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ABSTRACT 

 Anatomical plasticity of projections from brainstem auditory structures to the inferior 

colliculus (IC) was examined in albino rats to determine the effects of unilateral destruction of 

the IC during early development.  The IC in the right hemisphere was destroyed by aspiration 

on postnatal day 3.  Upon reaching adulthood, the rats were examined by retrograde tract 

tracing methods with fluoro-gold (FG) and [3H]-glycine to determine patterns of brainstem 

projections to the undamaged left IC.  In our FG experiments, the results confirmed the 

presence of aberrant crossed projections from the right medial superior olive (MSO) to the 

undamaged left IC.  Following injections of [3H]-glycine or FG into the undamaged left IC, 

however, no other aberrant projections were found in the superior olive, including those from 

the ipsilateral lateral superior olive (LSO) or the superior paraolivary nucleus (SPN).  These 

results suggest that projections from the MSO to the IC may have the latent ability to create 

aberrant crossed projections during development.  On the other hand, the neurons in LSO and 

SPN do not form aberrant projections following early unilateral IC lesions.  

 

 

Key words: inferior colliculus (IC); superior olivary complex (SOC); retrograde transport; 

[3H]-glycine; Fluorogold (FG) 
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lateral lemniscus; VNLL, ventral nucleus of the lateral lemniscus; 
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INTRODUCTION 

 The superior olivary complex (SOC) is a major mammalian auditory brainstem 

structure that contains several distinct nuclei, each with its own pattern of afferent and efferent 

projections (Grothe and Park, 2000).  The SOC is generally accepted as playing an important 

role in sound localization and binaural hearing (Kavanagh and Kelly, 1992; Kelly and Sally, 

1993; Sally and Kelly, 1992; Wu and Kelly, 1992).  Three principal nuclei comprise the SOC 

in the rat: the lateral superior olive (LSO), the medial superior olive (MSO), and the superior 

paraolivary nucleus (SPN).  In the rat, as in many other mammals, these three nuclei (LSO, 

MSO and SPN) constitute part of the main ascending afferent sources of projections to the 

inferior colliculus (IC) (Adams, 1979; Glendenning and Masterton, 1983; Kelly et al., 1998; 

Moore et al., 1995; Pollak et al., 2002).  The major excitatory inputs to the IC emerge from the 

ipsilateral MSO and contralateral LSO.  Also, a major inhibitory input emerges from 

glycinergic neurons in the ipsilateral LSO.  The MSO-IC projection is predominantly 

ipsilateral in normal rats (Beyerl, 1978; Coleman and Clerici, 1987).  Animals with early 

ablation of the IC, however, display an aberrant crossed projection from the MSO to the 

undamaged IC, which is never seen when the IC is ablated in adulthood (Okoyama et al., 

1995a).   

The projections from LSO to IC can be segregated, immunocytochemically, into 3 

components: 1) a crossed, glycine-negative (-) projection; 2) an uncrossed, glycine-positive (+) 

projection; and 3) an uncrossed, glycine-negative (-) projection (Saint Marie and Baker, 1990; 

Saint Marie et al., 1989).  Recent anatomical and physiological studies have suggested that the 

principal sources of glycinergic inputs to the IC are the ipsilateral LSO and the ventral nucleus 

of the lateral lemniscus (VNLL), and that these glycinergic pathways are major sources of 

synaptic inhibition of IC neurons (Loftus et al., 2004).  Although the LSO is easily 

distinguished from other SOC nuclei by shape, investigating anatomical plasticity of the 

projection from the LSO to the contralateral IC following unilateral destruction of the IC is 
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difficult using simple retrograde tract-tracing techniques because the LSO has projections to 

both ipsilateral and contralateral IC in normal animals.  Several lines of evidence suggest that 

glycinergic projections from LSO to IC are almost entirely ipsilateral; in other words, the 

crossed projections from LSO to IC do not appear to be glycinergic (Saint Marie and Baker, 

1990; Saint Marie et al., 1989).  The present study investigated possible changes in the 

projections from LSO and SPN to IC using Fluorogold (FG) tract-tracing together with 

neurotransmitter-specific uptake and retrograde axonal transport of [3H]-glycine. This approach 

allowed us to determine the effects of early unilateral ablation of the IC on glycinergic 

projections from the superior olivary complex to the intact IC. 

 

MATERIALS AND METHODS 

Early IC lesions were made in albino Wistar rat pups born to females obtained from 

Charles River Ltd. (St. Constant, Quebec, Canada). Eight of these animals provided useful data 

for analysis. Twenty-eight rats with IC lesions were excluded from analysis because their 

lesions and/or injection sites of tracers were either too small or too large. An additional 7 adult 

rats were used as normal controls. Animals were housed in clean cages and maintained in good 

health in the Life Science Center vivarium for the duration of the experiment.  During all 

surgical procedures, neonatal rats were anesthetized using halothane with the help of 

hypothermia and adult rats were anesthetized using intraperitoneal injection of sodium 

pentobarbital at 65 mg/kg.  In developing rats, the right IC was destroyed by aspiration on 

postnatal day three (P3).  While partial removal of the caudal pole of the occipital cortex was 

necessary to expose the IC in adult rats, neonatal surgery was performed without such removal, 

because the occipital cortex does not extend over the IC surface in neonatal rats.  At 6 months 

after the IC lesion, rats were re-anesthetized and tracers were injected through glass 

micropipettes (inner tip diameter, 25-35 µm) into the undamaged left IC so that possible 

aberrant projections to the IC could be detected in the SOC.  Neurotransmitter-specific uptake 
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of [3H]-glycine and retrograde tract-tracing were used to investigate anatomical connections.  

Fluoro-gold (FG; Fluorochrome, Colorado, USA) was used as a simple retrograde marker and 

[3H]-glycine was used to detect possible changes in the pattern of glycinergic projections to the 

remaining IC.  Each animal received multiple injections of tracers to maximize labeling.  FG 

(2% solution dissolved in saline) was delivered iontophoretically by passing a continuous 7.5 

µA DC positive current for a total of 15 min and [3H]-glycine (20 µCi/µl, 0.5 µl) was injected 

by air pressure.  Normal adult animals (n=7) received injections of [3H]-glycine (n=2) and FG 

(n=5) into the left IC as controls.  These experimental procedures are summarized in Table 1.  

Following a survival period of 3-4 days, animals were re-anesthetized with an 

overdose of intraperitoneal sodium pentobarbital (120 mg/kg) and perfused transcardially with 

phosphate-buffered saline followed by 4% paraformaldehyde.  Brains were cut serially at 40 

µm in the frontal plane on a freezing microtome (Reichert-Jung, Nussloch, Germany), divided 

into three parallel series and sections were mounted on gelatin-coated slides.  To identify 

distributions of [3H]-glycine labeling, sections on slides were defatted and coated with NTB-3 

emulsion (Kodak, USA), exposed for 1-2 months, then developed with D-19 developer (Kodak).  

Slides were then examined for FG labeling using a fluorescence microscope and for labeling of 

[3H]-glycine under bright-field illumination (Zeiss, Germany and Nikon Eclipse E1000 

microscope; Nikon, Auckland, New Zealand).  Autoradiographically labeled neurons were 

identified by a focal concentration of silver grains in the emulsion layer.  For quantitative 

evaluation, the number of FG or [3H]-glycine positive neurons was counted in the LSO and SPN 

on both sides of the brainstem.  The difference in the percentage of ipsilateral and contralateral 

neurons was compared statistically using Student’s t test, p = 0.05.   

-----Insert Table 1 About Here----- 

 

RESULTS 

-----Insert Figure 1 About Here----- 
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In all 8 cases with IC ablation, aspiration removed the greater part of the right IC 

(central, external and pericentral nuclei and commissure of the IC) without any damage to the 

contralateral IC.  In some cases there was partial damage to adjacent areas such as the central 

gray and caudal part of the superior colliculus (SC).  The ablated area (Fig.1 A) and typical 

injection sites of FG (B) and [3H]-glycine (C) for tracers are shown in Figure 1.  FG injections 

affected a major part of the IC including the pericentral and external nuclei and the rostral extent 

of the central nucleus but did not spread to either the dorsal nucleus of lateral lemniscus 

(DNLL) or any other tegmental area (Fig.1 B).  Injections of [3H]-glycine were always placed 

in the central nucleus of the IC and affected a major part of the IC.  Tritiated tracer diffused 

ventrally along the path of fibers projecting from the lateral lemniscus and into a portion of the 

ipsilateral DNLL (Fig.1 C).  In no case did either tracer spread to the other side of IC, as the 

right IC was totally destroyed by aspiration.   

-----Insert Figure 2 About Here----- 

LSO and SPN are easily identified as relatively simple structures in both normal and 

IC lesioned animals.  Following injection of [3H]-glycine into the undamaged left IC, 

autoradiographically labeled neurons were found in the LSO, SPN and the ventral nucleus of 

lateral lemniscus (VNLL) on the same side (left) of the brain (Fig.2).  These neurons were not 

likely labeled by diffusion of the tritiated tracer, as neurons in neighboring nuclei did not 

express the tritiated label.  The means and standard errors based on cell counts of [3H]-glycine 

labeled neurons were 155.5±35.5 (control) and 170±24.9 (IC lesion) in the ipsilateral LSO 

and 118±20.5 (control) and 137±14.2 (IC lesion) in the ipsilateral SPN (Table 2).  No 

labeled neurons were observed in the contralateral right LSO or SPN (Fig.3 A, C) in either 

normal or experimental animals (Table 2).  The distribution of [3H]-glycine-labeled neurons in 

the brainstem auditory nuclei was similar to that seen in normal animals.  Thus, in our 

[3H]-glycine experiments, we found no evidence of aberrant projections from the SOC 

(including LSO and SPN) to the undamaged left IC.  
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-----Insert Figure 3 About Here----- 

-----Insert Table 2 About Here----- 

Brainstem auditory neurons retrogradely labeled with FG were clearly recognized by 

the appearance of fluorescence in the perinuclear cytoplasm and proximal dendrites.  When FG 

injections were made into the undamaged left IC in cases with unilateral ablation of the right IC 

during early development, many neurons in the brainstem auditory nuclei were retrogradely 

labeled with FG.  The pattern of distribution of FG-labeled neurons was almost the same as the 

normal pattern, except in the right (IC-lesioned side) MSO.  Neurons labeled with FG were 

found in the DNLL and LSO on both sides.  Figure 3 shows these nuclei on the right side, 

contralateral to the injection.  In addition to the numerous labeled neurons in the right LSO, 

some FG-labeled neurons were found in the contralateral right MSO (Fig. 3D, Table 2).  As the 

ascending MSO-IC projection is predominantly ipsilateral in normal rats, the labeling of 

contralateral MSO neurons in rats with early lesions implies the presence of aberrant crossed 

projections.  The ratios of FG labeled neurons in the ipsilateral to contralateral MSO were 

97.8:2.1 in the control and 88.6:11.4 in the experimental animals.  This result confirms a 

previous report by Okoyama et al. (1995b).  Abnormally labeled neurons in the right MSO 

were small in number, but the aberrant crossed projections from the MSO to the undamaged IC 

were observed in all cases with neonatal (P3) IC ablation.  In our FG experiments, the presence 

of such abnormal labeling was seen only in the MSO ipsilateral to the ablation and remained 

unchanged regardless of the survival period after ablation.  The labeling in both LSO and SPN 

(bilateral and ipsilateral to the injection respectively) was identical to that found in normal cases.  

The means and standard errors based on cell counts of FG labeled neurons in the LSO were 602

±26.2 (ipsilateral) and 547±36.7 (contralateral) in the control animals and 629±27.1 

(ipsilateral) and 538±19.2 (contralateral) in the neonatal IC lesioned animals.  The ratios of 

FG labeled neurons in the ipsilateral to contralateral LSO were 52.4:47.6 in the control and 

53.9:46.1 in the experimental animals.  The ipsi-contra ratios of FG neurons in the LSO and 
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SPN were not significantly different for normal and IC lesion cases.  No aberrant projections 

were detected in either LSO or SPN using retrograde FG tract-tracing methods.   

 

DISCUSSION  

The present study investigated anatomical plasticity of projections, including the 

glycinergic pathways, from lower brainstem structures to the auditory midbrain following 

unilateral destruction of the IC during early development (P3).  The autoradiographic study 

and quantitative data from cell counts of FG neurons did not show any evidence of aberrant 

crossed projections from the LSO or the SPN to the contralateral undamaged IC.  In previously 

published studies, it has been shown that the neurons in each LSO project about equally to the 

ipsilateral and contralateral IC in the cat (Brunso-Bechtold et al., 1981; Glendenning and 

Masterton, 1983) or ferret  (Henkel and Brunso-Bechtold, 1993; Moore, 1988; Moore et al., 

1995).  Our data in the normal rat also showed equal proportions of neurons in the ipsilateral 

and contralateral LSO and this ipsi-contra ratio did not change following IC ablation on P3.  

The ipsi-contra ratio of FG labeled neurons in the SPN was not significantly different for 

normal cases and IC lesion cases.  These results are consistent with the finding of our 

autoradiographic study and provide evidence that the neurons in LSO and SPN do not form 

aberrant projections to the IC.  In contrast, our FG retrograde labeling confirmed the results of 

previous studies showing aberrant crossed projections from the MSO to the undamaged IC 

following IC ablation during development, a projection never seen in normal rats (Okoyama et 

al., 1995a; Okoyama et al., 1995b).  Since the normal projection from MSO to IC is 

predominantly ipsilateral in adult rats, as in many other mammals, aberrant axons of spared 

MSO neurons must have reached the contralateral IC during the course of development.  

 These results show a fundamental difference in plasticity between the LSO-IC and 

SPN-IC projections on the one hand and the MSO-IC projection on the other. We used 

[3H]-glycine as a neurotransmitter-specific retrograde label to investigate possible changes in 
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glycinergic projections to the remaining IC after unilateral IC ablation during early development.  

The normal glycinergic projections from the LSO and SPN to the IC are predominantly 

ipsilateral in rodents (Saint Marie and Baker, 1990) and cats (Saint Marie et al., 1989).  

Glycinergic neurons are common in the rodent CN, SOC and VNLL (Aoki et al., 1988; 

Wenthold et al., 1987).  Glycine and GABA are generally accepted as important inhibitory 

neurotransmitters in the central auditory system.  Part of these glycinergic and GABAergic 

neurons project to the central nucleus of the IC and play a significant role in neural inhibition in 

the IC (Faingold et al., 1989; Loftus et al., 2004).  Thus, the ascending projections from 

glycinergic neurons in LSO, SPN and VNLL constitute a major inhibitory input to the ipsilateral 

IC.   

Our results demonstrate that the pattern of glycinergic projections to the IC in rats 

with unilateral IC ablation during development resembles that of normal projections in rats and 

other rodents including chinchilla and guinea pig (Saint Marie and Baker, 1990).  The 

glycinergic projections to the undamaged IC, including projections from the LSO and the SPN, 

are unchanged, whereas part of the projection from the MSO forms an aberrant crossed pathway 

to the undamaged IC.  Although the time course of postnatal development of glycinergic 

afferent projections to the IC in rat pups has not been studied in detail, connections to the IC 

from the CN, SOC and the lateral lemniscus are partially present at birth.  The auditory system, 

compared with other sensory systems, develops relatively late in rats and other mammals 

(Friauf, 1993; Friauf, 1994; Friauf and Kandler, 1990; Parks and Rubel, 1978).  Projections 

from the MSO to the IC are established gradually over a prolonged period after birth (Friauf, 

1993; Okoyama et al., 1995b).  Thus, MSO neurons might have the potential to produce 

exuberant projections and form new connections following axotomy probably due to growth of 

axons that were undamaged by the lesion.  In contrast, glycinergic LSO-IC or SPN-IC 

projections might be relatively well established at P3 with no late-developing neurons that could 

promote aberrant crossed projections after IC ablation during development. 
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The difference in plasticity between LSO-IC and MSO-IC connections might be 

related to evolutionary differences in these two projections.  The projection from the MSO to 

the IC is largely or entirely ipsilateral in many mammals, including cat, rat, gerbil, bat and ferret 

(Adams, 1979; Coleman and Clerici, 1987; Glendenning and Masterton, 1983; Moore, 1988; 

Nordeen et al., 1983; Okoyama et al., 1995b; Zook and Casseday, 1982).  On the other hand, in 

some primitive species such as the mole (Mogera), opossum (Didelphis) and northern native cat 

(Dasyurus), the MSO has been shown to project bilaterally to the IC (Aitkin et al., 1986; Kudo 

et al., 1990a; Kudo et al., 1990b; Kudo et al., 1988; Willard and Martin, 1983; Willard and 

Martin, 1984).  Double-labeling studies in the mole (Kudo et al., 1990a) and opossum (Willard 

and Martin, 1984) have demonstrated that many MSO neurons are double-labeled with different 

tracers injected separately into left and right IC, indicating that these double-labeled neurons 

project bilaterally via axon collaterals.  As input connections from the MSO to the IC are still 

immature at P3 in the rat (Friauf and Kandler, 1990), exuberant bilateral projections occurring 

after IC ablation in the immature developing rat might reflect the expression of a more primitive 

mammalian condition.  Our results suggest that projections from the MSO to the IC may have 

the latent ability to create aberrant crossed projections during development.  Conversely, the 

pattern of LSO-IC or SPN-IC projections in primitive species might be the same in all mammals 

including the most primitive species.  The possibility of such evolutionary differences between 

MSO-IC and LSO-IC projections might reflect differences in gene expression that could 

account for the differences in plasticity after developmental IC ablation in rats.   

The inferior colliculus receives massive auditory projections from each of the various 

brainstem structures that play a role in binaural processing and sound localization.  In adult 

cats and ferrets, unilateral destruction of the inferior colliculus severely disrupts sound 

localization with the effects most apparent in the spatial field contralateral to the side of the 

lesion (Jenkins and Masterton, 1982; Kelly and Kavanagh, 1994).  Comparable data are not 

available for adult rats, but one might expect severe deficits after unilateral IC lesions 
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considering the deficits in sound localization produced by unilateral damage of binaural 

structures with direct projections to the IC, viz., the superior olivary complex and the dorsal 

nucleus of the lateral lemniscus (Ito et al., 1996; Kelly et al., 1996; van Adel and Kelly, 1998).  

It is not yet known, however, whether early unilateral IC lesions would produce any long-lasting 

sound localization deficits equivalent to those produced after adult lesions or whether the early 

lesions would be accompanied by functional recovery or compensation associated with the 

reorganization of central projections.  In the present study, re-routing after early unilateral IC 

lesions occurred for the MSO-IC projection, but not for the LSO-IC projection. It is generally 

accepted that the MSO is especially important for low frequency sound localization, and that the 

LSO contributes primarily to high frequency sound localization.  The animals with early 

unilateral IC lesions, therefore, might be expected to show selective effects related to low 

frequency sound localization.  Further investigations of the behavioral effects of destroying the 

IC in adults and infants are needed to determine the functional consequences of the re-routing of 

afferent projections from the lower brainstem to auditory midbrain structures after early lesions.  

 

CONCLUSION 

1) Following injection of [3H]-glycine into the undamaged IC, autoradiographically labeled 

neurons were found in the ipsilateral VNLL, LSO and SPN.  No [3H]-glycine-labeled neurons 

were observed in the contralateral LSO or SPN (on the side of the IC ablation) despite heavy 

retrograde labeling with FG in bilateral LSO and ipsilateral SPN.  Distribution of 

[3H]-glycine-labeled neurons resembled that seen in normal animals.  No aberrant projections 

from brainstem auditory nuclei to the undamaged left IC were observed, including ipsilateral 

glycinergic projections from the right LSO and SPN.   

2) Following injection of FG into the undamaged IC, an aberrant crossed projection from the 

MSO to the undamaged IC was consistently observed in all cases with early (P3) lesions of the 

IC.  Our results confirm the results of previous studies and further demonstrate that the 
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presence of such an aberrant projection is seen only in the MSO-IC connection.  Our data 

indicate that aberrant connections exist in the MSO-IC, but not in the LSO-IC or SPN-IC 

projection after unilateral IC ablation during early development in rats.   

 

FIGURE LEGENDS 

Table 1: Experimental procedure for ablation and retrograde tracing studies 

 

Table 2: Means and standard errors based on cell counts of labeled neurons in LSO and SPN for 

rats with early unilateral IC lesions and adult controls.  Data are shown separately for 

structures located ipsilateral and contralateral to the injection of either [3H]-glycine or 

FG into the undamaged or left IC. 

 

Figure 1: The placement and extent of the IC lesion (Nissl stain, shown in A) and typical 

injection sites of FG (B) and [3H]-glycine (C) for tracers.  Schematic line drawings of 

frontal sections of the brainstem to show injection sites of tracers (D).  The FG 

injections affected a major part of the IC, including the central nucleus, the pericentral 

and external nuclei and the rostral extention of the central nucleus.  There was no 

spread of the FG injection to either DNLL or any other tegmental area.  The 

[3H]-glycine injections were generally larger than the FG injections. 

 

Figure 2: Photomicrographs of frontal sections through the left VNLL (A-C), SOC (D) and LSO 

(E) showing FG-labeled neurons (A) and neurons autoradiographically labeled with 

[3H]-glycine (B-E) following injections of FG and [3H]-glycine into the contralateral 

(left) IC after ablation of the right IC on P3.   

 

Figure 3: Photomicrographs of frontal sections through the right DNLL (A, B) and SOC (C, D) 
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showing FG-labeled neurons (B, D) and neurons autoradiographically labeled with 

[3H]-glycine in corresponding sections (A, C) following injections of FG and 

[3H]-glycine in the contralateral (left) IC after ablation of the right IC on P3.  Some 

aberrantly projecting neurons labeled with FG are seen in the right MSO.  Calibration 

bars, 120 µm. 
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