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Abstract 

 

Pim-3, a proto-oncogene with serine/threonine kinase activity, was enhanced in 

hepatocellular carcinoma (HCC) tissues. In order to address the roles of Pim-3 in HCC 

development, we prepared transgenic mice, which express human Pim-3 selectively in liver. 

The mice were born at a Mendelian ratio, were fertile and did not exhibit any apparent 

pathological changes in the liver until one year after birth. Pim-3-transgenic mouse-derived 

hepatocytes exhibited accelerated cell cycle progression. The administration of a potent 

hepatocarcinogen, diethylnitrosamine (DEN), induced accelerated proliferation of liver 

cells in Pim-3 transgenic mice in the early phase, compared to that observed for wild-type 

mice. DEN treatment induced lipid droplet accumulation with increased proliferating cell 

numbers 6 months after the treatment. Eventually, wild-type mice developed HCC with a 

frequency of 40 % until 10 month after the treatment. Lipid accumulation was accelerated 

in Pim-3 transgenic mice with higher proliferating cell numbers, compared to that observed 

for wild-type mice. Pim-3 transgenic mice developed HCC with a higher incidence (80 %) 

and a heavier burden, together with enhanced intratumoral CD31-positive vascular areas, 

compared to that observed for wild-type mice. These observations indicate that Pim-3 alone 

cannot cause, but can accelerate HCC development when induced by a hepatocarcinogen 

like DEN. 
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Introduction 

There were over 667,000 new cases of hepatocellular carcinoma (HCC) worldwide in 

2005. The 5-year survival rate of individuals with hepatic malignancy is only 8.9 % despite 

aggressive conventional therapy, making hepatic malignancy the second most lethal cancer 

among human malignancies (Farazi and DePinho, 2006; Umemura et al., 2009). HCC 

usually arises in conditions, that can cause liver cirrhosis, such as chronic hepatitis B and C 

viral infection, chronic alcohol consumption, and intake of food contaminated with 

aflatoxin-B1 (Zheng et al., 2007). These conditions generally provoke continuous rounds of 

hepatocyte damage in the setting of chronic hepatitis or liver cirrhosis, and eventually 

activate resident or inflammatory non-parenchymal cells to produce growth factors and 

cytokines (Otani et al., 2005). The produced factors can drive compensatory and aberrant 

proliferation of surviving hepatocytes and development of pre-malignant dysplastic nodules, 

which form the nucleus of neoplastic lesions. Only recently has the molecular analysis of 

human HCC unraveled many genetic and epigenetic alterations that result in the 

deregulation of key proto-oncogenes and tumor-suppressor genes including TP53, 

β-catenin, ErbB receptors family members, met and its ligand, hepatocyte growth factor 

(HGF), p16, E-cadherin and cyclooxygenase 2 (COX2) (Hosono et al., 1993). However, 

the roles of other proto-oncogenes and tumor suppressor genes in HCC development still 

remain elusive (Thorgeirsson and Grisham, 2002). 

We previously identified Pim-3, a proto-oncogene with serine/threonine kinase activity, 

as the gene selectively expressed in pre-malignant and malignant lesions of the mouse HCC 

model in HBV surface antigen transgenic mice (Fujii et al., 2005). Pim-3 was originally 

identified as a depolarization-induced gene, KID-1 in PC12 cells, a rat pheochromocytoma 

cell line (Feldman et al., 1998). Subsequently, Deneen and colleagues demonstrated that 

Pim-3 gene transcription was enhanced in the EWS/ETS-induced malignant transformation 

of NIH 3T3 cells (Deneen et al., 2003), suggesting the involvement of Pim-3 in 

tumorigenesis. Consistently, we observed that Pim-3 expression was enhanced in 

carcinomas but not in normal tissues of human endoderm-derived organs including liver 

(Fujii et al., 2005), pancreas (Li et al., 2006), colon (Popivanova et al., 2007), and stomach 
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(Zheng et al., 2008). Moreover, Pim-3 can inactivate a pro-apoptotic molecule, Bad, and 

maintain the expression of an anti-apoptotic molecule, Bcl-XL, and prevent apoptosis of 

human pancreatic cancer and colon cancer cells (Li et al., 2006). Likewise, the ablation of 

endogenous Pim-3 by short interfering RNA reduced the cell growth of human HCC cell 

lines by inducing their apoptosis (Fujii et al., 2005). 

These observations prompted us to investigate the effects of liver-specific Pim-3 

overexpression on HCC development. Although we could not observe spontaneous HCC 

development in liver-specific Pim-3 transgenic mice, these mice developed HCC with a 

higher incidence and a heavier hepatocarcinoma burden, when a potent hepatocarcinogen, 

diethylnitrosamine (DEN) was administered during the suckling period. These results 

suggest that Pim-3 can accelerate but is not likely the primary inducer of HCC 

development. 
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Materials and Methods 

 

Preparation of Pim-3 transgenic mice 

The mouse albumin enhancer/promoter region (Fig. 1A) was a kind gift of Dr. Palmiter 

(University of Washington, Seattle, WA, USA) (Pinkert et al., 1987). Full-length human 

Pim-3 cDNA was subcloned 3’ to this albumin enhancer/promoter gene. After being 

linearized by digestion with Not I, the gene was introduced into fertilized oocytes of 

C57BL/6 using a standard transgenic technique. Genomic DNA was isolated from the tail 

of the founder and offspring using Nucleospin tissue kit (Macherey Nagel, 

Neumann-Neander-Str 6-8 D 52355 Düren, Germany) and genotyping was performed by 

polymerase chain reaction (PCR) with a specific pair of primers including a sense primer 

(5’TTG AAC TCA TCG ACC TGC AGG CAT 3’) flanking the upstream albumin promoter 

and an antisense primer (5’ GCC TTC TCG AAG CTC TCC TTG TCC3’) inside the 

human Pim-3 cDNA. Transgenic founder animals were mated with C57BL/6 mice (Charles 

River Japan, Yokohama, Japan). The male offspring with a heterozygous transgene were 

used as a transgenic group, while those without a transgene were used as a littermate 

control. All mice were kept under the specific pathogen-free conditions, and all animal 

experiments in this study complied with the Guidelines of the Care and Use of Laboratory 

Animals of Kanazawa University. 

 

Hepatocyte isolation  

Mouse hepatocytes were isolated by using a two-step perfusion method with some 

modifications. Briefly, under anesthetization with Avertin (2,2,2-tribromoethanol, 

Sigma-Aldrich), a needle was inserted along the inferior vena cava and the liver was 

perfused sequentially with PBS buffer and collagenase-containing buffer at a rate of 5 - 10 

ml/min. The liver was then dissected, suspended in ice-cold PBS, and filtered through a cell 

strainer with a pore size of 100 µm to remove connective tissue debris and cell clumps. 

After the cell suspensions were left on ice for 15 min, the resultant precipitates were 

harvested, suspended in DMEM medium (Sigma-Aldrich) and centrifuged at 800 rpm for 2 
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min. The cell suspensions were further centrifuged in 45 % Percoll solution 

(Sigma-Aldrich) at 1,000 rpm for 10 min. The obtained cells were confirmed to consist of 

more than 95 % hepatocytes based on morphological criteria with a viability of higher than 

90 % on trypan blue exclusion test. Purified hepatocytes were used for the following DNA 

content analysis and immunoblotting analysis. 

 

Cell cycle analysis 

The obtained hepatocytes were fixed with 70 % ethanol at -20oC. The fixed cells were 

incubated with 50 μg/ml propidium iodine (Molecular Probes, Eugene, Oregon) and 1 

μg/ml RNase A for 30 min at room temperature. DNA content was then analyzed on a 

FACS Calibur system (BD Biosciences, Bedford, MA). The distribution of cells in each 

cell-cycle phase was determined by cell ModFit LT Software (BD Biosciences). 

 

Protein extraction and Western Blotting 

Hepatocytes or liver tissues were obtained and homogenized with RIPA buffer (Santa 

Cruz Biotechnology, Santa Cruz, CA) containing proteinase inhibitor cocktail (Roche 

Diagnostics AG, Rotkreutz, Switzerland). After sonication for 1 min, homogenates were 

centrifuged at 15,000 x g for 15 min at 4oC, to obtain the supernatants. After total protein 

concentrations were measured using a BCA kit (Pierce Biotechnology, Rockford, IL), the 

resultant supernatants were subjected to immunoblotting using anti-phospho-Ser112-Bad, 

anti-phospho-Ser136-Bad, anti-Bad, anti-Pim-3, anti-β actin (Sigma-Aldrich), and 

anti-cyclin D1 (Cell Signaling Technology, Beverly, MA), and anti-PCNA antibodies (BD 

Biosciences) as previously described (Li et al., 2006). 

 

Chemical-induced liver injury and subsequent hepatocarcinogenesis 

Three-week old weaning mice were given a single intraperitoneal injection of DEN 

(Sigma-Aldrich, St, Louis, MO), dissolved in physiological saline solution at a dose 10 

mg/kg body weight as previously described (Yang et al., 2006) to induce 

hepatocarcinogenesis. In order to induce acute liver injury, mice were given a dose of 100 
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mg/kg body weight. Serum alanine amino transferase (ALT) levels were determined using 

a Fuji DRICHEM 55500V (Fuji Medical System, Tokyo, Japan) according to the 

manufacturer’s instructions. Mice were sacrificed at the indicated time intervals after the 

injection to conduct histopathological analysis. 

 

RNA isolation and RT-PCR 

Total RNAs were extracted from organs using RNeasy mini kit (Qiagen) according to 

the manufacturer’s instructions and were further treated with RNase-free DNase (Promega) 

to deplete residual contaminated DNA. Two μg of RNA was reverse-transcribed at 42oC for 

1 h in 20 µl reaction mixture containing Moloney murine leukemia virus reverse 

trancriptase (Toyobo, Osaka, Japan) and hexanucleotide random primer (Qiagen) to obtain 

cDNA as previously described (Wu et al., 2008). Serially 2-fold diluted cDNA products 

were amplified for GAPDH using a specific set of primers (Table 1) with 25 cycles 

consisting of 94oC for 30 s, 58oC for 30 s and 72oC for 1 min in a 25 μl of reaction mixture 

containing Taq polymerase (Takara Bio, Kyoto, Japan) to evaluate the quantity of the 

transcribed cDNA. Equal quantities of cDNA products were then amplified for the 

indicated genes using the specific sets of primers (Table 1) with 35 cycles consisting of 

94oC for 30 s, 58oC for 1 min and 72oC for 1 min. The resultant PCR products were 

fractionated on 1.5% agarose gel and visualized by ethidium bromide staining under 

ultraviolet light transillumination. The band intensities were measured using NIH Image 

analysis software version 1.62, and the ratios to GAPDH were calculated on the assumption 

that the ratios of untreated animals were set at 1.0. 

 

Histopathological analysis 

The liver tissue was fixed in 10 % formalin buffered with PBS (pH 7.2) and embedded in 

paraffin. Five-μm thick sections were stained with hematoxylin and eosin solution or 

subjected to the TUNEL assay (MBL Co. Ltd., Nagoya, Japan) according to the 

manufacturer’s instructions. Immunohistochemical analysis was performed using anti-PNCA 

(BD Biosciences) or anti-cleaved caspase-3 antibodies (Cell Signaling Technology). A 
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portion of the liver tissue was snap-frozen, then dried at room temperature until the tissues 

became firmly adherent to the slides and fixed in cold acetone for 10 min. The sections were 

blocked with Serum-free Protein Block (Dako Cytomation) and were incubated with rabbit 

anti-cyclin B1 antibodies (Santa Cruz Biotechnology). They were further incubated with 

Alexa Fluor 488-labeled donkey anti-rabbit IgG followed by counterstaining with DAPI 

(Vector Laboratories) in dark. Immunoflurescence was visualized on a Carl Zeiss Laser 

Scanning Microscope 510 and cyclin B1-positive cell proportion was determined on 10 

randomly chosen fields at 200-fold magnification. Another slides were used for staining with 

oil red (Sigma Aldrich) and hematoxylin counterstaining, or immunohistochemical analysis 

using anti-CD31 antibodies (BD Pharmingen). The immune complexes were visualized by 

Envision+ System (DAKO Cytomation), a catalyzed signal amplification system (DAKO 

Cytomation) or the Elite ABC kit and DAB substrate kit (Vector Laboratories) according to 

the manufacturer’s instructions. The positive cell numbers were enumerated on 10 randomly 

chosen visual fields at ×400 magnification. CD31-postive areas were determined as 

previously described (Wu et al, 2008). In brief, CD31-positive areas in the tumor tissue were 

defined as the intratumoral vascular areas. Areas of active neovascularization (hot spot) were 

found inside tumor foci by scanning the section at lower magnification and the pixel 

numbers of CD31-positive areas were then determined on 5 randomly chosen fields in hot 

spots of each animal at 400-fold magnification with the aid of Photoshop version 7.0. The 

density of neovascularization was expressed as a percentage of the whole tumor area. All 

histopathological examinations were conducted by an examiner without any prior knowledge 

of the experimental procedures. All histopathological examinations were conducted blind, by 

an examiner without any prior knowledge of the experimental procedures. 

 

Statistical analysis 

 All obtained data were calculated and expressed as mean ± SD. The differences were 

analyzed statistically using one-way ANOVA, followed by the Turkey-Kramer test. p<0.05 

was considered statistically significant. 
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Results 

Characterization of transgenic mice overexpressing Pim-3 under the control of the 

albumin promoter 

Pim-3 transgenic mice were born at a Mendelian ratio, were fertile, and did not show 

any apparent abnormalities in the liver until one year after birth (data not shown). We first 

examined the expression pattern of Pim-3 in Pim-3 transgenic mice. Mouse Pim-3 mRNA 

was detected in liver to a similar extent in both wild-type (WT) and Pim-3 transgenic mice, 

whereas human Pim-3 mRNA was exclusively detected in Pim-3 transgenic mice (Figure 

1B). Consistently, Pim-3 protein was detected abundantly in liver of Pim-3 transgenic mice 

but not WT mice (Fig. 1B). Pim-3 protein was also detected in the heart and kidney of 

Pim-3 transgenic mice, but not WT mice (Fig. 1C). Because anti-Pim-3 recognizes both 

human and mouse Pim-3 to a similar degree, we further examined the mRNA of human and 

mouse Pim-3 in liver, heart, and kidney. Human Pim-3 mRNA was detected in the liver of 

Pim-3 transgenic mice, but not other organs (Fig. 1D). These observations would indicate 

that Pim-3 transgenic mice express human Pim-3 abundantly and selectively in liver. 

 

Enhanced hepatocyte proliferation by Pim-3 overexpression 

Because Pim-3 can phosphorylate a pro-apoptotic molecule, Bad, at the Ser112 residue 

but not the Ser136 residue, we first examined the phosphorylation states of Bad, in order to 

prove the functionality of the Pim-3 gene, selectively overexpressed in liver. Bad was 

constitutively phosphorylated at Ser112 in hepatocytes from Pim-3 transgenic but not WT 

mice (Fig. 2A). However, the level of phospho-Ser136-Bad was not enhanced in Pim-3 

transgenic mice. These observations would indicate that overexpressed Pim-3 was 

functional in terms of its capacity to phosphorylate Bad, its substrate. The levels of cyclin 

D1 and PCNA in hepatocytes were increased in Pim-3 transgenic mice, compared to that 

observed for WT mice (Fig. 2B). Moreover, cell cycle analysis of isolated heptocytes 

revealed that the proportion of the cells in subG1 phase, which represent apoptotic cells, 

was marginally but not significantly decreased in Pim-3 transgenic mice. However, the 

proportion of the cells in G2/M phase was significantly increased in Pim-3 transgenic mice, 
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compared to that observed for wild-type mice (Fig. 2C). In order to exclude the possibility 

that isolation of hepatocytes from liver gave rise to artificially high proportion of cells in 

G2/M phase, we also enumerated the proportion of cells in G2/M phase by immunostaining 

liver tissues with anti-cyclin B1 antibodies. The proportion of cyclin B1-positive cells were 

significantly higher in Pim-3 transgenic mice than WT mice (Fig. 2D). Moreover, TUNEL 

staining failed to detect any significant differences in the numbers of apoptotic hepatocytes 

between untreated WT and Pim-3 transgenic mice (Fig. 2E). These observations suggest 

that Pim-3 overexpressed in liver can accelerate the cell cycle progression of hepatocytes. 

 

Enhanced liver damage in Pim-3 transgenic mice 

We then treated Pim-3 transgenic and WT mice with DEN, a potent hepatocarcinogen. 

Both Pim-3 transgenic and wild-type mice survived exposure to DEN. Serum ALT levels, a 

marker of liver injury, increased with a maximal levels less than 1,000 IU/L and were 

significantly but not markedly higher in Pim-3 transgenic mice than WT mice (Fig. 3A). 

These observations suggest that DEN-induced acute liver injury was mild. This may 

account for comparable levels of apoptosis in liver after DEN treatment until 72 h after the 

injection (Fig. 3B and 3C). In contrast, PNCA and cyclin D1 levels were higher at 72 h 

after the injection in Pim-3 transgenic mice, than that observed for WT mice (Fig. 3D and 

3E). Moreover, proliferating cells were progressively increased in the centrilobular region 

of Pim-3 transgenic mice and to a lesser degree, WT mice (Fig. 3F and 3G). The crucial 

involvement of TNF-α in hepatocyte proliferation (Yamada et al., 1997) prompted us to 

determine intrahepatic expression of tumor necrosis factor (TNF)-α mRNA levels. TNF-α 

mRNA levels were increased significantly at 48 h after DEN treatment (Fig. 3H). These 

observations indicate that the DEN challenge enhanced liver damage in Pim-3 transgenic 

mice, compared to that observed for WT mice, despite increased hepatocyte proliferation. 

 

Enhanced hepatocarcinogenesis in Pim-3 transgenic mice 

We next examined the changes in liver in the later phase of DEN treatment. Because 

lipid droplet accumulation precedes the onset of DEN-induced HCC development (Wang et 
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al., 2009), we examined the lipid droplet accumulation in liver after DEN treatment. Lipid 

droplet accumulation was more evident in Pim-3 transgenic mice than WT mice, until 6 

months after DEN treatment (Fig. 4A). PCNA-positive proliferating cell numbers were 

progressively increased in Pim-3 transgenic mice, and to a lesser degree, WT mice (Fig. 4B 

and 4C). TNF-α was potentially involved in hepatocarcinogenesis (Roberts et al., 1999; 

Schwabe et al., 2006). Moreover, its expression was enhanced to a greater extent in Pim-3 

transgenic mice than that observed for WT mice promptly after treatment with a high-dose 

of DEN (Fig. 3H). Hence, we investigated TNF-α mRNA expression in the course of 

hepatocarcinogenesis, together with other pro-inflammatory cytokines, IL-1. Indeed, 

TNF-α mRNA expression was enhanced in Pim-3 transgenic and WT mice after DEN 

treatment, but the increase was more evident in Pim-3 transgenic mice (Fig. 4D). A similar 

tendency was observed for IL-1β but not IL-1α. Dysplastic cells were observed and lobules 

were distorted in livers of Pim-3 transgenic mice, but not WT mice 6 months after DEN 

treatment (Fig. 5A). At 10 months after the injection, nodules consisting of highly 

dysplastic malignant cells were observed in liver of Pim-3 transgenic mice, and to a lesser 

extent, WT mice (Fig. 5A). Macroscopically, approximately half of male WT mice 

developed HCC nodules 10 months after DEN injection (Fig. 5B to 5D), consistent with 

the previous report (Yang et al., 2006). In contrast, most Pim-3 transgenic mice developed 

HCC nodules by 10 months after DEN treatment, with higher relative liver weight and 

larger numbers of HCC nodules than WT mice (Figure 5B to 5E). The enhanced 

hepatocarcinogenesis in Pim-3 transgenic mice may mirror the fact that neovascularization, 

an essential process for hepatocarcinogenesis, was augmented in Pim-3 transgenic mice 

compared to that observed for WT mice, as demonstrated by increases in CD31-positive 

areas in the liver (Fig. 5F and 5G). 
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Discussion 

We previously observed that Pim-3 was expressed selectively in pre-malignant and 

malignant lesions of the mouse HCC model in HBV surface antigen transgenic mice (Fujii 

et al., 2005). Moreover, Pim-3 protein was detected in a substantial proportion of HCC 

cells and precancerous lesions in human liver samples, but not normal human liver. 

Furthermore, Pim-3 protein was also detected in regenerating bile ductules, which are 

assumed to be the proliferation of hepatic stem cells after chronic injury. These 

observations suggested potential roles of aberrantly expressed Pim-3 in 

hepatocarcinogenesis. In order to address the roles of Pim-3, we prepared transgenic mice, 

which constitutively express human Pim-3 selectively in liver. Untreated hepatocytes 

derived from these transgenic mice exhibited enhanced cell proliferation, compared to 

those obtained from WT mice. However, these transgenic mice did not develop HCC 

spontaneously. Hence, enhanced cell proliferation cannot per se result in carcinogenesis in 

liver. 

Kinase activation generally requires a post-translational modification, particularly, 

phosphorylation in its regulatory domain. However, another member of the Pim kinase 

family, Pim-1, is constitutively active without any further alteration in its conformation, 

because it lacks any regulatory domain (Qian et al., 2005). Likewise, Pim-3 lacks any 

regulatory domain (Fujii et al., 2005) and Pim-3 cDNA alone induced phosphorylation of 

its target protein, Bad, at Ser112 when it was transfected into human pancreatic cancer cell 

lines (Li et al., 2006). Consistently, Pim-3 transgenic mice exhibited enhanced 

phosphorylation of Bad at Ser112 in the liver. The proapoptotic activity of Bad is regulated 

by its phosphorylation at Ser112 or Ser136 (She et al., 2005). Unphosphorylated Bad binds 

and eventually inactivates anti-apoptotic family members, primarily Bcl-XL but also Bcl-2 

(Yang et al., 1995; Zha et al., 1996). Because phosphorylation of Bad at Ser112 or Ser136 can 

result in the liberation of Bcl-XL and Bcl-2, which can prevent apoptosis (Chen et al., 

2005), phosphorylated Bad represents its inactive form. However, both WT and Pim-3 

transgenic mice developed apoptosis in liver to a similar extent, when they were treated 

with a potent hepatocarcinogen, DEN. These observations suggest that phosphorylated Bad 
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is not sufficient to prevent apoptosis induced by potent hepato-cytotoxic drugs such as 

DEN. 

Pim-3 transgenic mice developed HCC with a higher incidence and a heavier burden, 

than wild-type mice when both were treated similarly with DEN. Hepatocytes, particularly 

those in the centrilobular region, metabolized DEN into an alkylating agent, which, in turn, 

can induce DNA damage and mutations in hepatocytes (Verna et al., 1996). Simultaneously, 

DEN metabolites can generate reactive oxygen species (ROS) (Kamata et al., 2005; 

Schwabe and Brenner, 2006). When treated with DEN, mice with liver-specific deletion of 

an essential kinase for NF-κB activation, IKKβ, generated increased levels of ROS in 

hepatocytes, together with enhanced hepatocyte death and augmented compensatory 

hepatocyte proliferation. The net result was exaggerated HCC development with a high cell 

proliferation rate as evidenced by increased PCNA- and cyclin D1-positive cell numbers in 

liver (Maeda et al., 2005). Likewise, DEN treatment augmented hepatocyte proliferation but 

not apoptosis in Pim-3 transgenic mice, compared to that observed wild-type mice, as 

evidenced by increased PCNA- and cyclin D1-positive cell numbers in liver. These data may 

account for accelerated hepatocarcinogenesis in Pim-3 transgenic mice. However, several 

lines of evidence indicate the potential involvement of other Pim kinases, Pim-1 and Pim-2, 

in NF-κB activation (Hammerman et al., 2004; Zemskova et al., 2008). Thus, it still remains 

to be investigated whether the Pim-3 transgene can induce ROS generation in a similar 

fashion as the IKKβ deletion. 

Liver injury causes liver regeneration primarily through hepatocyte division but if 

hepatocyte division is impaired, liver repair requires the recruitment of hepatic oval cells 

(Ma et al., 2006). Oval cells mainly express α-fetoprotein but not albumin, and can 

proliferate and differentiate into both hepatocytes and bile duct cells. Several independent 

groups claimed that HCC cells can arise from oval cells (Braun et al., 1989). Mice deficient 

in the IKKβ gene in liver, developed HCC with a higher incidence than wild-type mice 

(Maeda et al., 2005). In this mouse, the IKKβ gene was deleted by using cre recombinase 

expressed under the control of an albumin promoter/enhancer and therefore, the gene was 

deleted selectively in albumin-expressing hepatocytes but not oval cells. Because we 
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utilized the same promoter/enhancer to prepare transgenic mice, it is likely that the Pim-3 

transgene was expressed selectively in hepatocytes but not oval cells. Thus, the Pim-3 

transgene mainly acted on hepatocytes to promote carcinogenesis, although its effects on 

oval cell proliferation cannot completely be excluded. 

Accumulating evidence indicates that Pim-1, a member of the Pim kinase family, can 

progress cell cycle by phosphorylating several cell cycle regulators and altering their 

activities. Pim-1 can phosphorylate the phosphatase Cdc25A, thereby increasing its 

phosphatase activity (Mochizuki et al., 1999). Moreover, Pim-1 can phosphorylate 

G1-specific inhibitor p21 (Waf), a cyclin-dependent kinase inhibitor, and induce its 

cytoplasmic localization (Wang et al., 2002). Furthermore, Pim-1 can phosphorylate the 

kinase Cdc25C-associated kinase (C-TAK) 1 and decrease its kinase activity (Bachmann et 

al., 2004), while Pim-1 can phosphorylate and activate the G2/M specific phosphatase 

Cdc25C. Alteration of the activities of these molecules can result in cell cycle progression, 

particularly at the G2/M phase. Pim-3 and Pim-1 but not Pim-2 bind to a consensus peptide 

substrate (AKRRRHPSGPPTA) with a striking high affinity, having Kd value in the range 

of 40 to 60 nM (Bullock et al., 2005). Thus, it is likely that Pim-3 can phosphorylate these 

cell cycle regulators similarly as Pim-1. Supporting this notion, recombinant Pim-3 protein 

can phosphorylate p21/Waf in vitro (Morishita et al., 2008). This may account for the 

observations that cell cycle progression was accelerated in Pim-3 transgenic mouse-derived 

hepatocytes, compared to wild-type mice, as evidenced by increased proportion of the cells 

in G2/M phase and reciprocally decreased proportion of the cells in G0/G1 phase. 

DEN induced TNF-α production consistently with the previous report (Sakurai et al., 

2006) and the production was further augmented by Pim-3 overexpression in liver. The 

crucial involvement of TNF-α in hepatocyte proliferation was proposed by the observation 

that liver regeneration after partial hepatectomy was impaired in mice deficient in TNF 

receptor gene (Yamada et al., 1997). Moreover, accumulating evidence indicates the 

potential contribution of TNF-α to hepatocarcinogenesis (Roberts et al., 1999; Schwabe et 

al., 2006). Furthermore, TNF-α can promote angiogenesis, an essential process for 

tumorigenesis, by inducing the production of angiogenic factors such as vascular 
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endothelial growth factor and hepatocyte growth factor (Yoshida et al., 1997; Tamura et al., 

1993). TNF-α production was regulated at several steps, and the first one is at the 

transcription levels governed by transcription factors such as NF-κB and AP-1 (Chung et 

al., 2007; Manna et al., 2000; Udalova and Kwiatkowski, 2001). Because Pim-1 can 

enhance NF-κB transcriptional activity (Zemskova et al., 2008), Pim-3 might be able to 

similarly activate NF-κB, thereby inducing TNF-α expression. 

It is most likely that our transgenic mice expressed a high level of the Pim-3 transgene 

selectively in hepatocytes. A strong similarity of Pim-3 with another Pim kinase, Pim-1, 

suggests that Pim-3 can phosphorylate several cell cycle regulators and accelerate cell 

cycle progression as Pim-1 can. Supporting this notion, we observed enhanced cell cycle 

progression in untreated Pim-3 transgenic mouse-derived hepatocytes, compared to that 

observed for WT mice. However, as evidenced by the absence of spontaneous HCC 

development in Pim-3 transgenic mice, accelerated hepatocyte proliferation alone cannot 

induce HCC. DEN can generate O6-methlguanine and induce frequently G-C to A-T 

transition mutations in hepatocytes (Nakatsuru et al., 1993). The Pim-3 transgene can 

enhance proliferation of hepatocytes with G-C to A-T transition mutations, thereby 

accelerating HCC development. We previously observed that Pim-3 expression was 

detected in pre-malignant and malignant lesions but not normal tissues of liver in humans 

and mice (Fujii et al., 2005). Thus, Pim-3 may be a promoter but not an initiator of HCC 

development, and blocking of Pim-3 activity can delay and/or prevent HCC development. 
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Legends to Figures 

 

Figure 1 Expression of Pim-3 in alb-Pim-3 transgenic mice. A. The schematic 

representation of the gene used for preparation of Pim-3 transgenic mice. B. Expression of 

human (transgenic) and mouse (endogenous) Pim-3 mRNA and protein levels in liver. The 

upper three lines are assessed by RT-PCR, while the lower 2 lines are assessed by 

immunoblotting. Representative results from 5 independent animals are shown here. C. 

Immunoblotting analysis of Pim-3 protein expression in liver, heart, kidney, brain, intestine, 

spleen, lungs of Pim-3 transgenic mice. The HEK293 cells transfected with human Pim-3 

cDNA were used as a positive control. Representative results from 5 independent animals 

are shown here. D. Endogenous mouse Pim-3 mRNA expression in liver, heart and kidney 

of Pim-3 transgenic mice were determined by RT-PCR. Representative results from 5 

independent animals are shown here. 

 

Figure 2 The effects of Pim-3 overexpression on hepatocyte functions. Hepatocytes 

were obtained from 3-week old WT and Pim-3 transgenic mice and used for the following 

analyses. A. and B. Protein was extracted from purified hepatocytes from WT and Tg mice, 

and was subjected to immunoblotting using anti-phospho-Ser112-Bad, 

anti-phospho-Ser136-Bad, anti-Bad, anti-cyclin D1, and anti-PCNA antibodies as described 

in Materials and Methods. Representative results from 4 independent experiments are 

shown in A. The intensity of each band was determined using NIH Image Analysis 

software version 1.62 (NIH, Bethesda, MD), and its ratios to β-actin were calculated and 

are shown in B (n=4). Open boxes, wild-type mice; closed boxes, Pim-3 transgenic mice. 

**, p<0.01. C. DNA contents were determined for hepatocytes from WT and Pim-3 

transgenic mice as described in Materials and Methods. Representative results from 5 

independent experiments are shown here. After the proportion of each fraction was 

determined, mean and 1 SD were calculated and are shown in the Table (inlet) (n=5). #, 

p<0.05; *, p<0.01.  D. The proportion of cyclin B1-positive cells was determined on liver 

tissues obtained from 3-week old Pim-3 trangenic and wild-type mice as described in 
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Materials and Methods. Mean and SEM were calculated (n=6) and are shown here. E. The 

TUNEL assay was conducted as described in Materials and Methods. Representative 

results from 5 individual animals are shown in the left panel. Positive cells were 

determined on 5 randomly chosen fields (x 400) from each animal by an examiner without 

any knowledge of experimental procedures. Mean ± SD are shown in the right panel (n=5). 

 

Figure 3. The effects of overexpressed Pim-3 on apoptosis and cell proliferation after 

DEN treatment. A. Serum ALT levels were determined as described in Materials and 

Methods. Each symbol indicates serum ALT level of each animal and the bars represent the 

median of each group. *, p<0.05; ** , p<0.01 vs. WT mice. B. and C. Liver tissues were 

obtained from WT or Tg mice at the indicated time intervals and immunostained with 

anti-cleaved caspase 3 antibody. Representative results from 5 independent animals are 

shown in A with an original magnification x 400. Proportion of cleaved caspase 3-positive 

apoptotic cells were determined as described in Materials and Methods. Mean ± SD are 

shown in B (n=5). Open boxes, wild-type mice; closed boxes, Pim-3 transgenic mice. D. 

and E. Cell lysates were obtained from liver of WT (W) and Pim-3 transgenic mice (T) at 

72 h after DEN treatment and subjected to immunoblotting using anti-PCNA or anti-cyclin 

D1 antibodies. Representative results from 3 independent experiments are shown in D. The 

intensity of each band was determined and its ratio to β-actin was calculated. Mean + SD 

are shown in E (n=5). Open boxes, wild-type mice; closed boxes, Pim-3 transgenic mice. *, 

p<0.05; **, p<0.01 vs. WT mice. F. and G. Liver tissues were obtained from WT or Tg 

mice at the indicated time intervals and immunostained with anti-PCNA antibody. 

Representative results from 5 independent animals are shown in G with an original 

magnification x 400. PCNA-positive proliferating cell numbers were determined as 

described in Materials and Methods. Mean ± SD are shown in F (n=5). *,  p<0.05; ** , 

p<0.01 vs. WT mice. H. Intrahepatic TNF-α mRNA levels were determined as described in 

Materials and Methods. **, p<0.01 vs. WT mice (n=5). 

 

Figure 4. The effects of Pim-3 overexpression in liver pathology in the later phase 
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after DEN treatment. A. Liver was obtained from WT or Pim-3 transgenic mice (Tg) at 

the indicated time intervals and was subjected to staining with oil red solution as described 

in Materials and Methods. Representative results from 5 independent animals are shown 

with an original magnification x 200. B. and C. Livers were obtained from WT or Pim-3 

transgenic mice at the indicated time intervals and were subjected to immunostaining with 

anti-PCNA antibody as described in Materials and Methods. Representative results from 5 

independent animals are shown in B with an original magnification x 400. PCNA-positive 

cell numbers were determined as described in Materials and Methods. Mean ± SD are 

shown in C (n=5). Open boxes, wild-type mice; closed boxes, Pim-3 transgenic mice. *, 

p<0.05; **, p<0.01 vs. WT mice. D, E, and F. Total RNAs were extracted from liver of 

WT or Pim-3 transgenic mice at the indicated time intervals after DEN treatment and were 

subjected to a semi-quantitative RT-PCR analysis for the detection of mRNA of IL-1α 

(D),IL-1β (E), and TNF-α (F). The ratio of each cytokine was calculated as described in 

Materials and Methods. Each value represents mean ± SD (n=5). Open boxes, wild-type 

mice; closed boxes, Pim-3 transgenic mice. *, p<0.05; **, p<0.01 vs. WT mice. 

 

Figure 5. Enhanced hepatocarcinogenesis in Pim-3 transgenic mice. A. Liver tissues 

were obtained from WT or Pim-3 transgenic mice (Tg) at the indicated time intervals after 

DEN treatment and subjected to HE staining. Representative results from 5 individual 

animals are shown here with an original magnification x 200. B. Macroscopic appearance 

of liver 10 months and 6 months after DEN treatment. Representative results from 8 

animals are shown here. Left panels, Pim-3 transgenic mice; right panels, WT mice. The 

arrow indicates a small tumor nodule. C. Incidence of macroscopic tumor formation at the 

indicated time intervals after DEN treatment in WT and Pim-3 transgenic mice (Tg). D. 

Liver weight relative to whole body weight was determined on WT and Pim-3 transgenic 

mice (Tg) at 10 months after DEN treatment. Each value represents mean ± SD (n=5). **, 

p<0.01 vs. WT mice. E. Numbers of tumors with a diameter of larger than 1 mm were 

determined in livers of WT (n=17) or Pim-3 transgenic mice (Tg) (n=16) 10 months after 

DEN treatment. Each symbol indicates the tumor numbers of each animal and the bars 
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represent the median of each group. **, p<0.01 vs. wild-type mice. F. and G. Liver tissue 

were obtained from WT or Pim-3 transgenic mice (Tg) 10 months after DEN treatment and 

were subjected to immunostaining with anti-CD31 antibody. Representative results from 5 

individual animals are shown in F with an original magnification x 400. CD31-positive 

vascular areas within tumors were determined as described in Materials and Methods. 

Mean and SD were calculated and are shown in G. *, p<0.05 vs. WT mice. 
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Gene Name Forward Reverse Cycles Length 

(bp) 

mouse Pim-3 GAGＧAGGGTCTCCCCAGAGT TGGTGGCACGCTTAGGTTG 35 660 

human Pim-3 CGGAGGAGGGTCTCTCCAGAGTG ACCCTGCGCCGGCGGAAAG 35 535 

mouse TNF-α AGTTCTATGGCCCAGACCCT CGGACTCCGCAAAGTCTAAG 35 463 

mouse IL-1α CTCTAGAGCTCCATGCTACAGAC TGGAATCCAGGGGAA ACACTG 35 309 

mouse IL-1β ATGGCAACTGTTCCTGAACTCAAC T CAGGACAGGTATAGATTCTTTCCTTTT 35 377 

GADPH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA 25 431 

 

Table 1. Sequences of the primers used for RT-PCR. 

 












