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ABSTRACT 

Objective.  Although a number of reports have documented a significantly increased 

incidence of HLA-DR15 in aplastic anemia (AA), the exact role of HLA-DR15 in the 

immune mechanisms of AA remains unclear.  We herein clarify the difference 

between DRB1*1501 and DRB1*1502, the 2 DRB1 alleles which determine the 

presentation of HLA-DR15, in the pathophysiology of AA.  Materials and Methods.  

We investigated the relationships of the patients’ HLA-DRB1 allele with both the 

presence of a small population of CD55-CD59- (PNH-type) blood cells and the 

response to antithymocyte globulin (ATG) plus cyclosporine (CsA) therapy in 140 

Japanese AA patients.   Results.  Of the 30 different DRB1 alleles, only DRB1*1501 

(33.6% vs. 12.8%, Pc<0.01) and DRB1*1502 (43.6% vs. 24.4%, Pc<0.01) displayed 

significantly higher frequencies among the AA patients than among a control.  AA 

patients possessing HLA-DR15 tended to be old, and especially, the frequency of 

DRB1*1502 in patients ≥40 years old (52.4%) was markedly higher than that in those 

<40 years old (16.2%, Pc<0.01).  Only DRB1*1501 was significantly associated with 

the presence of a small population of PNH-type cells and it also showed a good 

response to ATG plus CsA therapy in a univariate analysis.  A multivariate analysis 

showed only the presence of a small population of PNH-type cells to be a significant 

factor associated with a good response to the immunosuppressive therapy (P<0.01).   

Conclusion.  Although both DRB1*1501 and DRB1*1502 contribute to the 

development of AA, the methods of contribution differ between the two alleles. 
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INTRODUCTION 

Aplastic anemia (AA) is a syndrome characterized by pancytopenia and bone marrow 

hypoplasia.  Although the etiology remains unclear, the immune destruction of 

hematopoietic stem cells has been considered the most important mechanism of bone 

marrow failure in AA [1].  One important finding supporting the role of such 

autoimmune mechanisms in AA is the high incidence of a certain HLA allele in AA 

patients.  A number of reports have documented a significantly increased incidence of 

HLA-DR2 or the split antigen HLA-DR15 in AA [2-5].  We previously demonstrated 

a strong association between DRB1*1501 and a susceptibility to AA, in which the 

hematopoietic function improves with the administration of cyclosporin A (CsA) [6].  

Some reports have also demonstrated that HLA-DR15 or DRB1*1501 can predict the 

response to immunosuppressive therapy (IST) in patients with AA and 

myelodysplastic syndrome (MDS) [7-9], while others have failed to identify HLA-

DR15 as a predictor for the response to ATG therapy [3,10,11].   In our previous 

study, AA patients carrying DRB1*1502, another major allele corresponding to HLA-

DR15 in Japanese, did not show a better response to CsA than those without HLA-

DR15 [6].  The exact role of HLA-DR15 in the immune mechanisms of AA thus 

remains unclear, probably due to both the low number of patients that have been 

studied for DRB1 alleles and the general heterogeneity in the pathogenesis of AA. 

Another interesting aspect of HLA-DR15 is the association with the expansion of 

paroxysmal nocturnal hemoglobinuria (PNH) clones.  Several studies have revealed 
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the frequency of HLA-DR15 to be significantly higher in patients with AA and MDS 

possessing PNH-type blood cells and in florid PNH than in normal controls [10,12], 

however, the relationship between DRB1 alleles corresponding to DR15 and 

increased PNH-type cells in AA has not yet been studied in detail.  The close 

relationship between HLA-DR15 and the expansion of PNH clones suggests that the 

T-cell responses against certain antigen presented by HLA-DR15 or other HLA-class 

II alleles in linkage disequilibrium with DR15 in hematopoietic stem cells may cause 

bone marrow failure, thus allowing PNH-type stem cells to survive.  

We previous demonstrated the frequency of HLA-DR15 to markedly increase in 

patients with MDS-refractory anemia (RA) and a small population of PNH-type cells 

(more than 0.003% for granulocyte, more than 0.005% for RBCs), as demonstrated by 

sensitive flow cytometry [13].  In that study, RA patients possessing a small 

population of PNH-type cells displayed favorable responses to CsA.  An investigation 

of a large number of AA patients treated with IST using the same methods to detect 

small populations of PNH-type cells would thus clarify the role of DRB1 alleles 

corresponding to HLA-DR15 and PNH-type cells in the immune mechanisms of AA 

and their mutual relationships.  To test this hypothesis, we investigated the 

relationship between the DRB1 allele in such patients and both the presence of a small 

population of PNH-type cells and the response to ATG plus CsA therapy in 140 

Japanese AA patients.   
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MATERIALS AND METHODS 

Patients 

Table 1 summarizes the patient characteristics.  The 140 Japanese AA patients were 

diagnosed at Kanazawa University Hospital, hospitals which participate in a 

cooperative study led by the Intractable Disease Study Group of Japan and other 

referring institutions from April 1999 through November 2005.  The study subject 

included 77 patients who were tested for any correlation between the presence of a 

minor population in PNH-type cells and the response to IST in our previous study 

[14].  The severity of AA was classified according to the criteria proposed by Camitta 

et al [15,16].  All participants provided written, informed consent to all procedures 

associated with the study, which was approved by the Ethical Committee at our 

institution (study number 46).  This study also conforms to the recently revised tenets 

of the Helsinki protocol. 

 

Detection of PNH-type cells 

We performed two-color flowcytometry of the granulocytes and RBCs according to 

our previously described method  [14,17,18].  First, 3-5 mL of heparinized blood was 

drawn from each patient.  To detect the PNH-type granulocytes, phycoerythrin (PE)-

labeled anti-CD11b monoclonal antibodies (MoAbs; Becton Dickinson, Mountain 

View, CA), fluorescein-isothiocyanate (FITC)-labeled anti-CD55 MoAbs (clone IA10, 

mouse IgG2a; Pharmingen, San Diego, CA), and FITC-labeled anti-CD59 MoAbs 
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(clone p282, mouse IgG2a; Pharmingen) were used in combination with isotype-

matched control MoAbs, as previously described.  To detect the PNH-type RBCs, PE-

labeled anti-glycophorin A MoAbs (clone JC159, DAKO, Glostrup, Denmark) were 

used instead of anti-CD11b MoAbs.  Fresh blood was diluted to 3% using phosphate-

buffered saline (PBS), and 50 mL of diluted blood was incubated with 4 mL of PE-

labeled anti-glycophorin A MoAbs, FITC-labeled anti-CD55 and anti-CD59 MoAbs 

on ice for 25 minutes.  A total of at least 1 ×105 CD11b+ granulocytes and 

glycophorin A+ RBCs within each corresponding gate were analyzed using FACScan 

flow cytometry (Becton Dickinson).  In order to avoid any false positive results, we 

excluded CD11bdim and glycophorin Adim cells from the analyses using careful gating 

because these cells include damaged cells those are often mistakenly judged to be 

PNH-type cells due to their poor binding to anti-CD55 and anti-CD59 MoAbs.  This 

flow cytometry method failed to detect 0.003% or more CD55-CD59-CD11b+ 

granulocytes or 0.005% or more CD55-CD59-glycophorin-A+ RBCs in any of 183 

healthy individuals.  We therefore defined the presence of more than 0.003% CD55-

CD59-CD11b+ granulocytes CD55-CD59-glycophorin-A+ RBCs to be abnormal 

[14,18]. 

 

Determination of DRB1 alleles 

DRB1 alleles of 140 AA patients and 491 healthy Japanese randomly selected from 

general population [19] were determined using polymerase chain reactions with 
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sequence-specific primers (PCR-SSP) (Micro SSP HLA DNA typing trays; One 

Lambda, Canoga Park, CA).  Genomic DNA was prepared from blood samples using 

a DNA extraction kit (Generation capture column kit; Gentra, Minneapolis, MN). 

  

ATG plus CsA therapy and response criteria 

Seventy-seven of 140 patients (55.0%) were treated with antithymocyte globulin 

(ATG, Lymphoglobuline, Aventis Behring, King of Prussia, PA, 15 mg/kg/day, 5 

days) and cyclosporin (CsA, Novartis, Basel, Switzerland, 6 mg/kg/day) within 1 year 

of diagnosis.  The dose of CsA was adjusted to maintain trough levels at between 150 

and 250 ng/mL and the appropriate dose was administered for at least 6 months.  

Granulocyte colony-stimulating factor (G-CSF, filgrastim, 300 μg/m2 or lenograstim, 

5 μg/kg) was administered to some patients.  The response to ATG plus CsA therapy 

was evaluated according to the response criteria described by Camitta [20].  A 

complete response (CR) was defined as hemoglobin normal for age, neutrophil count 

more than 1.5 x 109/L, and platelet count more than 150 x 109/L.  A partial response 

(PR) was defined as transfusion independent and no longer meeting the criteria for 

severe disease in patients with severe AA, and it was defined as transfusion 

independence (if previously dependent) or doubling or the normalization of at least 

one cell line or an increase in the baseline hemoglobin of more than 30 g/L (if initially 

less than 60 g/L), a neutrophil count of more than 0.5 x 109/L (if initially less than 0.5 
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x 109/L), and a platelet count of more than 10 x 109/L (if initially <20 x 109/L) in 

patients with moderate AA. 

 

Statistical analysis 

The allele frequency defined as the proportion of patients with at least one copy of a 

specific gene was determined by direct counting.  The χ2 test compared the allele 

frequencies of HLA-DRB1 between the patient groups and a Japanese control 

population, composed of 491 healthy unrelated individuals selected at random from 

the general population [19].   The corrected value of P (Pc) was calculated by 

multiplying P with the number of alleles tested (n=30).  The χ2 test, Fisher exact test 

and logistic procedures [21] analyzed associations between the prevalence of 

increased PNH-type cells and genetic factors, and between individual pretreatment 

variables and the response to ATG plus CsA therapy.  The Kaplan-Meier methods 

graphically compared the cumulative incidence of the response to ATG and CsA 

therapy and the time to event, while the log-rank test analyzed differences between 

the patients who possess HLA-DRB1*1501, DRB1*1502 and DRB1 alleles other 

than these two alleles.  All statistical analyses were performed using the JMP version 

5.0.1J software program (SAS Institute, Cary, NC). 

 

RESULTS 
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Frequencies of DRB1 alleles in AA patients 

Table 2 summarizes the frequencies for the 30 different DRB1 alleles identified in the 

140 AA patients and 491 controls.  Only the frequencies of DRB1*1501 (33.6% vs. 

12.8%, Pc<0.01, Odds ratio=3.43) and DRB1*1502 (43.6% vs. 24.4%, Pc<0.01, Odds 

ratio =2.39) were significantly higher among the AA patients than among controls.  

Figure 1 illustrates the numbers of patients with DRB1*1501 and/or DRB1*1502 and 

the patients without either of the two alleles in the different age groups.  Two peaks in 

the age distribution of the patients were noted, namely, at 20 to 29-years-old and at 60 

to 79-years-old.  After dividing the patients into young (<40-years-old, n=37) and old 

(≥40-years-old, n=103) groups, 82.5% of patients in the older group carried at least 

one of DRB1*1501 or DRB1*1502.  The frequency of DRB1*1502 in the older group 

(54 of 103 patients, 52.4%) was significantly higher (Pc=0.03) than that in the 

younger group (6 of 37 patients, 16.2%).  No significant difference in the frequency 

of DRB1*1501 was identified between the two groups (36 of 103 patients, 35.0% vs. 

11 of 37 patients, 29.7%, P=0.56).   

 

Prevalence of patients possessing PNH-type cells 

A wide range of PNH-type granulocytes (0.005% to 23.0%; median, 0.153%) and 

PNH-type RBCs (0.007% to 6.57%; median, 0.094%) were detected in 92 of 140 

(65.7%) AA  patients.  When the patients were divided into four groups according to 

the presence of DRB1*1501 and DRB1*1502, the proportions of PNH+ patients were 
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66.7% (4 of 6 patients) in the DRB1*1501+1502+ patients, 85.3% (35 of 41 patients) 

in DRB1*1501+1502-, 59.3% (32 of 54 patients) in DRB1*1501-1502+ and 53.8% (21 

of 39 patients) in DRB1*1501-1502-. 

 

Allele frequencies in the PNH+ and PNH- AA patients 

We next divided the 140 AA patients for whom both DRB1 alleles were determined 

into PNH+ patients (n=92) and patients without a small population of PNH-type cells 

(PNH- patients, n=48), and then compared the frequency of each DRB1 allele among 

the three different groups including the PNH+ patients, PNH- patients and controls 

(Fig. 2).  The frequency of DRB1*1501 compared to the controls was significantly 

higher in only the PNH+ patients (39 of 92 patients, 42.4%, Pc<0.01), not in PNH- 

patients (8 of 48 patients, 16.7%).  On the other hand, the frequency of DRB1*1502 

in comparison to the controls was higher in both the PNH+ patients (37 of 92 patients, 

40.2%, Pc =0.05) and PNH- patients (24 of 48 patients, 50.0%).  The frequencies of 

other DRB1 alleles, including DRB1*0405, were similar among PNH+ patients, PNH- 

patients, and controls. 

 

Correlation of HLA-DR15 alleles with the prevalence of increased PNH-type 

cells in AA patients 

We analyzed the associations between the prevalence of PNH-type cells and genetic 

factors, such as age, sex, severity, chromosomal abnormality and HLA-DRB1 allele 
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to determine which factors might contribute to a slight increase in PNH-type cells in 

our AA patients.   The presence of DRB1*1501 (P<0.01, Odds ratio=3.68) was the 

only significant factor associated with an increase in the proportion of PNH-type cells 

based on a univariate analysis, and a multivariate analysis confirmed this result 

(P<0.01).  The presence of DRB1*1502 was not considered to be a contributing factor.   

 

Favorable factors affecting response to ATG plus CsA therapy 

Fifty-five of 77 patients (71.4%) improved with ATG plus CsA therapy.  The factors 

favorably affecting the response to IST in the AA patients were examined under a 

univariate and multivariate analysis (Table 3).  Only the presence of PNH-type cells 

was significantly associated with the response to IST based on a multivariate analysis.  

After taking into account the kinetics of the response to treatment, we made Kaplan-

Meier curves to determine the probability of response to IST in 3 different groups of 

patients as defined by DRB1 alleles (Fig. 3).  There were significant differences in the 

probability of the response to IST between the DRB1*1501+1502- patients and either 

the DRB1*1501-1502+ patients (P<0.01) or the DR15- patients (P=0.01) (Fig. 3A).  

However, these differences in the probability of response IST were no longer 

observed when the probability of response was compared in either the PNH+ patients 

or the PNH- patients (Fig. 3B, C).  
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DISCUSSION 

This study demonstrated for the first time that, in addition to DRB1*1501, which is a 

major DRB1 allele determining the presentation of HLA-DR15 in Caucasian [2,3] and 

Chinese populations [4], DRB1*1502 is frequently present in Japanese AA patients.  

This finding, based on a large number of patients, suggests that the DR15 molecule 

plays a definite role in the development of a subset of AA.  Another novel finding in 

the present study was that the significantly increased frequency of HLA-DR15 was 

only observed in old AA patients. The frequency of HLA-DR15 reached up to 80% in 

AA patients ≥40-years old.  The apparent age-dependent differences in HLA-DR15 

frequency suggest that the pathophysiology of AA in older patients may therefore 

differ from that in younger patients.  Several studies of Japanese pediatric patients 

have revealed a relatively high incidence of MDS secondary to AA compared to adult 

patients [22-24].   Given the lower frequency of HLA-DR15, pediatric AA may thus 

display a higher proportion of bone marrow failure caused by non-immune 

mechanisms than adult AA. 

In contrast to the findings of previous reports, DRB1*1501 appeared to confer a 

better chance of response to regimens including ATG than other DRB1 alleles, 

including DRB1*1502.  We previously demonstrated that DRB1*1501 predicts the 

response to CsA, but not to ATG [11].  In the previous study, only 6 of 59 ATG-

treated patients received CsA.  The combined use of CsA and the larger number of 

ATG-treated patients in the present study probably accounts for the different findings 
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regarding the role of DRB1*1501 in predicting the response to ATG therapy.  

DRB1*1501 may affect the response of AA to ATG therapy only when CsA is 

administered in combination with ATG. 

Several previous studies failed to confirm the role of HLA-DR15 in predicting 

the response to ATG [3,10].  Most previous studies analyzed DRB1 alleles using low-

resolution methods that are unable to sufficiently distinguish DRB1*1502 from 

DRB1*1501.  DRB1*1502 accounts for 3-7% of the DRB1 alleles corresponding to 

DR15 even in Caucasians [25], and this frequency may even be higher in AA patients, 

particularly among AA patients ≥40-years-old.  As a result, some patients with DR15 

who did not respond to ATG in previous studies may have been DRB1*1502+, rather 

than DRB1*1501+.  The results of this study indicate the importance of accurately 

determining the DRB1 alleles using high-resolution methods to clarify the role of 

HLA-DR15 in predicting a response to IST. 

A higher frequency of HLA-DR15 among PNH+ patients in comparison to PNH- 

patients has been reported by Maciejewsky et al. in 2001 [26].  The present study 

confirmed this finding using a different flow cytometry assay that distinguished PNH+ 

patients from PNH- patients using lower levels of glycosylphosphatidyl inositol-

anchored protein-deficient cells than the assay used in the previous study.  Our 

methods also identified a significant difference between DRB1*1501 and 

DRB1*1502 in the minimal expansion of PNH clones.  The frequencies of both 

alleles increased in the PNH+ patients in comparison to the normal controls, thus 
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supporting the preliminary results of our study of 23 patients with refractory anemia 

[13].  However, only DRB1*1501 represented a genetic factor significantly associated 

with an increase in the proportion of PNH-type cells in AA patients in the present 

study because the frequency of DRB1*1502 was high in both PNH+ and PNH- AA 

patients, thus indicating that the minimal expansion of PNH clones is not affected by 

DRB1*1502.  Together with the difference in the response rate to IST between 

DRB1*1501+ and DRB1*1502+ AA patients, all these findings suggest that 

DRB1*1501 and DRB1*1502 therefore play a different role in the pathogenesis of 

AA.   

In AA patients carrying DRB1*1501, the presentation of autoantigen by this 

molecule may readily induce a cell-mediated attack against hematopoietic stem cells 

that may be associated with the minimal expansion of a PNH clones.  Previous studies 

have demonstrated that the presence of a CD4+ T-cell attack against hematopoietic 

stem cells allows the survival of PNH-type stem cells [27,28].  On the other hand, 

polymorphic gene alleles of myelosuppressive cytokines, in linkage disequilibrium 

with DRB1*1502 may predispose individuals with HLA-DRB1*1502 towards the 

development of AA.  In keeping with this hypothesis, a recent study on diabetes 

mellitus patients revealed that a haplotype of TNFa12-DRB1*1502 was therefore 

more frequent in patients likely to develop insulin-dependency than in those who do 

not develop insulin-dependency [29].  Several reports have demonstrated TNFa12 to 

be associated with a higher secretion of TNF-alpha [30].   
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HLA-DR15 molecules derived from DRB1*1502 differ from those derived from 

DRB1*1501 in only one amino acid at position 86 (valine for DRB1*1502 and 

glycine for DRB1*1501) of the beta-chain [31].  This structural similarity indicates 

that antigenic epitopes presented by these molecules are common [32,33].  For most 

autoimmune diseases where DRB1*1501 is associated with susceptibility in patients 

from Western countries, DRB1*1502 is expected to play the same role as 

DRB1*1501 in Japanese patients.  However, in Japanese patients with multiple 

sclerosis, the frequency of DRB1*1502 is not increased in comparison to that in the 

controls [34,35].  As a result, DRB1*1502 appears to contribute to the development of 

some autoimmune diseases via different mechanisms to DRB1*1501.  In AA patients 

carrying DRB1*1501, certain antigens of which presentation requires position 86 of 

the beta-chain to be glycine may likely induce an immune system attack to 

hematopoietic progenitor cells.  It is also possible that DRB5*0101 and DRB5*0102, 

which are in complete linkage disequilibrium with DRB1*1501 and DRB1*1502, 

respectively, in the Japanese population [19] may be responsible for the difference 

because DRB5*0101 differs from DRB5*0102 by 3 amino acids in the antigen-

peptide binding domain.   

Our data may be relevant to the management of AA.  Although the incidence of 

HLA-DR15 is significantly higher in AA patients than in the normal controls, only 

DRB1*1501 was found to be a predictive marker for a good response to ATG plus 

CsA therapy.  AA patients with DRB1*1502 who do not show an increased 
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proportion of PNH-type cells may not benefit from IST.  HLA-DR typing has been 

considered to be useful for predicting a good response to IST in AA patients[7,8], but 

this costly test may not be necessary in the circumstance where the highly sensitive 

flow cytometry is available because the presence of a small population of PNH-type 

cells is the only significant factor that affects the response to ATG plus CsA therapy 

based on the findings of our multivariate analysis.  Prospective studies are called for 

to confirm these findings. 
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FIGURE LEGENDS  

 

Figure 1: Age distribution of AA patients with or without HLA-DR15 

 The number of AA patients with or without HLA-DR15 in different age 

groups is shown.  DRB1*1501+1502+, patients with both DRB1*1501 and 

DRB1*1502; DRB1*1501+1502-, patients with DRB1*1501 but not DRB1*1502; 

DRB1*1501-1502+, patients with DRB1*1502 but not DRB1*1501; DRB1*1501-

1502-, patients with neither DRB1*1501 nor DRB1*1502.   
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Figure 2.  HLA-DRB1 allele frequencies in PNH+ and PNH- AA patients 

 Frequencies of the three alleles, DRB1*1501, DRB1*1502, and DRB1*0405 

are compared in the PNH+ AA patients, PNH- AA patients, and controls. 
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Figure 3.  Kinetics of response to ATG plus CsA therapy. 

 Kaplan-Meier curves for the response in the different groups of patients based 

on the DRB1 alleles are shown.  DRB1*1501+1502+ patients were not showed in this 

figure because only one patient (he was PNH+) was available for the analysis.  A, All 

patients; B, PNH+ patients; C, PNH- patients.   
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Table 1. Patient characteristics  

Characteristics Number Range 

Total (n) 140 NA 

Age at diagnosis (y) 60 12-92 

Gender: Male/female  65/75 NA 

Severity: Severe/moderate 65/75 NA 

Neutrophil count (x 109/L) 720 0-2226 

Platelet count (x 109/L) 20 2-118 

Reticulocyte count (x 109/L) 28 2-106 

No. of patients with clonal abnormality (n) 11 NA 

NA indicates not applicable.   
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Table 2. Frequencies of HLA-DRB1 alleles in Japanese AA patients and 
controls 

 
AA patients         

(n = 140)  
Controls            
(n = 491) HLA-DRB1 

allele 
 

No of 
patients  (%)*  

No of 
patients  (%)*

Pc value** 

0101  10 7.1  64 13.0 NS 
0301  0 0.0  4 0.8 NS 
0401  2 1.4  17 3.5 NS 
0403  4 2.9  18 3.7 NS 
0404  0 0.0  2 0.4 NS 
0405  35 25.0  129 26.3 NS 
0406  5 3.6  32 6.5 NS 
0407  2 1.4  2 0.4 NS 
0409  0 0.0  1 0.2 NS 
0410  1 0.7  17 3.5 NS 
0701  0 0.0  2 0.4 NS 
0801  0 0.0  0 0.0 NS 
0802  6 4.3  36 7.3 NS 
0803  8 5.7  84 17.1 NS 
0901  36 25.7  148 30.1 NS 
1001  2 1.4  2 0.4 NS 
1101  7 5.0  22 4.5 NS 
1201  7 5.0  34 6.9 NS 
1202  2 1.4  12 2.4 NS 
1301  0 0.0  4 0.8 NS 
1302  11 7.9  61 12.4 NS 
1401  2 1.4  21 4.3 NS 
1402  0 0.0  2 0.4 NS 
1403  4 2.9  13 2.6 NS 
1405  4 2.9  18 3.7 NS 
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1406  2 1.4  10 2.0 NS 
1407  0 0.0  1 0.2 NS 
1501  47 33.6  63 12.8 <0.01 
1502  61 43.6  120 24.4 <0.01 
1602  2 1.4  4 0.8 NS 

*Allele frequencies were determined by dividing the number of patients carrying 
one or two specific alleles by the total number of individuals. 

**Corrected P value (Pc) was calculated by multiplying the P value with the 
number of alleles (n=30) tested.   
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Table 3.  Pre-treatment variables associated with a response to ATG plus CsA 

therapy 

P value 
Favorable factors 

univariate*  multivariate**

Gender (male vs. female) 0.32 0.47 

Age (at least 40 y vs. younger) 0.79 0.37 

Severity (severe vs. moderate) 0.61 0.86 

HLA-DRB1*1501 (positive vs. negative) 0.03 0.19 

HLA-DRB1*1502 (positive vs. negative) 0.61 0.46 

PNH-type cells  (positive vs. negative) <0.01 <0.01 

*P value derived from Fisher's exact probability test. 

**P value derived from the Wald c2 test for a logistic regression model. 
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