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Abstract 

Regulatory B cells control inflammation and autoimmunity in mice, including the recently 

identified IL-10-competent B10 cell subset that represents 1-3% of spleen B cells. In this study, a 

comparable IL-10-competent B10 cell subset was characterized in human blood. B10 cells were 

functionally identified by their ability to express cytoplasmic IL-10 following 5 h of ex vivo 

stimulation, while progenitor B10 (B10pro) cells required 48 h of in vitro stimulation before they 

acquired the ability to express IL-10. B10 and B10pro cells represented 0.6% and ~5% of blood 

B cells, respectively. Ex vivo B10 and B10pro cells were predominantly found within the 

CD24hiCD27+ B cell subpopulation that was able to negatively regulate monocyte cytokine 

production through IL-10-dependent pathways during in vitro functional assays. Blood B10 cells 

were present in ninety-one patients with rheumatoid arthritis, systemic lupus erythematosus, 

primary Sjögren’s syndrome, autoimmune vesiculobullous skin disease, or multiple sclerosis, and 

were expanded in some cases as occurs in mice with autoimmune disease. Mean B10+B10pro 

cell frequencies were also significantly higher in patients with autoimmune disease when 

compared with healthy controls. The characterization of human B10 cells will facilitate their 

identification and the study of their regulatory activities during human disease. 



 3 

Introduction 

B cells are generally considered to positively regulate immune responses by producing 

antigen-specific Ab and helping to induce optimal CD4+ T cell activation.1 However, B cells and 

specific B cell subsets can also negatively regulate immune responses in mice.2-6 The absence or 

loss of these regulatory B cells exacerbates disease symptoms in contact hypersensitivity, 

experimental autoimmune encephalomyelitis, chronic colitis, collagen-induced arthritis, and in 

lupus-like models of autoimmunity.7-15 In many of these cases, B cells regulate inflammation, 

asthma, and T cell-mediated autoimmunity through the production of IL-10.8-10,12-16 Both human 

and mouse IL-10 exhibit numerous pleiotropic activities in vitro and in vivo, including 

suppression of both Th1 and Th2 polarization and inhibition of antigen presentation and 

proinflammatory cytokine production by dendritic cells, monocytes and macrophages.17 

In mice, a subset of IL-10-competent regulatory B cells can be functionally identified by their 

ability to express cytoplasmic IL-10 following 5 h of in vitro stimulation with LPS, PMA, and 

ionomycin, with monensin included in the cultures to block IL-10 secretion.12,13 These IL-10-

competent B cells have been labeled as B10 cells to identify them as the predominant, if not 

exclusive, source of B cell IL-10 production and to distinguish them from other regulatory B cell 

subsets that may also exist.5 For example, inducible IL-12-producing B cells regulate intestinal 

inflammation.18 B10 cells are found within the spleens of naïve wild type mice at frequencies of 

1-3%, where they predominantly represent a subset of the phenotypically unique 

CD1dhiCD5+CD19hi B cell subpopulation that shares overlapping cell surface markers with 

multiple phenotypically-defined B cell subsets.11-14,19,20 Additional B cells within the 

CD1dhiCD5+ B cell subpopulation acquire the ability to function like B10 cells during 48 h of in 

vitro stimulation with LPS or agonistic CD40 mAb.5 These B10 progenitor (B10pro) cells are 

then able to express cytoplasmic IL-10 following stimulation with PMA, ionomycin and 

monensin for 5 h.21 B10 cells also require diverse B cell antigen receptors for their 

development21 and their regulatory functions are Ag-restricted in vivo.12,13 Spleen B10 cell 

numbers increase significantly in diabetes- and lupus-prone mice14,21, and the adoptive transfer of 
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antigen-primed CD1dhiCD5+ B cells reduces inflammation during contact hypersensitivity and 

autoimmune disease.12,13,22 

The identification and characterization of an IL-10-producing B cell subset in mice raises the 

issue of whether B cells with these functional properties exist in man. Studies of B cell IL-10 

production in humans have yielded diverse results that are currently difficult to unify into a 

coherent model.23-28 It is also unknown whether human B10 cells share overlapping physiologic 

triggers with mouse B10 cells that lead to IL-10 production and their expansion in vitro.12,13,21 

Therefore, the purpose of the current study was to enumerate and characterize the IL-10 

competent B10 and B10pro cell subsets in humans. 
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Materials and Methods 

Cells 

Heparinized blood was obtained from healthy donors, ages 14-73, or from patients. Patients with 

rheumatoid arthritis met the American College of Rheumatology 1987 revised classification 

criteria.30 Patients with systemic lupus erythematosus satisfied the 1982 classification criteria.31 

Patients with primary Sjögren’s syndrome fulfilled the American-European consensus group 

criteria.32 Patients with autoimmune vesiculobullous skin disease, including bullous pemphigoid, 

pemphigus foliaceus, pemphigus vulgaris, and dermatitis herpetiformis had typical clinical and 

histologic findings, with diagnostic findings on direct immunofluroesence of perilesional skin or 

oral mucosa.33,34 Patients with multiple sclerosis fulfilled the 2005 McDonald criteria for 

relapsing remitting or primary progressive multiple sclerosis,35 or secondary progressive multiple 

sclerosis as defined using the Lublin and Reingold criteria.36 Tissues were obtained anonymously 

from individuals without identifiable hematologic disorders, with the purified B cells 

immediately cryopreserved (>90% cell viability). Cryopreserved cord blood samples were 

obtained from the Duke University Stem Cell Laboratory and the Carolinas Cord Blood Bank. 

Blood mononuclear cells were isolated by centrifugation over a discontinuous Lymphoprep 

(Axis-Shield PoC As, Oslo, Norway) gradient. Cell numbers were quantified by hemocytometer, 

with relative lymphocyte percentages among viable cells (based on scatter properties) determined 

by flow cytometry. In some experiments, B cells were enriched using RosetteSep (STEMCELL 

Technologies, Vancouver, BC, Canada) following the manufacturer’s protocols. CD19-mAb 

coated microbeads (Miltenyi Biotech) were used to purify blood B cells by positive selection 

following the manufacturer’s instructions. When necessary, the cells were enriched a second time 

using a fresh MACS column to obtain >99% purities. 

Written informed consent was obtained in all cases according to the Declaration of Helsinki. 

All protocols were approved by the respective ethics boards; Institutional Review Board of Duke 

University Medical Center, the Human Protection Committee of Dana-Farber Cancer 
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Institute/Harvard Medical School, University of Rochester Institutional Review Board, and the 

Institutional Review Board of St. Luke’s–Roosevelt Hospital Center Institute for Health Sciences. 

 

Antibodies, immunofluorescence analysis and cell sorting 

Anti-human mAbs included: IgD (IA6-2) from BD PharMingen (San Diego, CA); CD21 (BU33), 

CD22 (RFB4), CD23 (D.6) from Ancell (Bayport, MN); IgM (MHM-88), CD1d (51.1), CD5 

(UCHT2), CD19 (HIB19), CD24 (ML5), CD25 (BC96), CD27 (O323), CD38 (HIT2), CD40 

(HB14), CD48 (BJ40), and CD148 (A3), TNFα (MAb11), functional grade CD3 (HIT3a), and 

phycoerythrin-conjugated or unconjugated anti-IL-10 mAb (JES3-19F1) mAbs from BioLegend 

(San Diego, CA). Anti-human IgM Ab was from Jackson ImmunoResearch Laboratories, Inc. 

(West Grove, PA).  

Single cell suspensions were stained on ice using predetermined optimal concentrations of 

each Ab for 20-60 min, and fixed as described.29 Cells with the light scatter properties of 

lymphocytes were analyzed by 2-6 color immunofluorescence staining and FACScan or 

FACSCalibur flow cytometers (Becton Dickinson, San Jose, CA). Dead cells were excluded 

from the analysis based on their forward- and side-light scatter properties and the use of 

LIVE/DEAD® Fixable Violet Dead Cell Stain Kits (Invitrogen-Molecular Probes, Carlsbad, CA). 

All histograms are shown on a 4-decade logarithmic scale, with gates shown to indicate 

background isotype-matched control mAb staining set with <2% of the cells being positive. 

Blood CD24hiCD27+ and CD24lowCD27- B cells were isolated using a FACSVantage SE flow 

cytometer (Becton Dickinson) with 90-95% purities. 

 

Analysis of IL-10 production 

Intracellular IL-10 analysis by flow cytometry was as described.12 Briefly, cells were resuspended 

(2 x 106 cells/ml) in medium [RPMI 1640 media containing 10% FCS, 200 µg/ml penicillin, 200 

U/ml streptomycin, and 4 mM L-Glutamine (all from Gibco, Carlsbad, CA)] and stimulated with 

LPS (10 µg/ml, Escherichia coli serotype 0111: B4; Sigma), CpG (ODN 2006, 10 µg/ml; 



 7 

Invivogen), or other TLR agonists (TLR1, Pam3CSK4, 1 µg/ml; TLR2, heat-killed Listeria 

monocytogenes, 108 cells/ml; TLR3, Poly(I:C), 10 µg/ml; TLR5, S. typhimurium flagellin, 1 

µg/ml; TLR6, Pam2CGDPKHPKSF, 1 µg/ml; TLR7, Imiquimod, 1 µg/ml; TLR8, ssRNA40, 1 

µg/ml; Invivogen), CD40L (1 µg/ml; R&D Systems, Minneapolis, MN), anti-human CD40 mAb 

(1 µg/ml; BioLegend), PMA (50 ng/ml; Sigma), ionomycin (1 µg/ml; Sigma), Brefeldin A (1X 

solution/ml; BioLegend), monensin (2 mM; eBioscience), and anti-IgM antibody (10 µg/ml) as 

indicated in 48-well flat-bottom plates before staining and flow cytometry analysis. For analysis 

of cell proliferation, lymphocytes were stained with CFSE Vybrant™  CFDA SE fluorescent dye 

(5 µM; Invitrogen-Molecular Probes) according to the manufacturer’s instructions. For IL-10 

detection, Fc receptors were blocked using FcγR-Binding inhibitor (eBioscience). Stained cells 

were fixed and permeabilized using a Cytofix/Cytoperm kit (BD PharMingen) according to the 

manufacturer’s instructions and stained with anti-IL-10 mAb.  

Secreted IL-10 was quantified by ELISA. Purified B cells (4 x 105) were cultured in 0.2 ml of 

complete medium in a 96-well flat-bottom tissue culture plates. Culture supernatant fluid IL-10 

concentrations for triplicate samples were quantified using IL-10 OptEIA ELISA kits (BD 

PharMingen) following the manufacturer’s protocols. 

 

Il10 transcript expression 

In some experiments, IL-10-secreting blood B cells were identified after 4 h of in vitro 

stimulation using an IL-10 secretion detection kit (Miltenyi Biotech, Auburn, CA) with 

subsequent staining for CD19 expression before cell sorting into IL-10+CD19+ and IL-10-CD19+ 

populations. RNA extraction, cDNA generation, and real-time PCR analysis was as described.13 

IL-10 primers were: sense 5’-CTTCGAGATC TCCGAGATGC CTTC-3’, antisense 5’-

ATTCTTCACC TGCTCCACGG CCTT-3’. GAPDH primers were: sense 5’-GCCACCCAGA 

AGACTGTGGA TGGC-3’ and antisense 5’-CATGTAGGCC ATGAGGTCCA CCAC-3’. 

 

In vitro functional assays 
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Blood CD24hiCD27+CD19+ and CD24lowCD27-CD19+ B cells from healthy controls were 

purified by cell sorting and stimulated with CpG (10 µg/ml) plus CD40L (1 µg/ml) for 24 h. 

Naïve CD4+CD25- T cells were purified by MACS (Miltenyi Biotech), and cultured in replicate 

wells either alone (1x106/ml) or with CD40/CpG-stimulated B cells (1x106/ml) in tissue culture 

plates coated with CD3 mAb (0.5 µg/ml) for 72 h with either BFA or PIB added during the final 

5 hours. The cells were stained for cell surface CD4 and cytoplasmic TNF-α expression before 

analysis by flow cytometry. Alternatively, CD40/CpG-stimulated sorted B cell populations 

(1x106/ml) were cultured for 20 h with equal numbers of blood monocytes that had been purified 

by plastic adherence or MACS, with anti-IL-10 mAb (10 µg/ml) added to some cultures. The 

cultured cells were then washed, stimulated with LPS (1 µg/ml) for 4 h in the presence of BFA, 

and stained for cell surface CD14 and cytoplasmic TNF-α or IFN-γ expression before analysis by 

flow cytometry. 

 

Statistical analysis 

All data are shown as means (±SEM). Significant differences between sample means were 

determined using the Student’s t test. 
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Results 

Enumeration of human IL-10-producing B cells 

Mouse B10 cell frequencies have been described, with background cytoplasmic IL-10 staining of 

≤0.2% commonly observed with B cells from IL-10-/- mice.12,13,21 A similar strategy was 

therefore optimized to enumerate human blood IL-10-competent B cells. B cells spontaneously 

expressing IL-10 were below the threshold for reliable quantification by immunofluorescence 

staining, even when the cells were cultured with Brefeldin A to stop Golgi transport (Fig. 1A). 

However, a distinct subset of cytoplasmic IL-10+ B cell was observed at low 0.25-2% frequencies 

after ex vivo stimulation using phorbol ester and ionomycin plus Brefeldin A (PIB) (Fig. 1A-B). 

Stimulation with PIB for 5 h induced 0.8±0.1% of blood B cells on average to express IL-10 

(n=14, 1.9±0.3 x10-3 B10 cells/ml, Fig. 1B-C). B cell stimulation with TLR agonists did not 

substantially alter mean B10 cell numbers, although adding either CpG oligonucleotides (CpG, 

TLR9 agonist) or LPS to the PIB cultures increased IL-10+ B cell frequencies in some individuals 

(Fig. 1A-C). Stimulation beyond 5 h or using 10-fold higher PMA or ionomycin concentrations 

resulted in extensive B cell death, which complicated B10 cell enumeration. Background IL-10 

mAb staining was also reduced by the exclusion of cell doublets and dead cells from the analysis. 

Brefeldin A was also used to block IL-10 secretion rather than monensin since it optimized 

human B cell cytoplasmic IL-10 expression (Fig. 1A). B cells cultured in brefeldin A served as 

negative controls since they gave results similar to isotype control mAb staining. Thus, blood 

B10 cells were rare but readily quantified in healthy humans. 

 

Human B10pro cell identification 

In mice, B10pro cell maturation into IL-10-competent B10 cells is induced by 48 h stimulation 

with either LPS or agonistic CD40 mAb.21 Human blood B10pro cells capable of maturing into 

IL-10 competent cells after in vitro culture were also identified. The total frequency of B10 and 

B10pro cells (B10+B10pro) is quantified in this assay, as the B cells that acquire IL-10 

competence in vitro (e.g. matured B10pro cells) cannot be differentiated from preexisting B10 



 10 

cells that inherently express cytoplasmic IL-10 after 5 h PIB stimulation. Culturing human B 

cells in media alone for 48 h resulted in ~0.2% of B cells expressing cytoplasmic IL-10 following 

PIB stimulation during the last 5 h of culture (Fig. 1B). Adding LPS, CpG, or recombinant CD40 

ligand (CD40L, CD154) alone, together, or in combination with brefeldin A to the 48 h cultures 

did not increase IL-10-producing B10 cell frequencies. However, following PIB stimulation 

during the last 5 h of culture, B10+B10pro cell frequencies increased to 0.6±0.1, 1.9±0.4, 0.8±0.1, 

1.2±0.2, and 4.1±1.0% following 48 h of TLR1 agonist, LPS, TLR6 agonist, TLR7 agonist, or 

CpG stimulation, respectively (Fig. 1E, left panel). When compared with media or most TLR 

agonists alone, the addition of CD40L to the cultures significantly enhanced mean B10+B10pro 

cell frequencies (Fig. 1E, right panel). CD40L induced higher IL-10+ B cell frequencies than 

agonistic CD40 mAb (Fig. 1D). Thus, dual CD40 and TLR stimulation induced the highest 

frequencies of B10pro cells to become IL-10 competent B10 cells, with the highest frequencies 

(7.0±1.4%) and numbers of IL-10+ cells (1.6±0.3 x 104 cells/ml, n=14) induced after 48 h of 

CD40L plus CpG stimulation. B10 cell percentages relative to all B cells decreased with age 

among 60 healthy individuals, with a significant inverse correlation between B10+B10pro cell 

frequencies and age (p<0.05, data not shown). Thus, B10pro cell maturation in vitro was required 

to optimally enumerate IL-10-competent B cell frequencies. 

 

B10 cell numbers in newborn blood and adult tissues 

Newborn blood contained both B10 and B10pro cells. Mean B10 cell frequencies in cord blood 

after 5 h of CpG+PIB stimulation were 0.45±0.14% (Fig. 2A). B10+B10pro cell frequencies 

were similar or higher in cord blood relative to adult blood after culture with CD40L and TLR 

agonists; TLR1 (2.6±0.6%), LPS (7.6±1.8%), TLR6 (4.2±1.4%), or TLR9 (CpG, 9.6±2.3%) 

agonists with PIB added during the final 5 h of culture. B10 cells were also found within spleens 

(0.31±0.06%, n=4, CpG+PIB) and tonsils (0.31±0.11%, n=3, CpG+PIB) of adults without known 

disease (Fig. 2B). Thus, newborn and adult blood and tissues contain quantifiable numbers of 

B10 and B10pro cells. 
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Regulation of B10 cell IL-10 production and secretion in vitro 

The time course of blood B cell IL-10 induction was assessed in vitro by quantifying IL-10 

transcripts. By 12, 24, and 48 h, B cell stimulation with CD40L plus CpG induced 6.8-, 24-, and 

5.9-fold higher Il10 transcript levels, respectively, than was observed for unstimulated B cells 

(p<0.05; Fig. 3A). Blood B cells that were actively secreting IL-10 after in vitro stimulation 

expressed Il10 transcripts at 19-fold higher levels than were detected in IL-10- B cells (Fig. 3B). 

Thus, Il10 gene transcription parallels the induction of B10 cell cytoplasmic IL-10 expression. 

The response of human B10+B10pro cells to CD40L, CpG, and antigen receptor generated 

signals was also examined. In comparison with CD40L alone, CpG induced the highest levels of 

B10pro cell maturation into IL-10-competent B10 cells, which was further increased when both 

CD40L and CpG were added to the cultures (Fig. 3C). By contrast, IgM ligation using mitogenic 

antibody did not induce cytoplasmic IL-10 expression, but actually inhibited the B10pro cell 

maturation effects of CpG+CD40L stimulation. In vitro IgM signals also inhibit mouse B10pro 

cell maturation and cytoplasmic IL-10 induction.21 Among TLR agonists, LPS and CpG were 

also the most potent stimuli for inducing IL-10 secretion by human blood B cells (Fig. 3D). The 

addition of CD40L to the cultures was not required, but enhanced LPS- and CpG-induced IL-10 

secretion. Thus, similar signals induce human and mouse B10pro and B10 cells to mature and 

express cytoplasmic IL-10 in vitro. 

 

Phenotypic characterization of IL-10-competent B cells 

Whether human B10 cells represent a unique or known B cell subset was determined by 

analyzing their cell surface phenotype. Cell surface IgM, IgD, CD1d, CD5, CD10, CD19, CD21, 

CD22, CD23, CD24, CD25, CD27, CD38, and CD40 densities did not change when B cells were 

stimulated with PIB, LPS+PIB, or CpG+PIB for 5 h, and/or permeabilized. Furthermore, the 

transport of newly synthesized proteins to the cell surface is inhibited by the addition of brefeldin 

A to the cultures. Therefore, these markers were used to phenotype freshly isolated B10 cells. 
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Half of blood B10 cells expressed high IgM levels and low IgD levels (Fig. 4A). Both CD24 and 

CD27 expression were high on the majority of B10 cells, while IL-10- B cells expressed either 

high or low density CD24 and CD27. CD19 and CD25 expression were also higher on B10 cells 

than IL-10- B cells. Otherwise, the remaining cell surface markers were absent or expressed 

similarly by both B10 cells and IL-10- B cells. The same results were obtained following PIB, 

LPS+PIB, or CpG+PIB stimulation (data not shown). Thereby, freshly isolated blood IL-10+ B10 

cells were predominantly found within the CD24hi or CD27+ B cell subpopulations. 

The phenotype of blood B10+B10pro cells was also assessed following 48 h of culture with 

CD40L+CpG, and 5 h of LPS+PIB stimulation. Prolonged B cell stimulation induced significant 

changes in the cell surface phenotype of both IL-10+ and IL-10- B cells, with most B cells 

induced to express CD25 and CD38 (Fig. 4B). Nonetheless, B10+B10pro cells on average 

expressed higher densities of CD1d, CD19, CD20, CD21, CD23, CD24, CD25, CD27, and 

CD38 when compared with IL-10- B cells, consistent with an activated phenotype. Spleen B10 

cells were also predominantly CD27+, although the expression of most cell surface molecules 

was similar if not identical for B10 cells and IL-10- B cells (Fig. 4C). Spleen B10+B10pro cells 

and IL-10- B cells also had similar phenotypes after 48 h of stimulation in vitro (Fig. 4D). 

Thereby, blood B10 cells represented a subset of the CD24hiCD27+ subpopulation, while IL-10 

expression remained the best marker for categorizing B10 cells and B10+B10pro cells. 

 

Blood B10 cells are enriched within the CD24hiCD27+ B cell subpopulation 

In addition to being predominantly CD24hi and CD27+, most B10 cells also expressed additional 

cell surface markers of activation (CD48hi) and memory (CD148hi) that were not affected by the 

5 h culture conditions used to induce B cell cytoplasmic IL-10 expression (Fig. 5A-B). Even 

when the spectrum of blood donors was compared, B10 cells were always predominantly CD24hi 

and CD27+ (Fig. 5C). Cell surface IgD, CD27, and CD38 expression profiles have also been used 

frequently to define human B cell subsets.37,38 However, when blood B10 cells were analyzed 
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based on their CD38 versus IgD, or CD27 versus IgD expression profiles, IL-10+ B10 cells from 

representative blood donors did not fall into distinct subpopulations (Fig. 5C).  

Since the CD24hiCD27+ B cell subpopulation represented 24±5% (n=7) of blood B cells on 

average, it was assessed whether CD24 and CD27 could be used as overlapping markers to 

enrich for B10 cells. When purified CD24hiCD27+ and CD24lowCD27- B cells were cultured 

individually with LPS+PIB for 5 h to induce IL-10 expression, B10 cell frequencies were >10-

fold higher within the CD24hiCD27+ subpopulation when compared with CD24lowCD27- B cells 

(Fig. 5D). To determine whether ex vivo B10pro cells also localize within the CD24hiCD27+ 

subpopulation, purified CD24hiCD27+ and CD24lowCD27- B cells were cultured individually to 

induce B10pro cell maturation. Again, the frequency of IL-10+ B10+B10pro cells was >10-fold 

higher within the CD24hiCD27+ subpopulation when compared with CD24lowCD27- cells (Fig. 

5E). The capacity of freshly isolated CD24hiCD27+ and CD24lowCD27- B cells to secrete IL-10 

was also assessed. Again, IL-10 was predominantly produced by the CD24hiCD27+ B cell 

subpopulation in response to CD40L, LPS, LPS+CD40L, CpG, or CpG+CD40L stimulation for 

72 h (Fig. 5F). Thus, blood B10 and B10pro cells predominantly represented a small subset of 

cells within the CD24hiCD27+ B cell subpopulation. 

Since B10 and B10pro cells express markers for activated and memory B cells, their ability to 

proliferate in response to mitogens was assessed. Purified blood B cells were labeled with CFSE 

before in vitro culture. There was little if any IL-10+ or IL-10- B cell proliferation during 48 h 

cultures regardless of whether the cells were stimulated with LPS or CpG. However, IL-10+ B 

cells exhibited a significant proliferative capacity in response to CpG at 96 h, while IL-10- B cell 

proliferation was modest (Fig. 5G). Thus, blood B10 and B10+B10pro cells preferentially 

proliferated in response to mitogen stimulation, consistent with their CD24hiCD27+ phenotype. 

 

B10 cells regulate innate immunity 

Resting or activated mouse B10 cells do not significantly influence mitogen-driven T cell 

activation or proliferation in vitro.22 However, activated B10 cells do inhibit TNF-α production 
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by antigen-specific CD4+ T cells during antigen-driven in vitro assays. In vitro T cell-B cell co-

culture systems were therefore assessed to determine whether human B10 cells regulate mitogen-

driven T cell function. First, purified blood CD24hiCD27+ B cells or CD24lowCD27- B cells were 

stimulated with CD40L and CpG for 24 h, washed extensively, and added to cultures of purified 

CD4+ T cells that were stimulated with plate-bound CD3 mAb for 72 h. In these assays, both 

CD24hiCD27+ B cells and CD24lowCD27- B cells inhibited CD4+ T cell expression of TNF-α 

equally (Fig. 6A). Unstimulated B cells did not affect CD4+ T cell expression of TNF-α  in these 

assays, and the addition of anti-IL-10 mAb to cultures containing activated CD24hiCD27+ or 

CD24lowCD27- B cells did not rescue TNF-α expression by CD4+ T cells (data not shown). Thus, 

activated human B cells can inhibit mitogen-induced TNF-α production by CD4+ T cells through 

IL-10-independent pathways that are not unique to CD24hiCD27+ B10 cells. 

Even though mouse B10 cell regulation of T cell function requires antigen-specific in vitro 

assays that are not amenable to human studies, we have found that mouse monocyte cytokine 

production is directly regulated by B10 cells through IL-10-dependent pathways that are not 

antigen-specific (M. Horikawa, et al., manuscript in preparation). The ability of human B10 cells 

to regulate innate monocyte responses was therefore assessed. Remarkably, TNF-α production 

was significantly reduced when monocytes were cultured with activated blood CD24hiCD27+ B 

cells and this effect was blocked by anti-IL-10 mAb (Fig. 6B). The addition of anti-IL-10 mAb to 

monocytes cultured alone did not affect TNF-α production (data not shown), while 

CD24lowCD27- B cells variably affected monocyte TNF-α production through IL-10-independent 

pathways. Thus, B10 cell production of IL-10 regulate monocyte cytokine production. 

 

B10 cells in patients with autoimmune disease 

To determine whether blood B10 cell numbers are altered during inflammation and autoimmune 

disease, B10 and B10pro cells were examined in 91 patients with systemic lupus erythematosis, 

rheumatoid arthritis, primary Sjögren’s syndrome, autoimmune vesiculobullous skin disease, or 

multiple sclerosis (Fig. 7A-B). Most patients were undergoing active treatment with 
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immunomodulatory agents and/or low doses of prednisone (Table 1). B10 cell frequencies were 

significantly higher in one pemphigus vulgaris patient (PV07) and one dermatitis herpetiformis 

patient (DH02) not undergoing immunosuppressive therapy. Two lupus patients (SLE02, SLE06) 

and one rheumatoid arthritis patient (RA03) also had significantly higher B10 cell frequencies, 

but retrospective evaluation of their disease status, autoantibody profile, and treatment regimen 

did not indicate why these individuals had higher B10 cell frequencies. No patients expressed 

significantly lower B10 cell frequencies than age-matched controls. Mean B10 cell frequencies 

were significantly higher for rheumatoid arthritis patients after culture with CpG but not for other 

patient groups (Fig 7B) even though B10 cell frequencies increased similarly in most cases after 

either LPS or CPG CpG stimulation (Fig. 7C, left panel). 

Mean B10+B10pro cell frequencies from patients with autoimmune disease were 

significantly higher than controls following either CD40L+LPS or CD40L+CpG stimulation (Fig. 

7A-B). Multiple patients had significantly higher B10+B10pro cell frequencies, including two 

patients not undergoing therapy (SLE04, PF03; Table 1). No patients expressed significantly 

lower B10+B10pro cell frequencies relative to age-matched controls. B10+B10pro cell 

frequencies increased following either LPS or CPG stimulation, but the scatter of the results was 

broad, suggesting inherently different patient sensitivities to LPS and CpG stimulation (Fig. 7C, 

right panel). Patients with high blood B10 cell frequencies did not necessarily have high 

B10+B10pro cell frequencies after either LPS or CpG stimulation (data not shown). Likewise, 

B10 or B10+B10pro cell frequencies did not correlate with CD27+ B cell frequencies (data not 

shown). Relative B10 and B10+B10pro cell frequencies did correlate with the intensity of 

cytoplasmic IL-10 expression, but only one patient generated significantly higher (p<0.05) 

cytoplasmic IL-10 expression levels on a per cell basis relative to controls and other patients (Fig. 

7D). Thus, blood B10 and B10pro cell numbers were not decreased in patients with systemic or 

organ-specific autoimmune disease when compared with healthy controls, but were significantly 

increased in some patients. 
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Discussion 

These studies demonstrate the existence of human IL-10-competent B10 cells, which were 

readily identified by their ability to express cytoplasmic IL-10 after in vitro stimulation for 5 h 

(Fig 1). Moreover, human B10 cells were able to regulate cytokine production by monocytes in 

vitro, demonstrating a functional link between regulatory B cells and the innate immune system 

(Fig. 6B). Peripheral blood B10 cell frequencies were characteristically low in most individuals, 

consistent with their low frequencies in mice. Human B10pro cells were also identified at low 

frequencies by their ability to express IL-10 after in vitro maturation during 48 h cultures. 

Remarkably, the adaptive and innate activation pathways that induced human B10 and B10pro 

cell generation, maturation, cytoplasmic IL-10 expression, and IL-10 secretion were similar to 

those used to characterize mouse regulatory B10 cells. Specifically, human B10 cells responded 

to phorbol ester/ionomycin, LPS and CpG stimulation, with B10pro cell maturation in response 

to CD40, LPS, and CpG induced signals. Previous studies of IL-10 production by human B cells 

have predominantly studied bulk B cell populations using stimulation and assay conditions that 

were not optimized for quantifying or characterizing individual B cells that were competent to 

express IL-10.25,26,39-43 Nonetheless, the results herein demonstrate that rare B10 and B10pro 

cells that are competent to express IL-10 exist in human blood and can be quantified in vitro. 

IL-10-competence remains the best phenotypic marker for defining human B10 cells. 

However, freshly isolated blood B10 and B10pro cells were also predominantly CD24hiCD27+, 

with ~60% also expressing CD38 (Fig. 5A, C). Others have found similar total numbers of IL-

10+ B cells in the CD24hiCD38hi and CD24intCD38int B cell fractions28, in agreement with the 

current findings (Fig. 5C). B10 cells also expressed CD48 and CD148 at high levels (Fig. 5A). 

CD48 is upregulated on activated B cells44 and CD148 is considered a marker for human 

memory B cells.45 CD27 expression is also a well-characterized marker for memory B cells, 

although some memory B cells may be CD27-.38,46,47 The CD27+ B cell subpopulation can also 

expand during the course of autoimmunity and may serve as a marker for disease activity.38,47 

However, B10 cell frequencies did not parallel the size of the blood CD27+ memory B cell pool 
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in normal donors or patients (data not shown). Thus, the CD24hiCD27+ phenotype of B10 and 

B10pro cells may indicate their selection into the memory B cell pool during development or 

they may represent a distinct B cell subset that shares common cell surface markers with memory 

B cells. Consistent with a memory phenotype, the proliferative capacity of blood B10 cells in 

response to mitogen stimulation was higher than that for other B cells (Fig. 5F), as is seen for 

mouse B10 cells.21 Moreover, IL-10 was also predominantly secreted by ex vivo CD24hiCD27+ B 

cells (Fig. 5G). However, most CD24loCD27- B cells were not IL-10 competent, even after 48 h 

of LPS or CpG stimulation along with CD40 ligation. Human transitional B cells are also rare (2-

3% of B cells) in adult blood, and are generally CD10+CD24hiCD38hi cells that are also 

IgD+CD27-.48,49 Given that CD10 expression is a well-accepted marker for most cells within the 

transitional B cell pool.50, its absence on B10 cells suggests that these cells are not recent 

emigrants from the bone marrow. Thereby, in addition to inherent IL-10 competence, B10 cells 

demonstrate elevated proliferative responses that may reflect prior antigen stimulation.  

Since IL-10 is critical for B cell regulatory activity in mice, the current studies demonstrate 

that B10 cells were functionally competent to express IL-10 in healthy individuals and 91 

autoimmune disease patients (Fig. 7A-B). Blood B10 cell frequencies in most patients with lupus, 

rheumatoid arthritis, Sjögren’s syndrome, autoimmune skin disease, and multiple sclerosis were 

not significantly different from those observed in healthy controls, although mean B10+B10pro 

cell frequencies were significantly increased. Multiple patients also had significantly higher B10 

and/or B10+B10pro cell frequencies, including systemic lupus and pemphigus patients with 

either untreated or severe disease (Table 1). Consistent with this, IL-10 production by blood B 

cells is reported to be higher in patients with rheumatoid arthritis, lupus, and systemic 

sclerosis.23,24,26 Moreover, elevated B10/B10pro cell frequencies in humans parallels what has 

been found during inflammation12,13 and autoimmunity in mice.14,21 Although patient cohorts 

with recent-onset disease and clinically active disease across multiple organ systems will be 

needed to fully assess the relationship of blood B10 cell numbers with clinical, laboratory, and 

treatment status, none of the patients or patient groups had significantly lower blood B10 cell 
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numbers than age-matched healthy controls. Since multiple sclerosis and lupus patient’s B cells 

are reported to produce decreased amounts of IL-10,27,28 the current studies demonstrate that a 

careful enumeration of IL-10 competent B10 cell frequencies within patients will be required in 

order to interpret experimental results, particularly when mixed populations of B cells are 

assayed functionally. Blair et al. have also functionally characterized human blood CD24hiCD38hi 

B cells stimulated in vitro with CD40L expressing CHO cells and shown that they reduce CD4+ 

T cell expression of IFN-γ and TNF-α following T cell stimulation with CD3 mAb.28 By contrast, 

we find that both activated B10 and non-B10 cells reduce TNF-α expression following CD4+ T 

cell stimulation with CD3 mAb through IL-10-independent pathways (Fig. 6A). Nonetheless, we 

have found that mouse spleen CD1dhiCD5+ B cells can inhibit CD4+ T cell IFN-γ and TNF-α 

expression, which is completely dependent on IL-10 expression, but this requires B10 cell 

activation and is only observed with antigen-specific T cell activation.22 Furthermore, mouse 

spleen CD1dhiCD5+ B cells regulate the antigen-presenting capacity of dendritic cells in vitro, 

and can thereby also regulate CD4+ T cell activation indirectly.22 Moreover, the ability of human 

B10 cells to influence innate monocyte function (Fig. 6B) expands their regulatory role during 

immunity and disease. Thus, it is likely that IL-10 produced by human B10 cells will have 

pleiotropic regulatory effects on the immune system as occurs in mice. 

In summary, the current findings demonstrate the existence of a small but significant subset 

of CD24hiCD27+ B cells that is pre-programmed in vivo to express IL-10 after ex vivo 

maturation/stimulation. Monitoring the numbers and ability of individual B10 cells to produce 

IL-10 will become even more informative once the in vivo physiologic triggers of B10 cell 

regulatory activity are identified. The identification of antigen-specific B10 cells may also 

facilitate a further understanding of their relevance to immune responsiveness since antigen 

receptor specificity is important for mouse B10 cell development and in vivo functional activity 

in the regulation of inflammation and autoimmunity.8,12,13  
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Table 1. Patient characteristics. 
Diagnosis

Number 

Sex Age Disease 

Duration (y) 

Autoantibody/Clinical Status Immunosuppressive 

Therapy 

RA011 M 54 11 RF=600 IU/ml; anti-CCP=68.5 U/ml MTX, ADA, Pred 5 mg/d 

RA02 F 44 4 RF=352 IU/ml; anti-CCP>100 U/ml MTX 

RA03 F 54 14 RF=146 IU/mL MTX, LEF 

RA04 F 85 18 RF=neg MTX, IFX 

RA05 M 69 19 RF=208 IU/ml; anti-CCP>100 U/ml MTX, Pred 5 mg/d 

RA06 F 71 8 RF=neg MTX 

RA07 F 67 13 RF=333 IU/ml ETN 

RA08 F 58 25 RF=53 IU/ml MTX, ETN, Pred 3 mg/d 

RA09 F 68 7 RF=339 IU/ml MTX, Pred 3 mg/d 

RA10 M 75 13 RF=420 IU/ml; anti-CCP=18.9 U/ml MTX, LEF, Pred 10 mg/d 

RA11 F 73 7 RF and anti-CCP=neg MTX, LEF 

RA12 M 61 27 RF=107 IU/ml MTX, LEF 

RA13 F 66 6 RF=pos ADA 

RA14 F 84 11 RF=275 IU/ml; anti-CCP=28 U/ml ETN 

RA15 F 52 3 RF=neg; anti-CCP>100 U/ml ETN 

RA16 F 76 18 RF=pos MTX 

RA17 M 63 11 RF=neg; anti-CCP>100 U/ml MTX, SSZ, Pred 1 mg/d 

RA18 F 43 15 RF=23 IU/ml MTX, IFX 

RA19 F 62 30 RF=148 IU/ml; anti-CCP>100 U/ml LEF; Pred 5 mg/d 

SLE01 F 65 11 ANA=1:2560; IgG CL and anti-dsDNA= pos HCQ, LEF, Pred 5 mg/d 

SLE02 M 31 3 ANA=1:640; anti-RNP, anti-Sm, and anti-Ro=pos HCQ, Pred 3 mg/d 

SLE03 M 63 32 ANA=1:640; anti-dsDNA and IgG anti-CL= pos HCQ, Pred 5 mg/d 

SLE04 F 37 5 ANA=1:2560; anti-Ro=pos None 

SLE05 F 43 15 ANA=1:160; RF=36 IU/ml HCQ, MMF 

SLE06 F 46 8 ANA=pos; anti-Ro=pos MMF 2 g/d, Pred 10 mg/d 

SLE07 M 31 23 ANA=1:160; anti-dsDNA and IgG anti-CL=pos HCQ 

SLE08 F 47 10 ANA=1:2560; anti-dsDNA, anti-Ro and anti-La=pos; 

RF=103 IU/ml 

None 

SLE09 F 37 16 ANA=pos; anti-dsDNA, anti-IgM and IgG CL=pos HCQ; Pred 10 mg/d 

SLE10 F 48 7 ANA=1:2560; anti-dsDNA, anti-Ro and anti-La =pos Pred 5 mg/d 

SLE11 F 37 25 ANA=1:640 HCQ 

SLE12 F 49 6 ANA=1:640; anti-dsDNA and anti-Ro=pos HCQ 

SLE13 F 48 20 ANA=1:640; anti-dsDNA and anti-Ro=pos Pred 5 mg/d 

SLE14 F 58 13 ANA=pos; anti-dsDNA, anti-Ro and anti-La=pos MMF, HCQ, Pred 10 mg/d 

SjS01 F 52 1 ANA=1:2560; RF=354 IU/ml; anti-Ro and anti-La=pos None 

SjS02 F 65 15 ANA=1:2560; RF=22 IU/ml; anti-Ro= pos HCQ 

SjS03 F 57 37 ANA=1:160; anti-Ro=pos MMF, Pred 40 mg/d 

SjS04 F 67 22 ANA=1:2560; RF 110 IU/ml, anti-Ro and anti-La=pos HCQ 

SjS05 F 60 9 ANA=1:2560; RF=126 IU/ml, anti-Ro=pos HCQ 

SjS06 F 58 21 ANA=1:2560; anti-Ro and anti-La=pos None 
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SjS07 F 41 13 ANA=1:2560; anti-Ro and anti-La=pos HCQ 

SjS08 F 59 8 ANA=1:2560; RF=508 IU/ml; anti-Ro=pos None 

SjS09 F 42 4 ANA=1:2560; RF=110 IU/ml; anti-Ro and anti-La=pos HCQ 

SjS10 F 58 5 ANA=1:2560; anti-Ro and anti-La=pos HCQ, Pred 3 mg/d 

SjS11 M 66 5 ANA=1:2560; anti-Ro and anti-La=pos None 

SjS12 F 76 13 ANA=1:2560; anti-Ro=pos; RF=32 IU/ml None 

SjS13 M 51 1 ANA=1:160 HCQ 

SjS14 F 68 28 ANA=1:2560; anti-Ro=pos HCQ 

SjS15 F 66 12 ANA=1:2560 None 

SjS16 F 64 8 ANA=1:2560; anti-Ro=pos None 

SjS17 F 78 13 ANA=pos; anti-Ro=pos HCQ 

BP01 M 72 0.3 Anti-BP180=84 U/ml; anti-BP230=115 U/ml, no clinical 

disease 

Pred 60 mg/d 

BP02 M 54 1.2 Anti-BP180=72 U/ml; anti-BP230=neg, no clinical disease MMF, Pred 12 mg/d 

BP03 F 56 2 Anti-BP180=51 U/ml; anti-BP230=neg, no clinical disease Pred 20 mg/d 

BP04 M 75 4.3 Anti-BP180=45 U/ml; anti-BP230=3, mild disease None 

BP05 F 66 1.8 Anti-BP180=96 U/ml; anti-BP230=131, severe disease None 

BP06 M 77 0.5 Anti-BP180=5 U/ml; anti-BP230=95, mild disease None 

BP07 F 67 17 Anti-BP180=46 U/ml; anti-BP230=neg, mild disease RTX (20 mos earlier) 

BP08 F 54 2 Anti-BP180=22 U/ml; anti-BP230=7, no clinical disease RTX (13 mos earlier), Pred 

15 mg/d 

BP09 F 62 5.4 Anti-BP180=30 U/ml; anti-BP230=3, mild disease RTX (52 mos earlier) 

BP10 M 73 0.25 Anti-BP180=222 U/ml; anti-BP230=7, no clinical disease Pred 50 mg/d 

PF01 M 54 8.6 Anti-DSG1=134 U/ml; anti-DSG3=neg, mild disease 

activity 

AZA 

PF02 M 55 9.8 Anti-DSG1=neg; anti-DSG3=neg, mild disease activity RTX (30 mos earlier) 

PF03 M 46 6.6 Anti-DSG1=416; anti-DSG3=neg, moderate disease 

activity  

None 

PF04 M 50 5.3 Anti-DSG1=1906; anti-DSG3=neg, moderate disease 

activity 

MMF  

PF05 M 72 2.8 Anti-DSG1=118; anti-DSG3=neg, no clinical disease Dapsone 100 mg/d 

PF06 F 47 0.4 Anti-DSG1=211; anti-DSG3=neg, moderate clinical 

disease activity 

Pred 40 mg/d 

PV02 M 43 3 Anti-DSG1=neg; anti-DSG3=213 U/ml, moderate oral 

disease activity  

MMF, Pred 20 mg/d 

PV03 M 73 3.3 Anti-DSG1=neg; anti-DSG3=948 U/ml, mild oral disease Pred 12 mg/d 

PV04 F 55 4.7 Anti-DSG1=neg; anti-DSG3=406 U/ml, moderate oral 

disease activity 

RTX (15 mos earlier) 

PV05 M 59 8.3 Anti-DSG1=neg; anti-DSG3=50 U/ml, no disease activity AZA 

PV06 F 48 8.6 Anti-DSG1=neg; anti-DSG3=25 U/ml, no disease activity None 

PV07 M 45 0.25 Anti-DSG1=968; anti-DSG3=735, severe disease 

involving 20% of the skin 

MMF; Pred 80 mg/d 

PV08 M 84 0.2 Anti-DSG1=75; anti-DSG3=146 U/ml, moderate disease None 
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activity  

PV09 M 64 9.8 Anti-DSG1=14; anti-DSG3=115 U/ml, mild disease 

activity 

Pred 20 mg/d; IFX 

PV10 M 59 3.8 Anti-DSG1=1; anti-DSG3=49 U/ml, no disease activity AZA 

PV11 M 55 6 Anti-DSG1=34; anti-DSG3=35 U/ml, mild oral disease 

activity 

Pred 20 mg/d; MMF  

PV12 F 58 9.5 Anti-DSG1=1; anti-DSG3=43 U/ml, mild oral disease 

activity 

AZA 

PV13 M 75 5 Anti-DSG1=1; anti-DSG3=42 U/ml, mild disease RTX (6 mos earlier), Pred 

1 mg/d 

PV14 M 70 8.4 Anti-DSG1=110; anti-DSG3=113 U/ml, no clinical disease AZA 

PV15 F 37 0.3 Anti-DSG1=104; anti-DSG3=810 U/ml, moderate disease 

activity 

Pred 40 mg/d 

PV16 M 78 15 Anti-DSG1=297; anti-DSG3=447 U/ml, moderate disease 

activity 

None 

DH1 F 65 8.4 Gluten-free diet, no clinical disease Dapsone 25 mg/d 

DH2 M 40 30 normal diet, no clinical disease Dapsone175 mg/d 

MS01 F 72 54 SPMS, EDSS 6.5, not clinically active None 

MS02 M 62 24 RRMS, EDSS 6.5, clinically active BIFN 

MS03 M 33 2 RRMS, EDSS 1.0, disease not clinically active BIFN 

MS04 M 75 29 SPMS, EDSS 8.0, disease not clinically active ITMTX 

MS05 M 52 24 PPMS, EDSS 6.5, disease clinically active MMF, pulse steroids 

MS06 M 55 25 PPMS, EDSS 7.5, disease clinically active ITMTX 

MS07 F 39 16 SPMS, EDSS 7.0, disease not clinically active Natalizumab (2 mos prior) 

MS08 F 51 7 SPMS, EDSS 5.5, disease not clinically active BIFN 

1Abbreviations: ANA, antinuclear Ab; ADA, adalimumab; AZA, azathioprine; BIFN, beta 

interferon; BP, bullous pemphigoid; CCP, cyclic citrullinated peptide; CL, cardiolipin; DH, 

dermatitis herpetiformis; dsDNA, double stranded DNA; DSG, desmoglein; EDSS, disability 

scale from 0=normal to 10=death; ETN, etanercept; HCQ, hydroxychloroquine; IFX, infliximab; 

ITMTX, intrathecal methotrexate; LEF, leflunomide; MMF, mycophenolate mofetil; MTX, 

methotrexate; PF, pemphigus foliaceus; PPMS, primary progressive multiple sclerosis; Pred, 

Prednisone; PV, pemphigus vulgaris; RA, rheumatoid arthritis; RF, rheumatoid factor; RRMS, 

relapsing remitting multiple sclerosis; RTX, rituximab; SjS, primary Sjögren’s syndrome; SLE, 

lupus; SPMS, secondary progressive multiple sclerosis; SSZ, sulfasalazine; y, year. 
2Normal values: anti-BP=180, anti-BP=230, anti-DSG1 and anti-DSG3 antibodies <9 IU/ml. 
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Figure Legends 

Figure 1. Enumeration of human blood IL-10-competent B10 and B10pro cells. (A) Visualizing 

IL-10+ B cells. Purified blood mononuclear cells were cultured with Brefeldin A (BFA), LPS 

plus PMA, ionomycin and Brefeldin A (PIB), or LPS plus PMA, ionomycin and monensin (PIM) 

for 5 h and stained for cell viability, cell surface CD19 expression, and cytoplasmic IL-10. 

Representative cytoplasmic IL-10 staining by viable, single CD19+ B cells is shown in the flow 

cytometry dot-plots, with percentages indicating cytoplasmic IL-10+ B cell frequencies within the 

indicated gates. Blood mononuclear cells that were cultured with Brefeldin A alone before 

immunofluorescence staining served as negative controls, with background staining similar to 

that obtained using isotype-matched control mAbs. Bar graphs represent mean (±SEM) B10 cell 

frequencies from 3 individuals. (B) Representative IL-10 production by B cells from an 

individual with relatively high B10 cell frequencies. B10 cells were identified after in vitro 

stimulation for 5 h as in (A). Alternatively, IL-10+ B cell frequencies were determined after in 

vitro B10pro cell maturation by stimulation with LPS, CD40L+LPS, CpG, or CD40L+CpG, with 

PIB added during the final 5 h of 48 h cultures. As negative controls for IL-10 staining, only BFA 

was added to some cultures during the final 5 h. Percentages indicate the frequencies of 

cytoplasmic IL-10+ B cells within the indicated gates among total CD19+ B cells. (C) B10 cell 

frequencies in individuals after with TLR agonist stimulation as in (A-B). Dots represent results 

from single individuals after 5 h culture with BFA alone, PIB, or the indicated TLR agonist+PIB. 

Horizontal bars indicate means. (D) CD40L induced optimal B10+B10pro cell maturation during 

48 h in vitro cultures with either recombinant CD40L or CD40 mAb, plus LPS for 48 h, with PIB 

added during the final 5 h. Bar graphs represent means (±SEM) from 5 individuals. Similar 

results were obtained in 2 independent experiments. (E) Representative B10+B10pro cell 

frequencies after in vitro maturation and stimulation. Blood mononuclear cells were cultured for 

48 h with media alone or media containing CD40L, along with the indicated TLR agonists, with 

PIB added during the last 5 h of culture. Significant differences between cultures with or without 
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CD40L are indicated: #p<0.05, ##p<0.01. (C-E) Significant differences between means of 

controls and individual stimuli are indicated: *p<0.05, **p<0.01. 

 

Figure 2. Human B10 and B10pro cells in (A) cord blood, and (B) spleen and tonsil. B10 cells 

and B10+B10pro cells were identified after in vitro stimulation for 5 h and 48 h, respectively, as 

in figure 1. Representative results are shown along with graphs indicating IL-10+ B cell 

frequencies within individuals. Cells cultured with BFA alone served as negative controls for 

background IL-10 staining. Significant differences between means of BFA controls and 

individual stimuli are indicated: *p<0.05, **p<0.01. 

 

Figure 3. Blood B cell stimulation induces IL-10 transcription and secretion in vitro. (A) Time 

course of Il10 transcript induction. Purified CD19+ B cells were cultured with media alone or 

CD40L+CpG for the times indicated, with Il10 transcripts quantified by real-time RT-PCR 

analysis. Bar graphs indicate mean relative Il10 transcript (±SEM) levels in six individuals. (B) B 

cells secreting IL-10 express Il10 transcripts. Purified blood B cells were cultured with PMA and 

ionomycin for 4 h before CD19 staining and secreted IL-10 capture (left panel). Cell surface IL-

10+ and IL-10- B cells were isolated using the indicated gates and subsequently reassessed for IL-

10 secretion (right panels) before relative Il10 transcript levels were quantified by real-time RT-

PCR analysis. Mean fold-differences (±SEM) for Il10 transcript levels from 3 different 

individuals are shown, with transcript levels normalized so that the relative mean IL-10- B cell 

value is 1.0. (C) Cell surface signals that regulate cytoplasmic IL-10 expression. Blood B cells 

were cultured with CpG, CD40L, and anti-IgM Ab (IgM) as indicated for 48 h with PIB added 

during the final 5 h of culture. Representative frequencies of IL-10-producing cells are shown, 

with bar graphs indicating mean (±SEM) percentages in 5 individuals. (D) TLR agonists that 

induce IL-10 secretion. Purified CD19+ B cells were cultured with media alone, CD40L, or with 

TLR agonists and CD40L as indicated for 48 or 72 h. IL-10 secreted into the culture supernatant 

fluid was quantified by ELISA. Bar graphs indicate mean IL-10 (±SEM) concentrations from ≥4 
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different individuals. (A-D) Similar results were obtained in 2 independent experiments. 

Significant differences between means of cells cultured in media alone and stimulated cultures 

are indicated: *p<0.05, **, p<0.01. 

 

Figure 4. Phenotypes of blood and tissue B10 cells ex vivo and B10+B10pro cells after in vitro 

culture. (A) Representative cell surface phenotype of blood B cells cultured with LPS+PIB for 5 

h. (B) Representative cell surface phenotype of blood B10+B10pro cells after stimulation with 

CD40L+LPS for 48 h with PIB added during the final 5 h of culture. (C) Representative cell 

surface phenotype of spleen B10 cells cultured with CpG+PIB for 5 h. (D) Representative cell 

surface phenotype of spleen B10+B10pro cells after stimulation with CD40L+CpG for 48 h with 

PIB added during the final 5 h of culture. (A-D) Cultured cells were stained for viability and cell 

surface molecule expression, permeabilized, stained with anti-IL-10 mAb, and analyzed by flow 

cytometry. Representative cell surface molecule expression by IL-10+ (thick line) and IL10- (thin 

line) CD19+ B cells from three individuals is shown. Shaded histograms represent isotype-

matched control mAb staining. 

 

Figure 5. Ex vivo blood B10 and B10pro cells share cell surface markers with memory B cells. 

(A) Blood B10 cells predominantly exhibit a CD24hiCD27+CD48hiCD148hi phenotype. Purified 

blood B cells were cultured with CpG+PIB for 5 h before immunofluorescence staining for 

viability, cell surface molecule expression, and cytoplasmic IL-10. Cell surface CD24, CD27, 

CD38, CD48, and CD148 expression by IL-10+ (thick line) and IL-10- (thin line) CD19+ cells 

was assessed by flow cytometry. (B) Cytoplasmic IL-10 induction does not affect the cell surface 

phenotype of B cells. CD19+ blood B cells were cultured with media on ice (thin line) or with 

CpG+PIB (thick line) for 5 h before immunofluorescence staining and flow cytometry analysis as 

in (A). (A-B) Shaded histograms represent isotype-matched control mAb staining. Results 

represent those obtained for 3 individuals. (C) Distributions of B10 cells within B cell subsets 

defined by CD24, CD27, IgD/CD38, and IgD/CD27 expression. Purified blood B cells were 
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cultured with LPS+PIB for 5 h before immunofluorescence staining and flow cytometry analysis 

as in (A). The horizontal and vertical lines on each contour plot are shown for reference, with the 

lower left quadrants delineating the IgD-CD38- and IgD-CD27- subsets determined by control 

mAb staining. Results represent those obtained for 5 individuals. (D) The ex vivo CD24hiCD27+ 

B cell subset includes the majority of B10 cells. Purified B cells were cultured with LPS+PIB for 

5 h before immunofluorescence staining for cell surface CD19, CD24, and CD27 expression and 

cytoplasmic IL-10 expression, with subsequent flow cytometry analysis. (E) B10pro cells derive 

from the CD24hiCD27+ B cell subset. Purified blood B cells were sorted into the CD24hiCD27+ 

and CD24lowCD27- B cell subsets as indicated by the gates shown with purities >90% when 

reanalyzed by flow cytometry. The purified B cells were cultured with CD40L plus either LPS or 

CpG for 48 h, with PIB added during the final 5 h of culture before the relative percentages of IL-

10+ B cells within the indicated gates was determined. Similar results were obtained in 2 

independent experiments. (F) Ex vivo CD24hiCD27+ B cells are the predominant source of 

secreted IL-10. Purified blood B cells were sorted into the CD24hiCD27+ and CD24lowCD27- B 

cell subsets as in (E) and cultured with the indicated stimuli for 72 h. IL-10 secreted into the 

culture supernatant fluid was quantified by ELISA. Bar graphs indicate mean IL-10 (±SEM) 

concentrations from triplicate ELISA determinations. Significant differences between means 

from CD24hiCD27+ and CD24lowCD27- B cells are indicated: **, p<0.01. Differences between 

means from cells in media or with stimuli are indicated: ##, p<0.01. (G) B10 cell proliferation in 

vitro. Blood mononuclear cells were labeled with CFSE and cultured with CD40L and CPG (top 

panels) or CD40L and LPS (top panels) for 48-96 h, with PIB added for the last 5 h of culture. 

Histograms (right) represent CFSE expression by the IL-10+ (thick line) or IL-10- (thin line) B 

cell subsets. Results are representative of two independent experiments.  

 

Figure 6. B10 cell regulation of innate immunity. (A) B10 cell effects on mitogen-stimulated T 

cell cytokine production. Purified blood CD24hiCD27+ or CD24lowCD27- B cells were stimulated 

with CD40L plus CpG for 24 h, isolated, and then cultured with CD3 mAb-stimulated CD4+ T 
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cells for 72 h. After PMA plus ionomycin stimulation, CD4+ T cell TNF-α expression was 

assessed by flow cytometry (heavy lines). CD4+ T cells cultured alone are shown as positive 

controls (thin lines). Background cell staining using unstimulated T cells is shown (shaded lines) 

(B) B10 cells regulate monocyte cytokine production. Purified blood CD24hiCD27+ or 

CD24+CD27- B cells were stimulated with CD40L plus CpG for 24 h, and were cultured with 

blood monocytes for 20 h before cytoplasmic TNF-α expression by CD14+ monocytes was 

assessed after 4 h of LPS stimulation (heavy lines). Anti-IL-10 mAb was added to some cultures 

as indicated (dashed lines). Monocytes cultured alone are shown as positive controls (thin lines), 

with background cell staining using unstimulated monocytes shown (shaded lines). (A, B) 

Results represent those obtained in ≥2 independent experiments. 

 

Figure 7. Blood B10 cell frequencies in patients with autoimmune disease. (A) Representative B 

cell cytoplasmic IL-10 expression by control (Ctrl) individuals, and lupus (SLE), rheumatoid 

arthritis (RA), Sjögren’s syndrome (SjS), blistering skin disease (BD), and multiple sclerosis 

(MS) patients with relatively high B10 cell frequencies after in vitro CpG+PIB stimulation for 5 

h. B10+B10pro cell maturation was induced by 48 h CD40L+CpG stimulation, with PIB added 

during the final 5 h of culture. Percentages indicate IL-10+ B cell frequencies among CD19+ B 

cells. (B) IL-10+ B cell frequencies as in (A) with each dot representing single individuals. 

Horizontal bars indicate group means. The solid horizontal lines indicate means plus 2 SD (95% 

confidence interval) for controls, while dashed lines represent means plus 2 SD for all values. 

The patients are described in Table 1. Significant differences between means of patient groups 

and healthy controls are indicated: *p<0.05, **, p<0.01. (C) Relative frequencies of B10 cells 

and B10+B10pro cells identified for control individuals and patients with autoimmune disease as 

in (B) compared after CpG or LPS stimulation with each dot representing an individual. (D) 

Relationship between cytoplasmic IL-10 expression levels and B10+B10pro cell frequencies in 

control individuals and patients after stimulation with CD40L+CpG, with PIB added during the 

final 5 h of 48 h cultures. Linear mean fluorescence intensities (MFI) for IL-10+ and IL-10- B 
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cells were determined using the gates indicated in (A) with the values shown representing a ratio 

of IL-10+ to IL-10- MFIs. A linear regression line (± 95% prediction bands, dashed lines) is 

shown for reference. 
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