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Abstract (no less than 200 words) 

Pim-3 is a member of Provirus integration site for Moloney murine leukemia virus (Pim) 

family proteins that exhibits serine/threonine kinase activity. Similar to other Pim kinases 

(Pim-1 and Pim-2), Pim-3 is involved in many cellular processes including cell 

proliferation, survival, and protein synthesis. Although Pim-3 is expressed in normal 

vital organs, it is overexpressed particularly in tumor tissues of endoderm-derived organs 

including the liver, pancreas, and colon. Silencing of Pim-3 expression can retard in vitro 

cell proliferation of hepatocellular, pancreatic, and colon carcinoma cell lines, by 

promoting cell apoptosis. Pim-3 lacks any regulatory domains similarly as Pim-1 and 

Pim-2 do, and therefore, Pim-3 can exhibit its kinase activity once it is expressed. Pim-3 

expression is regulated at transcriptional and post-transcriptional levels, by transcription 

factors such as Ets-1 and post translational modifiers such as translationally controlled 

tumor protein (TCTP), respectively. Pim-3 could promote growth and angiogenesis of 

human pancreatic cancer cells in vivo in an orthotopic nude mouse model. Furthermore, a 

Pim-3 kinase inhibitor inhibited cell proliferation when human pancreatic cancer cells 

were injected into nude mice, without inducing any major adverse effects. Thus, Pim-3 

kinase may serve as a novel molecular target for developing targeting drugs against 

pancreatic and other types of cancer. 

Key words: Serine/threonine kinase; Pancreatic cancer; Ets-1; Translationally Controlled 

Tumor Protein; c-Myc; Vascular endothelium growth factor; Apoptosis; Cell cycle 

Core tip: The present review describes the advanced knowledge on the roles of Pim-3 in 

pancreatic cancer development and progression, and provides a new idea for Pim-3 as a 

therapeutic target in human pancreatic cancer. 
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1. Introduction 

Pancreatic cancer is the fourth leading cause of cancer related deaths in the USA [1], 

Patients usually suffer from non-specific abdominal discomforts in the primary stages, 

which often delay early diagnosis and treatment. Furthermore, even in the initial 

evolutionary phase of disease development, pancreatic cancer cells tend to undergo 

invasion and metastasis. Therefore, complete removal of tumors by surgical procedures 

is often impossible. Another major stumbling block in treating pancreatic cancer is its 

frequent resistance to the treatments of chemotherapy and radiotherapy. Consequently, 

pancreatic cancer has an exceptionally poor prognosis with an overall 5-year survival 

rate of less than 5% [2, 3]. Thus, a novel molecular targeted therapy will be a required 

therapeutic option for human pancreatic cancer treatment. 

 Malignant lesions of the pancreas show a ductal, an acinar, or an endocrine lineage. 

Nearly 80 % of pancreatic carcinomas are classified as pancreatic ductal adenocarcinoma 

(PDAC) [4]. An activating mutation in a key proto-oncogene, K-ras, has been observed in 

most PDACs and is presumed to be the first significant event involved in pancreatic 

carcinogenesis [4]. The development and progression of PDAC are associated with 

additional multiple genetic and epigenetic alterations in several proto-oncogenes, 

tumor-suppressor genes, and signaling pathways. Pim-3 kinase has essential roles in the 

regulation of signal transduction cascades. Moreover, its expression is enhanced in 

human pancreatic cancer cell lines and blocking of its expression induced apoptosis and 

decreased chemoresistance in human pancreatic cancer[5, 6]. 

Provirus integration site for Moloney murine leukemia virus (Pim) family is a 

proto-oncogene, which belongs to the group of calcium/calmodulin-regulated kinase and 

exhibits serine/threonine kinase activity [7]. The Pim family consists of three members, 

Pim-1, Pim-2, and Pim-3 [8]. The Pim-1 gene was first discovered as a proviral insertion 

site in Moloney murine leukemia virus [9]. A subsequent study demonstrated that Pim-1 

transgenic mice are predisposed to the development of experimental T cell lymphoma in 

cooperation with c-Myc and N-Myc [10]. Pim-2 was similarly identified as a proviral 

integration site in Moloney murine leukemia virus-induced T cell lymphomas [11] and can 
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synergize with c-Myc-induced lymphomagenesis [8]. Pim-3 was first identified as a novel 

gene, which is induced by membrane depolarization or forskolin in rat PC12 

pheochromocytoma cells, and was designated as kinase induced by depolarization 

(KID-1) [12]. Subsequently, KID-1 was renamed Pim-3 due to its high sequence similarity 

with other Pim family proteins, Pim-1 and Pim-2. Although Pim-3 can be detected in 

several normal tissues including those of the brain and heart, it is expressed in high 

levels in tumor tissues of various organs particularly those of endoderm-derived organs 

such as the pancreas, liver, colon and stomach [5, 13, 14]. 

In this review, we aim to highlight the pathophysiological roles of Pim-3 in the 

development and progression of cancer, particularly pancreatic cancer. Moreover, by 

considering the sequence similarity of Pim-3 with other Pim kinases, we were able to 

rationalize and predict the possible functions of Pim-3 by extrapolating from the data 

established for other Pim family members, particularly Pim-1. We further discuss the 

potential of Pim-3 as a novel molecular target for antineoplastic therapy.  

  

2. Structure of Pim-3 protein 

The open reading frame of human Pim-3 mRNA encodes a protein consisting of 326 

amino acids with a calculated molecular weight of 35,861 (Figure 1) [13]. Human Pim-3 

protein shares a high percentage of sequence homology with other members of the Pim 

family; Pim-3 and Pim-1 are 71% identical at the amino acid level, and Pim-3 and Pim-2 

are 44.0% identical [14-17]. 

The crystal structure of the Pim-3 protein has not yet been established, but several 

research groups have independently reported the crystal structure of Pim-1 and Pim-2 in 

the free form as well as in complex with their inhibitors [18-22]. The Pim-1 kinase adopts a 

two-lobe kinase fold connected by a hinge region (residues 121–126) [18]. The N-terminal 

lobe is composed of antiparallel β-sheets while the C-terminal lobe is composed mainly 

of α-helices (Figure 1). The adenosine triphosphate (ATP)-binding site is located in a 

deep intervening cleft between the two lobes and the hinge region. The Pim family 

proteins have no regulatory domains. Moreover, the ATP binding pocket in Pim-1 
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remains open irrespective of the presence or the absence of ATP [18], indicating a 

continuous maintenance of an active state conformation. Similar findings have been 

reported for the structure of Pim-2 kinase [20]. Thus, this may account for a good 

correlation between protein expression levels and overall kinase activity in the case of 

Pim-1 and Pim-2 [15]. Given a high sequence similarity (Figure 1 and NCBI Reference 

Sequence: NP_001001852.2), it is highly likely that Pim-3 kinase can adopt a similar 

three dimensional active conformation. Importantly, several residues believed to confer 

specificity in Pim-1 kinase are also conserved within Pim-2 and Pim-3 proteins.  

  

3. Mechanisms underlying control of Pim-3 expression 

Pim-3 mRNA is detected in several normal human tissues including the heart, brain, 

lung, kidney, spleen, placenta, skeletal muscle, and peripheral blood leukocytes, but not 

in colon, thymus, liver, and small intestine [13]. Pim-3 is expressed in endothelial cells [23]. 

Focal cerebral ischemia enhances Pim-3 mRNA expression in the peri-infarction cortex 

at early time points [24]. Similarly, ischemia reperfusion injury enhances intra-cardiac 

Pim-3 expression through p38-mediated signaling pathway [25]. In the mouse embryo, 

Pim-3 gene expression is detected in the liver, kidneys, lungs, thymus, central nervous 

system, periphery of the pancreas, secretory epithelium of the stomach and intestinal 

epithelium [26]. 

Pim-3 mRNA is found to be expressed in a panel of human Ewing’s family tumor cell 

lines [27] and nasopharyngeal carcinoma cell lines [28]. Likewise, we revealed that Pim-3 

protein is scarcely detected in adult normal endoderm-derived organs such as liver, 

pancreas, colon, and stomach, but its expression is augmented in premalignant and 

malignant lesions of these organs (Table 1) [5, 13, 29, 30]. Pim-3 protein is mostly detected 

in the cytoplasm of these tumors. In the liver, aberrant expression of Pim-3 protein is also 

observed in the precancerous lesions such as regenerative nodules and adenomatous 

hyperplasia [13]. Similarly, in the colon and the stomach, Pim-3 protein is detected at 

higher levels in adenoma tissues compared with adenocarcinoma tissues [29, 30]. These 

observations suggest that Pim-3 plays a crucial role in the initial phase of carcinogenesis. 



Li 6 

Pim-3 expression is regulated mainly at transcriptional and post-transcriptional 

levels. We will discuss the regulatory mechanisms at these two levels in detail. 

 

3.1. Transcriptional regulation of Pim-3 expression 

The EWS/Ets fusion proteins are pathognomonic for Ewing’s sarcoma (EWS). 

These fusion proteins arise from the chromosomal translocations that combine a portion 

of the amino-terminal region of EWS to one of the five members of Ets family 

transcription factors, friend leukemia integration transcription factor (FLI), Ets-related 

gene (ERG), FEV, Ets translocation variant 1 (ETV1), Ets translocation variant 4 

(ETV4/E1AF) [31]. Deneen and colleagues demonstrated that EWS/Ets fusion proteins 

can enhance Pim-3 gene transcription [27] in NIH 3T3 cells. 

We have determined the 5′-flanking region of the human Pim-3 gene, in order to 

elucidate the molecular mechanisms underlying constitutive Pim-3 expression in human 

pancreatic cancer cells. The human Pim-3 gene contains a canonical TATA box and 

putative binding sites for several known transcription factors, such as signal transducer 

and activator of transcription (Stat)3, Sp1, Ets-1, and nuclear factor NF-κB and NF-1 [32]. 

Pim-3 expression is enhanced in murine embryonic stem cells by leukemia inhibitory 

factor (LIF)/gp130-dependent signaling and the Stat3 transcription factor [33]. In contrast, 

the transfection of dominant negative form of Stat3 failed to inhibit the promoter activity 

of Pim-3 gene in human pancreatic cancer cells [32]. We further demonstrated that the 

region between −264 and −164 bp is essential for constitutive Pim-3 gene expression. This 

region contains one NF-κB, two Sp1, and two Ets-1 binding sites. Pim-1 gene can be 

induced by CD40-mediated signaling in an NF-κB-dependent manner [34]. However, the 

mutation in NF-κB binding site of the Pim-3 gene failed to reduce promoter activities in 

human pancreatic cancer cells [32]. Further examination has revealed that two Sp1 binding 

sites and the distal Ets binding site are crucial for the constitutive Pim-3 gene expression 

in human pancreatic cancer cells. The crucial roles of Ets-1 in constitutive Pim-3 gene 

expression are further supported by our observations that the overexpression of Ets-1 

enhances Pim-3 expression, whereas the transfection of dominant negative form of Ets-1 
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or Ets-1 small interfering RNA (siRNA) reduces Pim-3 expression in human pancreatic 

cancer cells [32]. As the expression of both Ets-1 and Sp1 is enhanced in various types of 

cancer, including pancreatic cancer [35, 36], Ets-1 and Sp1 may act cooperatively to induce 

constitutive Pim-3 gene expression as observed with their other target genes [37]. 

 

3.2. Post-transcriptional regulation of Pim-3 expression 

Pim kinase mRNAs have multiple copies of AUUUA sequences in their 3′ untranslated 

regions (UTR), a typical characteristic sequence of mRNA with a short half-life. 

Moreover, GC-rich sequences are present in the 5′ UTR of Pim mRNAs and frequently 

require cap-dependent translation. Indeed, the overexpression of eukaryotic translation 

initiation factor 4E (eIF4E) leads to an increase in Pim-1 protein levels, indicating that 

Pim-1 mRNA is translated in a cap-dependent manner [38]. Moreover, eukaryotic 

translation initiation factor, eIF4E, can bind a stem-loop-pair sequence present in the 3′ 

UTR of Pim-1 mRNA, which allows nuclear export and translation of Pim-1 transcript 
[39]. Since Pim-3 mRNA shows analogous sequences as Pim-1 mRNA, the translation of 

Pim-3 mRNA can be regulated in a similar way. 

Similar to Pim-1, Pim-3 can autophosphorylate some of their serine residues but 

whether this has any functional significance is yet to be elusive [19] . Moreover, Pim-1 and 

Pim-3 have been shown to bind to the serine/threonine protein phosphatase 2A (PP2A), 

resulting in their dephosphorylation, ubiquitination, and proteasomal degradation[40, 41] .  

3′UTR of Pim-1 harbors multiple binding sites for miRNAs including miRNA-33 
[42] , miRNA-16 [43] , miRNA-1 [44] , miRNA-328 [45] , and miRNA-210 [46] . The miRNAs 

are generally highly conserved evolutionarily. [42]  They can bind to the putative target 

sites present in 3′UTR of Pim-1 gene and can directly inhibit its expression at the 

post-transcriptional level, thereby blocking proliferation and growth of cancer cells and 

smooth muscle cells. The relevant analysis for the structure of human Pim-3 mRNA 

indicates that 3’ UTR of Pim-3 gene harbors multiple binding sites for miRNAs 

(www.ebi.ac.uk; www.microrna.org). It will be interesting to know whether Pim-3 

translation can be regulated in a similar manner. 

http://www.ebi.ac.uk/
http://www.microrna.org/
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We have identified a translationally controlled tumor protein (TCTP/TPT1) that 

interacts with Pim-3 by using yeast two-hybrid screening [47]. TCTP was aberrantly 

expressed and co-localized with Pim-3 in human pancreatic cancer cells. Mapping 

studies have confirmed that the co-localization is due to the interaction between the 

amino acids in the C-terminal fold of Pim-3 and the amino acids in the N-terminal 

sequence of TCTP. Pim-3 had no effect on TCTP expression or phosphorylation; however, 

overexpression of TCTP increased Pim-3 expression in a dose-dependent manner. 

Moreover, RNAi-mediated ablation of TCTP expression reduced Pim-3 protein but not 

mRNA via ubiquitin-proteasome degradation pathway. The resultant reduced Pim-3 

expression eventually inhibited tumor growth in vitro and in vivo by arresting cell cycle 

progression and enhancing apoptosis. Furthermore, TCTP and Pim-3 expression were 

significantly correlated in pancreatic adenocarcinoma specimens, and in tumors from 

patients showing high expression levels of TCTP and Pim-3 obtained at an advanced 

stage of cancer. Thus, TCTP-mediated enhancement of Pim-3 protein expression may be 

involved in the regulation of cell cycle progression and apoptosis in pancreatic 

carcinogenesis [47]. 

 

4. Biological functions of Pim-3 

Treatment with Pim-3 shRNA can decrease in vitro proliferation of various types 

of cancer cells by inducing apoptosis [5, 13, 29]. The major function of Bad, a pro-apoptotic 

BH3-only protein, is to regulate apoptosis. Unphosphorylated Bad binds and eventually 

inactivates anti-apoptotic family members, primarily Bcl-XL and also Bcl-2. 

Phosphorylation of Bad at Ser112, Ser136, and Ser155 impairs its binding to Bcl-XL and 

Bc1-2 and the translocation of Bad from the surface of mitochondria to the cytosol is 

guided by the protein 14-3-3. The presence of unbound Bc1-XL maintains a 

mitochondrial membrane potential and inhibits apoptosis [48, 49]. Pim-1 and Pim-2 can 

phosphorylate Bad at Ser112, while Akt phosphorylates Ser136 and Ser155. The 

phosphorylation of Bad can result in its inactivation and subsequent inhibition of 

apoptosis [50, 51]. Elevated levels of Pim-3 increases the amount of Bad phosphorylated at 
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Ser112 and inhibits apoptosis, while Pim-3 shRNA treatment dephosphorylates Ser112 and 

promotes apoptosis (Figure 2) [5, 29]. Therefore, similar to Akt and other Pim kinases, 

Pim-3 can modulate apoptosis by phosphorylating the pro-apoptotic molecule, Bad. 

Moreover, Pim-3 gene transduction increased Bcl-2 expression, suppressed apoptosis as 

evidenced by reduced caspase-3 activation, and eventually protected against hepatic 

failure in D-galactosamine-sensitized rats, which received lipopolysaccharide [52]. 

Similarly, the transfection of Pim-3 gene into cardiomyocytes attenuated 

ischemia/reperfusion injury-induced cell death through a p38 mediated MAPK signaling 

pathway [25]. Erythropoietin can protect renal cells from apoptosis by activating Stat5 and 

this anti-apoptotic effect is also mediated by Pim-3 [53]. 

Pim-3 shows a high sequence identity with Pim-1 even at their kinase domains 

(Figure 1). Both Pim-1 and Pim-3 bind to a consensus peptide substrate 

(AKRRRRHPSGPPTA) with a remarkable high affinity (Kd = 40–60 nM), whereas the 

binding affinity of this peptide for Pim-2 is relatively weak (640 nM) [19]. Therefore, 

Pim-1 and Pim-3 can phosphorylate the same or a similar set of substrates, and the 

evaluation of Pim-1 characteristics and functions can provide useful insights to decipher 

the major biological functions of Pim-3. In addition to Bad, Pim kinases can 

phosphorylate a wide range of cellular proteins. These include transcription factors (Stat 
[54], c-Myc [55], Myb [56], runt-related transcription factor (Runx) 1 and Runx3), cell cycle 

regulators (p21CIP and p27KIP1, Cdc25A, and Cdc25C), signaling pathway intermediates 

(suppressor of cytokine signaling 1 (SOCS1) [57], SOCS3 [58], and MAP3K5 [59]), and 

regulators of protein synthesis (eukaryotic translation initiation factor 4B (eIF4B))[60]. 

Pim-1 can phosphorylate Cdc25A, thereby increasing its phosphatase activity 

and the activity of cyclin D1-associated kinases, which can result in cell cycle 

progression [61]. Pim-1 phosphorylates Cdc25C-associated kinase 1 (C-TAK1), which can 

potently inhibit Cdc25C and can promote cell cycle progression at the G2/M phase [62]. 

Pim-1 can phosphorylate the threonine residue of p21, another molecule involved in cell 

cycle progression. Its phosphorylation leads to its relocation to the cytoplasm resulting in 

enhanced protein stability and eventually increased cell proliferation [63, 64]. All Pim 
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kinases including Pim-3 can phosphorylate CDK inhibitor, p27 at its threonine residues, 

thereby inducing the binding of p27 to 14-3-3 protein, resulting in its nuclear export and 

proteasome-dependent degradation [65]. Moreover, Pim-1 phosphorylates and inactivates 

forkhead transcription factors, FoxO1a and FoxO3a, resulting in depressed p27 gene 

transcription, which leads to cell cycle progression (Figure 2) [65]. Similarly, the 

transfection with Pim-3 shRNA reduced G1 population of human pancreatic cancer cells 

compared with the cells transfected with scramble shRNA[5] . Moreover, a 

small-molecule Pim-3 kinase inhibitor markedly retarded in vitro growth of human 

pancreatic cancer cell lines by inducing G2/M arrest[66] , suggesting a potential role for 

Pim-3 in cell cycle progression. Consistently, cell cycle progression is accelerated in 

hepatocytes of transgenic mice, which express human Pim-3 cDNA selectively in 

hepatocytes[67]  and downregulation of Pim-3 decreased the amounts of Cdc25C, cyclin 

B1, and phospho-p21 (Our unpublished data). Thus, Pim-3 can promote cell cycle 

progression and eventually contribute to carcinogenesis by modulating the functions of 

these regulatory molecules involved in cell cycle progression. 

Mice deficient in all three Pim kinases are designated as triple knockout (TKO) 

mice. TKO mice have reduced body size at birth and throughout the postnatal period of 

their life and they are viable and fertile [68]. However, TKO mouse-derived embryonic 

fibroblasts (MEFs) show depressed AMP-dependent protein kinase (AMPK) activity, 

grow slowly in culture medium, and have decreased rates of 5′-cap-dependent protein 

synthesis [69]. Transduction of Pim-3 gene alone into these MEFs can reverse AMPK 

activation, increase protein synthesis, and drive the growth to a similar level as wild-type 

MEFs. Moreover, Pim-3 expression can markedly increase the levels of c-Myc and the 

peroxisome proliferation-activated receptor γ co-activator 1α (PGC-1α), enzymes 

capable of regulating glycolysis and mitochondrial biogenesis [69]. Similarly, Pim-1 and 

Pim-2 phosphorylate serine and threonine residues of c-Myc protein [55]. Furthermore, 

Pim-1 can act as a co-activator of Myc by phosphorylating Ser10 of histone H3 on the 

nucleosome at the Myc-binding sites [70]. Thus, Pim-3 can augment the rate of protein 

synthesis by modulating AMPK, c-Myc and PGC-1α (Figure 2). 
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Pim-1 and Pim-3 together play a significant role in maintaining the self-renewal 

capacity of mouse embryonic stem (ES) cells in vitro [33]. ES cells overexpressing Pim-1 

and Pim-3 have a greater capacity to self-renew and display a greater resistance to LIF 

deprivation as evidenced by a clonal assay. On the contrary, ablation of Pim-1 and Pim-3 

genes increases the rate of spontaneous differentiation in a self-renewal assay and 

impairs the growth of undifferentiated ES cell colonies with increased rate of apoptosis 
[33]. 

Pim-3 is highly expressed at the cellular lamellipodia in endothelial cells and is 

co-localized with focal adhesion kinase (FAK). In addition, Pim-3 shRNA treatment 

impairs endothelial cell spreading, migration, and proliferation, leading to a reduction in 

tube-like structure development in a Matrigel assay [23]. However, TKO mice did not 

display any apparent abnormal phenotypes in embryogenesis and vascular development 
[68]. 

Pim-3 expression is detected in the β cells located in the pancreatic islets [71]. 

Pim-3-deficient mice exhibit an increased glucose tolerance and insulin sensitivity. 

Moreover, Pim-3 can negatively regulate insulin secretion by inhibiting the activation of 

Erk1/2 via SOCS6 [71]. In contrast, the inhibition of another survival kinase, Akt, can 

induce hyperglycemia [72, 73]. 

The switch from latent phase to productive viral reactivation (lytic phase) is 

crucial for sustaining viral multiplication in infected host cells. Findings from recent 

clinico-epidemiological study indicated the importance of lytic reactivation in the 

development and progression of Kaposi’s sarcoma (KS) [74]. Latency-associated nuclear 

antigen (LANA) is presumed to be a novel regulator of the life cycle of γ herpes virus 

including Kaposi’s sarcoma herpes virus (KSHV). Pim-1 and Pim-3 contribute to the 

viral reactivation of KSHV by phosphorylating LANA, and thereby promote KS 

progression [74]. 

 

5. Roles of Pim-3 in cancer development and progression, particularly in pancreas 

Pim-3 can contribute to cancer development and progression by acting on tumor 



Li 12 

cells and tumor microenvironments. The primary activities of Pim-3 on tumor cells 

include the delivery of survival signaling, the regulation of cell cycle progression, 

protein synthesis, and Myc activation (Figure 3). In addition to its effects on tumor cells, 

Pim-3 can have profound impacts on tumor microenvironments, especially 

neovascularization process (Figure 3). In the following sections, we will discuss the roles 

of Pim-3 in carcinogenesis, with a focus on these two aspects. 

 

5.1. Effects of Pim-3 on tumor cells 

Forced expression of Pim-3 can promote anchorage-independent growth whereas 

co-expression of a kinase-dead Pim-3 mutant can attenuate EWS/FLI-mediated NIH 3T3 

tumorigenesis in immunodeficient mice [27]. These observations suggest the involvement 

of Pim-3 in cancer development and progression. 

Pim-3 can prevent apoptosis in pancreatic cancer cells by phosphorylating Bad a 

pro-apoptotic molecule on the serine residues (Ser112, Ser136, or Ser155), which in turn 

prevents Bcl-XL binding and promotes Bad translocation from the surface of the 

mitochondria to the cytosol by the protein 14-3-3 [48, 49]. Among the serine residues 

present in Bad, Ser112, but not Ser136 and Ser155, is abundantly phosphorylated in human 

pancreatic cancer cell lines. Moreover, the ablation of endogenous Pim-3 reduces the 

population of phosphorylated Bad followed by an enhancement of apoptosis, whereas 

Pim-3 overexpression produces exactly the opposite phenotypes. These observations 

suggest that Pim-3 has a crucial role in preventing apoptosis of human pancreatic cancer 

cells. 

Cell survival can be regulated by Wnt/β-catenin and Stat3 signaling pathways. An 

integrative molecular screening by using siRNA identified Pim-3 as a new regulator of  

Wnt/β-catenin signaling[75] . Thus, Pim-3 can positively regulate the Wnt/β-catenin 

signaling pathway in the colorectal cancer cell lines (DLD-1 and SW480) [75] . Moreover, 

Pim-3 is a positive regulator of Stat3 signaling in the prostate cancer cell line (DU-145) 

and in the pancreatic cancer derived cell line (MiaPaCa2) [56].  Thus, Pim-3 can promote 

cancer cell survival by modulating Wnt/β-catenin and/or Stat3 signaling pathways. 
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Pm-1 can promote cell cycle progression by phosphorylating and modulating the 

functions of molecules involved in cell cycle progression. Moreover, Pim kinases 

positively regulate transcription factors controlling the expression of genes implicated in 

cell cycle progression [65]. Since Pim-3 shares a high sequence identity with Pim-1, it is 

possible that Pim-3 can perform similar regulatory functions as Pim-1. Treatment with 

Pim-3 shRNA showed a marked reduction in G1 population of human pancreatic cancer 

cells while scramble shRNA had few effects [5]. Furthermore, a small-molecule Pim-3 

kinase inhibitor markedly retarded the in vitro growth of human pancreatic cancer cell 

lines by inducing G2/M arrest [66]. These findings indicate that Pim-3 may have a major 

influence in cell cycle progression of cancer cells. 

Pim-1 and Pim-2 help in cell survival by suppressing myc-induced apoptosis [10, 

11]. Transgenic mice expressing Eµ( immunoglobulin heavy-chain enhancer)-Pim-1 and 

Eµ-Myc succumb to lymphoma in utero or around birth [76]. On the contrary, Eµ-Myc 

transgenic mice that are deficient in Pim-1 and Pim-2 genes develop lymphoma slowly 

with time [8]. Thus, Myc-driven tumorigenesis depends on physiological levels of Pim-1 

and Pim-2 expression. Several mechanisms have been proposed to explain the 

cooperation between Myc and Pim kinases. Myc recruits Pim-1 to the E-boxes of the 

Myc target genes such as Fos-related antigen 1(FOSL1 (Fra-1)) and DNA-binding 

protein inhibitor ID2, and Pim-1 phosphorylates Ser10 of histone H3 on the nucleosome 

at the Myc-binding sites thereby, acting as a co-activator of Myc [70]. An expression 

profile analysis demonstrated that about 20 % of the Myc-regulated genes are also under 

the control of Pim-1 [70]. Moreover, Pim-1 and Pim-2 phosphorylate c-Myc protein at its 

serine and threonine residues [55]. This results in stabilization and subsequent 

enhancement of the transcription activities of c-Myc protein. Furthermore, Pim-3 can 

enhance c-Myc mRNA expression through the activation of PGC-1α [69]. The enhanced 

expression of c-Myc and PGC-1α may account for enhanced glycolysis. Thus, Pim 

kinases can promote tumorigenesis by modulating the activities of c-Myc and promoting 

Warburg effects [10, 11]. 

 



Li 14 

5.2 Roles of Pim-3 in tumor microenvironments 

One of the basic characteristic features of tumor tissues is the abundance of 

newly formed vasculature for supply of nutrients and oxygen to the growing tumor cells 

and elimination of metabolic wastes and carbon dioxide. Pim-3 is abundantly expressed 

at mRNA and protein levels at the cellular lamellipodia and is co-localized with FAK in 

endothelial cells [23]. Pim-3 shRNA treatment impaired endothelial cell spreading, 

migration, and proliferation, leading to a reduction in tube-like structure formation in a 

Matrigel assay [23]. Moreover, tumor necrosis factor (TNF)-α transiently increases Pim-3 

mRNA expression through TNF receptor-1 (TNFR1) pathway in endothelial cells (ECs) 

and eventually promotes EC spreading and migration [77]. Constitutive Pim-3 

overexpression in gastric cancer tissues can induce angiogenesis [30]. 

Tumor-associated neovasculature formation is regulated by various angiogenic 

factors. Notably, vascular endothelial growth factor (VEGF) has an important role in 

tumor-associated vasculature formation [78, 79]. Although most pancreatic cancer tissues 

are hypovascular, elevated levels of VEGF are sometimes detected in pancreatic cancer 

cells[80]. Earlier studies have demonstrated that Pim-3 overexpression was responsible for 

increased VEGF expression and the growth of pancreatic cancer in vivo in an orthotopic 

nude mouse model [81]. The lack of any vascular phenotypes in Pim-3-deficient mice 

indicates that Pim-3 is dispensable for normal vasculature formation. However, given 

distinctive gene expression profiles of tumor-associated endothelial cells (ECs) [82], 

Pim-3 may have distinct roles in the tumor-associated endothelial cells. 

 

6. Pharmacological characterization of Pim-3 Inhibitors 

It is obvious from our discussions that aberrant activation and expression of Pim 

kinases are associated with various types of cancer. Enhanced expression of Pim-2 kinase 

is detected in hematologic malignancies and prostate cancer. Additionally increased 

Pim-1 expression is observed in pancreatic cancer, squamous cell carcinoma, gastric 

cancer, colorectal cancer, hepatocellular carcinoma [83-85], bladder carcinoma [86], and 

liposarcoma [87]. In contrast, Pim-3 expression is selectively overexpressed in malignant 
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lesions of endoderm-derived organs such as the liver [13], pancreas [5], colon [29], and 

stomach [30]. Furthermore, lack of apparent phenotypes in TKO mice suggests that Pim 

kinases are dispensable for the maintenance of normal functions of vital organs. 

Collectively, Pim kinases can be good candidate molecules for targeted cancer therapy. 

Examples of Pim-1 inhibitors include an anti-Pim-1 antibody and a cell penetrating 

peptide, both of which suppresses tumor growth in vivo in xenograft mouse models 

transplanted with human cancer cell lines [88, 89]. 

The crystal structure of Pim-3 has not yet been reported. However, the crystal structure 

of Pim-1 and Pim-2 has been resolved and revealed the presence of a unique hinge region 

that connects the two lobes of the protein kinase domain [18-20]. As a result, ATP binds to 

Pim kinases in a fundamentally different way from how it binds to other protein kinases 
[18, 19]. Thus, it may be possible to design compounds, which will selectively inhibit Pim 

kinases but no other serine/threonine kinases [16]. 

Several independent research groups have developed small-molecule inhibitors 

against Pim kinases including flavonol quercetargetin [90], imidazole[1,2-b]pyridazines 
[91, 92], bezylindene-thiazolidine-2,4-dione [93-95], 3,5-disubstituted indole derivatives [96], 

pyrazolo[3,4-g]quinoxaline derivatives [97], 1,6-dihydropyrazolo[4,3-c]carbazoles and 

3,6-dihydropyrazolo[3,4-c]carbazole derivatives [98], and pyrrolo[2,3-a]carbazole and 

pyrrolo[2,3-g]indazole derivatives [99-101]. Among them, 

1,6-dihydropyrazolo[4,3-c]carbazoles, 3,6-dihydropyrazolo[3,4-c]carbazoles, and 

pyrrolo[2,3-g]indazoles can inhibit Pim-3 activities [98, 100]. In our previous studies we 

have demonstrated that derivatives of stemonamide synthetic intermediates can inhibit 

Pim-3 as well as Pim-1 and Pim-2 activities and can reduce tumor growth in vivo in 

mouse xenograft models using human pancreatic cancer cell line without causing major 

adverse side-effects [102, 103]. 

The substrates preferred by Pim-1 and Pim-3 [19] are very similar in identity. 

Therefore, designing of isoform specific inhibitors that will differentiate and 

preferentially bind to one Pim member over the other is extremely challenging. Indeed, 

pyrrolo[2,3-a]carbazole has low nano molar binding affinity for Pim-1 and Pim-3 kinases 
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but only weakly inhibits Pim-2 (IC50  for Pim-1, 0.57 + 0.04 µM; IC50  for Pim-2, > 10 

µM; IC50  for Pim-3, 0.04 + 0.01 µM) [104]. Similar pharmacological observations have 

been recorded with phenanthrene derivatives [77]. However, it will be interesting to find 

out if an inhibitor which specifically inhibits the action of one Pim member will provide 

any additional advantage over a multi-Pim kinase inhibitor. 

Akt, similar to Pim kinases can phosphorylate a similar set of substrates, such as 

Bad, thereby initiating the proliferation of cancer cells [105]. Akt is aberrantly activated in 

various types of tumors and Akt inhibitors have been extensively investigated [72]. An Akt 

inhibitor, “GSK690693,” has exhibited potent antitumor activity in pre-clinical trials on 

animals [105]. Akt is a key signaling protein and Akt-2 is directly involved in insulin 

receptor signaling pathway. Consequently, the genetic disruption of Akt kinase genes 

results in severe phenotypic changes, such as neonatal mortality, severe growth 

retardation and reduced brain size [106-108] and Akt-2 inhibition induces severe 

hyperglycemia [105]. The use of Akt inhibitors for anticancer treatment is seriously 

limited because of these shortcomings. In contrast, Pim kinases including Pim-3 are not 

involved in insulin receptor signaling pathway, and the inhibition of Pim kinases hardly 

shows any detrimental effects on normal glucose metabolism. Thus, Pim kinases are 

more effective molecular targets than Akt for targeted cancer therapy, and are particularly 

useful for treating pancreatic cancer which gets frequently complicated by 

hyperglycemia. 

 

7. Future Perspectives 

Pim-3 kinase is aberrantly expressed in malignant lesions but not in normal 

tissues of endoderm-derived organs such as liver, pancreas, colon, and stomach [5, 13, 29, 30], 

and contributes to tumorigenesis by inhibiting apoptosis of tumor cells and promoting 

cell cycle progression. Moreover, genetic deficiency of Pim-3 gene does not result in 

apparent changes in phenotypes, suggesting that Pim-3 may be physiologically 

dispensable. Unlike Akt kinases [72], Pim kinases are not involved in insulin receptor 

signaling pathway; therefore, the inhibition of Pim kinases has very little influence on 
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glucose metabolism. Indeed, inhibition of Pim-3 kinase activities slows the growth or 

even causes regression of pancreatic tumors in mice without causing hypoglycemia [66, 102, 

103]. Since Pim-3 kinase is constitutively active, once it is expressed aberrantly, inhibition 

of Pim-3 can be used for inhibiting cancer progression. Furthermore, there is 

accumulating evidence to suggest that Pim-3 plays a vital role in the interaction between 

tumor cells and their surrounding stroma. Further studies on these aspects will unravel 

the novel pathophysiological roles of Pim-3. Nevertheless, strategies to inhibit Pim-3 

activity warrant an intensive investigation for the discovery, and development of new 

targeted anti-cancer therapeutics. 
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Table 1. Increased expression patterns for Pim kinases in various types of 

malignancies  

Tumor subtype Pim-1 Pim-2 Pim-3 

Solid tumor    

Pancreatic cancer + ND + 

Colon carcinoma + ND + 

Gastric cancer + ND + 

Hepatocellular carcinoma + + + 

Prostate adenocarcinoma + + + 

Bladder carcinoma + ND ND 

Squamous cell carcinoma of head and neck + ND ND 

Nasopharyngeal carcinoma ND ND + 

Oral squamous cell carcinoma + ND ND 

Liposarcoma + ND ND 

Ewing’s sarcoma ND ND + 

Hematological malignancies    

Acute myeloid leukemia  ND +  ND 

B Cell chronic lymphocytic leukemia ND + ND 

Primary mediastinal large B cell lymphoma + ND ND 

Mantle cell lymphoma + + ND 

Diffuse large B cell lymphoma + + ND 

Burkitt’s lymphoma + ND ND 

ND: not determined. 
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Figure Legends: 

Figure 1. Amino acid alignment of human Pim family proteins [13]. The amino acid 

sequences of human Pim family kinases are aligned and common residues shared with 

Pim-3 are highlighted. The box indicates the hinge region. Residues marked with white 

and red color are important for ATP binding and substrate selectivity, respectively. 

 

Figure 2. Presumed biological functions of Pim-3. Pim-3 can interact with various 

target molecules, and thereby regulates various biological pathways including apoptosis, 

cell cycle, protein synthesis, and transcription.  

 

Figure 3. Presumed roles of Pim-3 in pancreatic carcinogenesis. Pim-3 expression is 

regulated at transcriptional and post-transcriptional levels, by transcription factors such 

as Ets-1 and post-translational controllers such as TCTP respectively. Pim-3 kinase 

activation contributes to pancreatic carcinogenesis by inducing cell survival, cell cycle 

progression, gene transcription, protein synthesis in tumor cells, and angiogenesis. 
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