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Abastract 

The Ran GTPase system regulates the direction and timing of several cellular events, 

such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope 

assembly in telophase.  To gain insight into the Ran system’s involvement in chromatin 

formation, we investigated gene silencing at the telomere in several mutants of the 

budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran 

system.  A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the 

telomere, and partial disruption of the nuclear Ran binding factor, yrb2-Δ2, increased this 

silencing.  The reduced telomere silencing in rna1-1 cells was suppressed by a high 

dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein 

accumulated in the rna1-1 mutant.  These results suggest that RanGAP is required for 

the heterochromatin structure at the telomere in budding yeast.  
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Introduction 

Heterochromatin is cytologically detected in nuclei as a condensed part of the 

genome.  It is present in telomeric and centromeric areas, and interacts with the nuclear 

matrix to maintain the chromosomal stability.  Repetitive sequences are often found in 

heterochromatic regions, and transcription within these regions is strongly repressed.  In 

Saccharomyces cerevisiae, the telomere, subtelomere, rDNA region on Chromosome XII, 

and the silent mating loci on Chromosome III have heterochromatic features [1, 2].  

These regions in chromatin are highly condensed, replicate in the late S phase, and bind to 

nuclear periphery [3, 4].  The silent information regulator proteins, Sir2/3/4, are essential 

for establishing silencing in these regions [2].   

The Sir3 protein interacts with histone H3 that is methylated at lysine 4, Rap1, 

and the Ku complex, and none of these interactions is dispensable for telomere silencing 

[5, 6, 7].  Sir3 could be the limiting factor for silencing at the telomere, because a high 

dosage of the SIR3 gene extends the transcriptional silencing region farther from the ends 

of the chromosome [8].  Furthermore, Sir3’s silencing function at the telomere is 

regulated by its phosphorylation by MAP kinase and protein phosphatase 2A (PP2A), 
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under control of the target of rapamycin (TOR) system in response to cellular stress [9, 

10].   

 The Ras-like nuclear small G protein, Ran plays a key role in nuclear-cytosolic 

transport, mitotic spindle formation, and nuclear envelope assembly in the late M phase 

[11].  Ran predominantly localizes to the nucleus. Some nuclear Ran is binds to 

chromatin, which it does by different mechanisms, either dependent on or independent of 

RCC1, which catalyzes guanine nucleotide exchange on Ran [12].  The 

chromatin-bound Ran induces chromosomal decondensation, nuclear envelope assembly, 

and formation of the nuclear pore [13].  During interphase, the GTPase-activating 

protein for Ran, RanGAP, mainly localizes to the cytosol, but in mitosis, it functions at 

the kinetochore and mitotic spindles, in higher eukaryotes [14].  The RanGAP protein 

sequence contains a nuclear localization signal (NLS) and 2 nuclear export signals (NES), 

and its localization is dependent on Crm1/exportin [15].  In Schizosaccharomyces pombe, 

the cla4 and snf2SR genes, which encode histone H3 methyltransferase, which is 

involved in heterochromatin formation and chromatin remodeling factor homologue, 

respectively, were isolated as multicopy suppressors for rna1 temperature-sensitive (Ts) 
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mutants [16].  The Rna1 protein in Sch. pombe interacts directly with histone H3 in vitro, 

and this interaction stimulates the methylation of histone H3 on K9 by Cla4 in vitro [17].  

In S. cerevisiae, the overproduction of Prp20, an RCC1 homologue, weakens telomere 

silencing, and Gsp1, a Ran homologue, bind to Sir4, in which the N-terminus is deleted 

[18].  Together, these findings indicate that the Ran system might be involved in the 

regulation of heterochromatin structure.   

To investigate the possible role of the Ran system in chromatin regulation at the 

telomere, we examined telomere silencing in several S. cerevisiae mutants with defects in 

Ran system genes.  A silencing deficiency and hyperphosphorylation of Sir3 were found 

in an rna1-1 mutant, and the silencing deficiency was suppressed by high dosages of the 

SIR3 gene or the SIT4 gene, which encodes silencing information regulator, or PP2A.  

Furthermore, the disruption of SNF2, which encodes a chromatin remodeling factors, 

enhanced the telomere-silencing deficiency of rna1-1.  On the other hand, gsp1 and 

yrb2-Δ2 mutants showed increased gene silencing at the telomere compared with 

wild-type cells.  These results suggest that the Ran system controls the formation of 

heterochromatin at the telomere in S. cerevisiae.   
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Materials and methods  

Strains and media 

The S. cerevisiae strains used are listed in Table 1.  Escherichia coli strain 

DH5α was used for plasmid construction.  The culture media, transformation techniques, 

and genetic manipulations for yeast cells were as described previously [19].  The URA3 

marker that was designed to be inserted at the ADH4 locus in the vicinity of the telomere 

of the left arm of chromosome VII and the SIR3-Flag fusion gene were genetically 

introduced from previously constructed strains [10].  The gene disruption of SNF2, 

snf2::kanMX4, was genetically derived from yeast strain BY4742 (EUROSCARF). 

 

Plasmid construction 

The RNA1 DNA was amplified from genomic DNA prepared from the S. 

cerevisiae wild-type strain W303-1A [20] using the primers, 

5’-AACATGAGCTCCTTAGGTGC-3’ and 5’-ACCCTTATTATCGGGAGCTC-3’.  

The resulting 2.4-kb PCR product was digested with SacI (Takara Bio Inc., Japan), and 

cloned into YEplac181 [21] to produce plasmid YEpLRNA1.  The DNA fragment 

isolated from YEpLRNA1 by digestion with EcoRI and SalI (Takara Bio Inc., Japan), 
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containing RNA1, was cloned into pRS316 [22] to yield plasmid pRSRNA1.  The DNA 

fragment isolated from YCpSIT4 (kindly provided by Drs. Sakumoto and Harashima) by 

digestion with BamHI (Takara Bio Inc., Japan), containing SIT4, was cloned into 

YEplac181 and YEplac112 [21] to produce plasmids YEpLSIT4 and YEpTSIT4, 

respectively.   The DNA fragment isolated from p195YRB2 [23] by digestion with 

BamHI and HindIII (Takara Bio Inc., Japan), containing YRB2, was cloned into 

YEplac112 to produce plasmid YEpTYRB2.  The DNA fragment isolated from 

pTKS-yrb2-Δ2 [34] by digestion with SalI and EcoRI (Takara Bio Inc., Japan), 

containing the promoter and N-terminus of YRB2 in yrb2-Δ2, was cloned into YEplac112 

to yield plasmid YEpy2D2. 

To examine dosage effect of the SNF2 gene to expression of URA3 at the 

telomere in the rna1-1 cells, we disrupted the URA3 gene on pSY286 [24] by 

homologous recombination of the mutated PCR product, which was synthesized with the 

primers 5’-GATAAATCTGTCGAAAGCTACATATAAGG-3’ and 

5’-CAAAAGGCCCTAGGTTCCTTTGTTAC-3’ introducing lack of translational 

initiation codon and frame shift to URA3.   Wild-type strain NBW5 [25] harboring 
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pSY286, which contained 2μ, URA3, SNF2-myc, and Saccahromyces kluyveri HIS3, was 

transformed with the PCR product described above, and selected on histidine drop-out 

and 5FOA plate.  The plasmid DNA, which was harvested from the survived 

transformants, was confirmed His+ Ura- phenotype in the re-transformants, and named 

pSY286u. 

 

Analysis of Sir3 phophorylation  

Yeast cells bearing a SIR3-Flag fusion gene [10] were grown to late logarithmic 

phase in 5 ml of YPDA liquid medium, and approximately 107 cells were harvested.  

Cell extracts were prepared as described previously [26], and subjected to immunoblot 

analysis using the anti-Flag monoclonal antibody M2 (Sigma, USA).  The proteins were 

visualized with the enhanced chemiluminescence (ECL) kit, according to the 

manufacturer’s instructions (Amersham Pharmacia Biotech, UK).  

 

Chromatin immunoprecipitation (ChIP) assay 

Chromatin immunoprecipitation was performed as described previously [10].  
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The precipitated DNA was extracted with phenol-chloroform, and concentrated by 

ethanol precipitation.  Prior to the fixation, aliquots equal to half the sample volume 

were removed and treated as described above as the “input” control samples.  Eighteen 

cycles of PCR were performed in 50-μl volumes using EX-Taq (Takara Bio Inc., Japan) 

with primers for the Y’ subtelomere and control gene locus, without reaching a plateau 

phase, as described previously  [10].  The PCR products were separated in a 1% agarose 

gel and stained with ethidium bromide.  
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Results and discussion 

Telomere silencingability in mutants of the Ran-RCC1 genes  

Ran localizes to chromatin by different mechanisms, either dependent on or 

independent of RCC1, but little is known about the purpose Ran’s chromatin localization.  

To examine Ran’s possible functions in heterochromatin formation, we investigated gene 

silencing at the telomere in S. cerevisiae mutants in Ran, RCC1, and RanGAP.  As a 

marker gene, URA3-TEL, URA3 attached to telomere sequence as described in Materials 

and methods [27], was genetically introduced into each mutant.  The expression level of 

URA3 was estimated by the efficiency of cell growth on a uracil drop-out plate or with 1 

mg/ml 5FOA.  Slower growth on the uracil drop-out plate represents greater silencing of 

URA3 gene expression at the telomere, and slower growth on the 5FOA plate represents a 

silencing deficiency, because URA3-expressing cells are sensitive to 5FOA.  Only the 

rna1-1 mutant, harboring a Ts mutation in the RanGAP gene, showed a silencing 

deficiency, and greater silencing was observed in the gsp1-1268 mutant compared with 

wild-type (Fig. 1A). The observation that a Ts mutation of the RanGAP gene caused a 

silencing deficiency are consistent with the recent finding that the overproduction of 
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Prp20 (RanGEF) weakens telomere silencing [18], although we did not observe any 

alterations in telomere silencing in the prp20-1 cells under our assay conditions.  

The Sir complex plays a crucial role in gene silencing in S. cerevisiae [6, 8].  

Telomere silencing requires the Sir complex to bind with Rap1, the Ku complex, and 

K4-methylated histone H3 [5, 26], and the amount of Sir3 protein on the telomere 

influences the level of silencing [8].  In growth condition of this experiment, nuclear 

localization of Gal4-GFP fusion protein was not altered in the rna1-1 cells (data not 

shown).  We therefore used a ChIP assay to investigate the amount of Sir3 protein on the 

subtelomeric region in rna1-1 cells.  To compare strains on an identical genetic 

background, the empty vector or pRSRNA1 was introduced into the N619-7A strain 

(rna1-1 SIR3-Flag::LEU2).  We found that the amount of Sir3 protein on the Y’ 

subtelomere was lower in rna1-1 cells transformed with empty vector than in those 

transformed with pRSRNA1 (Fig. 1B).  This ChIP assay result suggest that the 

heterochromatin structure at the subtelomere is altered in rna1-1 cells.   

 

Multi-copy suppression of the silencing defect in rna1-1 cells 
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Hyperphosphorylation of Sir3, which is a rate-limiting factor for telomere 

silencing, was recently observed in sit4 cells, which lack one of the PP2As.  Moreover, 

the sit4 cells also exhibit a silencing deficiency and a slightly shortened telomere [10].  

Therefore, we examined whether high-dosages of the SIR3 or SIT4 gene would affect the 

silencing in rna1-1 cells.  Transformants of strain N585-5A (rna1-1 adh4::URA3-TEL), 

harboring empty vector, SIR3, or SIT4 on a multicopy plasmid, were examined for their 

ability to grow on 5FOA or below the restrictive temperature.  Either SIR3 or SIT4 on a 

multicopy plasmid partially suppressed the silencing deficiency at the telomere of rna1-1 

cells, but neither rescued the temperature sensitivity of the rna1-1 mutation (Fig. 2A).  

This pleiotropy suggests that the cause of the temperature-sensitivity was distinct from 

that causing the silencing deficiency at the telomere in rna1-1 cells. Highly 

phosphorylated Sir3 is released from the telomere and reduces telomere silencing [9], and 

also sit4 cells, which lack one of the PP2As, accumulate highly phosphorylated Sir3 

protein and have a silencing deficiency [10].  We therefore examined the 

phospohorylation of Sir3 protein by immunoblot analysis.  In rna1-1 cells, most of the 

Flag-tagged Sir3 migrated more slowly through the gel (Fig. 2B, lane 2).   
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Recently, our colleagues found that the rna1 mutation in Sch. pombe is 

suppressed by overexpression of the SNF2 homologue, which encodes a 

chromatin-remodeling factor [16], and RanGAP1 in Sch. pombe interacts with globular 

domain of histon H3 [17].  On the other hand, Snf2 in S. cerevisiae loses chromatin 

association in hht2-11 mutant, which has point mutaion in globular domain in histone H3 

[28], and it is required for gene silencing [29].  To investigate whether Rna1 is involved 

in the silencing machinery of Snf2, we examined dosage effect of the SNF2 gene to the 

rna1-1 mutant.  High dosage of SNF2 did not suppress Ts phenotype in the rna1-1 

mutant unlike in Sch. pombe, but rescued silencing deficiency (Fig. 3A).  On the other 

hands, we constructed a double mutant of rna1-1 and snf2 and examined its silencing 

ability at the telomere (Fig. 3B).  In our strain’s background, the silencing deficiency in 

the snf2 disruptant was not significant, but it showed a tendency toward slower growth on 

the 5FOA plate.  However, a drastic growth defect on the 5FOA plate was observed in 

rna1-1 snf2 double mutant compared with the rna1-1 mutant. Thus, the SNF2 gene 

encoding a chromatin remodeling factor took a crucial role for silencing at the telomere in 

rna1-1 cells.   
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In Ts rna1 mutants of Sch. pombe, a silencing deficiency is observed at the 

centromere but not at the telomere, in contrast to S. cerevisiae  [16].  Since there are 

great differences in the structural features of the centromere, subtelomere, and telomere 

between S. cerevisiae and Sch. pombe, the regulatory aspects of heterochromatin 

formation are likely to be different.  However, similar phenomena regarding 

chromosomal segregation are observed in these two yeasts.  In S. cerevisiae, rna1-1 cells 

show more frequent aneuploidy [30], while mitotic chromosomal segregation is deficient 

in rna1 mutants in Sch. pombe [16].  

 

The nuclear factor YRB2, in the Ran-RCC1 system, controls telomere silencing 

Yrb2, which possesses a Ran-binding domain at its C-terminus, is located 

inside the nucleus, and its localization is dependent on its N-terminus [31].  In vitro 

experiments showed that Yrb2 enhances the RanGAP activity of the RNA1 gene product 

[23].  Therefore, we examined silencing in YRB2 mutants (Fig. 4A).  Although a 

complete null mutation of YRB2, yrb2-Δ1, did not affect S. cerevisiae growth on any 

medium, yrb2-Δ2, which lacked only the Ran-binding domain at the C-terminus, showed 
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slower growth on the uracil drop-out plate.  This result suggests that the N-terminal 

portion of Yrb2 might have a regulatory function in telomere silencing.  To investigate 

this possibility further, we introduced a plasmid harboring the yrb2-Δ2 gene into 

wild-type cells (Fig. 4B).  Interestingly, the cells transformed by the yrb2-Δ2 plasmid 

showed significantly slower growth on the uracil drop-out plate.  In addition, 

introduction of a plasmid harboring the entire YRB2 gene did not restore the slowed 

growth of the yrb2-Δ2 cells.  These observations indicated that the phenotype of 

increased silencing at the telomere in yrb2-Δ2 was dominant.  The dominant phenotype 

of the N-terminus of Yrb2 in silencing regulation suggests that the N-terminus acts to 

open the heterochromatin structure, and the C-terminus has a suppressive role in that 

function.   
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Table1. S. cerevisiae strains used in this study 

 

Strain    Genotype   Source 

 

NBW5 MATα trp1 leu2 his3 ade2 ura3 can1    [25] 

N309-1C MATα trp1 leu2 his3 ade2 ura3 lys2 can1 adh4::URA3-TEL DIA5-1* [10] 

N585-5A MATa rna1-1 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL DIA5-1* This study 

N586-6B MATα prp20-1 trp1 leu2 his3 ade2 ura3 can1 adh4:: URA3-TEL DIA5-1* This study 

N587-2A MATa gsp1::HIS3::gsp1-1268::LEU2 trp1 leu2 his3 ade2 ura3 can1  This study 

adh4::URA3-TEL DIA5-1* 

N588-4A MATα gsp1::HIS3::gsp1-1757::LEU2 trp1 leu2 his3 ade2 ura3 can1 This study 

adh4::URA3-TEL DIA5-1* 

N589-1D MATa gsp1::HIS3::GSP1::LEU2 trp1 le2 his3 ade2 ura3 can1  This study 

adh4::URA3-TEL DIA5-1* 

N619-7A MATα rna1-1 SIR3-5FLAG::LEU2 tp1 leu2 his3 ade2 ura3 can1  This study 

N619-7B MATα SIR3-5FLAG::LEU2 tp1 leu2 his3 ade2 ura3 can1  This study 

N688-1B MATa yrb2-Δ2::LEU2 tp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL  This study 

DIA5-1*  

N689-5A MATα yrb2-Δ1::LEU2 tp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL  This study 

DIA5-1* 

BY4742 MATα snf2::kanMX4 lysΔ0 leu2Δ0 his3Δ1 ura3Δ0   EUROSCARF 

N752-7B MATα snf2::kanMX4 rna1-1 trp1 leu2 his3 lys2 ura3 can1 adh4::URA3-TEL  This study 

N752-7C MATα snf2::kanMX4 trp1 leu2 his3 lys2 ura3 can1 adh4::URA3-TEL This study  

N755-15C MATα rna1-1 trp1 leu2 his3 ade2 ura3 can1 adh4::URA3-TEL   This study 

 

* DIA5-1 refers to the directed integration of ADE2 adjacent to the telomere of the right arm of chromosomeV [27]. 
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Figure legends  

 

Fig. 1.  Silencing ability of Ran-RCC1 mutants.  (A) Expression of URA3 at the 

telomere was altered in some of Ran-RCC1 mutants.  The wild-type (N589-1D), rna1-1 

(N585-5A), prp20-1 (N586-6B), gsp1-1268 (N587-2A), and gsp1-1757 (N588-4A) 

strains, which all harbored the URA3 marker at the end of chromosome VII, were cultured 

in YPDA liquid medium and spotted on uracil drop-out, complete synthetic, and 5FOA 

plates.  The culture of each strain was diluted to an OD660 nm of 1.0.  The four patches in 

each row represent 10-fold serial dilutions.  The cells were incubated for 3 days at 27oC.  

(B) The binding of Sir3 to the Y’ subtelomere was reduced in rna1-1 cells.  

Transformants derived from the rna1-1 (N619-7A) strain harboring empty vector 

(pRS316) or pRSRNA1 were compared in a ChIP assay with Flag-tagged Sir3.  The 

co-precipitated DNA was analyzed as described previously [10].  The PCR products of 

the Y’ subtelomere and YGL213c/SKI8 were 0.9 kbp and 0.4 kbp in length, respectively.   

 

Fig. 2.  Multicopy suppression of the silencing deficiency in rna1-1 cells.  (A) The 

silencing deficiency in rna1-1 cells was suppressed by the introduction of SIT4 or SIR3 
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on a multicopy plasmid, but the temperature sensitivity was not.  The rna1-1 (N585-5A) 

strain was transformed with vector (YEplac181), RNA1 (YEpLRNA1), SIR3 (pKAN63; 

[32]), or SIT4 (YEpLSIT4) plasmid.  Each transformant was cultured in leucine drop-out 

liquid medium, and spotted on leucine drop-out plates with and without 5FOA, as 

described in Fig. 1.  The control and 5FOA plates were incubated at 27 oC for 3 days, and 

temperature sensitivity was examined at 35 oC.  (B) Modification of Sir3 protein in 

Ran-RCC1 mutants.  The slower migrating bands of Flag-tagged Sir3 immunoblotted 

with an anti-Flag M2 monoclonal antibody represent phosphorylated Sir3.  Extracts 

derived from the wild-type (N619-7B, lane 1), rna1-1 (N619-7C, lane2) were separated 

by 6% SDS PAGE, and visualized as described in Materials and methods. 

 

Fig. 3.  Interactions between RNA1 and SNF2 in telomere silencing.  (A) High dosage 

of the SNF2 gene suppressed silencing deficiency, but not Ts growth in rna1-1.  The 

rna1-1 (N755-15C) strain harboring vector (pRS313), or SNF2 (pSY286u) plasmid, and 

wild-type (N309-1C) strain harboring vector plasmid were cultured in histidine drop-out 

liquid medium, and spotted on histidine drop-out plates with and without 5FOA, as 
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described in Fig. 1.  The control and 5FOA plates were incubated at 27 oC for 3 days, and 

temperature sensitivity was examined at 35 oC.  (B) The silencing deficiency of rna1-1 

was enhanced by the lack of the SNF2 gene. The wild-type (N309-1C), rna1-1 

(N585-5A), rna1-1 snf2::kanMX4 (N752-7B), and snf2::kanMX4 (N752-7C) strains, 

which all harbored the URA3 marker at the end of the left arm of chromosome VII, were 

cultured in YPDA liquid medium and spotted on complete synthetic and 5FOA plates, as 

described in Fig. 1.  The spotted plates were incubated at 27 oC for 3 days.   

 

Fig. 4.  Increased silencing at the telomere in a yrb2 mutant, which lacked the 

Ran-binding domain but retained the N-terminal portion of Yrb2.  (A) The wild-type 

(N309-1C), yrb2-Δ1 (N689-5A) and yrb2-Δ2 (N688-1B) strains were cultured and 

spotted on uracil drop-out, complete synthetic, and 5FOA plates, as described in Fig. 1.  

The spotted plates were incubated at 27 oC for 3 days.  Bottom panel represents the 

structural features of the YRB2 locus in each mutant, which were described in detail 

previously [23].  LEU2 DNA was inserted into the deleted region in yrb2.  (B) The 

increased silencing phenotype of the yrb2-Δ2 mutation was dominant.  The wild-type 
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(N309-1C) and yrb2-Δ2 (N688-1B) strains were transformed with vector (YEplac112) or 

yrb2-Δ2 (YEpy2D2) plasmid, and vector (YEplac112) or YRB2 (YEpTYRB2) plasmids, 

respectively.  Each transformant was cultured in tryptophan drop-out liquid medium, 

and spotted on tryptophan and uracil drop-out and tryptophan drop-out plates, as 

described in Fig. 1.  The spotted plates were incubated at 27 oC for 3 days.     
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Fig. 3B
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Fig. 4B
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