N and the level of noise o?. To iden-
tify the optimal criterion for application with model-free predictive control, we
conducted additional tests by exploring all combinations as previously men-
tioned, considering N = [250, 500, 750, 1000, 1500, 2000] and ¢ ranging from 0
to 0.1 in increments of 0.01. As depicted in Fig. 3.3, it is evident that with an
increase noise, the accuracy of all criteria tends to decrease. Similarly, when
utilizing a larger dataset N, the performance of the criteria also decrease cor-
respondingly. Conversely, BIC-criterion distinguishes itself from the others.
Even with increasing noise, BIC-criterion consistently identifies the optimal
order, as evidenced clearly at N = 1500. AIC-criterion failed to identify the
optimal order, particularly when o = 0.01 and under other criterion. In con-
trast, BIC-criterion maintains its ability to determine the optimal order. The
difference between these criteria is that the AIC is sensitive to highly complex
models [39], whereas the BIC has the ability to overcome such sensitivity is-
sues by introducing a simpler structure than the AIC [40]. Nevertheless, as
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y(t),r(t)

u(t)

r(t) = y(t)

200 400 600 800 1000
t

Figure 3.2: Simulation result of model-free predictive control using the appropriate
order (P,n,m,h) = (0,2,1,1) for the linear system (3.3). Red represents
the desired reference trajectory.

illustrated in Fig. 3.3, employing a larger dataset N leads to a less efficient
utilization of the criterion. Based on all the reasons mentioned above, in this
thesis, we choose the BIC-criterion, and the number of data N utilized does
not exceed 1000 samples.

However, if we were to use probabilistic model selection criteria, such as
BIC, AIC or GIC, it would be beneficial to determine the optimal model order,
to avoid phenomena of overfitting and/or underfitting. A notable drawback
of using this technique is that we need to estimate the residual error for each
possible combination across the range of orders to identify the lowest value and
ascertain the most suitable order. Another widely adopted approach to deter-
mine the appropriate order of a linear system is to use the rank of matrices.
Among the techniques for evaluating the rank of matrices, the singular value
decomposition (SVD) technique stands out. In the next section, we explore
the relationship between model-free predictive control and a linear equation,
paving the way for the application of the SVD method in this context.

3.2 Singular Value Decomposition Approach

Singular Value Decomposition (SVD) of matrix A can be defined as the math-
ematical factorization of A by the product of three matrices as depicted below:

A=UzZV" (3.5)

where, A € R™" U € R™™ and V' € R™" are set of orthogonal matri-
ces and normalized vectors m-dimensional column vector u and n-dimensional
columns vector v, respectively. £ € R™" is diagonal matrix with non-negative
singular values (o), arranged in deceasing order (o) > 05 > -+- > 0, > 0).
The matrix A can be expressed as:
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T T T T [P1,n2m2h14 4
[P1,n2,m2,h1}e BIC E [PO,n2,m3,h1] ¢
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(FO.n2,m1.01] 0 0.02 0.04 0.06 0.08 0.1
0 Noise
N = 2000
[P1,n2m2h14
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5 [P1.n2m1h2] B [PO,n3,m2h1] 3
B [POn3m2,h1] O [Pon2m3h1]
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(b) GIC3 (navy blue), GIC4 (light blue), GIC5

(a) AIC (green) and BIC (red) (pink) . GICG (black)

Figure 3.3: Comparative performance of probabilistic model selection: AIC, BIC,
and GIC
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oy 0 O 0 0]
0 oo O 0 0 -
0 0 o 0 0 KIT
A=lu uwy - u,|° 0 0172 (3.6)
0 o, 0 V:T
0O 0 O 0 0
or
o VT
O—ZV;—
A= [u1 u --- um] 0_.‘/1— :O'1U1VT+O'2u2V;—+"'+O'rurV:— (37)
0

One method to evaulate the rank of matrix is through on SVD of the
matrix is by considering that the number of non-zero singular values of X is
r (rank(A) = rank(X) = r < min(m,n)). For Ideal case or Noise-free data, the
rank of matrix can be inferred from non-zero singular values, as singular values
beyond the rank are zero. However, in the presence of noisy data, the singu-
lar values may represent non-zero values but tends to be very small. Hence,
the utilization of singular values for matrix rank estimation is susceptible to
perturbation, particularly in the presence of noise. Consequently, it is impor-
tant to determine an optimal threshold for selecting the smallest singular value
detection. However, the determination of appropriate threshold depends on
many infulencing factors, such as the size of dataset and the intensity of the
noise which is difficult to determine the appropriate threshold [43].

3.2.1 Singular Value Decomposition appoarch

We will consider the case where the discrete time system (2.1) can be described
as a linear system as follow:

[y(t —n) |
P PO

yw =40 u(t —m)|” (3.8)
u(t - 1))

where the exact order n, m, and the model parameter § € R™" are assumed to
be unknown.
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Hereafter, in the context of mathematical expressions, we will emphasize
cases where m > 2. While expressions for m = 1 are analogous, they will be

omitted for the sake of simplicity.
From (3.8), we obtain

|ye+1)

y(t + h)] =0

From these, since y(t+1), ...
and u(t—m+1),...

[y(t—n+1)

y()
uit—m+1)

u(.t)

,y(t+h) are linear combination of y(r—n+1), ...
,y(t + h — 1), there exists a matrix @ such that

[yt —n+1)]
y()
y(t+1) ut—m+1)
y; (1) = : =0' : =0
y(t + h) u(t—1)
u(t)
| u(t + h - 1]

yit—n+h)]
y(t + h -1
u(t—m+h) (3.9)
u(t + h -1]
y(t)
Y, (1)
Ty (1) (3.10)
u(1)

Here, we note that for & = 1, the matrix @' becomes a vector that is identical
to 6" in (3.9) and (3.10), while for & > 2, the first n+m—1 elements of the first
row of @' are equivalent to 87 in (3.9) and (3.10). Using the collected data

Yi = [g) - yilon)| € RPN
Y, = |yt - yyw)| e R
Uy = [upt) up(ty)| € R
Ur = |wio) ui(iy)| € R™Y
we can solve
YP
Yi=0"|U,|.
Ui

3.11
3.12
3.13
3.14

(3.11)
(3.12)
1)XN ( )
(3.14)

(3.15)

Note that from (2.15) and (2.16) in the model-free predictive control, we

can obtain

y,(1) Yp(tn)
ye(t1) ye(ty)
up(tl) up(tN)
ue(tr) ue(ty)
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After rearranging (3.16) in the model-free predictive control, this is equivalent
with the linear equation matrices in (3.15). It is widely known that the order of
a linear system can be determined by evaluating the rank of a matrix. Singular
Value Decomposition (SVD) is a commonly used computational technique for
determining matrix ranks. Hence, by considering the linear system relation-
ships in the model-free predictive control, the rank condition can be effectively
applied to evaluate the appropriate order of the model-free predictive control.
This evaluation can be accomplished solely by using input and output data
via matrices A and C as in (3.16).
By partitioning @ into three matrices as

0" =|0] 0] O]|cR I, (3.17)
the equation (3.15) is equivalent to

YP
o' -1, o] oIl|X|-0 3.18
[1 h 2 3]U_’ (3.18)
p

Us

where I, is the identity matrix of size h. In addition, (3.18) is equivalent to

A
o] -1, o] o] [ C] = 0. (3.19)
Here, we consider the following SVD

Y-

4 omy -
where U € ROtm-1+2x(tm=12l) and v € RMV are square orthogonal matrices
and X, = diag(o,...,0+) with nonzero singular values ooy > --- > o~ > 0 and

Y = [ Zr* Or*x(N—r*)] c R(n+m—l+2h)><N’ (321)
0r0><r* 0r0><(N—r")

where 10 is the number of zero singular values and r* +r° = n+m — 1 + 2h.
Since V is the orthogonal matrix, multiplying from the right side of (3.19)
with V, we can obtain

0] -1, 0] oj|uzv'v=|0] -I, 0] O]|Uz=0. (3.22)
Note that U is partitioned into two matrices in accordance with X as
U=|U. U, (3.23)
(3.22) is equivalent to
0] -1, ©] O|u.x. =0 (3.24)
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Since X,- is nonsingular, (3.24) is equivalent to
|0 -1, ] o]|u. =0 (3.25)

Here, by partitioning U,- into four matrices according to the matrix in (3.25)
as

U,
_|U2
U. = Us (3.26)
U,
and by defining
U,
Uiy = |Us | € ROTm-1hxr (3.27)
U,
we obtain a linear equation for @ as
O'U;3 =U.. (3.28)
When n+m—1+h <r*, O is given as the least-squares solution
0" = U Uy, (UinUT,,) " . (3.29)

When n+m—1+h > r*, (3.28) becomes an underdetermined system. In this
case, the matrix division operation in MATLAB can identify a basic solution,
which has at most nonzero component.

When & = 1, the matrix @' in (3.29) becomes a vector that is identical to
0" in (3.9) and (3.10), while for & > 2, the first n + m — 1 elements of the first
row of @ are equivalent to " in (3.9) and (3.10). While overestimating the
degrees of m and n, it is expected that the elements of @ obtained by (3.29)
corresponding to the extra degrees will becomes zero. In addition, the column
size r* of U, and the number of zero singular values r* play a significant role
in evaluating 6, as shown below. In general, the presence of noise signifies that
the singular values that should ideally be zero becomes nonzero, making it
impossible to select an appropriate r*. This problem can be circumvented by
computing of the ratio of singular values o/ for i = 1,2,---. Specifically,
let ° be the smallest integer i where o;/0i,; is maximum. As will be shown in
numerical examples later, even when the values of (P, n, m, h) make it difficult to
determine whether o; can be considered zero, the appropriate r° (equivalently
r*) can be determined at the location where o;/0 ;1 changes abruptly. It is
also important that the method described here can be executed solely using
storage data.

Application of SVD approach in order selection mentioned above is a linear
regression case. As from polynomail case, we extend (2.22) and (3.19) are
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equivalent to

o] -1, ©] O]]|: |=0. (3.30)

From (2.8), (3.30) can be rewritten as

7 o] -1, 0] 0| ;=0 (3.31)

AP
| C |

In order to clarify the relationship between @ and polynomial dataset of storage
data, (3.31) can be rewritten as

Ul
AL
0,"+0Y,-Y +0;|  [+0;C=0, (3.32)
AP
Here, we consider the following SVD as mention before, from (3.31) is equiv-
alent to

0" o] -1, 0] o]|Uu,. =0, (3.33)

Here, by partitioning U,- into five matrices according to the matrix in (3.31)
as

U,
U,
U, = U, (3.34)
U,
Us

and by defining
e RK=xr (3.35)
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Table 3.3: Estimations of @ and singular values o for the linear system (3.3), ob-
tained for P = 0, and & = 1 and various m and n. r* represents the number
of singular values considered nonzero based on the ratio of singular values.
Elements of @ considered to be redundant are indicated in bold, whereas
singular values o in bold represent values which are considered to be
zero, and bold ratios of singular values reflect values used to determine
r*. In the case of (P,n,m,h) = (0,2,1, 1), 8 has no redundant elements and
an accurate value is therefore obtained.

n 1 1 1 2 2 2 3 3 3
m I 2 3 I 2 3 I 2 3
h 1 1 I 1 1 1 1 1 1
K 3 4 5 4 5 6 5 6 7

0
-0.16 0
—ro2] | [ -6y | |01 1 0 o016 | |71
-1.02 -0.06 1 -0.16 1
0 -0.28 1 0 1
0 “isol 1030 1 s 0 0 1 0 0
: -15 : LS sl =St 0
: : -15
355.83
319.71 354.78
27139 | 21761 31881 | 319711 o756 | 33436 | 5596 | 13951
270.59 98.45 127.40 151.68 96.74
97.98 121.74 85.93 90.99
o | 97.80 65.57 85.60 88.56 83.42
56.56 70.78 56.38 70.92
811 | VeV | d6dl | gl | 840 | el | 5709 | (T | 841
: 0.62 ' 054 | oy | 054 | 8| 062
: : 0.62
223
251 225
gy | 276 | Lo | 251 | e | 234 | T | 165
2.77 150 1.49 171 1.16
Tl o 1.73 1.72 1.52 1.28
1206 | Gioo | 142 | 11009 | o | 1S5 | 992
' 74.02 : 15.69 : 106.71 ' 13.46
3.11 131
131
r 2 3 4 3 4 4 4 4 5
we obtain a linear equation for @ as
O'U s = Us. (3.36)

When K —h < r*, O is given as the least-squares solution
0" = UsU/y; (Ulz45U1T245)_1 : (3.37)

Consequently, we demonstrated that the optimal order can be obtained
using the method presented for the linear system (3.3) discussed earlier with
n=2 m=1,and 0 = [—0.16 1 —1.5]T using a grid search approach con-
sidering all combinations of P = 0,1,2, n = 1,2,3, m = 1,2,3, and h = 1.
In Table 3.3 presents the estimates of 6 obtained from (3.29). We evaluated
the presence of redundant terms based on the consideration of the maximum
value observed in o;/o1. To clarify this, the maximum value of the ratio
for (P,n,m,h) = (0,2,1,1), is 03/04 = 132.17. This implies that o4 = 0.54
should be regarded as zero with respect to other singular values. The esti-
mated value of @ obtained in (3.29) matches that of (3.3), thereby justifying
the earlier discussion. As depicted in the polynomial case, Table 3.4 and 3.5
present the estimates of 6 obtained from (3.37) with P = 1, and P = 2, re-
spectively. Similarly, in the polynomial case, it is evident that the appropriate
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Table 3.4: Similar to Table 3.3, obtained for polynomial case of P = 1, (P,n,m,h) =
(0,2,1,1) remains appropriate order as shown in Table 3.3.

n 1 1 1 2 2 2 3 3 3
m 1 2 3 1 2 3 1 2 3
h 1 1 1 1 1 1 1 1 1
K 4 5 6 5 6 7 6 7 8

0
0 0
0 0 0 0
0 0‘;6 0.80 _0016 -0.16 _01'16 0 _0016 -0.16
0 0.86 : -0.05 : 1 -0.16 : 1
-0.28 1 0 1
—153] 5ol 10301 ] ) s 0 1 0 0
: -15 : -1.5 15 -1.5 15 0
: : -15
72.24
s 5506 | (4 eq | 6486 6245'854 71.95 ;fgg 31.87
54.85 22.26 : 25.46 : 30.31 : 22.27
22.27 24.34 22.25 22.26
22.27 19.65 2227 2226 19.33
o 19.55 22.25 17.14 18.18
19.52 13.11 17.08 17.71 16.63
11.33 14.12 11.30 14.14
1.74 0.64 9.25 0.54 1.80 071 11.38 0.64 1.81
: 0.58 : 0.54 0.51 0.54 0.48 0.64
: : 0.48
227
2.54 2.29
e 2.47 566 2.55 Lls 2.37 s 1.43
2.46 1.13 1.14 1.36 1.15
1.14 1.09 1.30 1.22
oo | 114 e 1.50 158 1.30 157 1.26 129 1.16
L85 R 1.42 2soq | 947 15.99 156 |, 03 | 921
: 16.01 : 3.32 : 20.89 : 2.80
1.37 1.35
1.36
r 3 4 5 4 4 5 5 5 5

Table 3.5: Similar to Table 3.3, obtained for polynomial case of P =2, (P,n,m,h) =
(0,2,1,1) remains appropriate order as shown in Table 3.3.

(Pn,m,h) = (2,2,1,1) (Pn,m,h) = (2,3,1,1)
0 o | 0i/oiu | T 0 o | oifoi | 1
12974
0 9 2.87
103.6
0 718 1.44
246.8 -0.16 ) 1.24
0 3.27 57.8
75.49 1 1.20
-0.16 1.17 48.29
64.61 0 1.25
1 1.58 38.57
40.69 0 1.33
0 1.41 29.09
0 288 1.22 0 18.09 1.61
23.64 10 0 1.04 15
0 1.68 17.48
14.09 0 1.08
0 1.06 16.13
13.35 0 1.42
0 1.66 11.4
8.06 0 1.11
0 1.81 10.27
-1.5 4.44 8.17 0 7.50 1.37
0.54 0 1.30
5.77
0 3.60 1.60
-1.5 ’ 6.74
-1 053

order of (3.3) is (P,n,m,h) = (0,2,1,1). Note that in Table 3.5, a grid search
was conducted considering all combinations, as before, with a total of 9 or-
ders. However, due to the higher polynomial resulting in a larger amount of
data, we are presenting only 2 orders here that are clear from our proposed
method, which can evaluate the appropriate order as (P,n,m,h) = (0,2,1,1).
To clarify this, in (P,n,m,h) = (2,3,1,1), the estimated value of 6 obtained
from (3.37) exhibits numerous zero elements, indicating that the appropriate
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Table 3.6: Similar to Table 3.3, even when changing h to h = 2,3, (P,n,m,h) =
(0,2,1,1) in Table 3.3 remains appropriate.

n 2 2 2 2 2 2
m i i 2 > 3 3
i 2 3 2 3 2 3
K 5 6 6 7 7 3
~0.161]
~0.161] | [-0.161
“oreot | [F0.160] | [~o61) | |7 1 1
1 ! ! 0 0 0
O 1 -isof || 7000 150 ||| o 0
. 0 | =uso ||| s | ] =150
0 0 ) ; 0
o |
382.35
38229 | Looon | eoae | 35519 | 19111
35478 | 19008 | Sooey | (000 | 15995 | 11302
15776 | 10852 | ool | 03| o6s0 | 8798
099 | sage | 0T L BT 8373 | 837
Col09r | oTosa | SRR seag | 5637
062 | 066 | oo vV | 167 | 167
048 | 056 | 000 | 0% | 062 | 066
045 ' oo | 048 | oss
' 045
2.00
200 | L0 | Tee | 22 | 169
205 | ars | LIS | e | 129
13| |0 L e | 1os
o | 128 | 120 | gt L M0 14 | 148
1349 | 10779 | 00 | D8\ 3385 | 3383
130 | g | BAS O BE T he | 2s
1.25 ' S I RNy
: 1.26
’ g 5 5 6 5 6

order is (P,n,m,h) = (0,2,1,1). Similarly, for all combinations of n = 1,2 and
m = 1,2,3 in Table 3.3, 3.4 and 3.5, respectively, the values of @ elements at
locations corresponding to the extra degrees are determined to be zero, allow-
ing us to find the appropriate values for n and m. This result was obtained
by treating small singular values as zero. It should be noted that although
the proposed method can determine the appropriate output order n and input
order m, it fails to do so for h.

The reason why the appropriate control horizon A cannot be determined
lies in the fact that a redundancy is introduced when the horizon is increased.
Nonetheless, Table 3.6 shows the results of varying the horizon parameter h
from 1 to 3 for combinations of n = 2 and m = 1,2, 3. These results demonstrate
that, regardless of any changes in the horizon h, similar outcomes can be
obtained as in Table 3.3, indicating that increasing the horizon & leads to
redundancy. Therefore, this method is not well-suited for effectively identifying
the appropriate control horizon .
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Algorithm 2 Two-stage order selection based on SVD and BIC
1: 1st stage

2: Fix h =1 and N. Select several combinations of (P, n, m).

3: for all (P,n,m) do

4: Construct A in (2.15) and C in (2.16) from storage data.

5: Evaluate SVD of [2] =UxVv’

6: Evaluate U, from the maximum ratio o;/o41 of nonzero singular val-
ues.

7 Determine 0 from @ obtained by (3.29).

8: end for

9: Determine the best order (P, n,m) via nonzero elements of all @ obtained
above.

10: 2nd stage

11: Select several h (e.g. h=1,2,3).

12: for all A do

13: Perform Algorithm 1

14: Calculate MAE (3.2) and BIC (3.1).

15: end for

16: Determine the best / as the one that gives the smallest BIC.

3.2.2 Two-stage order selection

To determine the appropriate order m, n, as well as the control horizon £ in the
model-free predictive control, we present a two-stage approach in Algorithm 2.
In the first stage of Algorithm 2, suitable values of m and n are determined
by SVD as discussed in chapter. 3.2.1, while the second stage determines the
best control horizon A by the BIC-criterion as discussed in chapter. 3.1.

All simulations in this paper were performed in MATLAB on a 64-bit
Microsoft Windows PC with 3.00GHz Intel Core i7-9700 processor and 8 GB
of memory. The execution time of ¢;-minimization did not exceed 0.01 s of
each sample.

3.2.3 Simulation in Linear system

In chapter. 3.2.1, the first stage of Algorithm 2 was executed for the linear
system (3.3). Subsequently, the appropriate order (n = 2 and m = 1) was
discerned. While retaining the order (n = 2 and m = 1), the model-free
predictive control was applied with A = 1,2, and 3, as represented in Table
3.7, marking the second stage of Algorithm 2. The data from Table 3.7 clearly
indicates that the BIC identifies & = 1 as the optimal horizon. A prominent
feature of the proposed two-stage approach is its computational efficiency;
following the assessment of six order combinations in Table 3.6, it requires the
evaluation of BIC for only three control horizon combinations as shown in Table
3.7. This approach ensures a marked reduction in the number of experiments
for model-free predictive control (numerical simulations in the context of this
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Table 3.7: Second stage of Algorithm 2. Based on Tables 3.3 and 3.6 and assuming
(P,n,m) = (0,2,1) is optimal, we obtained MAE and BIC by applying
model-free predictive control for A = 1,2,3. Bold indicates the optimal
value.

MAE BIC
0.04045 | —-1578.94
0.04056 | —1565.17
0.04054 | —1552.92

QO D e |

paper), especially when compared to the exhaustive approach of assessing BIC
for 27 combinations of orders and horizons without implementing the two-stage
approach.

Furthermore, there is a significant reduction in computation time in first
stage to determine the appropriate (n,m) using SVD approach requires only
0.1 seconds among all possible combinations and only 30 seconds for second
stage to evaluated the appropriate horizon h. Using the two-stage method, the
computation time to investigate the 27 combinations shown in Table 3.2, which
would normally take 270 seconds, is reduced to just 30.1 seconds, achieving a
notable reduction.

3.2.4 Simulation in Nonlinear system 1

We evaluated Algorithm 2 by applying it to a nonlinear system

y(2)

3
T 20 20 +u’ (1) + €(1), (3.38)

ya+1) =

where € is an i.i.d. Gaussian random noise with a zero mean and a variance
o? = 0.05.

Initially, as shown in Fig. 3.4, to obtain input/output data D,,..{(u, y)},
an input u(r) following a uniform distribution between —2 and 2 was applied
to the nonlinear system (3.38). The results of the first stage of Algorithm 2
are presented in Table 3.8, where all nine combinations of orders are shown.
As depicted in the polynomial case, Table 3.9 and 3.10 present a polynomial
order case of P = 1, and P = 2, respectively. Similarly, it is evident that
the appropriate order of (3.38) is (P,n,m,h) = (0,1,1,1). Notably, the or-
der (P,n,m) = (0,1, 1) is identified as the most suitable.

In the second stage of Algorithm 2 to collect 500 samples of input/output
data Dpi{(u,y)} around the reference r(r) as specified in (3.4), which are illus-
trated in Fig. 3.5, we employed PI control

u(t) = Kp (r() = y(@) + Ky ) (r(0) = y(0)) + u(0) (3.39)
i=0

where Kp = 0.6 and K7 = 0.4, and v(t) was chosen from a uniform distribution
between —0.1 and 0.1 as the excitation signal.
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Figure 3.4: Input/output data Dypen{(u,y)} used in the first stage of Algorithm 2
of the nonlinear system (3.38): measured output y (top) and input u
(bottom)
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(5 160 2(.JO 3(‘)0 4(‘)0 SbO
t
Figure 3.5: Stored data Dpr{(u,y)} used in model-free predictive control in second

stage of Algorithm 2 of the nonlinear system (3.38) obtained using PI
control: measured output y (top) and input u (bottom)

As discussed in Refs. [29, 31], it is evident that PI control can effectively
enhance the datasets Dp/{(u, y)} used in model-free predictive control because
the storage data {u(t;),y(t)} (j = 1,2,...,N) used in model-free predictive
control must be sufficiently rich within the range where y(f) can follow the
reference signal r(¢). While retaining the order (n = 1 and m = 1), we conducted
model-free predictive control to the nonlinear system (3.38) as the second stage
of Algorithm 2. As shown in Table 3.11, the optimal horizon with the lowest
BIC is h = 3. The results of the model-free predictive control using the obtained
order and horizon are illustrated in Fig. 3.6.

We note that using Dp/{(u, y)} in the first stage does not yields a satisfactory
result. Determination of (n,m) by SVD in the first stage presupposes the
linearity of the system, whereas Dp;/{(u,y)} contains input-output data that
can follow a wide range of the reference signal r, thereby representing input-
output data that can capture the nonlinearity of the system.
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Figure 3.6: Simulation result of model-free predictive control with the appropriate
order (n,m,h) = (1,1,3) for the nonlinear system (3.38). Red represents
the desired reference trajectory.

Table 3.8: Estimations of # and singular values o for the nonlinear system (3.38),
obtained for P = 0, 2 = 1 and various m and n. r* represents the number of
singular values considered nonzero based on the ratio of singular values.
Elements of @ considered to be redundant are indicated in bold. Singular
values o in bold are values considered to be zero, and bold ratios of
singular values are the values used to determine r*.

n I i I 2 2 2 3 3 3
m 1 2 3 1 2 3 1 2 3
) 1 1 1 1 1 1 1 1 1
K 3 ] 5 g 5 6 5 6 7

0
0 0
0.06 0 0 0
0.0s] | [%] 1] o O 1oos| | %91 o O 1110.0s
0 0 0.05 0 0.05
288 | 7| || O | logrl || © o |1]00s| |7y 0
: 2.87| | & 287] | |, 7| | 1287] | |, 7| || ©
: : 2.87
80.71
80.28 79.63
cgaq | T84 | oo | 7946 | U0 | 7803 | S| 7554
76.98 7242 72.88 74.69 71.72
72.37 72.17 71.72 7112
o | 69.90 26.39 69.86 69.00 69.57
10.89 68.09 11.29 67.97
9.97 10.85 10.87 67.64 11.27
9.02 9.98 9.92 10.90
8.87 897 | gsc | 998 | gon | 991
’ : 8.51
1.07
1.08 1.07
Log | 108 | o | 109 | on | 105 | ol | 10s
1.10 274 1.04 1.08 1.03
il i 6.65 1.06 6.35 1.05
700 | 07243 | cen ] 643 | DT 102 | O 61T
: 122 | 121 | 678 | 1.14
1.16 1.22
1.16
r 2 2 2 3 3 3 4 4 4

3.2.5 Simulation in Nonlinear system 2

We also evaluated Algorithm 2 by applying it to a higher nonlinear system [41]
2Oyt —3) — Du(t —2) + ut - 1)
1) = 1),
¥ Trya—3p+ga-2p 0
2(t) =yt — Dy(t = 2)y(t - 3), (3.40)
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Table 3.9: Similar to Table 3.8, obtained for polynomial case of P = 1, (P,n,m, h) =
(0,1,1,1) remains appropriate order as shown in Table 3.8.

n 1 1 1 2 2 2 3 3 3
m 1 2 3 1 2 3 1 2 3
h 1 1 1 1 1 1 1 1 1
K 4 5 6 5 6 7 6 7 8
0
0 0
et e erle el
0.05 ) 0 0.05 0
7] 0.05 0 0.05 0 0.05
0 0.05 0 0.05
2.88 )87 0 287 0 0 0.05 0 0
’ 2.87 ’ 2.87 287 2.87 287 0
’ ’ 2.87
80.71
80.28 79.63
78.44 7845 77.86 7947 74.15 78.03 74.73 75.54
76.99 72.42 72.88 74.69 71.72
72.37 72.17 71.72 71.12
69.90 26.42 69.86 69.00 69.57
o 22.36 68.09 22.37 67.97
22.36 22.34 22.36 67.64 22.37
10.89 22.36 11.29 22.36
997 10.85 10.87 22.36 11.27
9.00 9.96 9.92 10.90
8.84 8.97 8.53 9.96 3.90 991
’ ’ 8.47
1.07
1.08 1.07
1.08 1.08 1.08 1.09 1.03 1.05 1.05 1.05
1.10 2.74 1.04 1.08 1.03
3.24 1.06 3.21 1.05
oi/oi | 313 205 1.18 305 3.12 198 1.02 304 3.11
2.24 1'21 2.06 2'25 2.06 1'14 3.03 2'05 1.98
' 1.23 ’ 1.22 1‘16 2.24 1'2,; 1.14
’ o 1.17
r 2 2 2 3 3 3 4 4 4

Table 3.10: Similar to Table 3.8, obtained for polynomial case of P =2, (P,n,m, h) =
(0,1,1,1) remains appropriate order as shown in Table 3.8.

(Pn,m,h) = (2,1,1,1) (Pn,mh) = (2,2,1,1) (Pn,mh) = (2,3,1,1)
0 Ti oif/Ti | T 0 Ti oilTi | 7" 0 Ti oif/oi | T
584.3
0 1.56
375.7
0 3502 1.05
0 535.1 1.45 0 348.4 1.03
369.8 0.05 1.29
480.1 0 353.3 1.05 0 269.7 1.10
0 1.31 0.05 1.37 244.9
365.7 256.8 0 1.03
0.05 1.68 0 1.24 237.3
217.1 207.5 0 1.16
0 2.83 0 1.02 205.4
76.61 5 203 9 0 1.03 |14
0 1.09 0 2.64 199.7
69.84 76.9 0 1.06
0 4.25 0 1.08 188.6
16.43 71.5 0 2.47
2.87 1.65 0 1.05 76.33
9.95 67.85 0 1.04
0 4.56 73.3
2.86 14.88 1.5 0 68.45 107
T 9.92 0 1.03
66.2
0 1371 4.83
2.85 ) 1.39
7 985

where € is an i.i.d. Gaussian random noise with a zero mean and a variance
o?=0.01.

As shown in Fig. 3.7, we generated input/output data D,,..{(«, y)} with an
input u(¢) following a uniform distribution between —2 and 2 for the higher non-
linear system (3.40). The results of the first stage of Algorithm 2 are outlined
in Table 3.12, which presents all nine combinations of orders. Remarkably,
the order (n,m) = (1, 1) has been identified as the most suitable.
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Table 3.11: Second stage of Algorithm 2. Based on Table 3.8, assuming (n,m) = (1,1)
is optimal, we obtained MAE and BIC by applying model-free predictive
control for & =1,2,3. Bold indicates the optimal value.

MAE BIC
0.1660 | —879.27
0.1483 | —923.16
0.1157 | -1034.78

W NI =

Table 3.12: Estimations of 8 and singular values o; for the higher nonlinear system
(3.40), obtained for & = 1 and various m and n. r* represents the num-
ber of singular values considered nonzero based on the ratio of singular

values.
n 1 1 1 2 2 2 3 3 3
m 1 2 3 1 2 3 1 2 3
h 1 1 1 1 1 1 1 1 1
K 3 4 5 4 5 6 5 6 7
0
0 0
0.06 0 0 0
0.05 0.05 0 0 0.05 0.05 0 0 0.05
0 0 0.05 0 0.05
2.88 )87 0 )87 0 0 0.05 0 0
’ 2.87 ’ 2.87 )87 2.87 )87 0
’ ’ 2.87
80.66
80.24 79.59
78.41 78.42 77.82 79.43 74.17 71.98 74.73 75.55
76.96 72.42 72.89 74.69 71.71
72.37 72.18 71.71 71.12
o; 69.89 26.39 69.85 69.00 69.57
10.87 68.07 11.28 67.96
995 3.99 10.83 995 10.85 9,89 67.62 10.89 11.26
’ 8.84 ’ 8.94 8.54 9.95 8 '90 9.87
’ ’ 8.48
1.07
1.08 1.06
1.08 1.08 1.08 1.09 1.03 1.04 1.05 1.05
1.10 2.74 1.04 1.08 1.03
oi/oia 6.66 1.06 6.36 1.05
7.02 101 2.43 6.84 6.44 114 1.02 6.24 6.19
’ 1.23 ’ 1.21 ’ 6.79 ’ 1.14
1.16 1.22
1.16
r 2 2 2 3 3 3 4 4 4

In the second stage of Algorithm 2, we collect 500 samples of input/output
data Dpi{(u, y)} around the reference r(r) in (3.4) using PI control as discussed
in previous subsections and illustrated in Fig. 3.8. As shown in Table 3.13,
the results indicate that the optimal order is (n,m, h) = (1, 1,2), supporting the
conclusions drawn in the previous subsections. We note here that the control
results in Fig. 3.9 have deteriorated compared to those in Fig. 3.6, indicating
that controlling the higher nonlinear system (3.40) is more difficult that than
system (3.38).
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Figure 3.7: Input/output data Dopen{(u,y)} used in the first stage of Algorithm 2
of the nonlinear system (3.40): measured output y (top) and input u

(bottom)
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Figure 3.8: Stored data Dp;{(u,y)} used in model-free predictive control in second
stage of Algorithm 2 of the nonlinear system (3.40) obtained using PI
control: measured output y (top) and input u (bottom)

Table 3.13: Second stage of Algorithm 2. Based on Table 3.12, assuming (n,m) =
(1,1) is optimal, we obtained MAE and BIC by applying model-free
predictive control for & = 1,2,3. Bold indicates the optimal value.

MAE BIC
0.2126 | =755.47
0.1563 | —896.79
0.1572 | —881.60

W N =S
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Figure 3.9: Simulation result of model-free predictive control with the appropriate
order (n,m,h) = (1,1,2) for the higher nonlinear system (3.40). Red
represents the desired reference trajectory.
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Chapter 4

A Singular Value Decomposition
Approach in Model-Free Predictive
control

In this section, we discuss methods as alternatives to the £;-norm minimization
approach in the model-free predictive control.
As in [44], by combining (2.13) and (2.14), we obtain

4] - [”]. (4.1)

i
Here, we consider the Singular Value Decomposition (SVD)

— UZVT, (42)

where U € ROm-1+20x(ntm=1+2) anq vV € RV are orthogonal matrices, and
X, 0,n-
Y = [0 q 0q><(N q)] c R(q+z)><N’ (4.3)
xXq  YzX(N-q)

is a diagonal matrix, where X, = diag(o,...,0,) € R?? with nonzero singular
values o > - -+ > 0, > 0 and where z is the number of zero singular values and

g+z=n+m-1+2h. (4.4)

Here, U and V are partitioned into matrices in accordance with X as

U:I’l+m—1+h[U11 U]z} (45)
h Uy Ux
g9 N-gq
V=N (V1 V2 ) (46)
By using SVD (4.2), (4.1) can be rewritten as
- b
UsViw = |, |. (4.7)
UZ3
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By multiplying U™ from the left of (4.7), we obtain

x, o||vy Uy, ULHb]
= .- 4.8
[0 OHV;]‘” [U{2 UL || (48)
From this,
ULb+ Uy =0. (4.9)

If h = z and Uy, is nonsingular, the future input @y can be obtained by

i = -U5  U},b. (4.10)
The condition & = z is equivalent to

g=n+m-—1+h. (4.11)

From (4.7), we also obtain

Ui b
lsvie-|?] -

If (4.11), and Uy, is nonsingular, we have
a; = Uy Uil b. (4.13)

Since U is orthogonal, under the condition (4.11) and that U;; and U,, are
nonsingular, (4.10) and (4.13) are identical as Uy U} = ~U,1 U},.

4.1 Examples

In this section, we compare the performance of model-free predictive control
using SVD and ¢;-norm minimization approaches. All numerical simulations
were executed under the following conditions, with certain exceptions:

o The system noise € is assumed to be an i.i.d. Gaussian random noise
with a zero mean and a variance o = 0.01.

o The input/output dataset is generated by applying u(r) following a uni-
form distribution U(a, b) between a and b to the system in an open-loop
fashion. A total of N = 1000 samples are used for the model-free predic-
tive control.

» Utilizing the dataset and the model order selection method described in
Sec. 4, the order of the system was identified for the model-free predictive
control.

e In the model-free predictive control, the control horizon is set to h = 1,
and the sinusoidal signal

r(t) = sin0.01xt (4.14)

is used as the reference trajectory.
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Figure 4.1: The dataset of the linear system (4.16).

« The control performance is evaluated by the mean absolute error (MAE)

defined by
1
MAE = 1) — y(1)), 4.15
TE_T&;V() y(0) (4.15)

where Ty = 0 and T, = 800.

4.1.1 Simulation in Linear system

We consider the linear system
y(H) = 07x(t) + £(), 67=]-0.1 1 2] (4.16)

where the order of the system is (n,m) = (2, 1).

The dataset, depicted in Fig. 4.1 by only 400 samples and represented by
the histograms of N samples, was generated by a uniform distribution u(r) ~
U(-1,1). By using the dataset, the order of the system was identified as
(n,m) = (2,1) by the model order selection in Sec. 3.2.

Figure 4.2 illustrates the simulation results of model-free predictive control
by SVD and ¢;-norm minimization approaches. The performance using MAE
by both approaches are nearly equivalent as shown in Table 4.1.

4.1.2 Simulation in Switched linear system
We consider the switched linear system
y(t) = 6/ x() +&(t), i=1,2, (4.17)
6, =[-0.1 12 22| when |yt~ 1) > 0.5,
6,=[0.1 0.8 19| when |yt~ 1) < 0.5,

Table 4.1: Comparison of MAE between SVD and ¢;-norm minimization approach
for the linear system (4.16)

SVD based | £;-norm min. based
0.0081 0.0081
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Figure 4.2: Simulation result of model-free predictive control for the linear system
(4.16). Red represents the reference trajectory r(z).
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Figure 4.3: The dataset of the switched linear system (4.17).

where the order of the system is (n,m) = (2, 1).

The dataset, which is depicted in Fig. 4.3 with only 400 samples and whose
distribution is represented by the histograms of N samples, was generated
by a uniform distribution u(f) ~ U(-1,1). It was found that upon analysis
of the dataset that the application of the stricter criteria for zero element
determination of the identified 6, as described in Sec. 3.2, did not allow for a
unique determination of the system order. However, by relaxing the criteria,
the system order was established as (n,m) = (2, 1).

Figure 4.4 illustrates the simulation results of model-free predictive control

by two approaches. The performance using MAE by both approaches are
nearly equivalent as shown in Table 4.2.

Table 4.2: Comparison of MAE between SVD approach and ¢;-norm minimization
approach in switched linear system (4.17)

SVD based | £;-norm min. based
0.0220 0.0216
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Figure 4.4: Simulation result of model-free predictive control for the switched linear
system (4.17). Red represents r(z).

2 = 100 : : :
= Z 50
-9 -1 0 1
1

u(t)
L o
Count
3

0 200 400 -1 -0.5 0 0.5 1
t U

(a) (u()),y(r)) until r = 400 (b) £1-norm min. based

Figure 4.5: The first dataset of the nonlinear system (4.18).

4.1.3 Simulation in nonlinear system

We consider the nonlinear system

oy -1) 3,
W0 = Ty * 12— D+ e, (4.18)

where the order of the system is (n,m) = (1, 1).

The dataset, which is depicted in Fig. 4.5 with only 400 samples and whose
distribution is represented by the histograms of N samples, was generated by
a uniform distribution u(#) ~ U(-1,1). Despite altering the criteria for zero
element determination when utilizing the dataset, the system order could not
be uniquely determined. Therefore, it was set to (n,m) = (1, 1).

Figure 4.6 illustrates the simulation results of model-free predictive control
using two approaches. The control performance has noticeably deteriorated
compared to previous results for the linear and switched linear systems, as
clearly indicated by MAE in Table 4.3.

As discussed in [30], one way to improve control performance is to collect
a dataset around the reference trajectory r(¢) for model-free predictive control.
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Figure 4.6: Simulation result of model-free predictive control using dataset in
Fig. 4.5 for the nonlinear system (4.18). Red represents r(t).
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Figure 4.7: The second dataset of the nonlinear system (4.18). The input u(?) is
generated by PI control (4.19).

To collect data around the reference trajectory, PI control was employed:
t
u(t) = Kp (r(0) = y() + K1 ) (r(D) = y()), (4.19)
i=0

where Kp = 0.3 and K7 = 0.5. The obtained u(t) by this PI control with the
excitation signal v(f) ~ U(-0.0004,0.004) was applied to the nonlinear system
(4.18) in an open-loop fashion to obtain a dataset. Figure 4.7 shows only 400
samples and the histograms of N samples. In this case also, despite modifying
the criteria for zero element determination when utilizing the dataset, the
system order could not be uniquely determined. Consequently, it was set to
(n,m) =(1,1).

The simulation results of the model-free predictive control utilizing the
dataset shown in Fig. 4.7 are illustrated in Fig. 4.8. The model-free predic-
tive control employing the SVD approach exhibits instability. However, as
Table 4.3 clearly demonstrates, MAE by the £;-norm minimization method is
improved. These findings demonstrate the sensitivity of model-free predictive
control to variations in the dataset.
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Figure 4.8: Simulation result of model-free predictive control using dataset in
Fig. 4.7 for the nonlinear system (4.18). Red represents r(z).

Table 4.3: Comparison of MAE between SVD approach and ¢;-norm minimization
approach in nonlinear system (4.18)

SVD based | ¢;-norm min. based
Fig. 4.6 0.1576 0.2132
Fig. 4.8 NaN 0.0494
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Chapter 5

Conclusion

In this thesis, we introduced a two-stage technique for determining the ap-
propriate order in model-free predictive control using Singular Value Decom-
position (SVD) and Bayesian Information Criterion (BIC). It is important to
emphasize that although the traditional order selection using the BIC-criterion
can yield the appropriate order, it is typically necessary to consider all possible
orders, resulting to the repetition of control experiments for evaluation. How-
ever, using the utility of the singular value through SVD can be obtained an
appropriate selection only input and output orders, however, it does not pro-
vide an optimal value of the horizon in the predictive control. Moreover, this
method eliminates the need to simulate every possible order, relying solely on
storage data. Consequently, by integrating the strengths of these two methods
offers potential in determining the appropriate order. The proposed technique
also has the ability to identify orders containing redundant terms that need to
be eliminated. Additionally, by examining the decline ratio of singular values,
it becomes feasible to detect redundant values even in the presence of noisy sig-
nal data. However, when Singular Value Decomposition (SVD) was compared
with £;-norm minimization approach with model-free predictive control. For
linear systems, there was no difference in control performance between the two
methods, whereas for nonlinear systems, the approach based on ¢;-norm min-
imization was confirmed to be superior through numerical simulations. In the
future, we intend to further explore the applicability of our proposed method
in the context of nonlinear systems for which a PI-controller and further inves-
tigation will not be required and developing methods to acquire high-quality
datasets for model-free predictive control, particularly for nonlinear systems.
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