心筋SPECT画像における 分解能補正の基礎検討

金沢大学大学院 バイオトレーサ診療学 金沢大学附属病院 核医学診療科 放射線部

金沢大学 医薬保健研究域 保健学系

奥田光一 中嶋憲一,松尾信郎,絹谷清剛 越田晴香,小島礼慎, 米山寛人,松山茂人

小林下和

SPECTの再構成について

- Filtered back projection (FBP)
 - 従来法として長い間使用され続けている
- Ordered subsets expectation maximization (OSEM)

 - 数値演算にて分解能を補正

SPECTの再構成について

- Filtered back projection (FBP)
 - 従来法として長い間使用され続けている

FBP 分解能補正なし

- Ordered subsets expectation maximization (OSEM)

 - 数値演算にて分解能を補正

3D-OSEM 分解能補正あり

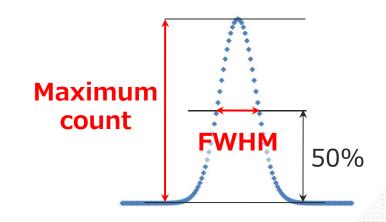
分解能補正が組込まれたOSEM法

● OSEM法のパラメータ

Iteration :1-30

Subset :1-30 ※投影数に依存

● iterationとsubsetの積が


- (小さい) 分解能の低い画像
- (大きい) ノイズが多い画像

(積が小さい) 分解能 低

(積が大きい)

研究の目的

- ラインソースおよび心筋SPECTにおいて、OSEM 法による分解能補正の基礎的な検証を行う
- ラインソース
 - FWHM
 - 最高カウント
- 心筋SPECT
 - 最高カウント

SPECTデータ 収集条件

Phantom : JIS Z 4922 (φ1.5mm)

Radioisotope : ^{99m}Tc-pertechnetate

Activity : 3.2 mCi (118 MBq)

SPECT scanner : Symbia T6 (Siemens)

Collimator : LEHR

Rotation range : 360 degrees, continuous acquisition

Projection : 90

Image resolution: 128×128

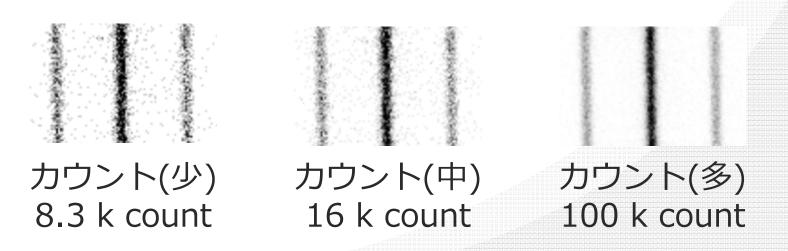
Pixel size : 2.1 mm (zoom 2.29)

実験方法

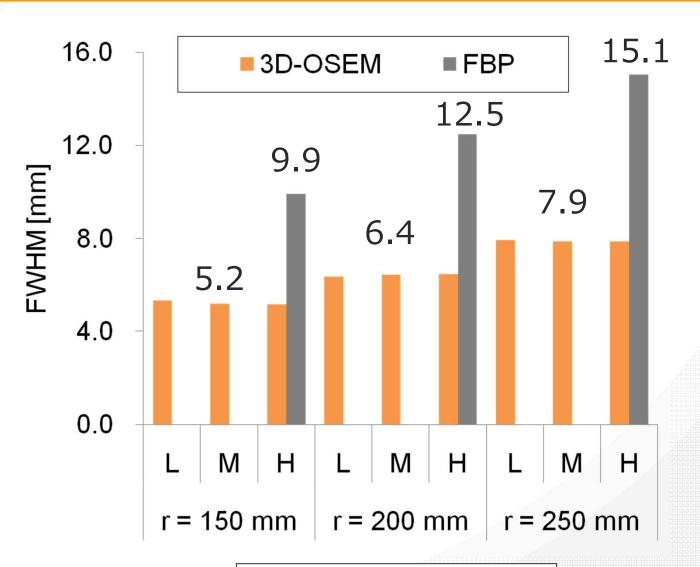
● 回転半径

- 150 mm
- **200 mm**
- 250 mm

分解能補正効果の検証

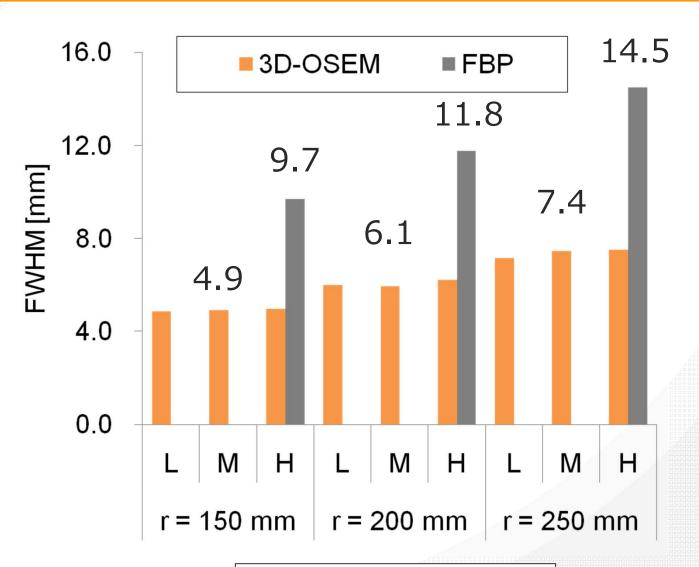

- 収集時間
 - 50 秒 / 回転
 - 100 秒 / 回転
 - 600 秒 / 回転

カウントの直線性

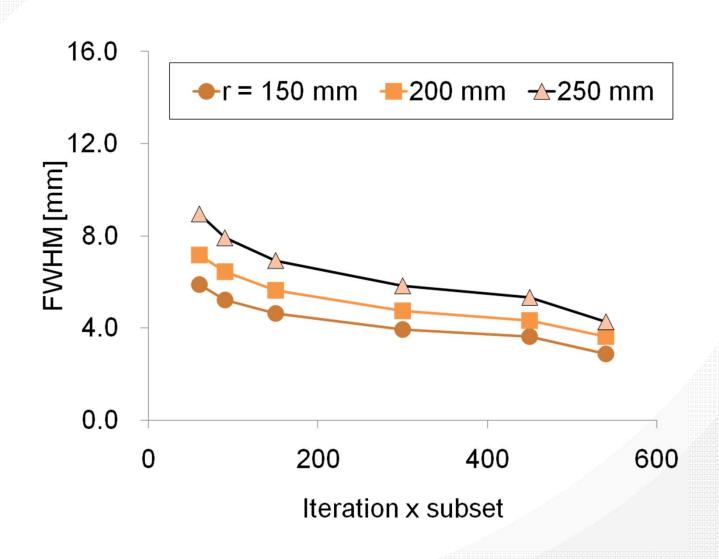

収集カウント

プロジェクション画像の全収集カウント

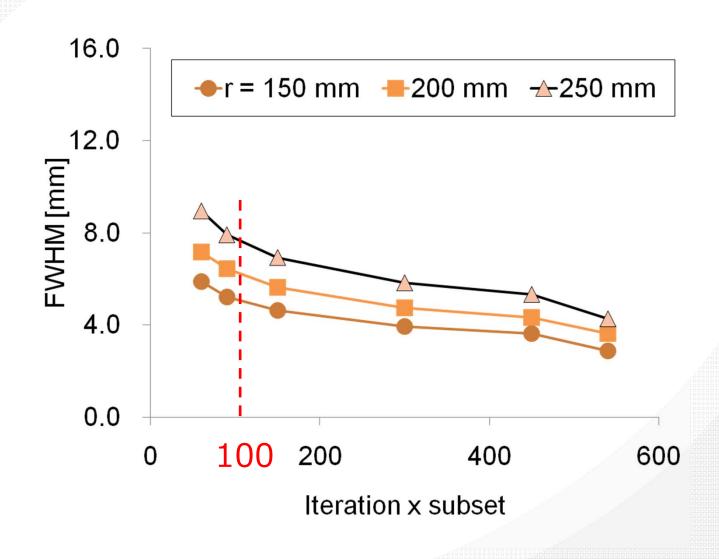
	収集カウント [k count]							
秒 / 回転	150 mm	200 mm	250 mm					
50	707	704	683					
100	1,389	1,384	1,338					
600	8,820	9,005	9,168					



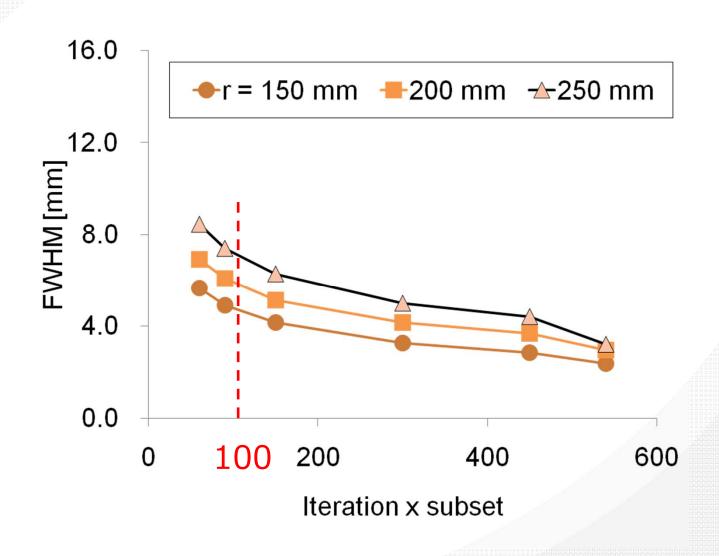
収集カウントとFWHM 水平方向


iteration x subset = 90

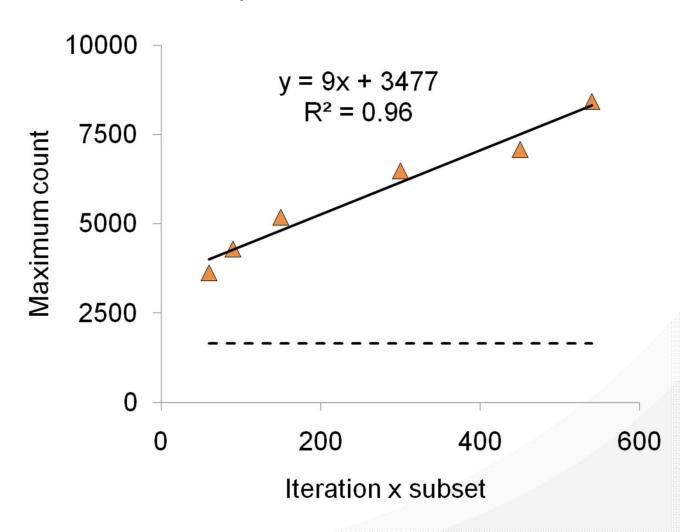
収集カウントとFWHM 垂直方向



iteration x subset = 90


Iteration*subsetとFWHM 水平方向

Iteration*subsetとFWHM 水平方向



Iteration*subsetとFWHM 垂直方向

Iteration*subsetと最大カウント

● 収集カウント 多,回転半径 = 150 mm

カウントの直線性

● 低カウント収集のデータを基準として評価

Iteration ×	150 mm		200 mm		250 mm	
Subset	M/L	H/L	M/L	H/L	M/L	H/L
理論値	2.0	12.0	2.0	12.0	2.0	12.0
60	2.1	13.7	2.0	13.2	1.9	14.9
90	2.1	13.1	2.1	13.0	2.0	14.9
150	2.2	13.0	2.1	12.6	1.9	14.2
300	2.2	13.7	2.3	14.0	2.1	16.6
450	2.5	10.6	2.4	9.3	2.0	11.4
540	2.2	10.0	2.4	12.5	2.2	15.5
Mean	2.1	12.2	2.2	12.6	2.0	14.1
FBP	1.6	11.7	2.1	12.3	2.0	12.8

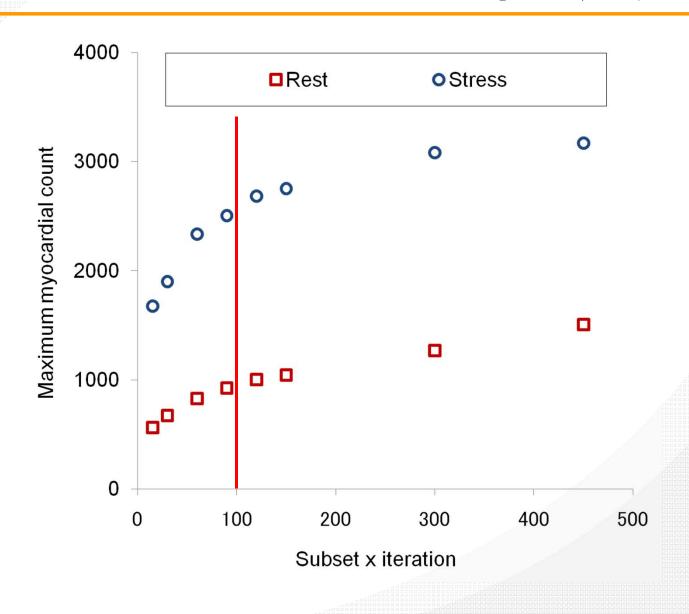
臨床症例での分解能補正の影響(負荷時

分解能補正なし FBP 分解能補正あり(3D-OSEM) 15 90 450

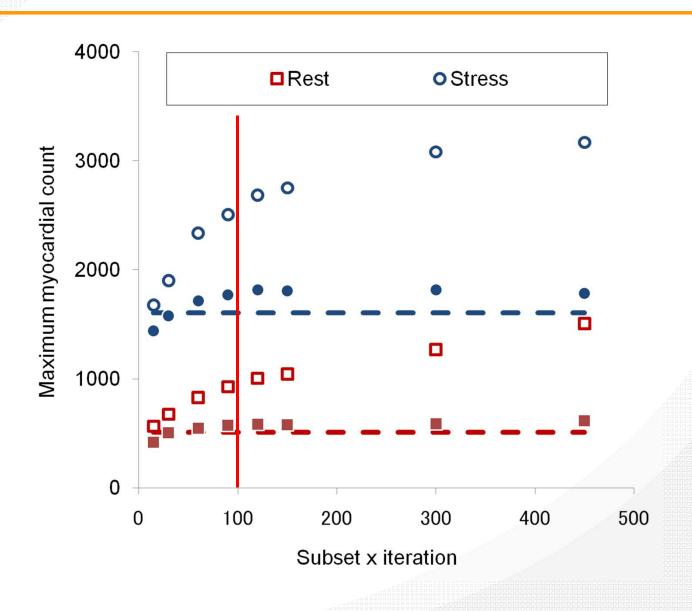
(1)スムージングなし

- Iteration 15 x Subset 1 = 15, Iteration 30 x Subset 3 = 90
- Iteration 30 x Subset 15 = 450

臨床症例での分解能補正の影響(負荷時


分解能補正なし FBP 分解能補正あり(3D-OSEM) 15 90 450

(1)スムージングなし


(2)スムージングあり

- Iteration 15 x Subset 1 = 15, Iteration 30 x Subset 3 = 90
- Iteration 30 x Subset 15 = 450

Iteration*subsetと心筋最大カウント

Iteration*subsetと心筋最大カウント

まとめ

- ファントム・臨床症例にて分解能補正の基礎的検証
- FWHMは iteration*subset により変化
 - 半径 150 mm, 4.9 ~ 5.2 mm
 - 200 mm, 6.1 ~ 6.4 mm
 - 250 mm, 7.4 ~ 7.9 mm
- カウントの直線性は従来と同様の傾向
- 臨床症例での心筋血流カウントはスムージング フィルタを用いることで、従来と同様の傾向となる
- 分解能補正が組込まれたOSEM法を使用する場合, 解析パラメータを固定する必要がある