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Abstract   

Both innate and adaptive immune responses have an essential role in protection against 

tumor cells. Various types of immune cells such as dendritic cells and lymphocytes 

contribute to the establishment of immune responses to tumor cells. Chemokines, a family 

consisting of more than 40 related chemoattractant proteins, have a crucial role in the 

control of the recruitment of immune cells needed for the induction and activation of tumor 

immunity. Based on these properties, several chemokines have been utilized in pre-clinical 

models to augment tumor immunity by enhancing the migration and activation of immune 

cells. Paradoxically, tumor tissues use chemokines to evade immunosurveillance by 

attracting immune suppressive cells. Moreover, chemokines can mediate survival and 

migration of tumor cells, and promote new blood vessel formation, thereby leading to 

tumor progression and metastasis. Thus, a number of therapeutic strategies have been 

proposed to target chemokines, in order to reduce tumor progression and metastasis, 

although these strategies have not yet be translated to clinical situations. Here, we will 

briefly summarize the pre-clinical results obtained by using and/or targeting chemokines to 

combat tumors and discuss the potential efficacy of these methods. 
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Introduction 

Chemokines are heparin-binding proteins characterized by the presence of 4 

cysteine residues in the conserved positions [1](Moser 2004). Two intermolecular disulfide 

bonds are formed between the first and third cysteines, and between the second and fourth 

cysteines, and these bonds result in the formation of triple-stranded β-sheet structures, 

while the carboxyl-terminal region forms an α-helix form [2](Fernandez 2002). Thus, 

although overall sequence similarities are not high among chemokines, they exhibit a 

similar three-dimensional structure. Chemokines exert their biological activities by binding 

their cognate receptors, which belong to G-protein coupled receptor (GPCR) with 7-span 

transmembrane portions [1]. Thus, the target cell specificity of each chemokine is 

determined by the expression pattern of its corresponding receptor. At their high 

concentrations, chemokines tend to dimerize by forming hydrogen bonds between their 

β-sheet structures (Jansma 2009)[3]. The current consensus is that monomeric forms of 

chemokines are sufficient for receptor binding to induce cell migration. It still remains 

elusive on the functions of dimerized chemokines, although the dimer is assumed to be 

associated with other complex functional roles (Jansma 2009)[3]. Moreover, through the 

carboxyl-terminal region with the capacity to bind heparin, chemokines can bind to 

proteoglycans and glycosaminoglycans with a high avidity. Consequently, most 

chemokines are produced as a secretory proteins, but upon their secretion, they can be 

immobilized on endothelium cells and in extracellular matrix by interacting with 

proteoglycans and glycosaminoglycans (Fernandez 2002)[2]. The immobilization facilitates 

the generation of a concentration gradient, which is crucial for inducing the target cells to 

migrate in a directed way. 

Based on their structure, chemokines are classified into 4 subgroups, namely, CXC, 

CC, CX3C and C (Moser 2004) [1] (Table 1). The first 2 cysteines are separated by 1 and 3 

amino acids in CXC and CX3C chemokines, respectively, while the first 2 cysteines are 

adjacent in CC chemokine. The C chemokine lacks the second and the fourth cysteines. 

Systematic chemokine nomenclature is based on their cysteine subclass roots, followed by 

“L” for “ligand” (Zlotnik 2000)[4]. The numbers correspond generally to the same number 
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used in the corresponding gene nomenclature. Because most chemokine receptors can bind 

to a single chemokine subclass, the nomenclature system of chemokine receptors is rooted 

by the chemokine subclass specificity, followed by “R” for “receptor” and the number 

(Zlotnik 2000)[4] (Table 1). The CXC chemokines are further grouped based on the 

presence or the absence of a 3-amino acid sequence, glutamic acid-leucine-arginine (the 

“ELR” motif), immediately preceding the CXC sequence (Vandercappellen 2008)[5]. In 

general, CXC chemokines with the ELR motif can bind CXCR1 and/or CXCR2, and 

exhibit an angiogenic and a neutrophil chemotactic activity (Vandercappellen 2008)[5]. 

Chemokines can be classified as inflammatory, homeostatic, or both, based on 

their expression pattern (Mantovani 2006)[6]. Various types of inflammatory stimuli induce 

the expression of inflammatory chemokines, which have a crucial role in the infiltration of 

inflammatory cells including granulocytes and monocytes/macrophages. Representative 

inflammatory chemokines are CXC chemokines with ELR motif and CCL2. On the 

contrary, homeostatic chemokines are expressed constitutively in specific tissues or cells. 

They are involved in organogenesis of various organs including lymph nodes, as they have 

key roles in stem cell migration. Moreover, most homeostatic chemokines can regulate the 

trafficking of immune cells such as lymphocytes and dendritic cells, and eventually 

adaptive immunity. 

The human and mouse genomes contain over 44 and 38 different chemokine genes, 

respectively (Nomiyama 2010)[7]. There is a difference in gene numbers with some 

ambiguities of orthologous relationship between the human and mouse chemokine family. 

These observations would indicate that the chemokine gene family has been rapidly 

evolving, resulting in species-specific expansions and contractions. A notable difference 

has been found in one of the major chemokine, CXCL8, and its receptors, CXCR1 and 

CXCR2. Mice and rats do not possess a homolog of the CXCL8/IL-8 gene, which is present 

in other species including humans, rabbits, cats, and dogs (Nomiyama 2010)[7]. Moreover, 

the CXCR1 and CXCR2 genes encode functional receptor proteins in humans, whereas 

there still remains a question on the presence of functional CXCR1 in mice or rats (Moepps 

2006)[8]. Different expression patterns between humans and mice were observed also on 
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other chemokine receptors such as CCR1 (Su 1996)[9]. These observations should be taken 

into consideration when the findings obtained with mouse models are extrapolated to 

human conditions. 

 

Chemokine receptor signaling (Figure 1) 

Approximately 20 signaling chemokine receptors have been identified as well as 

several non-signaling receptors (Table 1) (Allen 2007)[10]. The presence of a DRY motif in 

the second transmembrane region is responsible for the ability of chemokine receptors to 

signal upon ligand binding, and non-singaling signaling receptors lack this motif. 

Chemokine receptors are coupled with heterotrimeric Gαβγ proteins bound to intracellular 

loops. The Gα subunit contains a GTPase domain involved in binding and hydrolysis of 

GTP. In the inactive state, the Gα subunit binds GDP, and interacts directly with the 

intracellular loop of chemokine receptors and with Gβ subunit, which in turn forms a tight 

complex with Gγ subunit. A two-step model has been proposed for activation of the 

receptor (Fernandez 2002)[2]. In the first step, a chemokine specifically recognizes and 

binds the receptor. Consequently, the amino-terminus of the chemokine interacts with the 

receptor, leading to the activation of the receptor. Simultaneously, ligand binding induces 

internalization of the chemokine receptor by using the clarthrin-mediated pathway or the 

lipid rafts/caveole-dependent internalization routes (Neel 2005)[11]. Internalized receptors 

are recycled and reappear on the cell surface quickly. However, it still remains 

controversial on the necessity of internalization and recycling for chemokine-mediated 

signaling and chemotaxis. 

The activation induces dissociation of GDP from Gα and replacement of GTP. 

Gα-GTP eventually dissociates from the receptor and the Gβγ heterodimer, and both 

complexes activate a series of downstream effectors (Figure 1). Generated Gβγ heterodimer 

recruits and activates phosphatidylinosinol 3-kinase-γ (PI3K-γ), which in turn generates 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) (Servant 2000)[12]. PIP3 activates protein 

kinase B (Akt) as well as small GTPase such as Rac and Rho (Figure 1). In addition, active 

Gα and Gβγ facilitate the polarization of the cells with the leading edge (pseudopodium) in 
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the front and the formation of a trailing tail (uropod) at the back. PI3K and Rac accumulate 

at the leading edge to induce actin polymerization and F-actin formation (Ridley 2003)[13]. 

Simultaneously, Rho and its effector molecules accumulate at the trailing edge to facilitate 

actomyosin contraction and tail retraction, thereby leading to the migration of the cells. 

GPCR-mediated signals can be down-regulated by regulators of G protein 

signaling (RGS) proteins. RGS proteins are a family consisting of 20 members and can 

activate GTPase activities. RGS proteins directly interact with GTP-bound Gα subunit to 

catalyze GTP hydrolysis and G protein downregulation and eventually decrease the 

half-life of the active GTP-bound state of Gα. RGS1, RGS3, and RGS4 attenuated 

CXCL8-mediated signals in neutrophils (Druey 1996)[14] while RGS1 and RGS13 reduces 

CXCL12- and CXCL13-mediated signals in B cells (Shi 2002, Le 2005)[15, 16]. 

The binding of a chemokine to its corresponding receptor exposes the tyrosine 

residue in DRY motif in the second transmembrane region (Mellado 1998, 

Rodríguez-Frade 2001)[17, 18]. This exposure allows access of Janus kinase, which 

activates the receptor by tyrosine phosphorylation. Simultaneous activation of Janus kinase 

leads to the recruitment of STAT (signal transducers and activators of transcription) and 

eventually STAT-mediated expression of the target genes [17, 18](Mellado 1998, 

Rodríguez-Frade 2001) (Figure 1). Moreover, this pathway requires ligand-induced 

homodimerization of chemokine receptors, as observed on other GPCRs that can frequently 

exist as dimers and/or high-order oligomers (Breitwieser 2004)[19]. In the case of CCR5, 

Ile52 in transmembrane region-1 (TM1) and Val150 in TM4 are key residues in the 

interaction surface between CCR5 molecules (Hernanz-Falcon 2004)[20]. Moreover, 

mutation in these residues generates nonfunctional receptors that cannot dimerize or trigger 

signaling. Similar regions in CCR2 receptor are required for CCL2-induced 

homodimerization and subsequent activation (Rodríguez-Frade 1999)[18]. 

It is widely accepted that even distantly related GPCRs can form heterodimers 

(Breitwieser 2004)[19]. Indeed, heterodimerization isare also observed among several 

chemokine receptors including CCR2, CCR5, CXCR2, and CXCR4 (Rodríguez-Frade 

2001)[21]. For example, the heterodimerization of CCR2 with CCR5 cooperates to trigger 
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calcium influx at concentrations 10- to 100-folde lower than the threshold for either CCL2, 

a ligand for CCR2, and or CCL5, a ligand for CCR5 (Mellado 2001)[22]. However, it 

recruits a dissimilar signaling pathway such as Gα/11 association and delays activation of 

PI3-K. The consequences are triggering of cell adhesion rather than chemotaxis. In the case 

of CCR2/CXCR4 heterodimers, specific antagonists of one receptor inhibit the binding of 

chemokines to other receptor both in recombinant cell lines and primary leukocytes (Sohy 

2007)[23]. This results in a significant functional cross-inhibition in terms of calcium 

mobilization and chemotaxis. Thus, chemokine receptor antagonists can regulate 

allosterically the functions of receptors, which they do not directly bind. These 

observations may have important implications for the effects of these antagonists. 

 Ras and its downstream signaling pathway, mitogen activated protein kinase 

(MAPK)/Erk kinase pathway, can be activated by several chemokine receptors including 

CXCR1, CXCR2 (Knall 1996)[24], and CXCR4 (Barbero 2003)[25] (Figure 1). The 

activation is frequently observed in tumor cells and leads to gene expression and cell 

proliferation. Moreover, activation of CXCR4 stimulates ovarian cancer cell growth 

through transactivation of the epidermal growth factor receptor (Porcile 2005)[26]. The 

activation of these signaling pathways may favor tumor cell proliferation. 

 

Effector cells in tumor immunity and chemokines 

 Accumulating evidence indicates the presence of cytotoxic T lymphocytes (CTLs) 

that can specifically recognize tumor-associated antigens (TAA) and attack tumor cells in 

humans as well as in mice (Knutson 2005)[27] (Figure 2). In this immunological approach 

to cancer, antigen-presenting cells can deliver TAAs and prime TAA-specific T cells. 

Dendritic cells (DCs) are professional antigen-presenting cells and can express on their cell 

surface major histocompatibility complex (MHC) class I and II molecules, and  as well as 

co-stimulatory molecules, all of which assist in T cells activation (Palucka 2012)[28]. DCs 

are widely distributed over peripheral tissues, and DCs in peripheral tissues are in an 

immature state and have a high capacity to endocytose various materials (Sozaani 

2005)[29]. In periphery, DCs capture exogenous and endogenous antigens including tumor 
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cell-derived antigens (Figure 2). When DCs capture antigens in the absence of 

inflammatory cues such as Toll-like receptor-mediated signals, they failed to increase the 

expression of co-stimualatory molecules and to present antigens efficiently. On the contrary, 

when DCs capture antigens in the presence of inflammatory stimuli, they change to a 

mature state with a loss of endocytosis ability and start to migrate into the T cell areas of 

regional lymph nodes via afferent lymphatic venules under the guidance of chemokines 

(Figures 2 and 3). Mature DCs process the antigens into the peptides presented on MHC 

molecules, exhibit enhanced expression of co-stimulatory molecules, and induce primary 

immune responses through antigen presentation to T cells in the regional lymph node 

(Sozaani 2005)[29] (Figure 3). Immature DCs in peripheral tissues express various 

chemokine receptors including CCR1, CCR2, CCR4, CCR5, CCR6, CCR8, and CXCR4, 

whereas mature DCs express a limited set of chemokine receptors, CCR7 and CXCR4 

(Sozaani 2005) [29] (Figure 3).  

CCR7 and its ligands, CCL19 and CCL21, have a pivotal role in DC migration to 

lymph nodes in both steady state and inflammatory conditions (Förster, 1999)[30] although 

the contribution of another chemokine receptor, CCR8, cannot be excluded (Qu 2004)[31]. 

Antigen-pulsed CCR7+/+ but not CCR7-/- DCs migrate efficiently to the draining lymph 

nodes when an antigen is injected intravenously (Martin-Fontecha 2003)[32]. Moreover, 

DC migration is markedly enhanced when intranodal CCL21 expression is augmented by 

pretreatment with interleukin (IL)-1 or tumor necrosis factor (TNF). Furthermore, the 

magnitude and quality of T cell response is proportional to the number of antigen-carrying 

DCs in the lymph nodes (Martin-Fontecha 2003)[32]. Furthermore, DCs can produce the 

chemokines which affect the trafficking and functions of natural killer (NK) cells, a main 

executor of innate immunity-mediated tumor cell killing (Sozaani 2005) [29]. 

Once generated in the regional lymph nodes, TAA-specific CTLs should migrate 

to tumor sites to kill tumor cells (Figure 2). Numerous clinical studies have indicated that 

the presence of CD3+ or CD8+ tumor-infiltrating lymphocytes (TILs) has a positive 

prognostic influence on survival (Gooden 2011)[33]. Most TILs are deemed to possess 

cytotoxic activities against tumor cells. Evidence is accumulating to indicate that several 
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chemokines regulate the migration of CTLs into tumor sites. CXCR3 is deemed to be a 

major chemokine receptor expressed by TILs. In a mouse model, increased expression of 

ligands for CXCR3, CXCL9 and CXCL10, can elicit antitumor response accompanied with 

an enhanced infiltration of CD4+ and CD8+ lymphocytes (Pan 2006)[34]. In line with this 

observation, in human gastric and colorectal cancer, TILs express CXCR3 (Musha 2005, 

Ohtani 2009, Muthuswamy 2012).[35, 36, 37]. Moreover, high levels of CXCL9 and 

CXCL10, ligands for CXCR3, are produced by stromal cells, mainly macrophages (Ohtani 

2009).[36]. CD8+ TILs also express CCR5 (Musha 2005, Muthuswamy 2012)[35, 37]. 

Concomitantly, CD8+ TIL numbers correlate well with the expression of CCL5, a ligand for 

CCR5, by tumor tissues (Muthuswamy 2012)[37]. TILs express other chemokine receptors, 

CX3CR1 and the expression of its ligand, CX3CL3, is elevated in tumor cells in colorectal 

cancer tissues (Ohta 2005)[38]. Furthermore, the expression level of CXCL16 also 

correlates with CD4+ and CD8+ TIL numbers with a better prognosis although cells 

expressing CXCR6, a receptor for CXCL16, are not identified (Hojo 2007)[39]. Thus, 

CXCL9, CXCL10, CXCL16, CCL5, and CX3CL1 can be used to efficiently mobilize 

CTLs from regional lymph nodes to tumor tissues with an objective to enhance 

CTL-mediated tumor destruction. 

NK cells are unconventional lymphocytes and were initially identified as a 

leukocyte to kill tumor cells without any antigen stimulation (Vivier 2008)[40]. Mouse and 

human NK cells can in vitro kill a broad range of tumor cells of both hematopoietic and 

non-hematopoietic origin by utilizing perforin and secreting interferon (IFN)-γ (Vivier 

2008)[40]. Moreover, in vivo, mouse NK cells can eliminate many transplantable and 

spontaneous tumors. Distinct sets of chemokine receptors are utilized for NK cell 

trafficking (Table 1). NK cells migrate to lymph nodes mainly by utilizing CXCR3 and 

CCR7, while their migration to the inflamed tissues including tumor sites involves CCR1, 

CCR2, CCR5, CXCR3, and CX3CR1 (Walzer 2011)[41]. Thus, the ligands for these 

receptors can regulate NK cell trafficking and augment their functions. However, in 

colorectal tumor tissues, NK cells are scarce despite a significant lymphocyte infiltration, 

even in the presence of high levels of CXCL9, CXL10, CCL3, CCL4, CCL5, and CX3CL1 
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(Halama 2011)[42]. These observations suggest that NK cell migration into tumor tissues is 

impaired early during tumor development by the mechanism that do not affect TIL 

trafficking. 

 

Chemokine-mediated enhancement in tumor immunity 

As discussed above, the establishment of tumor immunity is a process consisting 

of multiple steps; migration of DCs to tumor sites, capture of tumor antigens by DCs, 

migration of DCs to regional lymph nodes, antigen presentation to effector cells by DCs in 

regional lymph nodes, and migration of effector cells to tumor sites (Figure 2). Chemokines 

have profound effects on tumor immunity, particularly migration steps. 

The appearance of apoptotic cells induces the migration of immature dendritic 

cells to the tumor tissues. Accumulated immature dendritic cells capture TAAs and migrate 

to draining lymph nodes, where DCs present antigens to induce specific CTLs (Figure 2). 

Tumor-infiltrating DCs expressed CCR1 and CCR5, and a ligand for these receptors, CCL3, 

was abundantly detected in mouse bearing hepatocellular carcinoma (HCC)  (Iida 

2008)[43]. Moreover, DCs in tumor sites and lymph nodes, and subsequent cytotoxicity 

generation were reduced in CCR1-, CCR5-, or CCL3-deficient mice (Iida 2008)[43]. These 

observations may mirror the capacity of CCL3 to mobilize immature DCs to peripheral 

blood from bone marrow by interacting with CCR1 or CCR5 (Zhang 2004)[44]. Actually, 

systemic administration of CCL3 increased the numbers of DCs in peripheral blood and 

tumor tissues, and concomitantly augmented antitumor effects after radiofrequency ablation 

of murine HCCs (Iida 2010)[45]. These observations suggest that CCL3 may be effective 

to enhance tumor immunity by inducing the migration of immature DCs through peripheral 

blood to dying tumor cells. 

The interaction between CCR7 and its ligands, CCL19 and CCL21, regulates DC 

migration to lymph nodes for antigen presentation to naïve T cells, which also utilize 

CCR7-mediated mechanisms to enter T cell zone (Förster, 1999)[30]. Moreover, CCL19 

and CCL21 can attract NK cells to the lymph node. These observations suggest the potency 

of these chemokines to enhance acquired and innate immunity against various antigens 
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including TAAs. Indeed, when CCL21 was injected into a regional lymph node of 

SV40-transgenic mice that developed bilateral multifocal lung adenocarcinomas, it 

increased CD4+ and CD8+ lymphocytes as well as DCs at lymph nodes and tumor sites, and 

eventually led to a marked reduction in tumor burdens with enhanced survival (Sharma 

2001)[46]. Similar results were also obtained when CCL19 was injected intranodally into 

SV40-transgenic mice (Hillinger 2006)[47].  

Ex vivo generated DC have a very limited capacity to move from the injected sites 

to locally draining lymph nodes (Chang 2002)[48]. This limitation may account for a 

clinical weakness in DC-based vaccines. The capacity of CCL19 and CCL21 to effectively 

induce DC migration prompted the use of these chemokines to modify ex vivo generated 

DCs. Intratumoral injection of CCL21 gene-modified DCs resulted in tumor growth 

inhibition that was significantly better than unmodified control DCs (Kirk 2001a)[49], 

together with intratumoral accumulation of DCs and T cells (Kirk 2001b)[50]. Moreover, 

even when CCL21 gene-modified DCs were pulsed with tumor lysates and subsequennetly 

injected subcutaneously to tumor-free sites in tumor-bearing mice, it elicited an antitumor 

response (Kirk 2001a)[49]. These promising preclinical results have led to ongoing phase I 

clinical trials (Baratelli 2008)[51]. 

Intratumoral administration of CCL21 gene-modified DCs reduced tumor burden 

in spontaneous murine lung carcinoma, accompanied with extensive T cell infiltration, and 

the enhanced elaboration of IFN-γ, IL-12, CXCL9, and CXCL10 (Yang 2004)[52]. 

Moreover, in vivo depletion of either CXCL9 or CXCL10 significantly reduced the 

antitumor efficacy of CCL21 gene-modified DCs. This may mirror the fact that CXCR3 is 

highly expressed by activated effector CD8+ T cells and Th1-type CD4+ T cells (Groom 

2011)[53]. CXCL10 gene transduction into tumor cells had few effects on in vitro tumor 

cell proliferation but in vivo elicited a potent T cell-dependent antitumor response (Luster 

1993)[54]. Likewise, tumor cells expressing CXCL10, induced the infiltration of 

tumor-specific cytotoxic T cells into the tumor site (Yang 2006)[55]. Moreover, tumor cells 

induced these cytotoxic T cells to proliferate and to produce high level of IFN-γ, while 

CXCL10 expanded these tumor-specific T cells. Gene transduction of another ligand for 
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CXCR3, CXCL11, into tumor cells, also retarded in vivo tumor growth accompanied by 

intratumoral infiltration of CD8+ cells (Hensbergen 2005)[56]. As T cells rapidly acquire 

CXCR3 expression upon activation with IL-2 (Groom 2011)[53], combined strategy of 

systemic IL-2 with intratumor CXCL9 administration was proven to be more efficacious 

than either cytokine alone, for augmenting tumor-associated immunity (Pan 2006)[34]. 

Thus, CXCR3-binding chemokines can be utilized to redirect the migration of effector T 

cells to tumor sites. 

Muthuswamy observed that colorectal tumors with reduced accumulation of CD8+ 

effector cells express low levels of CXCL10 and CCL5, the chemokine with potent 

chemoattractant activities for CD8+ effector cells (2012)[37]. They demonstrated that a 

combination of IFN-α and a TLR3 ligand, poly-I:C, can uniformly enhance the production 

of CXCL10 and CCL5. Moreover, these effects can be optimized by the further addition of 

cyclooxygenase (COX)-2 inhibitors. Of interest is that this triple combination also 

consistently suppresses the production of a ligand for CCR4, CCL22, a chemokine 

associated with Treg infiltration. Thus, this strategy can enhance the intratumoral 

trafficking of CD8+ effector T cells and can simultaneously reduce that of Treg cells, 

thereby augmenting local tumor immunity. 

CCL2 protein was initially isolated as a factor which can augment 

monocyte-mediated tumor cytostatic activity and can exhibit monocyte chemotactic 

activity (Matsushima 1989)[57]. Indeed, tumor formation was suppressed in vivo but not in 

vitro when the tumor was genetically engineered to express CCL2 gene (Rollins 1991)[58]. 

CCL2-expressing cells elicited a predominantly monocytic infiltrate at the site of injection, 

suggesting the roles of infiltrating monocytes in tumor rejection process (Rollins 1991)[58]. 

In addition to monocytes/macrophages, a receptor for CCL2, CCR2, is expressed by 

additional types of leukocytes such as NK cells (Table 1). CCL2 gene transduction into 

tumor cells retardeds tumor growth in vivo by inducing NK infiltration into tumor sites 

(Nokihara 2000)[59]. Moreover, NK cell infiltration was associated with elevated Th1 

response in tumor sites (Tsuchiyama 2007)[60], suggesting that CCL2 can regulate the 
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infiltration and activation of Th1 cells in tumor sites through NK cell recruitment and 

activation. 

Tumor formation was also suppressed in vivo when mouse lymphoma cell lines 

were transduced with the gene of another chemokine, CX3CL1 (Lavergne 2003)[61]. This 

antitumor response was abolished in NK cell-deficient beige mice but not in T- and 

B-cell-deficient Rag1-/- mice, indicating the indispensable roles of NK but not T cells. Gene 

therapy using CX3CL1 gene could activate T cells as well as NK cells to exert its antitumor 

responses (Tang 2007, Zeng 2007)[62, 63]. Moreover, intratumoral injection of a DNA 

plasmid coding for a chimeric immunoglobulin presenting CX3CL1 chemokine domain 

provided strong antitumor activity (Lavergne 2003)[64]. The administration of this fusion 

protein with tumor antigens, induced a strong in vivo antigen-specific T cell proliferation 

and effector function, accompanied with myeoloid DC accumulation (Iga 2007)[64]. Thus, 

CX3CL1 can redirect T cells and DCs as well as NK cells, thereby augmenting adaptive 

immunity to tumor antigens. 

In order to enhance the capacity to move to tumor sites by utilizing the 

chemokine(s) produced by tumor cells, several groups genetically engineered T cells to 

express the corresponding chemokine receptor. The Reed-Sternberg cells of Hodgkin 

lymphoma predominantly produce CCL17 and CCL22, which preferentially attract 

CCR4-expressing Th2 and Treg cells (van den Berg 1999)[65]. On the contrary, effector 

CD8+ T cells lack CCR4. When CD8+ cells were forced to express CCR4, these cells 

migrated more efficiently to Hodgkin lymphoma site. Moreover, tumor formation was more 

effectively inhibited by the administration of T lymphocytes expressing CCR4 and a 

chimeric antigen receptor directed to the Hodgkin lymphoma-associated antigen CD30 (di 

Stasi 2009)[66]. Similarly, CCL2 was highly secreted by malignant pleural mesothelioma 

cells, but CCR2 was minimally expressed on activated human T cells transduced with a 

chimeric antibody receptor (CAR) directed to mesothelioma tumor antigen, mesothelin 

(mesoCAR T cells) (Moon 2011)[67]. CCR2 gene-transduced mesoCAR T cells exhibited 

enhanced antitumor responses accompanied with augmented T cell infiltration into tumor 

sites, when they were given intravenously [67]. This novel gene therapy technology using a 
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chemokine receptor can effectively enhance the migration of adoptively transferred T cells 

into tumor sites, where a corresponding chemokine is expressed abundantly. 

 

Reversal of suppressor cell-mediated immune suppression by targeting chemokines 

Tumor immunity can frequently induce immune suppressive mechanisms to 

dampen the “immunity to self”. Thus, tumor immunity can be reduced by the action of 

several negative immunoregulatory receptors such as cytotoxic T lymphocyte antigen-4 

(CTLA-4) and the programmed death receptor-1 (PD-1)-PD ligand-1 (PD-L1) axis. Indeed, 

evidence is accumulating to indicate that the antagonizing monoclonal antibodies to 

CTLA-4, PD-1, or PD-L1, are effective against various types of cancer even at advanced 

stages (Sarnaik 2009, Ribas 2012)[68, 69]. These observations indicate that targeting 

tumor-induced immune suppression can be effective to enhance tumor immunity. 

Tumor tissues contain the leukocytes that can diminish tumor immunity. The most 

predominant subset is tumor-associated macrophages (TAMs) (Sica 2008)[70]. Circulating 

monocytes are mostly the precursor of these TAMs and are attracted into tumor sites, by 

chemotactic factors including CCL2, CCL5, CCL7, CCL8, CXCL12, and macrophage 

colony stimulating factor (M-CSF), which are produced in tumor tissues (Sica 2008)[70] 

(Figure 4). In human colorectal cancer tissues, macrophage accumulation increases with 

tumor stages and correlates with CCL2 expression in tumor sites (Bailey 2007)[71]. Thus, 

CCL2-induced TAM infiltration can have a pro-tumorigenic activity. 

Hypoxia in tumor microenvironment induces TAMs to produce abundantly 

vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), two 

potent angiogenic factors (Sica 2008)[70]. Moreover, a fraction of TAMs can be 

incorporated into tumor vasculature (Kim 2009)[72]. TAMs are frequently polarized into 

M2 phenotypes under the influence of various factors present in tumor microenvironment, 

such as IL-4, IL-10, and prostaglandins (PGs) (Ruffell 2012) [73]. M2 phenotype is 

characterized by the expression of arginniase (Arg)-1 and inducible NO synthase (iNOS), 

the enzymes responsible for the generation of reactive oxygen species (ROS), which can 

inhibit CTL proliferation [73](Ruffle 2012). TAMs can additionally produce IL-10 and 



Mukaida 15 

TGF-β to promote the generation of another immunosuppressive cells, regulatory T cells 

(Treg) (Sica 2008)[70], while they can also produce CCL22 to induce intratumoral Treg 

migration (Curiel 2004)[74]. Moreover, a fraction of TAMs express B7-H4 on their surface 

to inhibit CTL proliferation (Kryczek 2006)[75]. These properties endow TAMs with an 

immunosuppressive capacity. Thus, TAMs can promote tumor progression by inducing 

angiogenesis and suppression of adaptive and innate anti-tumor immunity (Figure 4). 

Systemic delivery of neutralizing anti-CCL2 antibody attenuated tumor burdens in 

human prostate cancer-bearing mice although its effects of TAMs have not been examined 

(Loberg 2007)[76]. Combined treatment of azoxymethane and repeated dextran sodium 

sulfate solution ingestion caused multiple tumors in murine colons, together with a massive 

infiltration of monocytes/macrophages expressing COX-2, an enzyme crucially involved in 

colon carcinogenesis (Popivanova 2009)[77]. CCL2 was abundantly detected in colon 

tissues and induced CCR2-positive COX-2 expressing monocytes/macrophages to infiltrate 

colon tissues and blocking CCL2 retarded tumor progression with reduced macrophage 

infiltration (Popivanova 2009)[77]. CCL2 also recruited monocytes to pulmonary 

metastatic sites of murine breast cancer [78]. As a consequence, infiltrated monocytes 

promoted the extravasation of tumor cells, a prerequisite step for metastasis, in a process 

that required monocyte-derived VEGF and CCL2 blockade markedly reduced lung 

metastasis (Qian 2011).  

Myeloid-derived suppressor cells (MDSCs) is are an additional type of cells 

characterized by a strong ability to suppress various T cell functions (Condamine 2011)[79]. 

MDSCs represent a heterogenic population of immature myeloid cells that consists of 

precursors of macrophages, granulocytes, and dendritic cells. In mice, MDSCs are 

characterized by the co-expression of two distinct myeloid-cell lineage differentiation 

antigens, Gr-1 and CD11b in mouse (Condamine 2011)[79]. In humans, MDSCs are 

defined as CD14-CD11b+ cells or as cells that express the common myeloid marker CD33 

but lack the expression markers of mature myeloid and lymphoid markers. Similarly as 

TAMs do, MDSCs express Arg-1 and iNOS, and produce immunosuppressive cytokines 

such as TGF-β1 and IL-10, thereby inhibiting T cell response (Condamine 2011)[79] 
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(Figure 4). CCL2 recruits MDSCs in several types of mouse cancer including Lewis lung 

carcinoma, MethA sarcoma, melanoma and lymphoma (Huang 2007)[80]. Moreover, 

CCL2-mediated MDSC accumulation can negatively regulate the entry of adoptively 

transferred activated CD8+ cells into tumor sites (Lesokhin 2012)[81]. However, CCR2 

deficiency caused conversion of the MDSC phenotype to neutrophil lineage without 

affecting tumor growth (Sawanobori 2008)[82], probably because MDSC contains a subset 

of immature neutrophils (Brandau 2011)[83].  CXCL5 and CXCL12 also induced MDSC 

infiltration in mouse mammary adenocarcinoma (Yang 2008)[84]. In ascites isolated from 

human ovarian cancer patients, PGE2 induced CXCL12 production and the expression of 

its receptor, CXCR4, and the CXCL12-CXCR4 axis subsequently induced the 

accumulation of MDSCs (Obermajer 2011)[85]. Due to the heterogeneity of MDSCs 

(Condamine 2011)[79], it remains elusive on the relevance of this observation. 

Treg cells are characterized by the expression of CD4 and CD25 on their cell 

surface with the expression of a transcription factor, Foxp3 (Nishikawa 2010)[86]. Treg 

cells are polarized from CD4+ naïve T cells in thymus or periphery, and are physiologically 

engaged in the maintenance of immunological self-tolerance. A large number of Treg cells 

often infiltrate into tumors and systemic removal of Treg cells enhances natural as well as 

vaccine-induced anti-tumor T cell immunity [86](Nishikawa 2010). Intratumoral 

CD8+/Foxp3+ ratio but not absolute Foxp3+ cell numbers correlated inversely with survival 

(Gooden 2011)[33]. Thus, the relative ratio of Treg to CD8+ CTL but not absolute Treg 

number can have impacts on immune tolerance to tumor cells. 

Treg cells express CCR4 and its ligand, CCL22, mainly regulates intratumoral 

Treg infiltration in various tumors [86] (Nishikawa 2010) (Figure 4). Indeed, intratumoral 

CCL22 expression correlated well with Foxp3 expression in colorectal carcinoma tissues 

(Muthuswamy 2012)[37]. Hypoxia induced the expression of another chemokine, CCL28, 

in colorectal tumor cells (Facciabene, 2011)[87]. CCL28 seemed to utilize mainly CCR10 

to induce Treg migration into tumor sites (Figure 4) although CCL28 was reported to 

utilize both CCR3 and CCR10 as its receptors (Table 1). Moreover, infiltrating Treg cells 

can produce VEGF to promote tumor neovascularization (Facciabene, 2011)[87]. 
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Furthermore, anti-CCL2 antibody augmented cancer immunotherapy against non-small cell 

lung cancer in mice when it was administered in combination with a tumor vaccine 

(Fridelender 2010)[88]. This enhanced tumor immunity was associated with reduced 

intratumoral Tregs and increased numbers of intratumoral CD8+ cells that are more 

activated and more antitumor antigen-specific. These observations illustrate that targeting 

these chemokines can reduce intratumoral Treg cells, resulting in the enhancement of tumor 

immunity. 

Adult T cell leukemia (ATL) cells are also characterized by robust expression of 

CCR4 and can migrate in vitro to CCL17 and CCL22, ligands for CCR4 [89] (Yoshie 2002). 

By using genetic engineering methods, humanized monoclonal antibody to CCR4 has been 

defucosylated to exert more potent antibody-dependent cytotoxicity (ADCC) (Ishida 

2011)[90]. The resultant antibody is capable of removing CCR4-expressing ATL cells in 

peripheral blood and bone marrow mainly by ADCC. Thus, this antibody may also be 

effective to reduce intratumoral Treg cell numbers in solid tumors, thereby augmenting T 

cell-mediated cytotoxicity against tumor cells. 

Recently, CCR1-expressing CD34+ immature myeloid cells have been detected in 

murine intestinal tumors with SMAD4 deficiency (Kitamura 2007)[91]. These cells 

expressed abundantly MMP9MMP-9 and MMP2MMP-2,  and were involved in invasion. 

Moreover, a CCR1 antagonist suppressed colon cancer liver metastasis by blocking 

accumulation of this CD34+ immature myeloid cells (Kitamura 2010)[92]. 

 

Other strategies of antitumor therapy targeting chemokines 

Chemokines were originally identified as factors affecting leukocyte migration and 

activation (Oppenheim 1990)[93]. Subsequent studies revealed that chemokines have 

effects on non-leukocytic cells including tumor cells and endothelial cells (Figure 5). 

Indeed, several chemokines can directly induce cancer cells to express pro-tumorigenic 

genes and to proliferate. CXCL8 can induce the proliferation of human gastric cancer cells 

(Kitadai 2000)[94], esophageal cancer cells (Wang 2006)[95], and melanoma cells (Singh 

2009)[96]. CXCR4 activation also caused the proliferation of various cancer cells including 
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ovarian, glioma, melanoma, lung, renal, and thyroid cancer cells (Teicher 2010)[97]. 

Likewise, CCR6 and CXCR6 can promote the proliferation of colorectal cancer cells 

(Ghadjar 2009)[98] and prostate cancer cells (Darsh-Yahana 2009)[99], respectively. 

Furthermore, the activation of CXCR4, CCR10, or CCR7 axis delivered surviving signals 

to various types of malignant cells (Murakami 2003, Wang 2008, Bertran 2009, Righi 2011, 

Messmer 2011)[100, 101, 102, 103, 104]. Thus, the inhibition of these chemokines may 

directly reduce in vivo tumor cell proliferation. 

Metastasis is a complicated process wherein cancer cells extravasate from the 

original tissues, move inside bloodstream and/or lymphatics, invade to and grow in distant 

organs. The first step of metastasis, extravasation from the original tissues, requires 

epithelial-mesenchymal transition (EMT) (Bertran 2009)[102]. Accumulating evidence 

indicates the crucial roles of CXCL12 [102](Bertran 2009) and CXCL8 in EMT (Fernando 

2011)[105]. Moreover, when tumor cells enter circulation, tumor cells are prone to anoikis, 

which is a form of cell death arising from the lack of the support from extracellular matrix 

and is a major block in the metastatic spread of various types of cancer cells. CXCL12 and 

a CCR7 ligand, CCL21, can reduce the sensitivity of cancer cells to anoikis by regulating 

pro-apoptotic Bmf and anti-apoptotic Bcl-xL proteins (Kochetkova 2009)[106]. 

CXCR4, CCR7, CCR9, CXCR1, and CXCR2 were detected in tumor cells and 

their ligands induced the chemotaxis of the corresponding receptor-expressing cells (Mȕller 

2001, Buonamici 2009, Amersi 2008, Waugh 2008, Messner 2011, Zhang 2012)[107, 108, 

109, 110, 111]. Specific chemokine receptor-expressing tumor cells may migrate to organs 

with high expression levels of respective chemokines along a concentration gradient 

(Mȕller 2001)[107]. However, there remains a question on the presence of a concentration 

gradient between primary and metastatic sites. Alternatively, cancer cells themselves are 

actively promoting their own metastasis and tropism by producing chemokines (Shields 

2007)[112]. Moreover, the arrival of tumor cells in a specific organ is passive and 

chemokine receptor expression provides tumor cells with an advantage to survive and grow 

in another ligand-rich metastatic microenvironment (Zhang 2009)[113]. Nevertheless, 



Mukaida 19 

several chemokines can serve as inducers of metastasis to distant organs and therefore, may 

be a good target for controlling metastasis. 

Neovascularization is crucial for tumor growth, progression, and metastasis (Fidler 

1994)[114]. The ELR motif-positive CXC chemokines, CXCL1, CXCL2, CXCL3, CXCL5, 

CXCL6, CXCL7, and CXCL8 can directly promote the migration and proliferation of 

endothelial cells and eventually neovascularization, mainly interacting with CXCR2, but 

not CXCR1 (Keeley 2011)[115] (Figure 5). Indeed, the administration of anti-CXCL8 

reduced the tumor sizes of human non-small cell lung cancer cells which are injected into 

severe combined immune deficient (SCID) mice in advance (Arenberg 1996)[116]. The 

reduction in tumor size was associated with a decline in tumor-associated vascular density 

and was accompanied by a decrease in spontaneous lung metastasis. 

CXCL12 is not an ELR-positive CXC chemokine but exhibits potent angiogenic 

effects (Kryczek 2007)[117]. In addition, three CC chemokines, CCL2, CCL11, and 

CCL16 have also been implicated in tumor neovascularization (Gȧlvez 2005, Salcedo 2001, 

Strasly 2004)[118, 119, 120]. Indeed, CCR2, a specific receptor for CCL2, was expressed 

by endothelial cells and CCL2 exerted its angiogenic activity in a membrane type 1 

(MT1)-MMP-dependent manner (Gȧlvez 2005) [118] (Figure 5). TAMs and MDSCs are 

recruited at tumor sites mainly by CCL2 and promote angiogenesis by producing a wide 

variety of angiogenic factors such as VEGF, TGF-β, CXCL8, platelet-derived growth 

factor (PDGF), and MMP such as MMP-2MMP-2 and MMP-9MMP-9. Moreover, 

recruited TAMs and MDSCs may acquire endothelial cell phenotypes and can be 

incorporated into the newly formed vascular structure (Rehman 2003)[121]. Thus, targeting 

these chemokines may be effective to control tumor neovascularization. 

CXCL4 and interferon-inducible ELR motif-negative CXC chemokines such as 

CXCL9, CXCL10, and CXCL11 inhibit the angiogenesis induced by ELR motif-positive 

CXC chemokines, VEGF, and bFGF (Maione 1990, Romagnani 2001)[122, 123]. The 

anti-angiogenic effects of these chemokines are mediated by a common receptor, CXCR3 

(Figure 5) and targeted expression of CXCL9 or intratumoral CXCL9 administration 

retarded in vivo tumor growth by inhibiting tumor-derived angiogenesis (Addison 2000, 
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Pan 2006)[34, 124]. Thus, these chemokines can be effective for tumor therapy by 

inhibiting neovascularization as well as inducing CXCR3-expressing cytotoxic T cell 

infiltration. 

 

Perspective 

 Chemokines regulate the trafficking of leukocytes including immune cells in the 

presence of a concentration gradient and. Chemokines  have a crucial role in the control of 

the recruitment of immune cells needed for the induction and activation of tumor immunity. 

As we described above, based on these properties, several chemokines have been utilized in 

pre-clinical models to augment tumor immunity by enhancing the migration and activation 

of immune cells. Most of these trials, however, have not yet been translated into clinical 

trials. However, trafficking of a particular type of immune cells is regulated simultaneously 

by several distinct chemokines in a redundant manner (Table 1). Thus, it still remains to be 

investigated which chemokine(s) is the most suitable for inducing the trafficking of the 

targeted immune cells, to exert efficient immune response to tumors.Chemokines regulate 

the trafficking of leukocytes including immune cells in the presence of a concentration 

gradient. In order to obtain a local high concentration, gene therapy techniques were used 

in most trials and this may preclude the translation into clinical trials. Thus, it is mandatory 

to develop a drug delivery system to supply efficiently a chemokine protein into the 

targeting site. 

 

Moreover, iIt is embarrassing that the same chemokine can induce tumor 

progression as well as protection against a tumor. One representative chemokine is CCL2, 

which can destroy tumor tissues when administered to tumor tissues by using gene therapy 

technology. It, however, exhibits a wide variety of actions involved in promotion of tumor 

progression and metastasis, and targeting CCL2 was proven to be effective for reducing 

tumor burdens and metastasis in several murine models. This paradox may be explained by 

the assumption that endogenously produced CCL2 can act on the cells present in tumor 

tissues but cannot cause a concentration gradient sufficient to attract immune cells from 
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outside of the tumor tissues. OtherwiseAlternatively, the responsiveness of immune 

effector cells to CCL2 may be much lower than that of immune suppressive cells, 

endothelial cells, and tumor cells. This may favor endogenous chemokine-mediated 

generation of pro-tumorigenic microenvironments rather than antitumor immune response.  

Thus, we should also clarify the local concentration of the chemokine, which is required for 

the responsiveness of immune effector cells but not that of immune suppressive cells, 

endothelial cells, and tumor cells. Based on the information, we should devise a method to 

sustain a local chemokine concentration sufficient to attract immune effector cells to elicit 

immune response to tumor. Alternatively, genetic modification of immune effector cells 

with a chemokine receptor gene can confer a capacity to respond more efficiently to a 

chemokine on immune effector cells. Thus, this may be an attractive maneuver to change 

chemokine-mediated pro-tumorigenic environments, where a particular chemokine is 

present abundantly,  into an effective immune surveillance situationsystem, where the 

abundantly expressed chemokine can attract immune effector cells to exert immune 

responses.. 
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Chemokine Receptor            Chemokines                       Receptor Expression in 
Leukocytes     Epithelium   Endothelium 

CXCR1                 CXCL6, 8                        PMN             +           - 
CXCR2                 CXCL1, 2, 3, 5, 6, 7, 8              PMN             +           + 
CXCR3                 CXCL4, 9, 10, 11                Th1, NK            -            + 
CXCR4                 CXCL12                       Widespread          +           + 
CXCR5                 CXCL13                         B                 -           - 
CXCR6                 CXCL16                       activated T           +           -  
CXCR7                 CXCL12, CXCL11               Widespread          +           + 
Unknown               CXCL14  

(acts on monocytes) 
 
CCR1                   CCL3, 4, 5, 7, 14, 15, 16, 23     Mo, Mφ, iDC, NK       +          +  
CCR2                   CCL2, 7, 8, 12, 13             Mo, Mφ, iDC, NK       +          + 
                                                     activated T, B 
CCR3                   CCL5, 7, 11, 13, 15, 24, 26, 28   Eo, Ba, Th2            -           + 
CCR4                   CCL2, 3, 5, 7, 22              iDC, Th2, NK, T, Mφ     -           - 
CCR5                   CCL3, 4, 5, 8                 Mo, Mφ, NK, Th1       +          - 
                                                     activated T 
CCR6                   CCL20                      iDC, activated T, B      +           - 
CCR7                   CCL19, 21                   mDC, Mφ, naïve T      +           - 
                                                      activated T 
CCR8                   CCL1, 4, 17                  Mo, iDC, Th2, Treg     -           - 
CCR9                   CCL25                      T                    +          - 
CCR10                  CCL27, 28                   activated T, Treg        +          - 
Unknown                CCL18 

 (acts on mDC and naïve T) 
 
CX3CR1                CX3CL1                     Mo, iDC, NK, Th1       +          - 
 
XCR1                  XCL1, 2                      T, NK                 -          - 
 
Miscellaneous-------------scavenger receptors for chemokines 
Duffy antigen            CCL2, 5, 11, 13, 14 

 CXCL1, 2, 3, 7, 8 
D6                    CCL2, 3, 4, 5, 7, 8, 12 

CCL13, 14, 17, 22 

 
 
Table 1. The human chemokine system. Leukocyte anonyms are as follows: Ba, basophil; Eo, eosinophil; iDC, 

immature dendritic cell; mDC, mature dendritic cell; Mo, monocyte; Mφ, macrophage; NK, natural killer 
cell; Th1, type I helper T cell; Th2, type II helper T cell; Treg, regulatory T cell. 

  



Mukaida 49 

Legends to Figures 

Figure 1. Intracellular signaling pathway of chemokines. 

 

Figure 2. Tumor immunity generation. 

 

Figure 3. Maturation stages of dendritic cells. 

 

Figure 4. Biological effects of chemokines on suppressive leukocytes in tumors 

 

Figure 5. Biological effects of chemokines on tumor and endothelial cells. 












