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Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates

conspicuous biological responses such as epithelial cell migration, 3-D morpho-

genesis, and survival. The dynamic migration and promotion of cell survival

induced by MET activation are bases for invasion–metastasis and resistance,

respectively, against targeted drugs in cancers. Recent studies indicated that MET

in tumor-derived exosomes facilitates metastatic niche formation and metastasis

in malignant melanoma. In lung cancer, gene amplification-induced MET activa-

tion and ligand-dependent MET activation in an autocrine/paracrine manner are

causes for resistance to epidermal growth factor receptor tyrosine kinase inhibi-

tors and anaplastic lymphoma kinase inhibitors. Hepatocyte growth factor

secreted in the tumor microenvironment contributes to the innate and acquired

resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET (sMET),

and phospho-MET have been confirmed to be associated with disease progres-

sion, metastasis, therapy response, and survival. Higher serum/plasma HGF levels

are associated with therapy resistance and/or metastasis, while lower HGF levels

are associated with progression-free survival and overall survival after treatment

with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant

melanoma. Urinary sMET levels in patients with bladder cancer are higher than

those in patients without bladder cancer and associated with disease progres-

sion. Some of the multi-kinase inhibitors that target MET have received regula-

tory approval, whereas none of the selective HGF-MET inhibitors have shown

efficacy in phase III clinical trials. Validation of the HGF-MET pathway as a critical

driver in cancer development/progression and utilization of appropriate biomark-

ers are key to development and approval of HGF-MET inhibitors for clinical use.

T he MET oncogene was first isolated on the basis of its
transforming activity, caused by a fusion of genes com-

posed of the translocated promoter region (TPR) locus on
chromosome 1 and MET sequence on chromosome 7 (TPR-
MET).(1) Isolation of the full-length MET proto-oncogene
sequence revealed that it encoded a transmembrane receptor
tyrosine kinase (TK).(2) MET was thereafter identified as the
receptor for hepatocyte growth factor (HGF).(3) Hepatocyte
growth factor was identified and cloned as a mitogenic protein
for hepatocytes,(4,5) while subsequent studies indicated that it
was the same as scatter factor, an epithelial cell motility factor
derived from fibroblasts and mesenchymal cells.(6–8)

Conspicuous responses that are driven by the HGF-MET
receptor pathway are dynamic 3-D morphogenesis and survival
of cells. The induction of epithelial branching tubulogenesis in
a 3-D collagen matrix by HGF had particular impact, because
HGF was the first bioactive molecule to induce epithelial tubu-
logenesis.(9) Impairment in the hepatic progenitor cell survival

and the migration of myogenic precursor cells seen in MET
knockout mice indicate potent actions of HGF in dynamic
migration and promotion of cell survival.(10) It was easy to
speculate that the dynamic migration induced by HGF could
also contribute critically to the biological basis of invasion and
metastasis in tumor tissues. Meanwhile, involvement of the
HGF-MET pathway in acquisition of a resistant phenotype
against molecular targeted drugs was elucidated.(11,12) The
potent action of HGF to promote cell survival is a prevalent
biological basis for drug resistance in cancers.
Both HGF and MET are targets in anticancer drug discov-

ery.(13) More than 10 different HGF-MET inhibitors entered
into clinical trials, many of which were completed with unsat-
isfactory results. Recently, previously overlooked mutations in
MET, resulting in deletions in the cytoplasmic juxtamembrane
(JM) domain, have been found to be potential oncoprotein in
non-small-cell lung cancer (NSCLC). Clinical studies have
indicated favorable responses to MET inhibitors in patients
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with this variant MET.(14,15) We describe here recent progress
in HGF-MET research on tumor biology and biomarker dis-
covery.

Structures and Regulation of HGF-MET

The mature form of MET is composed of a 50-kDa b-chain
and 145-kDa a-chain (Fig. 1a). The extracellular region is
composed of SEMA, plexin–semaphorin–integrin (PSI),
and immunoglobulin-like fold–plexin–transcription factor (IPT)
1–IPT4 domains. The intracellular region contains JM and TK
domains. The binding of HGF to MET induces MET clustering
and phosphorylation of Y1234 and Y1235, followed by phos-
phorylation of Y1349 and Y1356 in the carboxyl terminal
region, to which adaptor molecules associate and transmit sig-
nals downstream.(7,8,13) Hepatocyte growth factor is secreted as
a single-chain precursor (pro-HGF) and extracellular process-
ing into a two-chain mature HGF is coupled to the activation
of HGF (Fig. 1b). Hepatocyte growth factor-activator and
matriptase are the main proteases responsible for the process-
ing of HGF.(16) Hepatocyte growth factor binds to MET
through two interfaces: the NK1 (N-terminal and first kringle
domains) binds with high affinity whereas the b-chain binds
with low affinity. The structure of the complex between the
b-chain of HGF and the SEMA-PSI domains of MET were
revealed by crystallographic analysis (Fig. 1c).(17) The activa-
tion of MET receptor by bivalent MET-binding macrocyclic
peptides indicate that stable dimerization of MET with ligands
of appropriate length provides a fundamental structural basis
for activation of MET.(18)

The JM domain, which is composed of 47 highly conserved
amino acids, contains two protein phosphorylation sites and

acts as a negative regulator in terms of MET-dependent signal
transduction. One is Y1003 phosphorylation and the other is
S985 phosphorylation. The CBL ubiquitin ligase binds phos-
phorylated Y1003, and this CBL binding results in MET ubiq-
uitination, endocytosis, and degradation.(19) The CBL-mediated
degradation of activated MET provides a mechanism that
either attenuates or terminates MET-mediated signaling.
Ser985 is phosphorylated by protein kinase-C and is dephos-
phorylated by protein phosphatase-2A.(20) When MET-S985 is
phosphorylated, HGF-induced MET activation and subsequent
biological responses are suppressed.(20)

Metastasis and Tumor Microenvironment

A definitive role of stromal fibroblasts in invasion of cancer
cells into 3-D collagen was first noted using human oral squa-
mous cell carcinoma cells,(21) and subsequent study indicated
neutralization of HGF inhibited 3-D invasion induced by stro-
mal fibroblasts. Independently, induction of invasiveness into
collagen by HGF/scatter factor was noted during characteriza-
tion of scatter factor.(6) These early studies showed the impor-
tance of HGF as a fibroblast-derived factor that facilitates the
aggressive invasion of cancer cells.
The metastatic tumor microenvironment (premetastatic/meta-

static niche) emerged as an important player in metastatic col-
onization and growth. A variety of stromal cells, such as
macrophages, inflammatory cells, endothelial cells, and cancer-
associated fibroblasts contribute to the formation of the meta-
static microenvironment.(22) Growth factors play promoting
roles in forming the metastatic microenvironment. Hepatocyte
growth factor functions as a stromal cell-derived factor that
strongly influences cancer cell invasiveness in the tumor

(a) (b) (c)

Fig. 1. Structures of MET (a), hepatocyte growth factor (HGF) (b), and the complex between the b-chain of HGF and SEMA and plexin–
semaphorin–integrin (PSI) domains of MET (c). In (a), tyrosine residues (Y1234, Y1235, Y1349, and Y1356) phosphorylated following HGF stimula-
tion in the tyrosine kinase (TK) domain are shown in blue. In (c), positions of missense mutations found in cancer patients are indicated by red
balls. The image of PDB ID 1SHY (Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF b-chain in complex with
the Sema domain of the Met receptor. EMBO J. 23: 2325, 2004) was created with PyMOL.
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microenvironment.(22) Selective inhibition of the HGF-MET
pathway suppressed metastasis in experimental models.(7,8,13)

A recent topic in cancer metastasis is the involvement of
exosomes in metastasis.(23) MET in exosomes promotes meta-
static microenvironment formation in metastatic melanoma
(Fig. 2).(23) The exosomes from highly metastatic mouse and
human melanoma cells contained high levels of MET, and
exosomes in circulation localized to sites of metastatic tissues
and increased vascular permeability, which promotes the
migration of tumor cells. The exosomes also increased
activated MET in bone marrow-derived cells, thereby being
reprogrammed to a proangiogenic phenotype, and the bone
marrow-derived cells mobilized to lungs where they could aid
angiogenesis, invasion, and metastasis. Administration of exo-
somes that contained high levels of MET facilitated metastasis
of melanoma cells with lower metastatic ability.(24)

Drug Resistance

The tumor microenvironment participates not only in cancer
metastasis but also resistance to molecular-targeted drugs.
Stromal cells influenced the sensitivity to anticancer drugs, and
proteomic analysis revealed that stromal cell-derived HGF is a
predominant factor that confers resistance to molecular-tar-
geted drugs such as RAF inhibitor.(25) The biochemical basis
as to how HGF so potently promotes survival as well as cell
motility might relate to the adaptor protein GRB2-associated
binding protein 1 (GAB1). The GAB1 protein has a unique
recognition structure “MET-binding domain” that mediates its
binding to phosphorylated MET.(26) Indeed, phenotypes in
MET�/� and GAB1�/� mice showed extensive similarities.(27)

Non-small-cell lung cancer patients developed acquired
resistance to epidermal growth factor receptor (EGFR) TK
inhibitors (TKIs) within a few years, and 20–25% of the
patients showed intrinsic resistance to EGFR-TKIs. As an
acquired resistance mechanism, the T790M second mutation in
EGFR occurs in approximately half of all patients.(28) As a
bypass pathway, MET activation caused by MET gene amplifi-
cation(11) and HGF-dependent MET activation(12) have been
noted as mechanisms by which NSCLC acquires resistance to
EGFR-TKIs. MET gene amplification was detected in 5–10%
of patients with acquired resistance to EGFR-TKIs, and
overexpression of HGF was seen in approximately 61%

and 29% of patients with acquired and intrinsic resistance,
respectively.(29)

After the discovery of EML4-ALK as a driver oncogene in
patients with NSCLC,(30) alectinib was developed as a selective
anaplastic lymphoma kinase (ALK) TKI.(31) Based on its high
objective response rate, long median progression-free survival,
and favorable toxicity profile, alectinib has been approved in
Japan and the USA. However, patients eventually acquire resis-
tance to alectinib. Among several different mechanisms, alec-
tinib-resistant EML4-ALK-positive NSCLC cells can acquire
the ability to express HGF and the ensuing autocrine activation
of MET caused by cancer cell-derived HGF confers acquired
resistance to alectinib.(32) Collectively, the expression of HGF
in cancer cells and/or stromal cells in the tumor microenviron-
ment participates in the resistance to EGFR and ALK TKIs.

MET Mutations

The tight association between MET mutation and cancer devel-
opment was first reported in hereditary and sporadic forms of
papillary renal cell carcinoma.(33) Germline and somatic mis-
sense mutations (M1131T, V1188L, L1195V, V1220I,
D1228N/H, Y1230C/H, M1250T/I) located in the TK domain
of MET are found in papillary renal carcinomas (Fig. 3), and
these are likely to be gain-of-function mutations. Missense
mutations have been found in childhood hepatocellular carci-
noma, head and neck squamous cell carcinoma, ovarian can-
cer, and small-cell lung cancer.(34)

The JM-deleted MET generated by exon 14 skipping (MET-
Dexon14) due to intronic mutations was noted in NSCLC can-
cer tissues and cells.(35) The expression of MET-Dexon14 in
cells resulted in the loss of association with the CBL E3 ubiq-
uitin ligase, decreased ubiquitination and prolonged activation
of signaling molecules.(35) Considering the notion that MET-
Y1003 phosphorylation in the JM domain provides CBL-bind-
ing for ubiquitination, MET-Dexon14 variant may have a
longer lifespan in terms of protein stability and signaling.
Another mutant variant of MET with deleted extracellular

IPT domains was found in approximately 6% of high-grade
gliomas.(36) The mutation is caused by intronic mutations and
the skipping of exon 7 (encoding a part of IPT1) and exon 8
(encoding a part of IPT2) generates a single pseudo-IPT
domain. This MET exon 7–8 skipping variant is mainly

Increased MET levels...

Exosomes Fig. 2. Outline of the mechanism for metastasis
promoted by the hepatocyte growth factor (HGF)-
MET pathway and tumor-derived exosomes in
advanced metastatic melanoma. Peinado et al.
showed that tumor-derived exosomes from
advanced metastatic melanoma contained high
levels of MET, and the exosomes induced an
increase in the phosphorylated/activated MET in
bone marrow-derived cells, thereby resulting in a
mobilization of the bone marrow-derived cells to
the lungs and lymph nodes, where they initiated
metastatic niche formation.(28) Collectively, HGF
facilitates local invasion, extravasation, and
intravasation, and MET in exosomes facilitates
angiogenesis and metastatic niche formation.
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present as an unprocessed single chain form and located in the
cytoplasm, suggesting an impairment in biosynthetic process-
ing and subsequent translocation to the cell membrane. Mis-
sense mutations in MET have been found in a variety of
cancers, and the positions of mutational changes are located
not only in the intracellular domains, but also extracellular
regions (Figs 1C,3A). The significance of these extracellular
mutations is unknown.

Discovery of HGF/MET as Biomarkers

Collectively, HGF and sMET in blood, tissues, and/or urine
are associated with changes in tumor characteristics and thera-
peutic responses in several types of tumors, indicating the sig-
nificance of HGF, sMET, and related molecules as possible
biomarkers for evaluation of tumor characteristics and thera-
peutic responses (Table 1). A substantial number of reports
have documented increased circulating levels of HGF in a
wide spectrum of cancers, and robust and sensitive immunoas-
says of soluble HGF protein have become widely available.
Inflammatory mediators, including interleukin-1a (IL-1a),
IL-1b, tumor necrosis factor-a, and prostaglandin E2 increase
gene expression of HGF in stromal cells.(37) Because these

inflammatory mediators are increased in the tumor microenvi-
ronment and contribute to a drug-resistant and/or metastatic
tumor microenvironment, it is likely that these inflammatory
mediators participate in upregulation of HGF in tumors.
MET gene amplification and/or protein overexpression also

frequently occur in cancer, which has accelerated investiga-
tions into MET gene copy number in tumors or by circulating
soluble DNA, as well as MET protein content and phosphory-
lation (activation) state in tumor samples using a variety of
approaches. Technical difficulties associated with the lability
of MET and phospho-MET in formalin-fixed, paraffin-
embedded samples have hindered the development of clinically
validated assays for use with archival tumor specimens, but
recently reported assays for use with flash-frozen biopsy sam-
ples have provided reliable alternatives.(38) Athauda et al.(39)

developed two-site electrochemiluminescent immunoassays of
MET in flash-frozen samples and sMET ectodomain for
plasma, serum, and urine samples, later adapting the assay to
detect phospho-MET.(40) Efforts along these lines have identi-
fied specific contexts in which HGF/MET signaling contributes
to cancer, and for some cancers, may help identify those
patients in whom pathway inhibition is likely to have therapeu-
tic benefit.

(a)

(b)

Deletion Deletion

Fig. 3. MET mutations found in cancer patients. (a) Positions of missense and deletion mutations in each domain of MET. The deletion muta-
tions in extracellular immunoglobulin-like fold–plexin–transcription factor (IPT) domains and the intracellular juxtamembrane (JM) domain are
caused by exon skipping.(43–45) (b) Crystal structures of MET tyrosine kinase (TK) domain and positions of missense activating mutations found in
patients with papillary renal cell carcinoma. Amino acids changed by missense mutations are indicated by red balls. The autoinhibited form (left
panel, PDB ID 2G15) and crizotinib (a dual inhibitor for anaplastic lymphoma kinase and MET) bound form (right panel, PDB ID 2WGJ) are
shown. The structural change of the activation loop (A1221–K1248, colored red) occurs following Y1234/Y1235 phosphorylation and upregulates
enzymatic activity. The images of PDB ID 2G15 (left) (Wang W, Marimuthu A, Tsai J, Kumar A, Krupka HI, Zhang C, Powell B, Suzuki Y, Nguyen
H, Tabrizizad M, Luu C, West BL. Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phospha-
tase. Proc Natl Acad Sci USA. 103: 3563-3568, 2006) and PDB ID 2WGJ (right) (Cui JJ, Tran-Dub�e M, Shen H, Nambu M, Kung PP, Pairish M, Jia L,
Meng J, Funk L, Botrous I, McTigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zou H, Christensen J, Mrocz-
kowski B, Bender S, Kania RS, Edwards MP. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of
mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 54: 6342-6363, 2011) were created
with PyMOL.

Cancer Sci | March 2017 | vol. 108 | no. 3 | 299 © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Cancer Association.

Review Article
www.wileyonlinelibrary.com/journal/cas Matsumoto et al.



Table 1. Changes in serum/plasma/tissue hepatocyte growth factor (HGF) levels, soluble MET, and MET expression/phosphorylation in tumors

Tumor type
Subtype,

specification
Marker type Changes and significance as biomarkers References

Gastric cancer Resection Serum HGF Higher preoperative HGF levels than the control

group (391 vs 193 pg/mL)

41

Response to

trastuzumab

Serum HGF Lower HGF levels in the responsive group (PR+SD)

than in those with PD. Association between high

HGF levels with worse OS

42

Helicobacter

pylori-infected

Plasma sMET Lower sMET levels compared to matched controls

(1.390 vs 1.610 ng/mL)

43

Resection Serum sMET, tissue

MET, serum and

tissue HGF

Association between advanced progression and

preoperative serum HGF. Correlation of tissue MET

with lymphatic vessel invasion, lymph node

metastasis, maximum tumor diameter, and OS. No

correlation between serum HGF and tissue HGF or

MET content

42

Lung cancer Small-cell lung

cancer

Serum HGF Higher HGF levels compared to healthy individuals

(1886 pg/mL vs 1131 pg/mL). Association between

higher HGF levels and worse PFS and liver

metastases. Increased HGF levels at progression after

two to three cycles of chemotherapy. Longer OS in

patients with decreased HGF levels at response time

from baseline levels than patients with increased

levels. Shorter OS in patients with higher HGF levels

than those with lower HGF levels. Association with

tumor epithelial–mesenchymal transition markers in

patients with high HGF levels (>median)

44

Small-cell lung

cancer

Serum HGF Higher HGF levels compared to and healthy subjects.

No difference with cancer stage

45

Small-cell lung

cancer

Tissue MET, tissue

pMET

MET overexpression and increased pMET in 54% and

43% patients, respectively. Correlation between

pMET status and OS

46

Lung

adenocarcinoma

Tissue HGF High HGF immunoreactivity in patients with acquired

gefitinib resistance in the absence of T790M EGFR

mutation and MET gene amplification. Low HGF

immunoreactivity in majority of responders to

gefitinib

12

Lung

adenocarcinoma

Plasma HGF High HGF levels in 13% of patients resistant to EGFR-

TKI without detectable T790M circulating DNA. High

HGF levels in 25% of patients resistant to EGFR-TKI

with detectable T790M circulating DNA

47

Lung

adenocarcinoma

Plasma HGF Higher HGF levels than normal and pretreatment

with EGFR-TKI. Increase after administration of

EGFR-TKI. Higher HGF levels in patients with PD

compared to PR and SD (724.1 � 216.4 pg/mL vs

381.7 � 179.0 pg/mL and 396.5 � 148.3 pg/mL,

respectively)

48

Lung

adenocarcinoma

Plasma HGF Higher HGF levels in gefitinib non-responders than in

responders. Association between low HGF levels and

longer RFS and OS independent of EGFR mutation

status

49

Lung

adenocarcinoma

Plasma sMET, tissue

MET

Association between sMET and tissue MET expression

level. Decrease in sMET levels after surgical resection

to levels close to those in disease-free volunteers

50

Lung

adenocarcinoma

Plasma sMET, tissue

MET

Association between sMET levels and tissue MET

expression levels in advanced patients. Association

between high sMET levels and poor OS (9.5 vs

22.2 months)

51
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Table 1 (Continued)

Tumor type
Subtype,

specification
Marker type Changes and significance as biomarkers References

Breast cancer Stage II/III Serum HGF Higher HGF levels in CR or PR in patients treated with

neoadjuvant chemotherapy doxorubicin and

docetaxel. Longer RFS in patients with highest HGF

levels when HGF levels were divided into four

groups

52

Tissue HGF Association between high tissue HGF levels and

lymph node metastasis. Higher sensitivity to

chemotherapy (CR, PR, and SD) in HGF-low patients

than in HGF-high patients

53

Meta-analysis MET levels Association between MET overexpression and worse

PFS compared to normal expression

54

Breast cancer cell

lines

Reverse phase

protein array

Higher pMET (Y1234/35) levels in triple-negative

(negative for estrogen receptor, progesterone

receptor, and ERBB2/HER2) cases

55

Tissue MET and

pMET by reverse

phase protein

array

Determination of dichotomized values of MET and

pMET as significant prognostic factors for RFS and

OS. Association between high MET levels and worse

RFS and OS in hormone receptor-positive cases.

Association between high pMET levels and worse

RFS and OS in HER2-positive cases. Higher risk of

recurrence and death in patients with high MET.

Higher risk of recurrence in patients with high pMET

56

Prostate cancer Plasma HGF Higher median HGF level in prostate cancer patients

compared to control group (505 vs 397 pg/mL).

Higher HGF levels in subset of patients with lymph

node and/or seminal invasion

57

Urinary sMET Higher sMET levels in patients with metastatic cancer

than in localized cancer

58

Plasma sMET Higher sMET levels in patients than those in healthy

group

40

Renal cell

carcinoma

Clear cell type Serum HGF Higher HGF levels in patients than healthy

individuals. Higher median HGF level in stage 3–4

than stage 1–2 (1252.9 vs 948.7 pg/mL). Higher HGF

levels in patients with distant metastasis than those

without metastasis (1375 vs 836.6 pg/mL)

59

Clinical trial with

pazopanib

Plasma HGF Correlation between low HGF baseline level and

larger decrease in tumor burden after pazopanib

treatment. Correlation between low baseline HGF

levels and PFS (48.1 vs 32.1 weeks)

60

Clinical trial with

rilotumumab

Plasma HGF and

sMET, tissue MET

No correlation of these values with treatment efficacy 61

Malignant

melanoma

Serum HGF Higher HGF levels in advanced disease. Higher HGF

levels in patients with progressive disease.

Correlation of baseline high level (above median)

with lower PFS and OS

62

Serum sMET Lower sMET levels in metastasis-free patients and

healthy donors than those with metastatic disease.

Superior changes in sMET than those in lactate

hydrogenase and S100 for liver function

63
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Table 1 (Continued)

Tumor type
Subtype,

specification
Marker type Changes and significance as biomarkers References

Multiple myeloma HGF mRNA in bone

marrow

Higher HGF mRNA expression levels in patients than

those of healthy individuals. No relation to the

number of myeloma cells

64

Serum HGF Higher median HGF levels at diagnosis vs in remission

(2001 vs 1049 pg/mL); Higher median HGF levels in

relapsed vs in remission patients (1370 vs 1049 pg/

mL)

65

Serum sMET No significant difference in sMET between patients

and healthy individuals; Negative correlations of

sMET with disease stage and bone marrow plasma

cell percentage

66

Colon cancer Patients underwent

carcinoma

resection

Serum HGF Correlation of higher HGF levels with advanced stage

(stage III/IV), tumor size, lymph node metastasis, and

distant metastasis. Poor prognosis in patients with

elevated HGF

67

Metastatic cancer,

treated with anti-

EGFR antibody

KRAS wild-type

Serum HGF Correlation between low HGF levels and longer PFS

and OS

68

Hepatocellular

carcinoma

Serum HGF Correlation between higher HGF levels post-

hepatectomy with metastasis. Higher HGF levels in

patients with hepatocellular carcinoma than those

with C-viral chronic hepatitis or liver cirrhosis

69–71

Serum HGF Higher pre-hepatectomy portal HGF levels than

peripheral HGF levels. Higher post-hepatectomy

portal HGF levels compared to pre-hepatectomy

portal levels

69

Metastatic patients

treated with

sorafenib �
erlotinib

Plasma HGF Correlation of higher baseline HGF levels with poor

OS regardless of treatment compared to those with

lower HGF levels

72

Clinical trial of

tivantinib

Serum HGF Correlation of low baseline HGF with longer OS.

Longer OS in patients treated with tivantinib with

low HGF than in those with high HGF

73

Ovarian cancer Serum HGF Higher preoperative HGF levels than those with

benign tumors or borderline tumors. Higher HGF

levels in advanced-stage (III/IV) patients than those

in early stage (I/II). Correlation of higher

preoperative HGF levels with lower OS (23 vs

41 months). Longer disease-free survival in patients

with low preoperative HGF

74

Bladder cancer Urinary sMET Higher sMET levels in bladder cancer patients

compared to individuals in the same urology clinic

but negative for any genitourinary malignancy.

Distinguishable by urinary sMET between bladder

cancer patients with muscle-invasive disease from

those with non-muscle-invasive disease

75

Glioma Treated by

radiotherapy

Serum HGF Lower median serum HGF in patients with high and

moderately differentiated tumors than those with

poorly differentiated tumors (964.8 pg/mL vs

1576.1 pg/mL). Different median time to progression

(6 vs 17 months) for patients with HGF levels below

vs above value of overall median serum HGF level

(1219.5 pg/mL)

76

CR, complete response; EGFR, epidermal growth factor receptor; ERBB2, Erb-B2 receptor tyrosine kinase 2; HER2, human epidermal growth factor
receptor 2; OS, overall survival; PD, progressive disease; PFS, progression-free survival; pMET, phosphorylated MET; PR, partial response; RFS,
relapse-free survival; SD, stable disease; sMET, soluble MET; TKI, tyrosine kinase inhibitor.
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Table 2. Clinical trials of hepatocyte growth factor (HGF)-MET inhibitors

Drug Design Phase Patient population Combinations

INCB28060/(INC280) Safety/tolerability I c-MET-dependent advanced solid tumors

Cabozantinib (XL184) Safety/PK I Hepatic impaired adult subjects

Onartuzumab

(MetMAb)

Safety/efficacy II NSCLC Bevacizumab/platinum/paclitaxel and

pemetrexed/platinum

Onartuzumab

(MetMAb)

Safety/efficacy II NSCLC Paclitaxel/platinum

Cabozantinib (XL184) Safety/efficacy III Previously treated, symptomatic castration-

resistant prostate cancer

Mitoxantrone/prednisone

Crizotinib (PF02341066) Safety/efficacy II Altered ALK and/or MET in locally

advanced and/or metastatic anaplastic

large cell lymphoma, inflammatory

myofibroblastic tumor, papillary renal cell

carcinoma type 1, alveolar soft part

sarcoma, clear cell sarcoma, and alveolar

rhabdomyosarcoma

Crizotinib (PF02341066) Safety/efficacy I Advanced malignancies Vemurafenib, sorafenib

INCB28060/(INC280) Safety I Japanese patients with advanced solid

tumors

Crizotinib (PF02341066) Safety/efficacy I Advanced malignancies Pemetrexed or pazopanib

Cabozantinib (XL184) Safety/efficacy I Multiple myeloma with bone disease

Cabozantinib (XL184) Efficacy II Solid tumors

Onartuzumab

(MetMAb)

Safety/efficacy II Gastric cancer mFOLFOX6

Cabozantinib (XL184) Efficacy II Castration-resistant prostate cancer with

bone metastases

LY2875358 Safety I Japanese participants with advanced cancer Erlotinib or gefitinib

Cabozantinib (XL184) Safety/efficacy III Metastatic castration-resistant prostate

cancer previously treated with docetaxel

and abiraterone or MDV3100

Prednisone

Crizotinib (PF02341066) Safety I Younger patients with relapsed or

refractory solid tumors or anaplastic large

cell lymphoma

Cyclophosphamide, dexrazoxane,

doxorubicin, topotecan, vincristine

INCB28060/(INC280) Safety/efficacy Ib/II NSCLC, EGFR-mutated, c-MET-amplified,

EGFR-inhibitor insensitive

Gefitinib

Cabozantinib (XL184) Safety/efficacy II Advanced NSCLC, KIF5B/RET-positive

Crizotinib (PF02341066) Safety/efficacy I Diffuse intrinsic pontine glioma, high grade

glioma, pediatric

Dasatinib

SAR125844 Safety/efficacy/PD I Asian advanced malignant solid tumor

patients

Onartuzumab

(MetMAb)

Safety/efficacy III Metastatic gastric cancer, HER2�, Met-

positive

mFOLFOX6

Cabozantinib (XL184) Expanded access Medullary thyroid cancer

Cabozantinib (XL184) Safety I Advanced prostate cancer Docetaxel, prednisone

Cabozantinib (XL184) Efficacy II Advanced urothelial cancer

Rilotumumab (AMG

102)

Efficacy III Locally advanced/metastatic gastric or

esophagogastric junction adenocarcinoma

Cabozantinib (XL184) Efficacy III Castration-resistant prostate cancer

Cabozantinib (XL184) Efficacy II Stage IV NSCLC, EGFR wild-type Erlotinib

Crizotinib (PF02341066) Safety/efficacy I/II NSCLC HSP90 inhibitor AT13387

Cabozantinib (XL184) Efficacy II Persistent or recurrent ovarian epithelial

cancer, fallopian tube, or peritoneal

cancer

Randomized vs paclitaxel

BMS-777607

(ASLAN002)

Safety I Advanced or metastatic solid tumors

INCB28060 (INC280) Safety/efficacy II Advanced hepatocellular carcinoma with c-

MET dysregulation

Cabozantinib (XL184) Safety/efficacy II Metastatic triple-negative breast cancer

Cabozantinib (XL184) Efficacy II Adults with advanced soft tissue sarcoma
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Table 2 (Continued)

Drug Design Phase Patient population Combinations

Volitinib savolitinib/

AZD6094/HMPL-50

Safety/PK I Advanced solid tumors

Rilotumumab (AMG

102)

Safety/efficacy I/Ib Japanese subjects with advanced solid

tumors or advanced or metastatic gastric

or esophagogastric junction

adenocarcinoma

MSC2156119J/

EMD1214063

Safety/efficacy I Solid tumors

Cabozantinib (XL184) Efficacy II Castration-resistant prostate cancer with

visceral metastases

Met RNA CAR T cells Safety/efficacy I Metastatic breast cancer, triple-negative

breast cancer

Cabozantinib (XL184) Safety/efficacy III Subjects with metastatic renal cell

carcinoma

Randomized vs everolimus

INCB28060 (INC280) Safety/efficacy Ib/II Recurrent glioblastoma Buparlisib

LY2875358 Efficacy II Gastric cancer

Onartuzumab

(MetMAb)

Safety/efficacy III Met-positive, stage IIIb or IV NSCLC with

activating EGFR mutation

Erlotinib

Onartuzumab

(MetMAb)

Safety/PK Ib Advanced hepatocellular carcinoma Alone or sorafenib

LY2875358 Efficacy II NSCLC with activating EGFR mutations Erlotinib

LY2875358 Efficacy II NSCLC Erlotinib

Cabozantinib (XL184) Safety/efficacy III Subjects with hepatocellular carcinoma

who have received prior sorafenib

treatment

Randomized vs placebo

INCB28060 (INC280) Safety I Met-positive NSCLC Erlotinib

MGCD265 Safety I Healthy subjects in fasting state

INCB28060 (INC280) Safety/efficacy II Advanced hepatocellular carcinoma after

progression or sorafenib intolerance

Onartuzumab

(MetMAb)

Safety/PK Ib Advanced solid malignancies Vemurafenib, and/or cobimetinib

LY2801653 PK/radiolabeled I Healthy participants

MSC2156119J Safety/efficacy I/II Advanced NSCLC Gefitinib

MSC2156119J Safety/efficacy I/II Asian subjects with hepatocellular

carcinoma

Crizotinib (PF02341066) Safety I Advanced solid tumors Axitinib

AMG 337 Efficacy II MET-amplified gastric/esophageal

adenocarcinoma or other solid tumors

INCB28060 (INC280) Efficacy II Papillary renal cell carcinoma

Onartuzumab

(MetMAb)

Safety/efficacy I Chinese patients with locally advanced or

metastatic solid tumors

Onartuzumab

(MetMAb)

Efficacy III Met-positive, incurable stage IIIb or IV

NSCLC

Erlotinib

Foretinib (GSK1363089) Efficacy II Genomic subpopulations of NSCLC

LY2875358 Safety/efficacy I/II Advanced cancer Ramucirumab

AMG 337 Safety/efficacy I/II Advanced solid tumor, gastric/esophageal

adenocarcinoma or other solid tumors

MSC2156119J Safety/efficacy I/II Second-line hepatocellular carcinoma

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/efficacy II Papillary renal cell cancer

Crizotinib (PF02341066) Efficacy II Patients with stage IV NSCLC that has

progressed after crizotinib treatment

Pemetrexed disodium

Rilotumumab (AMG

102)

Efficacy III Gastric cancer Cisplatin and capecitabine vs placebo

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/efficacy Ib EGFR mutation-positive advanced lung

cancer

AZD9291

INCB28060 (INC280) Safety/efficacy/PK I Squamous cell carcinoma of head and neck Cetuximab

INCB28060 (INC280) Safety/efficacy/PK II Metastatic colorectal cancer
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Experimental Cancer Therapeutics Targeting the HGF/MET
Pathway

The prevalence of HGF/MET pathway activation in human
malignancies has driven rapid growth in drug development
programs. The most advanced agents currently under develop-
ment as HGF/MET pathway inhibitors include mAbs directed
at HGF and low molecular weight compounds that

competitively antagonize ATP binding to MET (Table 2).
Although some of the multi-kinase inhibitors that target MET
have received regulatory approval in several indications, it
remains unclear whether the MET kinase is a primary target.
None of the more selective MET inhibitors have shown effi-
cacy in phase II or III clinical trials, although few of these
agents have reached this level of development.

Table 2 (Continued)

Drug Design Phase Patient population Combinations

INCB28060 (INC280) Safety/efficacy II Chinese patients with advanced NSCLC

Ficlatuzumab (AV-299) Safety/efficacy I Ficlatuzumab, cisplatin, and IMRT in locally

advanced squamous cell carcinoma of the

head and neck

Cisplatin and intensity modulated

radiotherapy

Ficlatuzumab (AV-299) Safety/efficacy I Recurrent/metastatic squamous cell

carcinoma of the head and neck

Cetuximab

SAIT301 Safety I Subjects with advanced c-MET-positive solid

tumors followed by expansion in selected

tumor types

AMG 337 Safety/efficacy I/II Advanced stomach or esophageal cancer Fluorouracil, oxaliplatin, leucovorin

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/PK/preliminary

efficacy

1b EGFR mutation-positive NSCLC patients that

progressed on EGFR tyrosine kinase

inhibitor

Gefitinib

INCB28060 (INC280) Efficacy II Advanced NSCLC patients that have

received one or two prior lines of therapy

Crizotinib (PF02341066) Safety/efficacy

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/efficacy II Advanced gastric adenocarcinoma patients

with MET overexpression as a second-line

treatment

Docetaxel

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/efficacy Ib/II Phase 1b in any solid cancer and sequential

phase II in advanced gastric

adenocarcinoma patients with MET

amplification as a second line treatment

Docetaxel

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/efficacy II Advanced gastric adenocarcinoma patients

with MET amplification as a third-line

treatment

INCB28060 (INC280) Drug–drug interaction:

PK of midazolam and

caffeine

I Patients with MET-dysregulated advanced

solid tumors

Midazolam, caffeine

Crizotinib (PF02341066) Safety/efficacy II Met or Ron-positive metastatic urothelial

cancer

INCB28060 (INC280) Drug–drug interaction:

PK of digoxin and

rosuvastatin

I Patients with MET-dysregulated advanced

solid tumors

Digoxin, rosuvastatin

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/PK I Ras wild-type colorectal cancer Cetuximab

Volitinib Savolitinib/

AZD6094/HMPL-50

Safety/efficacy I Locally advanced or metastatic kidney

cancer

Randomized multi-arm study

comparing cabozantinib, crizotinib,

volitinib, or sunitinib

Rilotumumab (AMG

102)

Efficacy III Stage IV SCLC Hydrochloride or erlotinib

INC280 Safety/efficacy I Glioblastoma multiforme, gliosarcoma,

colorectal cancer, renal cell carcinoma

Capmatinib (INC280) Safety II Malignant NSCLC with exon14 alteration

JNJ-38877605 Safety/efficacy I Advanced or refractory solid tumors

SGX523 Safety/efficacy I Advanced cancer

Experimental therapeutics (left column) are listed by generic name or alphanumeric identifier. For brevity, this table lists only those trials not
tabulated in a prior comprehensive review by Cecchi et al.(13) A complete listing of trials with links to several relevant cancer information sources
can be found online (https://ccrod.cancer.gov/confluence/display/CCRHGF/Home). ALK, anaplastic lymphoma kinase; EGFR, epidermal growth fac-
tor receptor; HER2, human epidermal growth factor receptor 2; HSP90, heat shock protein 90; IMRT, intensity-modulated radiation therapy;
mFOLFOX6, 5-fluorouracil, leucovorin, oxaliplatin; NSCLC, non-small-cell lung cancer; PD, pharmacodynamics; PK, pharmacokinetics; SCLC, small-
cell lung cancer.
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A recent topic in HGF/MET pathway inhibition is clinical
studies in lung cancer patients with MET-Dexon14 alteration.
Paik et al.(14) reported that MET-Dexon14 mutation is approxi-
mately 4% of lung adenocarcinoma, and three out of four patients
with stage IV lung adenocarcinomas harboring MET-Dexon14
mutation had a response to MET TKI. Among 38 028 cancer
patients, MET-Dexon14 mutations were found in 221 cases, and
MET-Dexon14 mutations are detected most frequently in lung
adenocarcinoma (3%), but also frequently in other lung neo-
plasms (2.3%) and brain glioma (0.4%).(15) In 11 205 lung can-
cers profiled by comprehensive genomic profiling, 298 (2.7%)
carcinomas harbored MET-Dexon14 alterations.(77) Eight patients
harboring MET-Dexon14 showed controlled responses, including
four cases with partial responses, two cases with complete
responses, and two cases with stable disease.(77) Among 1296
Chinese patients with NSCLC, 12 patients (0.9%) had MET-
Dexon14 mutation, suggesting a difference in frequency by eth-
nicity.(78) It is anticipated that ongoing clinical studies will reveal
the significance of MET-Dexon14 alteration as a biomarker and
therapeutic target for clinical use of HGF-MET inhibitors.

Conclusions

Therapeutic resistance and metastasis are major obstacles to
achieving durable clinical responses with molecular-targeted
therapies. Signaling pathways driven by HGF and MET partic-
ipate in invasion, metastasis, and resistance to molecular-
targeted drugs. Although selective MET inhibitors have yet
shown efficacy in phase II and III clinical trials, ongoing
clinical trials have indicated favorable response to MET

inhibitors in patients with NSCLC expressing variant MET
deleted within the JM domain. Biomarker discovery and the
utilization of appropriate biomarkers to validate HGF-MET
signaling as a driver in cancer development, metastasis, and
drug resistance appears to be key for regulatory approval of
HGF-MET inhibitors for clinical use.
Because HGF is biosynthesized as a zymogen-like single

chain inactive precursor (capable of MET binding but inca-
pable of MET activation) and the processing to two-chain
HGF is coupled to its activation, the measurement and evalua-
tion of HGF activation is also key to understanding the tumor
microenvironment that permits tumor metastasis and drug
resistance. In the future, elucidation of the 3-D structure(s) of
the HGF-MET complex and the MET activation process will
provide an opportunity to discover molecular tools applicable
to sensitive and specific detection of activation of HGF and
MET for diagnosis and evaluation of therapeutics.
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