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Supplementary Table S1. Previous studies reporting the putative tumor suppressor roles of GSK3β. 

Cancer type Species Summary of results Effect of GSK3β inhibition on tumor cells* Ref. No. 
Colon human Stimulation of Wnt signaling by mutant K-rasVal12 was 

associated with inhibition of GSK3β activity in Caco-2 
cancer cells. 

Not examined SR30 

Stomach human Inhibition of GSK3β activity by pharmacological 
inhibitors induced expression of COX-2 mRNA and 
protein as well as the enzyme activity in TMK-1 and 
MKN-28 cancer cells. 

Not examined SR31 

Pancreas human LiCl, GSK3β-siRNA or a kinase-dead mutant GSK3β 
transfection resulted in radioresistance of PANC-1 and 
BxPC-3 cancer cells, which was associated with 
stabilization of β-catenin and expression of its target 
gene.  

GSK3β inhibition resulted in radio-resistance 
and its overexpression in radio-sensitization 
in cancer cells. 

SR32 

 human Pancreatic cancer patients with higher expression of 
GSK3β in the tumors had a reduced risk of dying of 
pancreatic cancer. 

Not examined SR33 

Liver human LiCl and SB-415286 repressed chemotherapeutic drugs 
induction of HepG2 cell apoptosis by inhibiting CD95 
expression and caspase-8 activity and by disrupting 
nuclear GSK3β-p53 complexes. 

GSK3β inhibitors render the cancer cells 
insusceptible to etoposide and camptothecin. 

SR34 

 human PI3K inhibitor LY294002 sensitized HepB3 cells to 
etoposide and camptothecin by enhancing the expression 
of DR4 and DR5 and by decreasing pGSK3βS9.  

No direct effect was examined.  
SB-415286 repressed the chemosensitizing 
effect by LY294002 in the cancer cells. 

SR35 

 human Decreased TSC2 and GSK3β expression in HCC tumors 
was significantly correlated with advanced clinico-
pathological characteristics and poor prognosis of the 
patients. 

Not examined. SR36 

 human Overexpression of pGSK3βS9 in HCC tumors was 
significantly associated with the presence of type 2 DM 
and with poor prognosis of the patients. 

Not examined. SR37 
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 human Ectopic expression of SIRT3 (a class III histone 
deacetylase) inhibited proliferation and inhibited 
apoptosis in HCC cells, which was associated with 
deacetylation of GSK3β and decreased pGSK3βS9. 

No direct effect was examined. 
GSK3β inhibitor reversed the SIRT3-induced 
proliferation inhibition and apoptosis in 
cancer cells. 

SR38 

Prostate human Transfection of wild-type and constitutively active 
mutant GSK3β repressed AR-mediated transactivation 
in cancer cells. 

No direct effect was examined. 
Transfection of kinase-dead mutant GSK3β 
showed little effect on the AR transactivation 
in the cancer cells. LiCl abolished AR 
transactivation by GSK3β. 

SR39 

 human A pharmacological GSK3β inhibitor, AR79, promotes 
cancer cell proliferation in soft tissue and bone in mice 
by dephosphorylation and stabilization of β-catenin. 

GSK3β inhibitor promotes the cancer cell 
proliferation in mice. 

SR40 

Ovary human Level of pGSK3βS9 but not total GSK3β and 
pGSK3βY216 was higher in cisplatin-resistant derivative 
of cancer cells than the parental cells.  

No direct effect was examined. 
LiCl counteracted cisplatin-induced apoptosis 
in both parental and resistant cancer cells. 

SR41 

 human Inhibition of GSK3β by SB-216763 increased MSX2 
oncogenic factor via activation of β-catenin signaling in 
endometrioid cancer cells. 

Not examined. SR42 

Uterine cervix 
(HeLa cells) 

human Inhibition of Akt enhances doxorubicin- or paclitaxel-
induced apoptosis in cancer cells, which was associated 
with decrease in the level of pGSK3βS9 and the binding 
of hexokinase II to mitochondria. 

No direct effect was examined. 
GSK3β siRNA reversed the effect of Akt 
inhibitor on chemosensitivity of the cancer 
cells. 

SR43 

Breast human GSK3β inhibitors (LiCl, SB-216763 and SB-415286) 
decreased rapamycin-induced down regulation of cyclin 
D1, but not inhibit cell cycle G1 arrest in cancer cells. 
Rapamycin enhances paclitaxel-induced cytotoxicity in 
GSK3β wild-type but GSK3β-null cancer cells. 

No direct effect was examined. 
GSK3β inhibition reversed rapamycin-
induced down regulation of cyclin D1 
expression in cancer cells. 

SR44 

 mouse Transgenic mice overexpressing kinase-inactive GSK3β 
under the control of the mouse mammary tumor virus-
long terminal repeat developed mammary tumors with 
overexpression of β-catenin and cyclin D1. 

Not examined. SR45 
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 human Adiponectin attenuated cancer cell proliferation by 
suppression of Akt phosphorylation and pGSK3βS9 in 
association with accumulation and activation of β-
catenin. 

No direct effect was examined. 
LiCl reversed the effect of adiponectin in 
cancer cells. 

SR46 

 human Therapeutic effect of prodigiosin, a bacterial metabolite, 
against cancer cells was associated with increased 
expression of NAG-1 via Akt dephosphorylation 
(inactivation).  

No direct effect was examined. 
GSK3β inhibition with AR-A014418 
reversed the effect of prodigiosin against the 
cancer cells. 

SR47 

 human GSK3β phosphorylates Mcl-1 (proto-oncoprotein) for β-
TrCP-mediated ubiquitination and proteasomal 
degradation in cancer cells.  

Not examined. SR48 

 human Expression of Mcl-1 was correlated with pGSK3βS9 in 
multiple cancer cell lines and primary cancer samples, 
and was significantly linked with poor prognosis of 
human breast cancer. 

Not examined. SR49 

 human GSK3β phosphorylates securin to promote its 
degradation via β-TrCP. A significant correlation 
between securin accumulation and pGSK3βS9 was 
observed in breast cancer tissues. 

Not examined. 
Level of tumor pGSK3βS9 was correlated 
with Ki-67 proliferative index and tumor 
grades in breast cancer. 

SR50 

 mouse Genetic deletion of GSK3 in mammary epithelial cells 
resulted in β-catenin activation and induced 
intraepithelial neoplasia that progressed to development 
of adenosquamous carcinoma. Mammary-specific 
knockout of GSK3 and β-catenin induced 
adenocarcinoma. 

Not examined. SR51 

Lung human Constitutively active mutant GSK3β transfected in A549 
cells binds to survivin, resulting in G1 cell-cycle arrest, 
apoptosis and sensitization to doxorubicin.  

Dominant-negative mutant GSK3β and LiCl 
increased survivin expression, leading to cell-
cycle progression and resistance to apoptosis. 

SR52 

 human The level of pGSK3βS9 was associated with expression 
of Slug, a transcriptional repressor of E-cadherin, in 
cancer cells and non-small cell lung cancer. GSK3β-

Not examined. SR53 
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mediated phosphorylation of Slug facilitated Slug 
protein degradation. 

 human Expression of a constitutively active GSK3β sensitized 
cancer cells to mTOR inhibitors. Higher basal levels of 
GSK3β activity in cancer cell lines correlated with more 
efficacious responses to the inhibitors. 

No direct effect was examined. 
Pharmacologic inhibition and genetic 
depletion of GSK3β antagonized the effects 
of mTOR inhibitors against cancer cells. 

SR54 

Skin mouse The level of pGSK3βS9 was higher and that of 
pGSK3βY216 was lower in the later stage of chemically-
induced two-stage skin carcinogenesis mouse model. 

Not examined. SR55 

 mouse The level of pGSK3βS9 in skin carcinoma was weaker 
than normal skin. However, its level in TPA-mediated 
transformation-sensitive epidermal cells was higher than 
the transformation-resistant cells. 

No direct effect was examined. 
Overexpression of wild-type and constitutively 
active mutant GSK3β in the TPA-mediated 
transformation-resistant epidermal cells 
suppressed EGF- and TPA-mediated 
anchorage-independent growth in soft agar and 
tumorigenicity in nude mice. 

SR56 

Melanoma human A multikinase inhibitor sorafenib activates GSK3β via 
inhibition of its upstream kinases and alters subcellular 
localization of p53 to induce apoptosis in B-raf mutant 
melanoma cells. 

No direct effect was examined. 
GSK3β shRNA reversed and constitutively 
active mutant GSK3β facilitated the effect of 
sorafenib against tumor cells. 

SR57 

Neuroblastoma human BDNF activation of TrkB induced the Akt-dependent 
pGSK3βS9, resulting in its inactivation. Treatment of 
neuroblastoma cells with inhibitors of GSK3β, LiCl, 
GSK3β inhibitor VII, kenpaullone, or a GSK3β-siRNA 
resulted in a 15% to 40% increase in neuroblastoma cell 
survival after treatment with etoposide or cisplatin. 

GSK3β inhibition enhanced the survival of 
neuroblastoma cells after cytotoxic treatment. 

SR58 

*Direct effect of pharmacological GSK3β inhibitors and/or genetic depletion of GSK3β expression (e.g., RNA interference) or its activity (e.g., 
recombinant kinase-dead form) on tumor cell survival, proliferation, invasive ability and susceptibility to therapy. 

Abbreviations: AR, androgen receptor; BDNF, brain-derived neurotropic factor; DM, diabetes mellitus; DR4, 5, death receptor 4, 5; EGF, 
epidermal growth factor; GSK3β, glycogen synthase kinase 3β; HCC, hepatocellular carcinoma; LiCl, lithium chloride (classical but not specific 
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GSK3β inhibitor); Mcl-1, myeloid cell leukemia-1; mTOR, mammalian target of rapamycin; MSX2, msh homeobox 2; NAG-1, nonsteroidal 
anti-inflammatory drug activated gene 1; pGSK3βS9, GSK3β phosphorylated at seine 9 residue (inactive form); pGSK3βY216, GSK3β 
phosphorylated at tyrosine 216 residue (active form); PI3K, phosphatidylinositol 3-kinase; shRNA, short hairpin RNA; siRNA, small interfering 
RNA; SIRT3, sirtuin 3; TPA, 12-O-tetradecanoylpholbor-13-acetate; β-TrCP, β-transducin repeats-containing protein; TrkB, tyrosine kinase 
receptor B; TSC2, tuberous sclerosis protein 2; 
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Supplementary Table S2. Clinical trials of GSK3β inhibitors for treatment of diseases 

GSK3β inhibitor 
(Company) 

 
Disease 

Trial ID and 
phase 

Combined 
regimen 

 
URL (access date: July 5, 2016) 

 
Reference 

AZD-1080 
(AstraZeneca) 

Alzheimer’s disease Phase I none https://ja.scribd.com/doc/851553/AstraZeneca-
Therapy-R-D-Pipeline-Summary-December-7-
2007  

 

NP031112/tideglusive 
(Noscira SA) 

Progressive 
supranuclear palsy 

NCT01049399 
Phase IIb 

none https://clinicaltrials.gov/ct2/show/NCT01049399  SR60,61 

 Alzheimer’s disease NCT01350362 
Phase II 

none https://clinicaltrials.gov/ct2/show/NCT01350362  SR62,63 

LY2090314 
(Eli Lilly) 

Acute leukemia NCT01214603 
Phase II 

none https://clinicaltrials.gov/ct2/show/NCT01214603   

 Metastatic pancreatic 
cancer 

NCT01632306 
Phase I/II 

Gemcitabine, 
FOLFOX, or 
Gemcitabine + 
nab-paclitaxel 

https://clinicaltrials.gov/ct2/show/NCT01632306   

 Advanced or metastatic 
solid cancer 

NCT01287520 
Phase I 

Pemetrexed + 
carboplatin 

https://clinicaltrials.gov/show/NCT01287520  SR64,65 

CLOVA cocktail* Advanced pancreatic 
cancer 

UMIN000005095 
Phase I/II 

Gemcitabine https://upload.umin.ac.jp/cgi-open-
bin/ctr/ctr.cgi?function=brows&action=brows&typ
e=summary&recptno=R000006032&language=E  

 

 Recurrent 
glioblastoma 

UMIN000005111 
Phase I/II 

Temozolomide https://upload.umin.ac.jp/cgi-open-
bin/ctr/ctr.cgi?function=brows&action=brows&typ
e=summary&recptno=R000002506&language=E  

*Furuta 
T, et al. 

 Abbreviations: CLOVA, combined cimetidine, lithium chloride, olanzapine and valproate regimen; FOLFOX, combined folate, 5-fluorouracil and 
oxaliplatin regimen; SR, supplementary reference No.  

*Furuta T, et al., unpublished data 
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https://clinicaltrials.gov/ct2/show/NCT01049399
https://clinicaltrials.gov/ct2/show/NCT01350362
https://clinicaltrials.gov/ct2/show/NCT01214603
https://clinicaltrials.gov/ct2/show/NCT01632306
https://clinicaltrials.gov/show/NCT01287520
https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000006032&language=E
https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000006032&language=E
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https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000002506&language=E
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