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Suppression of fibrogenic gene expression and liver fibrosis using a synthetic 
prostacyclin agonist
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ABSTRACT
Chronic injury and inflammation in the liver are associated with the development of liver fibrosis. 
Expressions of transforming growth factor-β1 (TGF-β1) and hepatocyte growth factor (HGF) par-
ticipate in the development and suppression, respectively, of liver fibrosis. Here, we investigated 
the effect of ONO-1301, a synthetic prostaglandin I2/IP receptor agonist, on liver fibrosis and on 
changes in the hepatic expressions of genes that regulate the progression of fibrosis in mice. Liver 
fibrosis was caused by the repetitive administration of CCl4 for 12 weeks, with ONO-1301 being 
administered during the last 4 weeks. The expressions of fibrogenic genes: TGF-β1, connective 
tissue growth factor, α-smooth muscle actin, type-I collagen, and type-III collagen were upregulat-
ed by chronic liver injury, which was associated with the expansion of myofibroblasts and the de-
velopment of liver fibrosis. Treatment with ONO-1301 increased hepatic HGF mRNA expression, 
but decreased the expressions of TGF-β1, connective tissue growth factor, α-smooth muscle actin, 
and type-I and type-III collagen, which was associated with the suppression of myofibroblast ex-
pansion and liver fibrosis. Neutralizing antibody for HGF significantly attenuated the suppressive 
action of ONO-1301 on liver fibrosis and fibrogenic gene expressions. The therapeutic action of 
ONO-1301 on liver fibrosis may have occurred partly through HGF-mediated pathways.

Chronic injury and inflammation are associated with 
the onset of fibrotic change in tissues, particularly in 
structurally organized and complicated tissues com-
posed of epithelial and mesenchymal cells, such as 
the liver, kidney, and lung. Liver fibrosis/cirrhosis is 
caused by long-term alcohol abuse or hepatitis viral 
infection. Advanced cirrhosis is generally irreversible 
and is often associated with variceal hemorrhage  
or the development of hepatocellular carcinoma. 
Hence, liver cirrhosis is a major cause of morbidity 
and mortality with liver diseases worldwide. Ap-

proaches that can promote the remodeling of the ex-
cess extracellular matrix that has been associated 
with the reorganization of the hepatic structure and 
function are critical for the establishment of a thera-
peutic base.
　Growth factors play roles in the cellular and mo-
lecular pathways that lead to fibrogenic events. 
Among the growth factors, transforming growth 
factor-β1 (TGF-β1) is a key mediator of fibrogenesis 
(2, 11, 23). TGF-β1 transcriptionally activates the 
expression of connective tissue growth factor (CTGF) 
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ONO-1301. We suggest that ONO-1301 exerts ther-
apeutic action on liver fibrosis partly through HGF-
mediated pathways, which gives it considerable 
therapeutic value.

MATERIALS AND METHODS

Animal experiments and reagents. Eight- to nine-
week-old female ICR mice (SLC, Shizuoka, Japan) 
were used. Liver fibrosis was caused by the repeti-
tive administration of CCl4 in mice (Fig. 1A). CCl4 
(25% in w/v) in olive oil was injected subcutane-
ously at 4.0 mL/kg body weight for 12 weeks. 
ONO-1301 (0.5% in w/v in carboxymethylcellulose) 
was perorally administered at a dose of 3.0 mg/kg 
body weight. Anti-rat/mouse HGF IgG in saline was 
intraperitoneally administered at 8.0 mg/kg body 
weight. Animal experiments were carried out ac-
cording to the Guidelines for Experimental Animal 
Care issued by the Prime Minister’s Office of Japan. 
The administration of reagents and the collection of 
tissues were carried out by Nihon Bioresearch, Inc. 
(Hashima, Gifu, Japan).
　ONO-1301 was obtained from ONO Pharmaceuti-
cal Co., Ltd. (Osaka, Japan). Recombinant rat HGF 
was expressed in Chinese hamster ovary cells and 
purified from the culture supernatant, essentially as 
described elsewhere (36). The purity of rat HGF ex-
ceeded 98% as determined by SDS-polyacrylamide 
gel electrophoresis and protein staining with Coo-
massie brilliant blue. Female Japanese white rabbits 
(Japan SLC, Hamamatsu, Japan) weighing about 
2 kg were immunized by subcutaneous injection of 
recombinant rat HGF (50 μg/rabbit) in complete 
Freund’s adjuvant, and boosted once or twice at 
2-week intervals by injecting rat HGF in incomplete 
Freund’s adjuvant. The antiserum titer was moni-
tored using an enzyme-linked immunosorbent assay. 
IgGs from anti-rat HGF serum were purified, using 
Protein A Sepharose Fast Flow (GE Healthcare, UK).

RNA preparation and quantitative RT-PCR. Total 
RNA was extracted using Sepasol®-RNA I Super 
(Nacalai Tesque, Kyoto, Japan). First-strand cDNAs 
were synthesized using SuperScript III Reverse 
Transcriptase (Invitrogen, Carlsbad, USA) with 
oligo(dT)12-18 primers. The primer sequences for 
mRNA quantification are listed in Fig. 1B. A PRISM 
7000 real-time PCR system (Applied Biosystems, 
Foster City, USA) and a Power SYBER Green PCR 
Master Mix (Applied Biosystems) were used for 
amplification and online detection. Experimental 
samples were matched to the standard curve gener-

and collagen via the Smad signaling pathways (4, 8, 
31). TGF-β1 plays a principal role in the differentia-
tion of fibroblasts and fibroblastic cells into myofi-
broblasts, which is the predominant cell type that is 
responsible for tissue fibrosis (23, 34). TGF-β1 en-
hances the expressions of tissue inhibitor of metal-
loproteinase-1 and plasminogen activator inhibitor-1, 
thereby promoting the accumulation of an extracel-
lular matrix (23, 32). However, hepatocyte growth 
factor (HGF) inhibits the profibrotic action of 
TGF-β1 by stabilizing or inducing Smad transcrip-
tional corepressors (5, 39). HGF facilitates either the 
expression or the activation of proteases involved in 
the proteolysis of an extracellular matrix, including 
matrix metalloproteinases, and urokinase-type plas-
minogen activators (9, 30). TGF-β1 and HGF have 
counteractvive effect on the proliferation of normal 
epithelial cells, and HGF facilitates the apoptosis of 
myofibroblasts (16). Previous studies using animal 
models of tissue fibrosis have provided evidence 
that HGF exerts anti-fibrotic actions on tissue fibro-
sis, including liver fibrosis/cirrhosis (20, 27, 35).
　ONO-1301 was developed as a new type of pros-
taglandin I2 (PGI2)/IP receptor agonist lacking the 
typical prostanoid structures, including a 5-mem-
bered ring and allylic alcohol (12). Prostacyclin and 
its analogues are not stable in vivo, whereas ONO-
1301 is chemically and biologically more stable 
than prostacyclin and its analogues because of the 
absence of prostanoid structures. Furthermore, the 
presence of a 3-pyridine radical in ONO-1301 con-
fers inhibitory activity for thromboxane synthase, by 
which ONO-1301 escapes the desensitization of the 
action. Because we previously showed that PGI2 an-
alogues induce the gene expression of HGF (22), 
we speculated that ONO-1301 might enhance ex-
pression of the HGF gene and exert biological ac-
tion through the induction of HGF. The onset of 
acute liver injury was strongly suppressed in a 
mouse model by the administration of ONO-1301, 
while the suppression of acute liver injury by ONO-
1301 was reversed by the neutralization of endoge-
nous HGF (36).
　In the present study, the therapeutic action of 
ONO-1301 on liver fibrosis and the possible in-
volvement of HGF in its action were examined. The 
expression of fibrogenic growth factors TGF-β1 and 
CTGF along with the expansion of myofibroblasts 
and collagen in the liver was decreased by ONO-
1301, and this was associated with the suppression 
of hepatic extracellular matrix accumulation. Neu-
tralizing antibody for HGF significantly, though not 
entirely, attenuated the anti-fibrogenic action of 
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red staining, using computer-aided image analysis 
with Lumina Vision (Mitani Corporation, Fukui, Ja-
pan). At least 3 fields at 100-fold magnification 
were captured and assessed in all the samples. For 
immunohistochemical detection of α-smooth muscle 
actin (α-SMA), the tissue sections were incubated 
with anti-α-SMA antibody (DAKO) for 1 h, and 
subsequently with horseradish peroxidase-conjugat-
ed antibody against mouse immunoglobulin (DAKO) 
for 1 h. The sections were visualized in chromogen-
ic substrate solution containing 3,3’-diaminobenzi-
dine hydrochloride and 0.01% hydrogen peroxide.

Statistical analysis. Quantitative data are presented 
as the mean values ± SE. We used a Student’s t-test 
to determine the statistical significance. P < 0.05 
was considered significant.

RESULTS

Suppression of fibrous tissue expansion
Liver fibrosis was caused by the repetitive adminis-
tration of CCl4 in mice (Fig. 1A). Compared to the 
age-matched normal mice given saline alone, a sig-
nificant increase in accumulation of collagen fibers 
was seen at 8 weeks after the initiation of CCl4 ad-
ministration, as seen in blue in Masson-Trichrome 
staining or red in Sirius red staining (Fig. 2B, C). 
Masson-Trichrome and Sirius red staining have been 
used to visualize collagen fibers and determine the 

ated by amplifying serially diluted products using 
the same PCR protocol.

Immunoprecipitation and Western blot. Tissues were 
homogenized in lysis buffer consisting of 20 mM 
Tris-HCl (pH 7.5), 150 mM NaCl, 10 mM EDTA, 
100 mM NaF, 2 mM Na3VO4, 1 mM phenylmethyl-
sulfonyl fluoride, 1 μg/mL aprotinin, and 2% Triton 
X-100, and were then incubated on ice for 30 min. 
After centrifugation, the supernatant was incubated 
with antibodies and precipitated by protein G-Sep-
harose at 4°C overnight. Immunoprecipitates were 
separated by 6% SDS-PAGE and electroblotted onto 
a polyvinylidene difluoride membrane (Bio-Rad). 
The membrane was incubated with 5% BSA in 
phosphate-buffered saline (PBS) at 4°C overnight, 
blotted with anti-α-SMA antibody (DAKO, Glos-
trup, Denmark) for 2 h, and subsequently labeled 
with horseradish peroxidase-conjugated antibody 
against mouse immunoglobulin for 1 h. The resultant 
signals were detected using ECL Plus immunoblot-
ting detection reagents (Amersham Biosciences).

Histological analysis. For histopathology, tissues 
were fixed in 3.7% neutralized formaldehyde, em-
bedded in paraffin, and tissue sections were analyzed 
by hematoxylin-eosin staining. To evaluate fibrotic 
changes, tissue sections were subjected to Masson-
Trichrome and Sirius red staining. The fibrotic area 
was quantified in tissue sections subjected to Sirius 

Fig. 1　The primer sequences used for quantitative reverse transcription-PCR (A), and experimental schedule for liver fibro-
sis caused by CCl4 (B).
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Fig. 2　Histological suppression of liver fibrosis by ONO-
1301 administration. (A–C) Histological change of liver tis-
sues. Liver tissue sections were analyzed by hematoxylin-
eosin staining (A), Masson-Trichrome staining (B), and 
Sirius red staining (C). Bars represent 100 μm. Typical peri-
central (C) and periportal (P) regions are indicated by al-
lows in B and C. (D) Change in fibrotic areas. Fibrotic 
areas were determined by the image analysis in liver tissue 
sections subjected to Sirius red staining. 1301, ONO-1301. 
Each value represents the mean ± SE (n = 10 in each 
group). *P < 0.01 vs. normal (vehicle) group; #P < 0.05 vs. 
CCl4 group; ##P < 0.01 vs. CCl4 group; §P < 0.05 vs. 
CCl4 + 1301 group.
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particularly in the pericentral and periportal regions, 
and several α-SMA-positive cells expanded radially 
from the periportal regions. The expansion of 
α-SMA-positive cells in mice treated with CCl4 +
anti-HGF IgG was somewhat more obvious than 
what was seen in mice treated only with CCl4. The 
administration of ONO-1301 into CCl4-treated mice 
clearly suppressed the expansion of α-SMA-positive 
cells in the liver. When mice were administered an-
ti-HGF IgG in addition to CCl4 and ONO-1301, the 
suppressive effect of ONO-1301 on the expansion 
of α-SMA-positive cells disappeared because of the 
neutralization of HGF.
　Western blot analysis for α-SMA indicated that 
α-SMA expression in the livers of the control saline-
treated mice was mostly undetectable, while it was 
strongly increased at 8 weeks after CCl4 treatment 
(Fig. 3B). At 12 weeks, treatment with ONO-1301 
for 4 weeks clearly suppressed the hepatic expres-
sion of α-SMA. However, the suppressive action of 
ONO-1301 on α-SMA expression was inhibited by 
treatment with anti-HGF IgG. Thus, ONO-1301 sup-
pressed the expansion of α-SMA-positive myofibro-
blasts in CCl4-treated mice, and the suppressive 
action of ONO-1301 on myofibroblast expansion 
was at least partly attributable to HGF.

Change in fibrogenic gene expression
When HGF mRNA levels in the liver were analyzed 
by quantitative RT-PCR, CCl4 treatment did not 
change the HGF mRNA levels (Fig. 4), perhaps due 
to the increased expression of hepatic TGF-β1 (see 
below). ONO-1301 administration increased HGF 
mRNA expression 2.5-fold, compared with the level 
in control vehicle-treated mice (Fig. 4). We then an-
alyzed the hepatic gene expression that is involved 
in the signaling and accumulation of extracellular 
matrix proteins (Fig. 4). TGF-β1 and CTGF play a 
key role in the progression and pathogenesis of liver 
fibrosis (2, 11, 23). At 12 weeks after the initiation 
of CCl4 injection, the hepatic gene expressions of 
TGF-β1 and CTGF were increased 3.8- and 3.1-fold 
in mice, respectively, compared with saline-injected 
normal mice. Consistent with the up-regulation of 
TGF-β1 and CTGF expression, the gene expression 
of α-SMA, and type-I and type-III collagen were 
strongly induced after CCl4-treatment. ONO-1301 
significantly suppressed the gene expressions of 
TGF-β1, CTGF, α-SMA, type-I collagen, and type-
III collagen. Neutralization of HGF largely reversed 
the suppressive effect of ONO-1301 on the expres-
sion of these genes.

quantity of the fibrotic area in the liver (7, 14). Be-
cause expression of type-I, type-III, and type-IV col-
lagen genes was up-regulated in CCl4-induced liver 
fibrosis (28), fibrous regions may be composed of 
mainly type-I collagen and other types of collagens. 
The image analysis in tissue sections stained with 
Sirius red indicated that fibrous tissue was increased 
2.5-fold at 8 weeks, compared with saline-adminis-
tered normal mice (Fig. 2D). The accumulation of 
collagen fibers further progressed thereafter by con-
tinuing CCl4 administration, until 12 weeks after the 
initiation of CCl4 administration. Therefore, mice 
were divided into experimental groups at 8 weeks 
and administered either CCl4 + vehicles, CCl4 +
ONO-1301, or CCl4 + ONO-1301 + anti-HGF IgG.
　In control mice given CCl4 alone, the accumula-
tion of collagen fibers was obvious in the pericentral 
and periportal regions and in fibrous septa spread in 
the liver at 12 weeks (Fig. 2B). The administration 
of ONO-1301 clearly suppressed the accumulation 
of fibrous regions at 9 and 12 weeks (Fig. 2B, C). 
Image analysis indicated that ONO-1301 significant-
ly suppressed the increase in the fibrotic area to 
48.1 and 56.4% at 9 and 12 weeks, respectively, 
when the values in the vehicle-treated control and 
the CCl4-treated mice were assumed to be the base 
line and 100%, respectively. When mice were ad-
ministered neutralizing anti-HGF IgG in addition to 
CCl4 and ONO-1301, the suppressive effect of 
ONO-1301 on the expansion of fibrous regions was 
significantly abrogated by the neutralization of the 
endogenous HGF (Fig. 2B–D). These results indicat-
ed that ONO-1301 suppressed the progression of fi-
brotic change in the liver that was caused by 
repetitive injury and that the suppressive action of 
ONO-1301 was at least partly mediated by HGF.

Suppression of myofibroblast expansion
In the liver, hepatic myofibroblasts play a major role 
in the biosynthesis and deposition of extracellular 
matrix components such as type-I collagen during 
fibrotic changes, and hepatic myofibroblasts are 
mainly derived from hepatic stellate cells and portal 
fibroblasts following their activation and differentia-
tion (10). Because myofibroblasts are characterized 
by their expression of α-SMA, we analyzed the ex-
pansion of myofibroblasts in liver tissue by immu-
nostaining and Western blot for α-SMA (Fig. 3).
　In normal mice livers administered saline alone, 
the expression of α-SMA was very low with only  
a few sparsely distributed α-SMA-positive cells. 
Twelve weeks after treatment with CCl4 alone, many 
α-SMA-positive cells appeared and were distributed 
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Fig. 3　Decreased expression of α-SMA in liver tissues by ONO-1301 administration. (A) Accumulation and distribution of 
α-SMA-positive myofibroblasts and/or myofibroblast-like cells. A bar represents 100 μm. (B) Change in hepatic expression of 
α-SMA. Expression of α-SMA protein was analyzed by Western blot using liver tissue extracts.

DISCUSSION

The gene expression of HGF is transcriptionally 
regulated by different types of extracellular signal-
ing molecules, including interleukin-1, chemokines, 
growth factors, and prostaglandins (PGE1/E2 and 
PGI2) (6, 15, 22, 26, 33). Prostaglandin receptors 
are G-protein-coupled receptors that evoke different 
effectors and signaling pathways. The IP receptor 

for PGI2 activates adenylate cyclase upon ligand 
binding, thereby increasing the intracellular cAMP 
level. cAMP activates protein kinase-A (PKA), and 
the PKA-induced Ser133 phosphorylation in the 
cAMP response element binding protein (CREB) 
plays a major regulatory role in the transcriptional 
activation of target genes (24). The binding motif of 
CREB is located in the promoter region of HGF 
genes (18). We previously found that ONO-1301 
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Collectively, ONO-1301 enhanced the expression of 
HGF and exerted an anti-fibrotic action on different 
tissues, and the anti-fibrotic action of ONO-1301 
may have been at least partly mediated by HGF. 
These results suggest the importance of HGF in the 
anti-fibrotic action of ONO-1301 and that a com-
mon HGF-mediated mechanism underlies the anti-fi-
brotic action of ONO-1301.
　HGF exerts biological and physiological activities 
through the Met receptor tyrosine kinase (3, 27), 
and the anti-fibrotic action of the HGF-Met pathway 
has been demonstrated in different models for dif-
ferent tissues. In the liver, the selective loss of Met 
receptor in hepatocytes has accelerated the develop-
ment of liver fibrosis in response to chronic hepatic 
injury by CCl4 (19). By contrast, the administration 
of HGF and the expression of the HGF gene sup-
pressed the development of liver fibrosis/cirrhosis 
(20, 27, 35). HGF treatment accelerated the resolu-
tion of fibrosis in experimental animal models, in-

strongly enhanced the expression of HGF and in-
duced CREB-Ser133 phosphorylation, and that the 
biological activity of ONO-1301 that enhanced HGF 
expression was cancelled by a selective inhibition of 
PKA (36). Thus, ONO-1301 up-regulates the gene 
expression of HGF via an IP receptor-mediated sig-
naling pathway.
　Recent studies have shown that ONO-1301 en-
hances the expression of HGF in different tissues 
and suppresses interstitial fibrosis in the kidney, fi-
brotic changes in myocardium caused by ischemia-
reperfusion, and collagen deposition in bronchial 
tissue (13, 28, 37). It is important to note that the 
suppressive effect of ONO-1301 was partly reversed 
by the neutralization of endogenous HGF. We ob-
tained evidence that ONO-1301 suppressed the pro-
gression of liver fibrosis caused by chronic liver 
injury and that selective neutralization of HGF 
significantly abrogated the suppressive effect of 
ONO-1301 on liver fibrosis, although not entirely. 

Fig. 4　Changes in the mRNA expression of HGF, TGF-β1, CTGF, α-SMA, type-I collagen, and type III collagen. RNA was 
prepared from liver tissues and each mRNA level was analyzed by quantitative RT-PCR. 1301, ONO-1301. Each value rep-
resents the mean ± SE (n = 4 in each group). *P < 0.01 vs. normal (vehicle) group; #P < 0.05 vs. CCl4 group; ##P < 0.01 vs. 
CCl4 group; §P < 0.05 vs. CCl4 + 1301 group; §§P < 0.01 vs. CCl4 + 1301 group.
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