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    Our previous study has demonstrated that phosphatidylinositol 3-kinase (PI3K) is 

necessary for epidermal growth factor (EGF)-induced cell transformation in mouse 

epidermal JB6 cells.  Akt and the mammalian target of rapamycin (mTOR) are regarded 

as the PI3K downstream effectors.  Therefore, in this study, we investigated the role of 

Akt and mTOR on EGF-induced cell transformation in JB6 cells using rapamycin, a 

specific mTOR inhibitor, and cells expressing dominant negative mutants of Akt1 

(DNM-Akt1).  We found that the treatment of cells with rapamycin inhibited EGF-

induced cell transformation.  Rapamycin only slightly inhibited JB6 cell proliferation at 

72 hr.  Although LY294002, a PI3K inhibitor, attenuated EGF-induced activator protein 

1 (AP-1) activation, the treatment of rapamycin did not change AP-1 activity.  The 

treatment with rapamycin inhibited EGF-induced phosphorylation and activation of 

ribosomal p70 S6 protein kinase (p70 S6K), a mTOR downstream target, but had no 

effect on phosphorylation and activation of Akt.  Rapamycin also had no effect on EGF-

induced phosphorylation of extracellular signal-regulated protein kinases.  We indicated 

that an introduction of DNM-Akt1 into JB6 Cl 41 cells inhibits EGF-induced cell 

transformation without blocking the cell proliferation.  The expression of DNM-Akt1 

also suppressed EGF-induced p70 S6K activation as well as Akt activation.  These results 

indicated an involvement of Akt/mTOR pathway on EGF-induced cell transformation in 

JB6 cells. 

 

 

 

 

 

 

 
 



INTRODUCTION 

    Phosphatidylinositol 3-kinase (PI3K) plays a critical role in many biological effects 

including cell growth, apoptosis, insulin action, cell migration, and integrin function [1-3].  

In addition, an involvement of the PI3K signaling in tumorigenesis has been suggested 

[4,5].  The expression in chicken cells of the oncogene v-p3k, a homolog to the gene 

encoding the catalytic subunit (p110) of PI3K, which was isolated from tumorigenic 

retroviruses, was shown to cause oncogenic transformation [6].  The oncogenic 

transformed phenotype was also observed in mammalian fibroblasts transfected with the 

constitutive active form of p110α [7].  In fact, numerous genetic or epigenetic changes 

lead to increased PI3K signaling in human cancer [8,9].  Mutations in the tumor 

suppressor phosphatase and Tensin homolog gene (PTEN), which antagonizes the PI3K, 

are frequently observed in a number of cancers [4,10].  Our previous studies also have 

demonstrated that the PI3K is necessary for 12-O-tetradecanoylphorbol-13-acetate 

(TPA)- or epidermal growth factor (EGF)-induced cell transformation in mouse 

epidermal JB6 cells [11,12].  In those studies, we found that LY294002 and wortmannin, 

PI3K inhibitors, inhibited tumor promoter-induced cell transformation as well as 

activator protein 1 (AP-1) activation.  Because AP-1 was shown to be one of critical 

factors for the cell transformation in JB6 cell lines [13-15], the effects of PI3K inhibitors 

were suggested to be due to the attenuation of AP-1 activation.  However, the 

investigation of the mechanism of PI3K activation recently has revealed several 

downstream effectors of its function.  The serine/threonine proto-oncogene Akt [also 

known as protein kinase B] was first identified as a cellular homolog of the transforming 

oncogene product v-Akt [16] and it is activated by growth factors, oncogenes, and 



integrins through the PI3K-dependent signaling.  Akt also has been shown to be 

overexpressed in ovarian, prostate, breast and pancreatic cancers, which is associated 

with a poor prognosis and increased tumorigenicity [4,17-19].  Accumulating evidence 

shows that ribosomal p70 S6 protein kinase (p70 S6K) is also a crucial effector of PI3K 

in response to growth factors [20].  Elevated activation of p70 S6K has been indicated in 

PTEN-deficient tumor cells and the activation is attenuated to basal levels by 

reintroduction of PTEN [21].  PI3K and p70 S6K are constitutively activated in small cell 

lung cancer cells and anchorage-independent proliferation in their cells is mediated 

through Akt and p70 S6K-dependent pathway [22].  p70 S6K is also amplified or 

overexpressed in human breast cancer [23,24].  On the other hand, the activation of p70 

S6K is known to require signaling through mammalian target of rapamycin (mTOR, also 

called FRAP) [25].  mTOR is reported to be essential for cell transformation induced by 

oncogenes p3k and akt [26] and to be directly phosphorylated by Akt [27,28].  Therefore, 

the inhibition of cell transformation by the PI3K inhibitors in JB6 cells may also be 

involved in the affects on PI3K downstream targets, including Akt, mTor or p70 S6K, in 

addition to the attenuation of AP-1 activation. 

    Rapamycin is a natural product macrolide that induces G1 growth arrest by interfering 

with the signaling functions of mTor [29,30].  In mammalian cells, rapamycin forms a 

complex with FK-506-binding protein 12 that binds specifically to mTor [30] and inhibits 

mTOR’s ability to phosphorylate target proteins such as p70 S6K and the eukaryotic 

initiation factor 4E binding protein 1 (4E-BP1), which play essential roles in ribosome 

biogenesis and cap-dependent translation, respectively [31-33].  Aoki et al. [26] showed 

that rapamycin inhibits formation of transformed cell foci induced by the expression of 



Akt and P3k, the protein encoding oncogene p3k.  Therefore, in this study, we 

investigated the role of Akt/mTOR pathway on EGF-induced cell transformation in JB6 

cells by using rapamycin and cells expressing dominant negative mutants of Akt1. 

 

MATERIALS AND METHODS 

Materials 

    Eagle's minimal essential medium (MEM), L-glutamine and basal medium eagle 

(BME) were from Life Thechnologies (Rockville, MD); fetal bovine serum (FBS) and 

gentamicin were from BioWhittaker Biosciences (Walkersville, MD); PI3K inhibitors, 

wortmannin and LY29402, and the mTor inhibitor, rapamycin were from Calbiochem 

(La Jolla, CA); the Akt immunoprecipitation kinase assay kit, S6 kinase assay kit and 

dominant negative mutants of Akt1 (DNM-Akt1) were from Upstate Biotechnology Inc. 

(Lake Placid, NY); the Akt antibody and phospho-specific Akt (serine 473), p70 S6K 

antibody and phospho-specific p70 S6K (threonine 389), and PhosphoPlus p44/42 

mitogen activator protein (MAP) kinase antibody kits were from Cell Signaling 

Technology Inc. (Beverly, MA); the anti-Akt1/2 antibody was from Santa Cruz (Santa 

Cruz, CA).  

 

Cell Culture 

    The JB6 mouse epidermal cell line Cl 41 and its stable transfectants, P+1-1 (AP-1 

reporter transfectant) and Cl 41 DNM-Akt1, were grown at 37°C 5% CO2 in MEM 

supplemented with 5% heat-inactivated FBS, 2 mM L-glutamine, and 25 μg/ml 

gentamicin. 



 

Generation of Stable Transfectant 

    The DNM-Akt1 plasmid was transfected in JB6 Cl41 cells by using LipofectAMINE 

(Life Technologies Inc.) following the manufacturer’s instructors.  The stable 

transfectants were obtained by selection for G418 resistance (300 μg/ml) and further 

confirmed by assay of activity. 

 

Anchorage-independent Transformation Assay 

    JB6 Cl 41 cell line and its transfectant, Cl 41 DNM-Akt1, (1x104) were exposed to 

EGF (10 ng/ml) with or without the indicated concentration of rapamycin or LY294002 

in 1 ml 0.33% BME agar containing 10% FBS over 3.5 ml 0.5% BME agar medium 

containing 10% FBS.  The cultures were maintained in a 5% CO2 incubator at 37°C and 

the cell colonies were scored at 14 days after cells were exposed to EGF. 

 

Assay of AP-1 Activity 

    JB6 AP-1 reporter stable P+1-1 cells were seeded in a 96-well plate.  After 24 h 

incubation, the cells were starved by replacing 0.1% FBS/MEM and incubating for 24 h.  

Then, the cells were pretreated with the indicated concentration of rapamycin or 

LY294002 for 1 h and cultured with 10 ng/ml EGF for 24 h.  The cells were extracted 

with lysis buffer and luciferase activity was measured with a luminometer (Monolight 

2010).  Relative AP-1 activity was calculated as described previously [34]. 

 

Cell Proliferation Assay 



Cells were suspended in 5% FBS/MEM at a density of 1x104 cells/ml.  The cell 

suspension (1 ml) were placed in each well of a 24-well plate and incubated for 24 h.  

Then, the indicated concentrations of rapamycin or LY294002 were added and further 

incubated for 48 h in a 5% CO2 incubator at 37°C.  After incubation for the indicated 

periods, cell number was measured under microscope. 

 

Immunoblotting 

Immunoblotting was carried out as described previously [34].  In brief, JB6 Cl 41 

cells were cultured to 80% confluence.  The cells were starved in 0.1 % FBS/MEM for 48 

h at 37°C.  Then media were changed to fresh 0.1% FBS/MEM and cells were incubated 

for another 2-4 h at 37°C.  Before the cells were exposed to EGF, they were either treated 

or not treated with LY294002, wortmannin or rapamycin for 1 h.  Then, EGF (10 ng/ml) 

was added and subsequently incubated for 30 min at 37°C in the presence or absence of 

inhibitors.  The cells were then lysed and immunoblot analysis performed by using the 

antibodies against Akt, p70 S6K and extracellular signal-regulated protein kinases (Erks) 

or the phospho-specific antibodies against their phosphorylated proteins.  Antibody-

bound proteins were detected by fluorescence (ECF Western Blotting Kit, Amersham 

Pharmacia Biotech, Piscataway, NJ) and analyzed using the Storm 840 Scanner 

(Molecular Dynamics, Sunnyvale, CA). 

 

Akt and p70 S6K Immunoprecipitation Kinase Assay 

    Cells were treated with the inhibitors before treatment with EGF (10 ng/ml) and lysates 

were prepared from the cells and the immunoprecipitation was carried out using 20 μl of 



anti-Akt1/2 (Santa Cruz, Santa Cruz, CA) or 3 μg of anti-p70 S6K antibody (Cell 

Signaling).  The enzyme immune complex was washed three times with 0.5 ml of lysis 

buffer, and once with 100 μl of assay dilution buffer (20 mM MOPS, pH 7.2, 25 mM β-

glycerophosphate, pH 7.0, 1 mM sodium orthovanadate, 1 mM DTT).  For the Akt kinase 

assay, the enzyme immune complex was added to 10 μl of assay dilution buffer, 10 μM 

protein kinase A inhibitor peptide, 0.1 mM Akt substrate peptide, and 1 μCi [γ-32P] ATP, 

and, for the p70 S6K assay, it was added to 20 μl of assay dilution buffer, 10 μl of 

inhibitor cocktail, 50 μM S6 kinase substrate peptide, and 1 μCi [γ-32P] ATP.  The 

reaction was incubated for 10 min at 30°C and centrifuged and then 30 μl of the 

supernatant fraction was transferred onto P81 phosphocellulose paper and allowed to 

bind for 30 s.  The P81 papers were washed three times in 0.75% phosphoric acid then 

washed once in acetone and γ-32P incorporation was measured by scintillation counting. 

 

Statistical Analysis 

    Significant differences between samples were determined by both Student’s t test and 

Welch’s t test.  

 

RESULTS AND DISCUSSION 

    We previously demonstrated that PI3K plays a pivotal role on TPA- or EGF-induced 

cell transformation in JB6 cells [11,12].  In those studies, we showed that the PI3K 

inhibitors, LY294002 and wortmannin, inhibited their tumor promoter-induced cell 

transformation as well as AP-1 activation, which is one of critical factors for the cell 

transformation in JB6 cells [13-15].  On the other hand, accumulating evidence has 



suggested that the transforming effect of PI3K relates to the activation of its downstream 

effector kinase, including Akt, mTOR and p70 S6K [4,16-19].  In particular, several 

recent studies have suggested an essential role of mTOR in tumorigenesis mediated by 

PI3K signaling.  Aoki et al. [26] showed that rapamycin, a mTOR inhibitor, effectively 

blocked oncogenic transformation induced by constitutively active PI3K or Akt.  

Treatment of PTEN heterozygous mice with CCI-779, an ester analog of rapamycin, has 

been reported to inhibit development of neoplastic lesions as well as decrease of p70 S6K 

activity [35].  Moreover, Neshat et al. [36] indicated that the increase of S6 kinase 

activity observed in PTEN-deficient human cancer cell lines was highly sensitive to CCI-

779.  Therefore, in this study, we investigated effect of rapamycin on EGF-induced cell 

transformation in JB6 cells.  Consistent with our previous study [12], treatment of cells 

with LY294002, a PI3K inhibitor, inhibited EGF-induced cell transformation (Fig. 1A).  

Treatment with rapamycin also suppressed the cell transformation induced by EGF (Fig. 

1A).  Although LY294002 also attenuated EGF-induced AP-1 activation, treatment of 

rapamycin had no effect on AP-1 activation (Fig. 1B), indicating that the inhibition of 

cell transformation by rapamycin was independent of AP-1 activation.  Several studies 

have demonstrated the impressive antiproliferative effects of rapamycin in different types 

of tumor cells [37].  The antiproliferative actions exhibited by treatment with rapamycin 

may result from inhibition of critical signal transduction pathways that control cell cycle 

progression from G1 to S phase [29].  However, the treatment of cells with rapamycin or 

LY294002 only slightly inhibited cell proliferation at 72 hr (Fig. 2), suggesting that the 

effect of rapamycin and LY294002 on blocking cell transformation is not due to cell 

growth inhibition.   



    In response to growth factors, mTOR is thought to control signal to translation 

initiation machinery via phosphorylation of p70 S6K and 4E-BP1 [31-33].  Activated p70 

S6K phosphorylates the 40S ribosomal protein S6 and stimulates the translation of 

mRNAs with a 5’ terminal oligopolypyrimidine including the protein they encode [38].  

Phosphorylation of 4E-BP1 leads to dissociation of eukaryotic initiation factor (elf) 4E to 

4E-BP1, and the free elf 4E forms the translation initiation complex at the cap of the 

mRNA [32,39].  To confirm whether the concentration of rapamycin that inhibited the 

cell transformation blocks mTOR activity induced by EGF, we examined the effect on 

EGF-induced activation of p70 S6K, a downstream target of mTOR.  As showed in Fig. 3, 

rapamycin inhibited EGF-induced p70 S6K phosphorylation at threonine 389, a 

rapamycin-sensitive site [40], but had no effect on Akt phosphorylation.  Similar results 

were observed on EGF-induced activation of p70 S6K and Akt by the treatment with 

rapamycin (Fig. 4).  We also comfirmed that rapamycin had no effect on EGF-induced 

PI3K activity (data not shown).  In contrast, treatment with the PI3K inhibitors, 

LY294002 and wortmannin, inhibited EGF-induced phosphorylation and activation of 

both p70 S6K and Akt (Figs. 3 and 4).  EGF not only stimulates the PI3K signaling but 

activates mitogen-activated protein (MAP) kinases, such as Erks [41,42].  In addition, 

p70 S6K has been shown to be phosphorylated by MAP kinases [43,44].  However, 

treatment with rapamycin showed no change in EGF-induced Erks phosphorylation (Fig. 

5).  These results suggested that the effect of rapamycin on EGF-induced signaling 

appears to be specific to the mTOR.  Based on the direct phosphorylation of mTOR by 

Akt [27,28] and p70 S6K activation by transfection with constitutively active Akt [45], 

Akt has been indicated to be a candidate as a downstream effector of PI3K in the mTOR-



dependent pathways.  However, the regulation of mTOR by Akt is still controversial, 

because the phosphorylation site of mTOR by Akt has been shown to be not required for 

p70 S6K activation [28].  Thus, the inhibitory effect of rapamycin on EGF-induced cell 

transformation might be through PI3K/Akt-independent pathway.  In contrast, recent 

studies have reported an important role of mTOR in PI3K/Akt function.  Rapamysin or 

CCI-779 treatment of PTEN-deficient cells or activated PI3K- or Akt-expressing cells 

has been reported to block the phosphorylation of p70 S6K or 4E-BP1 [26,35,36].  

Reintroduction of PTEN in PTEN-deficient tumor cells has been shown to correct 

elevated activation of p70 S6K [21].  We indicated that an introduction of DNM-Akt1 

into JB6 Cl 41 cells inhibits EGF-induced cell transformation without blocking the cell 

proliferation (Fig. 6).  The expression of DNM-Akt1 also suppressed EGF-induced p70 

S6K activation as well as Akt activation (Fig. 7).  Therefore, it suggested that Akt/mTOR 

pathway is closely involved in EGF-induced cell transformation in JB6 Cl 41 cells, and 

the inhibitory effect of rapamycin may be due to blocking mTOR.  In this study, we 

demonstrated that rapamycin, a mTOR inhibitor, suppressed EGF-induced cell 

transformation without blocking of AP-1 activation or cell proliferation in mouse JB6 

cells.  The expression of DNM-Akt1 also inhibited cell transformation and p70 S6K 

activation induced by EGF. These indicated that Akt/mTOR pathway is involved in EGF-

induced cell transformation in addition to AP-1 activation.  mTOR is also reported to 

regulate translation of c-Myc, a transcription factor deregulated in a wide variety of 

human cancers, and activates Stat 3, which is activated in many human cancers and 

causes cell transformation [46-49].  The inhibitory effect by rapamycin might result in 

blocking activation of these targets.  Aberrant activation of the PI3K signaling occurs in 



numerous and diverse human cancers, and mTOR and its downstream target, p70 S6K, 

are the critical factors in the PI3K-dependent tumorigenesis.  Therefore, the results from 

this study may provide suggestions in prevention or therapy for tumorigenesis with 

deranged PI3K signaling. 
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FIGURE LEGENDS 

 

Figure 1.  Effects of rapamycin on EGF-induced cell transformation and AP-1 

activation.  A, Aliquots of 104 JB6 Cl 41 cells were treated with EGF (10 ng/ml) with or 

without the indicated concentration of rapamycin or LY294002 in 0.33% BME agar 

containing 10% FBS over 0.5% BME agar medium containing 10% FBS.  Cell colonies 

were scored after 14 days incubation at 37˚C in 5% CO2.  Data are the means ± SD (n=8).  

B, JB6 cell AP-1 reporter stable P+1-1 cells were seeded in a 96-well plate.  After 24 h 

incubation, the cells were starved by replacing 0.1% FBS/MEM for 24 h.  Then, the cells 

were pretreated with the indicated concentration of rapamycin or LY294002 for 1 h and 

cultured with 10 ng/ml EGF for 24 h.  The AP-1 activity was measured with a luciferase 

activity assay as described under ‘‘Material and Methods’’.  The results showed as 

relative AP-1 activity are the means ± SD (n=5-6).  * Significantly different from the 

untreated control at P < 0.01. 

 

Figure 2.  Effect of rapamycin on cell proliferation.  JB6 Cl 41 cells were suspended in 

5% FBS/MEM at a density of 1x104 cells/ml.  The cell suspension (1 ml) were placed in 

each well of a 24-well plate and incubated for 24 h.  Then, the indicated concentrations of 

rapamycin or LY294002 were added and further incubated for 48 h in a 5% CO2 

incubator at 37°C.  After incubation for the indicated periods, cell number was measured 

under microscope.  Data are the means ± SD (n=4). 

 

Figure 3.  Effect of rapamycin on EGF-induced phosphorylation of Akt and p70 S6K.  

JB6 Cl 41 cells (80% confluence) were starved by replacing the medium with 0.1% 

FBS/MEM and culturing for 48 h.  The cells were then pretreated with rapamycin, 

LY294002 or wortmannin for 1 h at the indicated concentration.  The cells were treated 

with EGF (10 ng/ml) and subsequently cultured for 30 min.  Then, the cells were lysed 



and the phosphorylation levels were estimated by immunoblotting with phospho-specific 

antibodies for Akt or p70 S6K.   

 

Figure 4.  Effect of rapamycin on EGF-induced activation of Akt and p70 S6K.  JB6 

Cl 41 cells (80% confluence) were starved by replacing the medium with 0.1% 

FBS/MEM and culturing for 48 h.  The cells were then pretreated with rapamycin, 

LY294002 or wortmannin for 1 h at the indicated concentration.  The cells were treated 

with EGF (10 ng/ml) and subsequently cultured for 30 min.  Then, the cells were lysed 

and Akt or p70 S6K was immunoprecipitated using anti-Akt1/2 antibody or anti-p70 S6K 

antibody.  Their activities are assessed using their substrate peptide and γ-32P ATP.  Each 

bar indicates the mean ± S.E (n=3-4).  * Significantly different from the untreated control 

at P < 0.05.  

 

Figure 5.  Effect of rapamycin on EGF-induced Erks phosphorylation.   JB6 Cl 41 

cells (80% confluence) were starved by replacing the medium with 0.1% FBS/MEM and 

culturing for 48 h.  The cells were then pretreated with rapamycin, LY294002 or 

wortmannin for 1 h at the indicated concentration.  The cells were treated with EGF (10 

ng/ml) and subsequently cultured for 30 min.  The cells were lysed and the 

phosphorylation levels were estimated by immunoblotting with phospho-specific p44/42 

MAP kinase (Erks) antibody. 

 

Figure 6.  Inhibition of EGF-induced cell transformation by introduction of DNM-

Akt1.  A, Aliquots of 104 JB6 Cl 41 cells or Cl 41 DNM-Akt1 cells (DNM-Akt1) were 

treated with EGF (10 ng/ml) in 0.33% BME agar containing 10% FBS over 0.5% BME 

agar medium containing 10% FBS.  Cell colonies were scored after 14 days incubation at 

37˚C in 5% CO2.  Data are the means ± SD (n=8).  B, Cells were suspended in 5% 

FBS/MEM at a density of 1x104 cells/ml.  The cell suspension (1 ml) were placed in each 



well of a 24-well plate and incubated for 24 h.  Then, the indicated concentrations of 

rapamycin or LY294002 were added and further incubated for 48 h in a 5% CO2 

incubator at 37°C.  After incubation for the indicated periods, cell number was measured 

under microscope.  Data are the means ± SD (n=4). 

 

Figure 7.  Inhibition of EGF-induced p70 S6Kactivation by introduction of DNM-

Akt1.  JB6 Cl 41 cells and Cl 41 DNM-Akt1 cells (DNM-Akt1) (80% confluence) were 

starved by replacing the medium with 0.1% FBS/MEM and culturing for 48 h.  Their 

cells were treated with EGF (10 ng/ml) and subsequently cultured for 30 min.  Then, the 

cells were lysed and Akt or p70 S6K was immunoprecipitated using anti-Akt1/2 antibody 

or anti-p70 S6K antibody.  Their activities are assessed using their substrate peptide and 

γ-32P ATP.  Each bar indicates the mean ± S.E (n=3-4).  * Significantly different from the 

untreated control at P < 0.05. 
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Figure 1.   Nomura et al.
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