
Regulatory interaction between NBS1 and
DNMT1 responding to DNA damage

言語: eng

出版者: 

公開日: 2017-10-05

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/36516URL



Regular Paper 

Fields: Molecular Biology, Topics: DNA-Protein interaction  

 

Regulatory interaction between NBS1 and DNMT1 responding to DNA damage. 

Naoyuki Hayashi1, 2, 3, Masahiko Kobayashi1, Awad Shamma2, Yoko Morimura1, Chiaki 

Takahashi2, Ken-ichi Yamamoto1 

1Division of Molecular Pathology, and 2Division of Oncology and Molecular Biology, 

Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan  

 

3To whom correspondence should be addressed.   

Division of Oncology and Molecular Biology, Cancer Research Institute,  

Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan  

Phone: 81-76-264-6751  Fax: 81-76-234-4521 

E-mail: naohaya@staff.kanazawa-u.ac.jp 

Running Title: Regulatory interaction between NBS1 and DNMT1 

 1 



SUMMARY 

NBS1 is the causative gene product of Nijmegen breakage syndrome (NBS), a recessive 

genetic disorder resulting in chromosomal instability and immunodeficiency.  We 

isolated DNMT1 cDNA by 2-hybrid screening by using NBS1 as bait to study its function 

in DNA replication and damage checkpoint.  DNMT1 encodes DNA methyltransferase 1, 

which maintains the genomic methylation pattern and also regulates the checkpoint 

pathway via interactions with various factors such as CHK1, p53, Rb, and ATM.   The 

interaction between NBS1 and DNMT1 was observed under conditions of hydroxyl urea 

treatment, resulting in replication stall, and mitomycin C treatment, resulting in DNA 

damage. Additionally, we mapped their binding regions to the N-terminus of NBS1 

(including the FHA domain) and amino acids 1401–1503 in the target recognition domain 

in the C-terminus of DNMT1.  Under DNA replication stall conditions, DNMT1 was 

recruited to the survivin promoter by p53, and it repressed survivin expression via 

hetrochromatin formation; this regulation was dependent on the NBS1 genotype.  These 

results suggest that DNMT1 function in the regulatory response is controlled by NBS1. 
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NBS1, the causative gene of Nijmegen breakage syndrome (NBS), plays a crucial role in 

DNA damage repair and checkpoint signal transduction of checkpoint via interactions 

with various factors, including the Mre11/Rad50 complex, and ataxia 

telangiectasia-mutated (ATM) (1, 2, 3).  The protein contains a forkhead-associated 

(FHA) domain and 2 breast cancer carboxy-terminal (BRCT) domains in its N-terminus 

an ATM checkpoint kinase phosphorylation site in its middle region, and regions for 

ATM and Mre11 binding in its C-terminus (2, 4).  Thus, NBS1 contains domains for 

interactions with various factors, which function in checkpoint control or DNA damage 

repair, such as the MRN complex, consisting of Mre11, Rad50, and NBS1, which plays a 

major role in repair of genomic DNA double-stranded breaks.  The MRN complex 

localizes to the sites of DNA damage, and recruits ATM kinase, a member of the PI3 

kinase family, which phosphorylates p53, CHK1, CHK2, BRCA1, histone H2AX, and 

NBS1.  The FHA and BRCT domains in the N-terminus are often found in proteins that 

regulate the checkpoint control system and are required for localization of γ-H2AX to 

DNA damage foci (3, 5).  Thus, NBS1 functions as a trigger factor signaling for DNA 

damage repair, checkpoint control, and/or apoptosis.  Furthermore, the MRN complex 
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colocalizes with proliferating cell nuclear antigen (PCNA) at replication forks throughout 

the S phase (6).   Therefore, NBS1 plays an important role in genome stability via its 

regulatory interactions (4).  

PCNA binds with DNA methyltransferase 1 (DNMT1), which primarily 

maintains heritable DNA methylation following DNA replication to preserve genomic 

methylation patterns (7, 8).  In the replication machinery, the PCNA/DNMT1 complex is 

the target of p21 for the checkpoint response (7).  DNMT1 interacts with factors 

responding to DNA damage, such as p53 (9) and CHK1 (10), and DNMT1 itself is 

recruited to the DNA damage sites (11).  Furthermore, it interacts with G9a, which 

methylates the ninth lysine of histone H3 (K9 histone H3), and binds to HP1β, which 

constitutes part of the heterochromatin (12, 13).  Methylation of DNA and modification of 

histones are critical for heterochromatin formation.  Thus, DNMT1 not only methylates 

DNA but also mediates heterochromatin formation to silence genes.  

Under DNA stress conditions, such as replication stall, base-pair mismatch and 

strand breakage, DNMT1, p53, and HDAC are recruited to the promoter region of the 

survivin gene, and they increased methylation levels of both DNA and K9 histone H3 on 
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the survivin promoter to repress its expression (9).  Thus, DNMT1 also functions in 

regulatory formation of heterochromatin to repress specific genes.  Furthermore, DNMT1 

is indispensable to the checkpoint system for replication stall and DNA damage because 

truncation of genomic DNMT1 results in loss of the checkpoint response, while depletion 

of DNMT1 by RNA interference cause activation of the checkpoint signaling (14).  

Therefore, DNMT1 is not only involved in maintenance of methylation patterns and 

heterochromatin formation responding in response to the DNA damage but is also 

indispensable for replication checkpoint to maintain the genome integrity. 

In the present study, we demonstrated specific binding of NBS1 and DNMT1, 

and further, we found that this interaction is essential for DNA methylation and 

subsequent heterochromatin formation mediated by DNMT1.  

 

MATERIALS AND METHODS 

Plasmids.  Construction of the plasmids and the PCR primers used for deletion 

derivatives of DNMT1 and NBS1 are shown in Table S1 and S2, respectively.   

Cell culture and reagents.  293T cells were cultured in Dulbecco’s modified Eagle 
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medium (Nissui, Japan) supplemented with 15% fetal calf serum, 2mM L-glutamine, 50 

µg/mL penicillin and 50 units/mL streptomycin.  NBS patient cell line GM07166 

(NBS1-/-) and its NBS1-recovered line (NBS1+) were cultured in Dulbecco’s modified 

Eagle medium (high glucose; Wako Japan) supplemented with 10% fetal calf serum, 

2mM L-glutamine, 50 µg/mL penicillin and 50 units/mL streptomycin (15).  Treatment 

with hydroxyl urea (HU; Wako, Japan), mitomycin C (Kyowa Hakko Kogyo, Japan), and 

aphidicolin (Sigma-Aldrich, USA) were performed with final concentrations of 20 mM, 2 

µ�/�L, and 40 µM in each medium, respectively, and cells were harvested after 

incubation for 2 h.   

Antibodies.  Antibodies against HA and Flag tags, 3F10 and M5, respectively, were 

purchased from Roche.  Antibodies against NBS1, DNMT1, and dimethylated K9 histon 

H3 were purchased from BD Bioscences Pharmingen, New England Bio Labs, and 

Monoclonal Antibody Institute, respectively.  Immunoblotting was performed as 

previously described (16).   

Two-hybrid screening.  The plasmid pAS-NBS1, with a 2.4-kb NcoI fragment contained 

the NBS1 coding region, was derived from pEFBOS3HA-NBS1 (15), an NBS1 
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expression plasmid in mammalian cell line.  The screening was carried out with yeast 

strain PJ69-4A (17) as described previously (18) 

Glutathione S-transferase (GST) pull-down and Immunoprecipitation (IP).  GST-fused 

NBS1 protein produced in Escherichia coli strain BL21 (DE3) was prepared with 

glutathione Sepharose beads as previously described (19).  HA-tagged DNMT1, derived 

from cDNA isolated in the 2-hybrid screening, was expressed in 293T cells.  Crude 

extract from 293T cells containing HA-tagged DNMT1 was prepared in lysis solution (50 

mM Tris HCl, pH7.5; 100 mM NaCl; 0.2% NP40; 0.5% Tween20) and then was mixed 

with beads bound to either GST-NBS1 fused protein or GST alone.  These were incubated 

for 1 h on ice and then washed 4 times with the wash solution (2.5 mM Tris HCl, pH7.5; 

100 mM NaCl; 10% glycerol; 1 mM EDTA; 0.01% NP40).   

IP assay for endogenous proteins was performed with the antibodies described 

above. IgG2 (Immunotech, Czech) was used for negative control of IP experiments using 

the aliquot of crude extract prepared from the intact human 293T cells.  Binding 

experiments for mapping of the binding regions were performed with anti-Flag antibody 

M5 and GammaBind Plus Sepharose beads (GE Healthcare, USA) in human 293T cells, 
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which were co-transfected with plasmids to produce HA-tagged DNMT1 and 

Flag-tagged NBS1 deletion derivatives.  The proteins produced, preparation of crude 

extracts, and washing of the precipitated beads are described above.  

Methylation-sensitive PCR (MSP) assay.  Two m��������� of genomic DNA, 

which was prepared from each cell line cultured in a 150-mm dish by using the AquaPure 

Genomic DNA Isolation kit (Bio-Rad, USA), was treated to modify unmethylated 

cytosines by bisulfite treatment using the EZ DNA Methylation Kit (Zymo Research, 

USA).  MSP assay was performed with primers specific to the bisulfite modified 

sequence or the unmodified sequence and Takara Taq Hot Start Version (Takara Bio, 

Japan).  The sequences used in the MSP assay are shown in Table S3. 

RT-PCR.  Total RNA was isolated using TRIzol reagent (Invitrogen, USA).  The isolated 

RNA was treated with RNase-free DNase.  For RT-PCR, cDNA was prepared from 2 µg 

total RNA by using oligo dT primers and PrimeScript RT-PCR kit (Takara Bio, Japan).  

For PCR amplification of the survivin cDNA, forward and reverse primers used were 

5’-TCAATCCATGGCAGCCAG-3’ and 5’-TTTCTCAAGGACCACCGC-3’, 

respectively.   
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Chromatin IP (ChIP) Assay.  The ChIP experiment was performed as described 

previously (9). Soluble chromatin samples prepared with lysis buffer (50 mM Tris HCl, 

pH 8.0; 1% SDS; 10 mM EDTA; 1 mM PMSF) from the GM07166 (NBS1-/-) cell line 

derived from an NBS patient and its NBS1-restored cell line (NBS1+), which were treated 

with or without HU and cross-linked by using 1% for formaldehyde for 10 min at 37oC, 

were sonicated for 15 s twice to shear DNA to lengths between 200 and 1,000 bp.  Half of 

each supernatant was diluted 10-fold by using the ChIP dilution buffer (15 mM Tris HCl, 

pH 8.0; 167 mM NaCl; 0.01% SDS; 1% Tween20; 1 mM EDTA; 1 mM PMSF) and then 

immunoprecipitated, and the other half was used for detection of the PCR “input” control.  

DNA/protein complexes were eluted from the beads with a solution containing 1% SDS 

and 0.1 M NaHCO3.  Then NaCl was added to final concentration of 0.2 M, and they 

were incubated for 6 h at 65oC to reverse the cross-links.  Proteinase K (Qiagen, 

Germany) was added for 1 h at 45oC, and the DNA was recovered by phenol/chloroform 

extraction and ethanol precipitation.  Immunoprecipitated DNA was analyzed for the 

presence of the survivin promoter sequence by PCR using the specific primer pairs, 

Survivin-pro1 and Survivin-pro 3 for the proximal regulatory region (Table S3), and PCR 
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products were then visualized on 2% agarose/TAE gels.  Each experiment was repeated 3 

times, and band intensities were measured with NIH Image 1.63.  Intensities were 

calculated to compare with the ChIP result for each antibody of the intact NBS1-restored 

cell line. 

 

RESULTS 

DNMT1 interacts with NBS1.  To study the functions of NBS1 in DNA replication, we 

isolated its binding factors by 2-hybrid screening with approximately 3 x 

105 transformants.  We chose DNMT1 cDNA to investigate the DNA replication 

checkpoint control from the following candidates: DNMT1, INT4, TPP1, KPNA2, KF-1, 

c-NAP1 and MRPL13.  The isolated DNMT1 cDNA encoded the C-terminal portion 

(from 1082 amino acids [aa] to the stop codon), including the catalytic domain.  To 

examine the binding of NBS1 and DNMT1 in vitro, glutathione beads bound with 

GST-NBS1 proteins produced in E. coli strain BL21 (DE3) were prepared and were 

mixed with the 293T cellular extract, in which the HA-DNMT1 C-terminus isolated in 

the 2-hybrid screening was expressed.  In precipitates of the glutathione beads from this 
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mixture, we detected HA-DNMT1 (Fig. 1A), confirming the results of the yeast 2-hybrid 

assay.  We then examined the in vivo binding of endogenous DNMT1 to NBS1 proteins 

under DNA replication stall conditions with HU treatment to investigate functional 

aspects of the interaction in vivo.  HU reduces the deoxynucleotide pool in the cells due to 

its inhibition of ribonucleaotide reductase.  In this assay, NBS1 was co-precipitated with 

an anti-DNMT1 antibody under HU treatment (Fig. 1B), and DNMT1 was also 

precipitated using an anti-NBS1 antibody (Fig. S1).  Thus, NBS1 was bound with 

DNMT1 under replication stall conditions in vivo.  To examine the DNMT1/NBS1 

interaction under other DNA stresses, treatment with mitomycin C treatment a potent 

DNA crosslinker resulting in DNA double strand breaks, and aphidicolin which inhibits 

DNA polymerase directly, were also investigated (Fig. 1C).  Upon mitomycin C 

treatment, the DNMT1/NBS1 interaction was induced in human 293T cells.  This 

interaction, however, was not observed upon aphidicolin treatment.  Direct inhibition of 

DNA polymerase by aphidicolin would affect the functional status of DNMT1, which 

binds with PCNA in the replication complex.             

To map the NBS1 binding region in DNMT1, we constructed deletion 
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derivatives of Flag-tagged NBS1 and HA-tagged DNMT1 (Fig. 2A), and these were 

expressed in human 293T cells.  The binding abilities of these deletion constructs 

expressed in 293T cells were examined by an IP assay.  We found that the N-terminal half 

of NBS1 (NBS1-N) binds to HA-tagged DNMT1 (Fig. 2B).  NBS1-N was then used for 

the deletion mapping experiment owing to its more stable expression.  In the mapping 

experiments, the deletion derivatives D3 (1397–1632 aa) and D4 (1397–1536 aa) bound 

to NBS1, but the deletion derivatives D2 (1082–1400 aa) and D5 (1504–1632 aa) did not; 

this observation indicates that the essential region of DNMT1 required for the interaction 

with NBS1 is in the region 1401–1503 aa (Fig. 2C).  This region was included in the 

target recognition domain (TRD) of the DNMT1 catalytic region, which regulates 

binding specificity (19, 20).   Additionally, the binding region in NBS1 to DNMT1 was 

mapped.  The shortest region of NBS1 (1-115 and 178-222 aa) containing an intact FHA 

domain bound to DNMT1, but the deletion derivative BR1, which contained partial FHA 

and complete BRCT1 (46–222 aa), did not bind to DNMT1 (Fig. 3).  Thus, our deletion 

analyses suggested that the FHA domain in NBS1 is required for the interaction with 

TRD in DNMT1.   
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NBS1 is required for regulation of heterochromatin formation.  To investigate the 

functional relationship between NBS1 and DNMT1, we examined DNA methylation, 

heterochromatin formation, and binding of DNMT1 at the regulatory region of the 

survivin promoter in NBS patient cells compared to NBS1-recovered cells.  The 

methylation status of DNA in this regulatory region was compared after inhibition of 

DNA replication by HU treatment.  The prepared samples of genomic DNA were first 

cleaved with the restriction enzyme HpaII (methylation sensitive) or MspI (methylation 

insensitive), and then the regulatory region then amplified by PCR technique (Fig. 4A).  A 

strong signal was detected in the sample amplified from genomic DNA digested with 

HpaII prepared from cells expressing NBS1 after HU treatment, but no signal was 

detected from NBS1-deficient cells.  We then examined DNA methylation at the 

regulatory region by bisulfite method.  Genomic DNA samples were subjected to bisulfite 

modification to change unmethylated cytosines to uracil, and a methylation sensitive 

PCR assay was performed with methylated- or unmethylated- specific primer sets (Fig. 

4B).  In the NBS patient cell line GM07166 (NBS1-/-), survivin cDNA derived by 

RT-PCR was constitutively observed, whereas it was not observed in the 
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NBS1-recovered cell line (NBS1+) treated with HU (Fig. 4C).  These observations of 

transcriptional expression of the survivin gene were consistent with the results of DNA 

methylation at the survivin promoter.  Thus, regulatory methylation at the survivin 

promoter to repress its transcription was dependent on NBS1 function.    

We also performed the ChIP assay by using antibodies to DNMT1 and 

dimethylated K9 histone H3 to investigate the relationship of DNMT1 recruitment and 

heterochromatin formation at the survivin promoter on NBS1 status, as DNMT1 is 

recruited by p53 to the survivin promoter in response to DNA stress (9).  With HU 

treatment, levels of dimethylated K9 histone H3 on the survivin promoter were not 

increased in NBS patient cells, but the control cells, which had recovered NBS1, showed 

a significant increase in methylation levels of K9 histone H3 after HU treatment (Fig. 5A 

and B). This finding indicates that heterochromatin formation at the survivin promoter 

responding to replication stall requires NBS1 function.  We also found that binding of 

DNMT1 to the survivin promoter in NBS patient cell lines was significantly reduced, 

although this binding ability was increased under replication inhibition conditions with 

HU in the NBS1-recovered cell line (Fig. 5A and C).  These observations indicate that 

 15 



heterochromatin formation responding to the replication checkpoint at the survivin 

promoter was consistent with the pattern of DNMT1 binding. However, DNMT1 was not 

recruited to the survivin promoter under conditions of replication stall in the presence of 

the Mre11 inhibitor, mirin (Fig. S2).  Mirin blocked the exonuclease activity of Mre11, 

which was required for restoration of the stalled replication fork (22), as well as 

MRN-dependent ATM activation (3, 23).  This result indicated that DNMT1 would 

function under the ATM pathway, together with our observation of DNMT1/NBS1 

binding under mitomycin C treatment, which could give rise to double strand breaks (Fig. 

1C).  These observations thus suggested that the MRN complex function is necessary for 

recruiting DNMT1 to the regulatory region of the survivin promoter and subsequent 

heterochromatin formation to repress its transcription responding to replication and DNA 

damage checkpoint.  However, constitutive binding by p53 to the survivin promoter was 

observed in NBS patient cell (Fig. 5A and D).  This suggested that p53 was under DNA 

stress conditions, but it could not recruit DNMT1 without complete NBS1 function to 

regulate survivin gene expression.  Thus p53 plays a primary role to recruit DNMT1 

depending on NBS1.   
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DISCUSSION 

The multifunctional checkpoint regulator, NBS1, has diverse functions such as double 

strand break repair, activation of ATM family kinases, and telomere replication (4, 24).  

However, these diverse functions are co-operatively function in response to various DNA 

stressors such as replication stall, DNA strand lesion, and nucleotide mismatch.  The 

observation interaction between DNMT1 and NBS1 is also likely to have an important 

role in the DNA stress response. 

Interaction domains for NBS1/DNMT1 binding.  The binding region for NBS1 in 

DNMT1 was mapped to the TRD in the C-terminus, which recognizes hemimethylated 

cytosine (25).  This mapping result suggests that NBS1 directly alters DNMT1 specificity 

to target sites of methylation.  NBS1, which bound to the TRD of DNMT1, was involved 

in p53-specific function of heterochrmatin formation at the survivin promoter, as it was 

not observed in NBS1-deficient cells (Fig. 5).  The observation that the p53-binding 

region in DNMT1 partially overlaps with TRD (9) might also support this notion. 

Another possibility is that NBS1 alters the substrate specificity of DNMT1 to form 
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heterochromatin in the vicinity of DNA damage sites.  DNMT1 localizes to the damaged 

region and interacts with the DNA repair machinery (10, 26).  It may be consistent with 

the mapping result for DNMT1 binding in NBS1, suggesting their functional role in the 

checkpoint system because the FHA domain in NBS1 is essential for the checkpoint 

response (27).   

Function of DNMT1 in checkpoint system.  DNMT1 is the key enzyme required for the 

completion of the DNA replication and also for the checkpoint response to DNA damage 

or DNA replication stall (10, 14, 28, 29).  Our findings of the interaction between the 

TRD in DNMT1 and FHA domain of NBS1 suggest a functional relationship between 

DNA methylation and the checkpoint response because their interaction was induced in 

replication stall conditions in vivo (Fig. 1B).  To investigate the functional role of their 

interaction in DNA methylation and gene silencing under checkpoint conditions, we 

focused on the survivin promoter, which has typical CpG sites and a p53 binding region 

for repression (9, 30).  DNMT1 binds at the region containing the CpG sites and the p53 

binding region under conditions of DNA damage, and it methylates these CpG sites to 

repress the expression of the survivin gene (9).  DNA methylation and DNMT1 binding to 
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the survivin promoter were comparable, and methylation of K9 histone H3, which results 

in heterochromatin formation, was observed with the same pattern. Moreover, these 

observations were dependent on the NBS1 genotype.  The DNMT1/NBS1 interaction 

responded to the DNA damage agent, mitomycin C (Fig. 1C); moreover, their binding and 

translocation to the survivin promoter of DNMT1 dependent on NBS1 were inhibited by 

treatment with mirin, which would block the ATM pathway (Fig. S2).  Recently, we 

found an interaction between ATM and DNMT1 (31), which was consistent with our 

observations.  Thus, DNMT1 likely functions in general DNA stress mediated by the 

MRN complex and ATM (Fig. S3).   

Our findings suggest that NBS1 function is not only essential in the checkpoint 

system but also plays essential role in regulation of heterochromatin status via DNMT1 

function.   
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FIGURE LEGEND 

Figure 1.  Binding assays with NBS1 and DNMT1.  (A) In vitro binding of GST-NBS1 

and Flag-DNMT1.  Crude extract was prepared from human 293T cells transfected with 

the plasmid, which expressed Flag-tagged DNMT1 derived from cDNA isolated in the 

2-hybrid screening, and it was used for precipitation assays with GST alone or 

GST-NBS1 produced in bacterial cells.  (B) In vivo binding of endogenous NBS1 and 

DNMT1 in human 293T cells.  An inhibitor of ribonucleotide reductase, HU, was added 

to generate replication stall.  Immunoprecipitation assay was performed using an 

anti-DNMT1 antibody or mouse IgG2 as negative control, and immunoblot analysis for 

the precipitated fractions was performed with an anti-NBS1 antibody.  Input samples 

were analyzed with aliquots of 5% and 10% of each amount used for IP to detect NBS1 

and DNMT1, respectively.  (C) Binding of NBS1 and DNMT1 under other DNA 

stressors. A cross-linker, mitomycin C, and an inhibitor of DNA polymerase, aphidicolin, 

were added to generate double-stranded breaks in genomic DNA, and direct alteration to 

the replication complex, respectively.  MMC and Aphi on the lanes represent mitomycin 

C and aphidicolin treatments, respectively.  Immunoprecipitation and immunoblot 
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analysis of NBS1 and DNMT1 were performed as described above. 

Figure 2.  Mapping the binding region of NBS1 in DNMT1.  (A) Deletion derivatives 

of DNMT1 used for mapping experiments.  Each DNA fragment was tagged with HA in 

the pEFBOS vector (15).  The construct D1 contains the original cDNA, which was 

isolated via 2-hybrid screening.   (B) Binding assay of N-terminal and C-terminal halves 

of NBS1 and HA-DNMT1 (D1) in vivo.  N-terminal half of NBS1 that is shown as “N”, 

contains the start codon to 363 aa, and the C-terminal half of NBS1 that is shown as “C” 

contains from 364 aa to the stop codon.  (C) Mapping experiments of the binding region 

in DNMT1 to NBS1.  Deletion derivatives of HA-tagged DNMT1 are shown in Panel A. 

Immunoprecipitation with the anti-Flag antibody, M5, was performed as described above.  

Input samples were analyzed with aliquots of 5%. 

Figure 3.  N-terminus in NBS1 (including the FHA domain) mapped as the DNMT1 

binding region.   (A) Deletion derivatives of Flag-tagged NBS1, shown as FB1, BR1 and 

F, were used for the mapping assay.  Flag-tagged derivatives were expressed in the 

pEFBOS vector in human 293T cells. Numbers above the bars represents the position of 

the aa residues in the NBS1 coding region.  (B) Immunoprecipitation of HA-tagged 
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DNMT1 with Flag-tagged NBS1 deletion derivatives.  DNMT1 (D4) used in this 

experiment is shown in Fig. 2A.  The input samples loaded were an aliquot of 5% of that 

used for immunoprecipitation run on an SDS-PAGE gel.   

Figure 4.  Regulated DNA methylation in the survivin promoter is dependent upon 

NBS1 function.  Methylation status at the survivin promoter was examined in an NBS 

patient cell line GM07166 (NBS1-/-) and its NBS1-recovered line (NBS1+).  (A) PCR 

assay to detect DNA methylation used the methylation sensitive restriction enzyme 

HpaII.  Sequences of the primers Suvivin-pro1 and Suvivin-pro3 to detect of the survivin 

promoter are shown in Table S3.  Methylation-insensitive restriction enzyme MspI, which 

cuts the same sequence as HpaII, was used for the control experiment.  (B) PCR assay of 

bisulfite-modified genomic DNA.  The primer sequences used for the MSP assay at the 

survivin promoter are shown in Table S1.  Methylated DNA would be amplified with the 

primers Suvivin-pro1M and Suvivin-pro3M, and unmethylated DNA would be amplified 

with the primers Suvivin-pro1U and Suvivin-pro3U (Table S3).    Intact genomic DNA as 

a control experiment was amplified with the primers Suvivin-pro1 and Suvivin-pro3.  (C) 

RT-PCR analysis of survivin transcripts in an NBS patient cell line GM07166 (NBS1-/-) 
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and its NBS1-recovered line (NBS1+).  The upper part represents the RT-PCR product of 

the survivin transcripts, and the lower part represents the RT-PCR product of GAPDH 

transcripts as an internal control.  In each panel, “+” represents the sample treated with 20 

mM HU for 2 h to inhibit DNA replication.   

Figure 5.  Regulation of methylation at the ninth lysine of histone H3, and regulatory 

binding of DNMT1 and p53 at the survivin promoter are required for NBS1 

function.  (A) Chromatin immunoprecipitation (ChIP) analysis at the survivin promoter 

in the NBS patient cell line GM07166 (NBS1-/-) and its NBS1-recovered line (NBS1+) 

was performed with anti-dimethyl K9 histone H3, anti-DNMT1, and anti-p53.  Four lanes 

of the left half of each panel show the bands amplified with immunoprecipitated genomic 

DNA and the specific primers, Survivin-pro1 and Suvivin-pro3 (Table S3).  Results of 

input control reactions are shown in the 4 lanes of the right half of each panel.  Panels B, 

C, and D represent relative band intensities of the experiment repeated in triplicate 

compared to each result of the intact NBS1-restored cell line. 
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Supplemental Tables 
 

Table S1.  The plasmids used in this study. 

 

Plasmid  Gene    Reference 
 

pASNBS1 GAL4dbd-NBS1    (15) 

pACT library GAL4act-cDNA library   (18) 

derived from human B cell 

pEFBOS-3HA CMVp-three copies of HA tag  (16) 

pEFBOS-Flag CMVp-Flag tag   (16) 

pGEX-KG  tacp-GST (glutathione S-transferase) (19) 
 

 



 
 

Table S2.  The primer sequences used for construction of deletion derivatives.  
 

DNMT1 primers 

D2 ：NBB1-BamN    5’- CGGATCC G GGA CCT GCC CGA G -3’ 

DNMT1-4370  5’- CAC TAG TGC CGA GGC TCC ATT CCG CAC CT -3’ 

D3 ：DNMT1-4380   5’- GAA TGG ATC CTC GGC ACT GGA G -3’ 
DNMT1-BamC 5’- GGG GAT CCT GGT GCC AGA AAC -3’ 

D4 ：DNMT1-4380   5’- GAA TGG ATC CTC GGC ACT GGA G -3’ 
   DNMT1-4800    5’- GACTAGTTGTGCTGAAGAAGCC -3’ 

D5 ：DNMT1-4700      5’- CGGATCCAGGCAGTTCAACACCCTCAT -3’ 

DNMT1-BamC 5’- GGG GAT CCT GGT GCC AGA AAC -3’ 

 

NBS1 primers 

NBS1-NSal              5’- CGT CGA CAT GTG GAA ACT GCT GCC C -3’ 

NBS1-FHABR1          5’- GAA GAT CTG TTT TCT TTC CTG CCG -3’ 

NBS1-SHAA200           5’- CGCCCGAAATGCTGCTGTGTTAACTGCTAAC -3’ 
 

 

 



 

Table S3.  The primer sequences used for MSP and ChIP assay at the survivin promoter.  
 

Primer Name Sequence 

Survivin-pro1 5’-GACCACGGGCAGAGCCACGCGGCG-3’ 

Survivin-pro3 5’-CCACCTCTGCCAACGGGTCCCGCG-3’ 

Survivin-pro1M 5’-AACCACGAACAAAACCACGCGACG-3’ 

Survivin-pro2M 5’-CCACCTCTACCAACGAATCCCGCG-3’ 

Survivin-pro1U 5’-AACCACAAACAAAACCACACAACA-3’ 

Survivin-pro2U 5’-CCACCTCTACCAACAAATCCCACA-3’ 
 

 



Supplemental Figures 

 

Figure S1.  DNMT1 was also precipitated with NBS1.  Immunoprecipitation was 

performed with the contrary combination of the antibodies in Fig. 1B.  Mouse IgG2 as 

negative control was used. Immunoblot analyses to the precipitated fractions and as input 

samples, 5% and 10% of aliquot used for immunoprecipitation was analyzed to detect 

NBS1 and DNMT1, respectively. 

 

Figure S2.  Mirin, Mre11 inhibitor, inhibited DNMT1 localization to the survivin 

promoter.  ChIP analysis at the survivin promoter in NBS1 recovered line of GM07166 

was done with anti-DNMT1 antibody. Mirin (Focus Biomolecules, USA) was added in 

100 µM of final concentration before HU treatment. Three lanes of the left half 

represented results of ChIP assay with the specific primers, Suvivin-pro1 and 

Suvivin-pro3 (Table S3).  Results of input control reactions were shown in 3 lanes of the 

right half. 

 



Figure S3.  Models for DNMT1 recruitment to the survivin promoter in DNA stress 

condition.  (A) In the control cells, DNA damage signal is transmitted via ATM and 

MRN complex.  DNMT1 is recruited to the survivin promoter where p53 binds.  Thus 

heterochromatin structure is formed there to silence the survivin gene.  Under the DNA 

stress condition, NBS1, which is bound at TRD in the catalytic region of DNMT1, may 

affect its methylation activity.  (B) In NBS patient cell line, mutated NBS1 binds with 

neither ATM nor Mre11.  In spite of constitutive binding of p53 at the survivin promoter, 

DNMT1 is not recruited there.  (C) Under mirin treatment, which inhibits nuclease 

activity of Mre11 and signal transmission to ATM kinase, DNMT1 is not recruited to the 

survivin promoter.  In this condition, interaction between DNMT1 and NBS1 was also 

reduced (data not shown).    

    


