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Abstract 

Tumor microenvironments play crucial roles in cancer initiation and progression, 

and share many molecular and pathological features with the wound healing 

process. In contrast with wounds that heal within a limited timeframe, tumors do 

not heal in the absence of treatment. Wounds heal through the coordination of a 

myriad of cell types, including endothelial cells, leukocytes, and fibroblasts. 

Similar sets of cells also contribute to cancer initiation and progression; 

consequently, anti-cancer treatment strategies that target endothelial cells and/or 

leukocytes have been proposed and tested. Less attention, however, has been paid 

to the roles of cancer-associated fibroblasts (CAFs). The heterogeneity of fibroblasts 

present in tumor tissues hinders the elucidation of their roles in tumor initiation 

and progression at the cellular and molecular levels. In this review, we discuss the 

origin of CAFs and their crucial roles in cancer initiation and progression, as well 

as the possibility of developing a novel type of anti-cancer treatment through 

manipulating the migration and functions of CAFs. 

 

 

  



INTRODUCTION 

Dvorak proposed that tumors are wounds that do not heal[1], based on his 

discovery of vascular endothelial growth factor (VEGF). VGEF is produced in 

wound healing and at tumor sites[2], and can account for chronic 

hyperpermeability-mediated fibrin deposition in solid tumors and in the early 

stages of wound healing[3]. Moreover, solid tumors and the wound healing process 

share many pathological and molecular features. 

Irrespective of the cause and the severity of wounds, healing proceeds to repair 

the structure and functions of injured organs and tissues, through a series of 

processes; hemostasis, humoral inflammation with microvascular permeability and 

extravascular clotting, cellular inflammation with inflammatory cell infiltration, 

angiogenesis, and generation of mature connective tissue stroma[4]. These steps 

proceed through interaction between parenchymal cells and the stroma, a complex 

mixture of inflammatory cells, matrix proteins, and tissue cells such as fibroblasts 

and endothelial cells. In the case of acute and mild wounds, injured organs and 

tissues are completely replaced by proliferating parenchymal cells, but if not 

replenished completely, they are filled with connective tissue. Tumor cells, 

regardless of their site of origin, behave like parenchymal cells in normal tissues 

and proliferate by interacting with the stroma[4]. 

Fibroblasts are a major cell type within the stroma and contribute to tissue 

remodeling in development and tissue homeostasis by providing structural 

scaffolding and growth regulatory mediators. Moreover, following tissue injury, 

fibroblasts exhibit an activated and contractile phenotype with enhanced 

expression of α-smooth muscle actin (α-SMA) and are referred to as 

myofibroblasts[5]. Myofibroblasts synthesize increased amount of various collagens 

and extracellular matrix proteins (ECM) to provide a scaffold and to eventually aid 

in wound repair[5]. Furthermore, the cells are important sources of many growth 

factors and cytokines that regulate wound healing processes[6]. 

Under co-culture conditions, primary normal fibroblasts isolated from various 

human tissues can restrict in vitro proliferation of various types of human cancer 

cell lines[7]. Indeed, if Nod-like receptor pyrin domain-containing protein 6 



(NLRP6) is absent in fibroblasts within the stem cell niche of the colon, 

regeneration of the colonic mucosa and the processes of epithelial proliferation and 

migration are impaired. Consequently, colitis-associated tumorigenesis is 

accelerated in mice lacking NLRP6[8]. Thus, under normal conditions, fibroblasts 

work as a sentinel cell to maintain epithelial tissue homeostasis and to prevent the 

initiation of tumorigenesis in the colon, in an NLRP6-dependent manner. 

Like fibroblasts in the wound healing process, fibroblasts present in tumor 

tissues exhibit an activated and myofibroblast-like phenotype with α-SMA 

expression and are referred to as cancer-associated fibroblasts (CAFs)[9]. In contrast 

to fibroblasts in normal tissues, CAFs in most solid tumors are presumed to 

promote tumor development and progression by providing cancer cells with a 

myriad of growth factors[9,10]. However, in pancreatic ductal cancer, CAFs can 

deliver immune stimulating signals. As a result, depletion of CAFs induces 

immunosuppression with increased intra-tumoral regulatory T cells (Tregs) and 

eventually accelerates tumor progression with reduced survival[11]. Hence, the 

pathophysiological roles of CAFs in the development and progression of solid 

tumors are yet to be elucidated. 

We will herein discuss the pathophysiological roles of CAFs and their clinical 

relevance in cancer, and specifically in colorectal cancer (CRC).  

 

CAFS IN COLITIS-ASSOCIATED COLON CARCINOGENESIS MODEL 

Accumulating evidence highlights the crucial contribution of chronic inflammation 

to tumor development and progression[12]. Colitis-associated colon carcinogenesis 

(CAC) is a typical example of this pathological process. CAC frequently ensues 

from chronic intestinal inflammatory changes observed in patients with 

inflammatory bowel diseases such as ulcerative colitis (UC), particularly those 

with a long duration, extensive involvement, and severe inflammation[13]. 

Pathological features of UC include mucosal damage and ulceration with 

prominent leukocyte infiltration, firstly involving the rectum and extending 

proximally. 



Oral administration of dextran sulfate sodium (DSS) solution to rodents can 

cause acute inflammatory reactions and ulceration in the entire colon, similar to 

that observed in human patients with UC; therefore, it is widely used to reproduce 

human UC[14]. Moreover, repeated DSS ingestion can lead to the development of a 

small number of colon carcinomas in approximately 50% of mice[15], suggesting 

that the inflammatory response alone can cause colon carcinoma. The incidence of 

DSS-induced colon carcinogenesis is both increased and accelerated by a prior 

administration of azoxymethane (AOM)[16], which can alone cause colon cancer by 

inducing O6-methyl guanine formation and mutations of the β-catenin gene[17]. 

Thus, combined treatment with AOM and DSS is frequently used to recapitulate 

the molecular mechanisms underlying CAC. 

The NF-ĸB transcription factor is a key player in inflammation. NF-ĸB activity is 

triggered by the IĸB kinase (IKK) complex in response to a wide variety of 

pro-inflammatory stimuli such as infectious agents and pro-inflammatory 

cytokines[18]. Greten and colleagues demonstrated that IKKβ has crucial roles in 

AOM/DSS-induced CAC through two distinct pathways: prevention of epithelial 

cell apoptosis, and enhancement of myeloid cell growth factor expression[19]. These 

observations indicate the crucial involvement of inflammatory cell infiltration in 

CAC development. Given the crucial roles of NF-ĸB in the regulation of gene 

expression and the biological functions of pro-inflammatory cytokines such as 

tumor necrosis factor (TNF)-α and chemokines[18], we examined 

AOM/DSS-induced colon carcinogenesis process using mice deficient in the tumor 

necrosis factor receptor (TNF-R)p55 gene[20]. We revealed that genetic ablation of 

the TNF-Rp55 gene in myeloid cells resulted in reduced intracolonic infiltration of 

inflammatory cells, particularly macrophages, neovascularization, and subsequent 

tumor formation. Moreover, a TNF-inhibitor reduced tumor progression even 

when administered after multiple tumors had developed in the colon. Similar 

phenotypes were observed by genetic inactivation of a macrophage-tropic 

chemokine receptor gene, CCR2, in myeloid cells or following the administration of 

CCR2 inhibitors after multiple colon tumors developed[21]. 



These observations prompted us to examine the roles of another 

macrophage-tropic chemokine, CCL3, and its receptors, CCR1 and CCR5[22]. Mice 

deficient in CCL3, CCR1, or CCR5, displayed marginal inflammatory reactions and 

subsequently developed few colon tumors when AOM was administered together 

with 3% DSS ingestion. Wild-type (WT) mice failed to survive 4.5% DSS ingestion. 

Mice deficient in CCL3, CCR1, or CCR5 mice survived 4.5% DSS ingestion and 

displayed prominent mucosal damage and leukocyte infiltration in the colon. 

CCR1-deficient mice developed multiple colon tumors; however, the same 

treatment resulted in a small number of colon tumors in CCL3- or CCR5-deficient 

mice (Table 1)[22]. These observations indicate that inflammatory cell infiltration is 

necessary, but not sufficient, for the development of CAC in this model. 

Compared with WT or CCR1-deficient mice, CCL3- or CCR5-deficient mice 

exhibited reduced accumulation of CAFs in the colon. This accumulation was 

predominantly evident in the later phase of CAC in this model (Table 1). Several 

groups, including ours, further demonstrated that growth factors such as 

hepatocyte growth factor (HGF)[23], epiregulin[24], and heparin-binding epidermal 

growth factor-like growth factor (HB-EGF)[22] are highly expressed in CAFs. These 

growth factors promote tumor cell proliferation in the later phase of this CAC 

model. Moreover, deficiency of the CCR5 gene results in reduced growth of tumors 

arising from either subcutaneous or orthotopic intracecum injection of a syngeneic 

mouse colon adenocarcinoma cell line, colon 26. This attenuated tumor growth was 

associated with a reduction in type I collagen-positive fibroblast numbers but not 

with inflammatory cell infiltration[22]. These observations indicate that CAFs are 

involved in the progression, but not development, of CAC. 

 

ORIGINS OF CAFS (FIGURE 1) 

The lack of a specific marker to identify CAFs[25] hampers the precise identification 

of their origin. α-SMA, a robust CAF marker, is also expressed by normal colonic 

fibroblasts under in vitro culture conditions[26] as well as other cell types such as 

pericytes, smooth muscle cells surrounding vasculature, and cardiomyocytes[27]. 

Additional candidate CAF markers including FAP-α[28,29], S100A4/fibroblast 



specific protein (FSP)-1[30,31], neuron-glial antigen-2, PDGF receptor-β, and prolyl 

4-hydroxylase[32]. However, these molecules are not specific to CAFs and can be 

expressed by other cell types. The lack of a definitive CAF marker implies that 

CAFs in CRC are phenotypically and functionally heterogeneous. This assumption 

is further strengthened by global gene expression profiles[33]. 

The most likely cellular source of CAFs in CRC is resident fibroblasts in colon 

tissues. Supporting this notion, CAFs in CRC liver metastatic foci exhibit similar 

protein expression pattern as resident liver fibroblasts[34]. Kojima and colleagues 

demonstrated that resident human mammary fibroblasts progressively convert 

into CAF-like cells with enhanced α-SMA expression and pro-tumorigenic capacity, 

during the course of tumor progression in a breast tumor xenograft model[35]. 

Moreover, these cells express transforming growth factor (TGF)-β and a chemokine, 

stromal-derived factor (SDF)-1/CXCL12, which further initiate and maintain the 

differentiation of fibroblasts into CAF-like and the tumor-promoting phenotype in 

an autocrine and amplifying manner[35]. 

In their quiescence state, stellate cells are vitamin A-containing and lipid 

droplet-containing cells and are present in various tissues including the liver, 

pancreas, kidney, and intestine[36]. Similar to CAFs, these cells activate α-SMA 

expression under inflammatory and oncogenic conditions, and acquire 

myofibroblast-like phenotypes. Most hepatocellular carcinomas arise in a cirrhotic 

liver with prominent fibrosis. Activated hepatic stellate cells are the major source 

of extracellular proteins during fibrogenesis. Moreover, they can induce 

hepatocellular carcinoma cell growth, neovascularization, and immune evasion, to 

promote tumor progression[37]. Similarly, pancreatic cancer is characterized by a 

prominent desmoplastic/stromal reaction. Like hepatic stellate cells, activated 

pancreatic stellate cells can abundantly produce the collagenous stroma of 

pancreatic cancer. Moreover, these cells can also interact closely with cancer cells to 

facilitate local tumor growth and distant metastasis, mediate angiogenesis, and 

induce immune evasion[38]. However, it has yet to be determined if stellate cells in 

the intestine, can also behave in a similar manner during colon carcinogenesis, as 

they do in the liver and pancreas. 



Other cell types are proposed to be a source of CAFs, based on the analyses of 

cancers other than CRC. Accumulating evidence indicates that, under chronic 

inflammatory conditions, epithelial cells can undergo epithelial-mesenchymal 

transition (EMT) to acquire myofibroblast-like phenotypes and participate in the 

synthesis of the fibrotic matrix[39]. A breast carcinoma biopsy provided evidence of 

EMT and a coincidental α-SMA-positive stromal reaction[40]. Moreover, upon 

injection of the MCF-7 mouse breast cancer cell line into nude mice with HBFL-1, a 

mammary gland epithelial cell line without tumorigenicity, HBFL-1 cells acquired 

myofibroblast-like phenotypes. In addition, a significant 3.5- to 7-fold increase in 

MCF-7 tumor size in nude mice was observed. Thus, breast cancer can transform 

its own non-malignant stroma to facilitate its growth[40]. Furthermore, when 

human epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 

(EGFR-TKI)-resistant lung cancer cells were used as a xenograft model, 

EMT-derived tumor cells gave rise to about a quarter of CAFs, which provided 

cancer cells resistance to EGFR-TKI[41]. However, several independent groups 

argue against EMT as the origin of CAFs[42,43]. 

Bone marrow-derived mesenchymal stem cells (MSCs) have also been proposed 

as an origin of CAFs. MSCs and CAFs exhibit similar immunophenotypes and 

share the potential to differentiate into various cell lineages such as adipocytes, 

chondrocytes, and osteoblasts[44]. Fibrocytes are bone marrow-derived and 

circulating fibroblast progenitors and exhibit phenotypic and functional 

characteristics similar to CAFs in chemically induced rat breast carcinogenesis 

model[45], suggesting that fibrocytes can be an origin of CAFs. 

TGF-β1 can induce proliferating endothelial cells to undergo phenotypic 

conversion into fibroblast-like cells including the emergence of mesenchymal 

markers and reciprocal down-regulation of CD31[46]. When endothelial cells were 

irreversible tagged by crossing Tie2-Cre mice with R26Rosa-lox-Stop-lox-LacZ 

mice, endothelial-to-mesenchymal transition (EndMT) was evident at the invasive 

front of tumors in the B16F10 melanoma model and the Rip-Tag2 spontaneous 

pancreatic carcinoma model[46]. Choi and colleagues further demonstrated that 

endothelial heat shock protein (HSPB1, a synonym of HSP27 in humans and 



HSP25 in rodents) has a crucial role in the maintenance of endothelial phenotypes 

and that its deficiency mediates the EndMT to accelerate fibrosis, and eventually 

tumorigenesis, in lungs[47]. Smooth muscle cells can be another source of CAFs in 

several cancers, particularly prostate cancer. Normal prostate stroma is enriched in 

smooth muscle cells, but during prostatic carcinogenesis in rats and humans, 

smooth muscle cells disappear with the reciprocal appearance of CAFs, which can 

promote carcinogenesis in genetically abnormal but non-tumorigenic epithelial 

cells[48]. While smooth muscle cells may be a source of CAFs in prostate cancer, it is 

unclear whether CAFs originate from this population in other cancer types, 

particularly CRC. 

There is considerable evidence that indicates functional heterogeneity of CAFs in 

various cancers, including colon cancer[33]. Heterogeneity may arise from 

differences in the origin of CAFs. Alternatively, CAFs are generated by intricate 

interactions with tumor microenvironments consisting of cancer and other resident 

cells[10,25]. Therefore, the heterogeneity of tumor microenvironments can induce 

wide variation in CAFs. Nevertheless, the heterogeneity of CAFs can affect the 

clinical course of colon cancer patients[49]. 

 

RECRUITMENT AND ACTIVATION OF CAFS 

In chronic inflammation the chemokines CCL2 and CCL3 can recruit fibroblasts[50], 

while CXCL12[51], CCL21[52], and CCL3[53] can recruit fibrocytes. We have shown 

that CCL3 is produced locally at tumor sites and is associated with CAF 

accumulation[22,54]. Moreover, in a mouse gastric cancer model, a substantial 

proportion of CAFs originate from bone marrow-derived mesenchymal stem cells, 

which are recruited to tumor site in a TGF-β and CXCL12-dependent manner[55]. 

Therefore, CAF accumulation may be regulated by cooperation with chemokines 

and other fibroblast-tropic factors such as TGF-β. 

Normal fibroblasts can inhibit proliferation of cancer cells in vitro[7]. Moreover, 

normal intestinal fibroblasts can maintain epithelial homeostasis to prevent 

carcinogenesis[23]. Thus, malignant cells must reprogram normal fibroblasts into 

CAFs with pro-tumorigenic activity. This process is mediated by cancer 



cell-derived factors including TGF-β, CXCL12[35], platelet-derived growth factor 

(PDGF)[56], and interleukin (IL)-6[57]. In contrast, several lines of evidence indicate 

that the CAF phenotype can persist in the absence of continued exposure to cancer 

cell-derived factors[58]. This may be explained by the observation that CAFs 

increasingly acquire the capacity to express TGF-β and CXCL12, which can act to 

initiate and maintain differentiation into CAFs in an auto-stimulatory and 

cross-communicating manner[35]. Alternatively, CAFs may acquire irreversible 

genetic and/or epigenetic changes during the course of differentiation, as similarly 

observed on tumor endothelial cells[59]. 

 

CAFS IN CARCINOGENESIS 

Cancer cell growth and stemness (Figure 2) 

Human pre-malignant prostatic epithelial cells can transform to neoplastic cells 

when co-cultured with CAFs derived from human prostate cancer tissues in vitro[60]. 

Factors secreted from CAFs are believed responsible for this tumor-initiating 

capacity. Indeed, when human mammary epithelial cells are grafted into 

immunodeficient mice, together with fibroblasts overexpressing TGF-β and/or 

HGF, the engrafted cells develop into a proliferating tissue closely resembling 

human ductal carcinomas[61]. These observations raise the possibility that CAFs can 

initiate the malignant transformation of epithelial cells by secreting these growth 

factors. 

Under the influence of cancer cell-derived IL-6, CAFs can secrete 

metalloproteinases, to stimulate EMT and cancer stem cell phenotypes in prostate 

cancer[62]. CAFs in colon cancer secrete HGF, activate β-catenin-dependent 

transcription, and induce cancer stem cell clonogenicity[63]. Moreover, CAF-derived 

HGF also restores the cancer stem cell phenotype in more differentiated tumor 

cells both in vitro and in vivo. Furthermore, human colon cancer-derived and 

chemotherapy-treated CAFs abundantly produce IL-17A, which increases 

chemotherapy-resistant cancer stem cells[64]. 

CAFs produce various growth factors and cytokines, which can promote cancer 

cell proliferation: HGF[23], EGF[65], epiregulin[24], HB-EGF[22], insulin-like growth 



factor (IGF)[66], TGF-β[35], connective tissue growth factor (CTGF)[67], and CXC12[58]. 

Most of these growth factors can be produced by cancer cells and can enhance the 

growth of CAFs. Moreover, CAF-derived TGF-β and CXCL12 affect CAF 

proliferation in an autocrine dependent manner[35]. Thus, these growth factors 

form a positive feedback loop between cancer cells and CAFs, and may accelerate 

tumor progression. 

It is clear that CAFs can contribute to tumor development and progression by 

initiating malignant transformation, enhancing the proliferation of cancer cells, and 

inducing the cancer stem cell phenotype. 

 

Cancer cell migration, invasion, and metastasis (Figure 2) 

Wound healing assays performed in the presence of CAF-derived conditioned 

media show that colon cancer cell lines exhibit enhanced migratory ability, and 

increased clonogenic capacity compared with normal fibroblast-derived 

conditioned media[26]. Moreover, co-injection of CAFs with a human colon cancer 

cell line into nude mice, significantly increased tumor cell proliferation, compared 

with normal fibroblasts[26]. Gene ontology analysis further reveals that genes 

overexpressed in CAFs are associated with biological processes such as 

development (TGFB2, PDGFC, cMET, CADM1, WNT1) and cell-cell signaling 

(TFAP2C, NTF-3, SEMA5A, EFNB2, INHBA)[26]. These gene products can modulate 

the functions of cancer cells to promote invasion and metastasis. 

CAFs expressed various matrix metalloproteinases (MMPs) and MMP-mediated 

ECM degradation results in proteolytic destruction of basement membrane and 

aids tumor cells to invade surrounding tissues[68]. Moreover, MMP-mediated 

enhanced invasiveness also involves proteinase-activated receptor 1 (PAR1) 

expressed on the surface of cancer cells. CAF-derived MMP-1 cleaves PAR1 to 

activate PAR1-mediated signaling pathways, associated with cancer cell migration 

and invasion in cancer cells [69]. 

In the lung, fibroblasts and tumor cells abundantly produce CCL2, which 

recruits Gr-1-positive, CCR2-expressing inflammatory monocytes[70]. Recruited 

inflammatory monocytes subsequently instigate a pre-metastatic niche, which 



favors lung metastasis of mouse mammary cancer. A pre-metastatic niche can be 

formed by the direct actions of CAFs[71]. S100A4-positive CAFs abundantly 

produce VEGF-A, which plays an important role in the establishment of an 

angiogenic microenvironment at the metastatic site to facilitate colonization. 

Moreover, S100A4-positive CAFs produce tenascin-C to provide cancer cells with 

protection from apoptosis. 

Gene expression-based classification systems have identified an aggressive colon 

cancer subtype with mesenchymal features, possibly reflecting EMT of tumor cells. 

Comparative analysis of stromahigh and stromalow CRC shows that neoplastic cells 

in stromahigh tumors express specific EMT drivers including ZEB2, TWIST1, and 

TWIST2[72]. Moreover, type I collagen dominates the extracellular matrix in 

aggressive colon cancers with EMT markers. Mimicking the tumor 

microenvironment, Matrigel enriched with type I collagen can induce colon cancer 

cells to express tumor-specific mesenchymal genes; suppress expression of 

hepatocyte nuclear factor 4, a transcriptional activator of epithelial differentiation 

and its target genes; and invade patient-derived colon tumor organoids[72]. Thus, 

CAF-derived type I collagen can induce EMT in cancer cells to promote their 

invasion. 

Bone marrow-derived hematopoietic progenitor cells expressing VEGF receptor 

1 (VEGFR1) home to tumor-specific pre-metastatic sites[73]. Primary tumor-derived 

factors induce fibroblasts resident in pre-metastatic sites to express fibronectin, 

which interacts with VLA-4 on VEGFR1-positive cells to induce cell clusters and 

promote pre-metastatic niche formation. In fibroblasts, fibronectin expression is 

regulated by the sphingosine-1-phosphate (SIP)-SIP receptor-STAT3 pathway[74]. 

CAFs can activate the STAT3 pathway in cancer cells to promote malignant 

progression. CRCs frequently display elevated TGF-β production with mutational 

inactivation of the TGF-β pathway. Cancer cell-derived TGF-β stimulates CAFs to 

secrete IL-11, which triggers gp130/STAT3 signaling in tumor cells[75]. This 

cross-talk can provide metastatic cells with a survival advantage. 

 

Drug resistance 



CAF-derived ECM has a profound impact on cancer chemotherapy[76]. ECM forms 

a physical barrier and as a consequence, most anti-cancer drugs show limited 

penetration into solid tumors[77]. Moreover, after binding to ECM cancer cells 

acquire chemoresistance through the activation of various pro-survival signaling 

pathways including PI3K/Akt, Erk, Rho/Rock, and p53[76]. Adhesion of small cell 

lung cancer cells to ECM confers resistance to chemotherapeutic agents because the 

adhesion activates β1 integrin-stimulated tyrosine kinase to suppress 

chemotherapy-induced apoptosis[78]. Similar mechanisms may also work in the 

case of resistance to radiotherapy in glioma cells[79]. 

In addition to ECM, CAF-derived soluble factors have been demonstrated to be 

involved in drug resistance. CAF-derived CXCL12 mediates drug resistance to 

conventional chemotherapeutics[80]. This resistance can arise from the ability of 

CXCL12 to promote cancer cell survival by activating the focal adhesion kinases, 

Erk, and Akt, β-catenin and NF-ĸB, in CXCR4-expressing cancer cells[81]. 

The presence of driver mutations in receptor tyrosine kinase (RTK) pathways 

positions RTKs for potential targets for cancer therapy and, accordingly, many 

anti-cancer drugs have been developed targeting these RTKs[82]. RTK-mediated 

signals converge on common critical downstream cell-survival effectors such as 

PI3K and Erk. Consequently, most cells can be rescued from drug sensitivity by 

exposure to one or more unrelated RTK ligands. Among these RTK ligands, HGF 

confers resistance to the BRAF inhibitor in BRAF-mutant melanoma cells[83]. 

Likewise, CAF-derived HGF can confer the resistance to EGF-receptor inhibitors in 

human non-small cell lung cancer cells otherwise sensitive to inhibitors[84]. 

CRC initiating cells (CICs) are resistant to conventional chemotherapy in 

cell-autonomous assays, but CIC chemoresistance is also increased by CAFs. 

Comparative analysis of matched CRC specimens from patients before and after 

cytotoxic treatment revealed a significant increase in CAFs after cytotoxic 

treatment[64]. Chemotherapy-treated human CAFs promoted CIC self-renewal and 

in vivo tumor growth associated with increased secretion of specific cytokines and 

chemokines, including interleukin-17A (IL-17A). Exogenous IL-17A increased CIC 

self-renewal and invasion, and targeting IL-17A signaling impaired CIC growth. 



Notably, IL-17A was overexpressed by colorectal CAFs in response to 

chemotherapy and this observation was validated directly in patient-derived 

specimens without culture[64]. These data suggest that chemotherapy induces 

remodeling of the tumor microenvironment through activating CAFs to secrete 

cytokines such as IL-17. 

 

Tumor microenvironments (Figure 3) 

Chronic inflammation is closely associated with tumorigenesis of various types of 

cancer[12,85]. CAFs, a major cellular component of cancer-associated inflammation, 

mediate tumor-enhancing inflammation by expressing a pro-inflammatory gene 

signature in an NF-κB-dependent manner[86]. NF-ĸB activation enhanced the 

expression of several chemokines such as CCL2 and proinflammatory genes such 

as cyclooxygenase 2 (COX-2) in CAFs. CAF-derived CCL2 mediates the 

recruitment of blood monocytes to tumor sites[87], favoring the generation of 

tumor-associated macrophages with a potent pro-tumorigenic activity. 

Simultaneously, COX-2 generates prostaglandin E2, which can promote both 

normal and malignant colonic epithelial cell proliferation[88, 89]. 

Another prominent feature of CAFs is their ability to synthesize ECM, which can 

serve as a reservoir for various growth factors such as TGF-β, bFGF, PDGF, HGF, 

and IGF-1[90]. In response to mechanical stress in tumor tissues, CAFs exhibit an 

increase in contractility, which can augment the production of collagen[91]. 

Moreover, CAFs synthesize the specific ECM including type I collagen, oncofetal 

nectin splice variants, periostin, and hyaluronan, and remodel ECM to promote 

tumor growth[90]. CAFs also abundantly express lysyl oxidase (LOX), an enzyme 

responsible for cross-linking type I collagen. LOX-mediated cross-linking and 

resultant tumor tissue stiffness are associated with tumorigenesis[92]. Mechanical 

stress activates CAFs to express members of MMPs, which regulate the 

degradation of ECM[90]. MMP-mediated ECM degradation can also promote cancer 

cell invasion[68]. 

Tumor microenvironment is characterized by abundant neovascularization, 

which can be induced by CAFs. CAF-induced MMP activation degrades ECM and 



eventually causes neovascularization[68]. CAFs, particularly those in invasive 

margins, are a rich source of the CXC chemokine, SDF-1/CXCL12[58], which 

mediates the recruitment of endothelial progenitor cells (EPCs) and subsequent 

tumor neovascularization. Furthermore, hypoxia can induces CAFs to express the 

transcription factor, hypoxia-inducible factor (HIF)-1α, which in turn induces the 

expression of VEGF, a potent angiogenic factor[93]. VEGF production by CAFs can 

be further enhanced by CAF-derived IL-6, whose expression can be augmented in 

the presence of colon cancer cells[94]. 

 

Tumor immunity (Figure 4) 

Deletion of fibroblast activation protein (FAP)-positive stromal cells enhances 

tumor immunity[28] and provides direct evidence of the involvement of CAFs in 

suppressed tumor immunity. While several candidate mechanisms have been 

proposed, this study did not clarify the cellular and molecular mechanisms of 

CAFs involvement in suppressed tumor immunity. CAF-derived prostaglandin E2 

and indoleamine 2,3-dioxygenease (IDO) can inhibit natural killer (NK) cell 

functions, thereby contributing to immune escape and subsequent tumor 

progression[95]. CAF-derived tenascin also contributes to immune suppression at 

tumor sites. Soluble tenascin inhibits the proliferation of human T cells induced by 

the combination of anti-CD3 antibody and fibronectin. Tenascin further attenuates 

IL-2 driven T cell proliferation, and prevents induction of the IL-2 receptor at high 

levels[96]. Prostate cancer stem-like cells present in the draining lymph nodes use 

tenascin-C to inhibit T-cell receptor-dependent T-cell activation, proliferation, and 

cytokine production. Consequently, cancer stem-like cells are protected from T 

cell-mediated immune surveillance[97]. 

CAFs abundantly express TGF-β1, which can suppress the functions of various 

immune cells, particularly effector T cells and natural killer cells[98]. TGF-β 

regulates Treg maturation and thereby suppresses immune responses. VEGF is 

also produced by CAFs and exhibits immunosuppressive effects[99]. VEGF can 

suppress the maturation of dendritic cell precursors, promote the proliferation of 



Tregs, and the accumulation of myeloid-derived suppressor cells (MDSC) in 

peripheral immune organs, thereby inhibiting T-cell immune responses. 

In vivo vaccination with a DNA vaccine against FAP eliminates CAFs and causes 

a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift 

is characterized by increased expression of IL-2 and IL-7, suppressed recruitment 

of tumor-associated macrophages (TAMs), MDSCs, and Tregs, and decreased 

tumor angiogenesis and lymphangiogenesis[100]. These observations suggest roles 

for CAFs in intratumor Th2 polarization and the subsequent depression of tumor 

immunity. Th2 polarization is mediated by CAF-derived thymic stromal 

lymphopoietin (TSLP), which induces in vitro myeloid DCs to up-regulate the 

TSLP receptor (TSLPR), secrete Th2-attracting chemokines, and acquire 

TSLP-dependent Th2-polarizing capability in vitro and in vivo[101]. Moreover, 

CD90-positive CAFs in colon cancer produce IL-6, which induces the polarization 

of tumor promoting inflammatory T helper 17 cells (Th17) in infiltrating 

lymphocytes, as well as the expression of cancer stem cell markers in colon cancer 

cells[102]. 

CAFs can produce a myriad of chemokines, which can attract and activate 

immunosuppressive cells, such as M2-polarized TAMs, MDSCs, and Tregs, 

thereby suppressing tumor immunity[103]. Simultaneously, CAFs can produce 

chemokines that promote the recruitment of effector T cells and natural killer cells, 

including CXCL9, CXCL10, and CXCL12[103]. If the latter chemokines are the 

predominant chemokines produced by CAFs, they can enhance specific tumor 

immunity instead of suppressing it. Indeed, depletion of CAFs induces 

immunosuppression and accelerates pancreas cancer progression with reduced 

survival in a mouse pancreatic ductal adenocarcinoma (PDAC) model[11]. This 

immunosuppression is associated with increased Foxp3-positive Treg cells and can 

be reversed by immune checkpoint therapy using the anti-CTLA4 antibody. Thus, 

in this model, CAFs prevent Tregs from expansion to keep tumor cells under 

immune surveillance. 

 

CAFS AS A PROGNOSIS MARKER IN CRC 



CAFs can be a useful marker to predict disease recurrence in patients with various 

types of cancer[10]. Tumors with abundant α-SMA-positive CAFs are associated 

with shorter disease-free survival for stage II and III CRC after curative CRC 

surgery[104]. High intra-tumor stroma proportion was associated with shorter 

overall survival and disease-free survival in stage II and stage III CRC patients 

after curative surgery[105]. CAFs abundantly express FAP-α and SDF-1/CXCL12. 

Colon cancer patients with high intra-tumor stromal FAP-α expression tend to 

have more aggressive disease progression and experience metastasis or 

recurrence[106]. Similarly, intra-tumor FAP-α and SDF-1 expression is involved in 

tumor re-growth and recurrence in rectal cancer patients treated with 

pre-operative chemo-radiation therapy[107]. 

Analysis of CAFs established from primary human colon cancer revealed that 

CAFs exhibit significant differences in their pro-migratory effects on cancer cells 

upon co-culture with cancer cells[33]. Moreover, CAFs promigratory effects on 

cancer cells are associated with fibroblast activation and stemness markers. CAF 

signature is identified by the gene expression signature of the most 

pro-tumorigenic CAFs and shows remarkable prognostic value for patients with 

CRC. Berdiel-Acer and colleagues conducted a transcriptomic profile of normal 

colonic fibroblasts (NCFs), primary tumor CAFs, and liver metastasis site CAFs, 

and identified a 19-gene classifier. In patients with CRC, this 19-gene classifier can 

predict recurrence with high accuracy, and correlates with fibroblast migratory 

potential[108]. Moreover, this 19-gene classifier can accurately identify low-risk 

patients, which is of particular importance for stage II patients. T4N0 patients, 

clinically classified as high risk, would particularly benefit from this prognostic 

tool and subsequent omission of chemotherapy. The same group further 

developed a 5-gene classifier for relapse prediction in Stage II/III CRC by 

analyzing gene expression patterns in CAFs[109]. The 5-gene classifier in CAFs was 

significantly associated with increased relapse risk and death from CRC among 

stage II/III patients. These studies proved the existence of heterogeneity in CAFs 

in terms of gene expression signatures. 



Molecular classification of CRC based on global gene expression profiles has 

defined three subtypes: chromosomal-instable tumor (CCS1), 

microsatellite-instable (MSI)/CpG island methylator (CIMP)-positive tumor 

(CCS2), and microsatellite-stable/CIMP-positive tumor (CCS3)[110]. The CCS3 

subtype exhibits upregulation of genes involved in matrix remodeling and EMT 

and has a very poor prognosis. However, more detailed analysis of the subgroups 

revealed that the prognostic predictive power arises from genes expressed by 

stromal cells rather than epithelial tumor cells[111]. Functional studies indicate that 

CAFs can increase the frequency of tumor-initiating cells and that this enhancing 

effect is further augmented by TGF-β signaling. Furthermore, poor-prognosis CRC 

displays a gene expression program induced by TGF-β in tumor stromal cells. 

These observations indicate that CAF-mediated gene expression profiles can be 

used to predict the prognosis of colon cancer patients. 

 

CAF AS A TARGET FOR CANCER TREATMENT 

Kraman and colleagues demonstrated that genetic depletion of FAP-expressing 

cells causes rapid hypoxic necrosis of both cancer and stromal cells in Lewis lung 

carcinoma-bearing mice depending on interferon (IFN)-γ and TNF-α. In addition, 

they demonstrated that depletion of FAP-expressing cells allows immunological 

tumors control[28]. However, the same group demonstrated that the FAP-positive 

cells of skeletal muscle are the major local source of follistatin and those in bone 

marrow express CXCL12 and kit ligand. Consequently, experimental ablation of 

these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and 

erythropoiesis[29]. Thus, it is probable that depletion of FAP-positive cells in tumor 

tissue can cause cachexia and anemia, and therefore, it may be difficult to target 

FAP to deplete CAFs. 

We demonstrated the crucial involvement of the CCL3-CCR5 axis on 

AOM/DSS-induced colon carcinogenesis through recruiting and activating CAFs. 

Systemic delivery of a CCR5-antagonist-expressing vector is well tolerated by 

tumor-bearing mice and significantly reduces tumor mass together with decreased 

CAFs, even when it is given after multiple tumors develop[22]. An antagonist to the 



chemokine, CXCL12, inhibits CAF-mediated integrin β1 clustering at the cell 

surface and the invasive ability of gastric cancer cells, suggesting that the 

inhibition of CXCL12/CXCR4 signaling in gastric cancer cells may be a promising 

therapeutic strategy against gastric cell invasion[112]. Moreover, CAF-derived 

CXCL12 can provide prostate cancer cells with chemoresistance to the cytotoxic 

drug, docetaxel, and a CXCR4 antagonist can sensitize cancer cells to this drug in a 

subcutaneous xenograft model of prostate cancer[80]. PDAC-bearing mice 

frequently do not respond to immune checkpoint therapy with anti-programmed 

cell death ligand 1 (PD-L1) antibody despite the presence of tumor-specific 

CD8-positive cells. However, depletion of FAP-positive CAFs uncovers the 

antitumor effects of the anti-PD-L1 antibody and inhibits tumor growth[113]. 

FAP-positive CAFs express CXCL12; consequently, a CXCR4 antagonist also 

induces rapid T-cell accumulation among cancer cells acting synergistically with 

anti-PD-L1 to greatly diminish cancer cells in pancreatic cancer model[113]. 

Normalization of CAFs is proposed as the strategy targeting CAFs. In prostate 

cancer, CAFs exhibit reduced miR-15 and miR-16 expression associated with 

reduced post-transcriptional repression of Fgf-2 and its receptor Fgfr1[114]. The 

Fgf-2-Fgfr1 axis acts on both stromal and tumor cells to enhance cancer cell 

survival, proliferation, and migration. Moreover, reconstitution of miR-15 and 

miR-16 considerably impairs the tumor-supportive capability of stromal cells in 

vitro and in vivo[114]. In ovarian cancer CAFs downregulate miR-31 and miR-214 

and the expression of these miRNAs induces a functional conversion of CAFs into 

normal fibroblasts[115]. Similar observations were made of miR-31 and miR-148a 

expression in CAFs[116,117]. Phosphatase and tensin homolog deleted on 

chromosome 10 (Pten) expression in stromal fibroblasts suppresses epithelial 

mammary tumors. Pten-deficient mammary fibroblasts exhibit reduced miR-320 

expression, enhanced ETS2 expression, and can accelerate tumorigenicity when 

co-injected into mice with mouse mammary cancer cells[118]. miR-320 

overexpression in fibroblasts reduces their tumorigenic activity upon co-injection 

with cancer cells[118]. These observations indicate that the modulation of miRNA 



expression can reduce the pro-tumorigenic capacity of CAFs, by dedifferentiating 

CAFs into normal fibroblasts. 

Nintedanib is a broad-spectrum tyrosine kinase inhibitor targets the VEGF, FGF, 

and PDGF receptors binding to the ATP pocket in a competitively reversible 

manner. Nintedanib is used as monotherapy for the treatment of idiopathic lung 

fibrosis (IPF)[119] and reduces lung inflammation and fibrosis in IPF as seen by 

reduced deposition of type I collagen and inhibition of fibroblast activation. VEGF, 

FGF, and PDGF are secreted by CAFs, cancer cells, and TAMs and their receptors 

are expressed by CAFs, cancer cells, and endothelial cells[120]. Moreover, the 

mechanism of fibroblast activation in IPF closely resembles that in cancer[121]. 

Hence, nintedanib is proposed as a second line therapy for non-small cell lung 

cancer in combination with docetaxel[122]. Another anti-fibrotic agent, pirfenidone, 

is used to treat IPF although its exact molecular mechanisms remain unknown[123]. 

The combination of pirfenidone and cisplatin leads to increased CAF cell death and 

decreased tumor progression in a human non-small cell lung cancer xenografted 

model[124]. These observations indicate that these anti-fibrotic agents may be used 

for the treatment of cancers with abundant fibrotic changes. 

Given the potent fibrotic capacity of TGF-β[98], the anti-TGF-β monoclonal 

antibody was developed and tested in clinical trials for several cancer types. The 

anti-TGF-β antibody can simultaneously induce anti-tumor effects and cutaneous 

keratoacanthomas/squamous cell carcinomas[125]. This duplicity may arise from 

the double-edged activities of TGF-β; a tumor suppressor for normal epithelial 

cells and a tumor driver in tumor microenvironments[98]. 

 

FUTURE PERSPECTIVES 

Accumulating evidence highlights the crucial involvement of inflammation in 

cancer development and progression[12]. Inflammation is a dynamic host response, 

wherein various cell types participate in a concerted manner[4]. However, until 

recently, much attention has been focused on two processes involved in 

inflammation: neovascularization, and inflammatory cell infiltration. Various 

agents targeting neovascularization have been developed as anti-cancer drugs, 



with limited success[126]. Despite remarkable successes of immunotherapies that 

modulate the adaptive immune system consisting of lymphocytes and dendritic 

cells[127], the plasticity and heterogeneity of inflammatory leukocytes, 

monocytes/macrophages, and granulocytes has hindered the elucidation of their 

roles these in carcinogenesis. Likewise the development of anti-cancer agents 

targeting inflammatory leukocytes[128] has been equally hindered. Under these 

circumstances, fibroblasts, have emerged as an important player in cancer-related 

inflammation[10,25,129]. 

CAFs express an NF-ĸB-dependent gene signature in mouse skin, pancreatic and 

breast cancer models[86]. These observations incited two independent groups to 

conduct fibroblast-specific deletion of the gene of IKKβ, required for NF-ĸB 

activation, and examine the effects on AOM/DSS-induced colon 

carcinogenesis[130,131]. However, the results obtained from the two studies are 

completely opposite to each other. Koliaraki and colleagues demonstrated a 

pro-tumorigenic activity of IKKβ whilst, Pallangyo identified IKKβ as a tumor 

suppressor. The differences observed by the two groups appear to arise from the 

use of different gene promoters to delete the IKKβ gene. Koliaraki and colleagues 

used the type VI collagen gene promoter whereas Pallangyo and colleagues used 

the type I collagen gene promoter. IKKβ deletion in type VI collagen-positive CAFs, 

decreased IL-6 production associated with decreased inflammation and 

suppressed tumor formation[130]. In contrast, IKKβ deletion in type I 

collagen-positive CAFs, enhanced HGF production and subsequently promoted 

tumor growth[131]. Therefore, in general, CAFs may act to promote carcinogenesis, 

but a type I collagen-positive subset may retain normal fibroblast-like phenotypes 

and functionality. This type I collagen-positive subset can act to suppress 

carcinogenesis, because normal intestinal fibroblasts can regulate intestinal 

homeostasis to suppress colitis-associated tumorigenesis[23]. 

Targeting CAFs can be a novel strategy to treat cancer, and inflammation-related 

cancer in particular. In order to advance this strategy, however, a more detailed 

and precise understanding of phenotypical and functional heterogeneity in CAFs is 



required to identify the CAF subpopulation and/or molecules, with crucial roles in 

cancer development and progression. 
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Table 1 Pathological changes in mice after azoxymethane/dextran sulfate sodium 

treatment 

 Ingested DSS 

concentration 

(%) 

Body 

weight 

loss (> 

20%) 

Granulocyte 

infiltration 

(> 400/field) 

Fibroblast 

accumulation (> 

20% type I 

Collagen+ areas) 

Tumor 

numbers 

Wild-type mice 3.0 + + + > 20 

CCR1-deficient mice 3.0 - - - < 5 

 4.5 + + + > 20 

CCR5-deficient mice 3.0 - - - < 5 

 4.5 + + - < 7 

CCL3-deficient mice 3.0 - - - < 5 

 4.5 + + - < 5 

 

Table is prepared according to Sasaki et al[22]. DSS: Dextran sulfate sodium. 

  



Figure Legends 

 

Figure 1 The origin of CAFs. A variety of cells can become CAFs. The most 

important cellular source of CAFs in CRC is presumed to be resident fibroblasts. 

Stellate cells in the intestine may be able to transform into CAFs in a manner 

similar to what occurs in the liver and pancreas. Other potential sources include 

epithelial cells undergoing EMT, endothelial cells undergoing EndoMT, smooth 

muscle cells, and bone marrow-derived cells including fibrocytes and MSCs. CAFs: 

Cancer associated fibroblasts; CRC: Colorectal cancer; EMT: 

Epithelial-mesenchymal transition; MSCs: mesenchymal stem cells. 

 

Figure 2 The action of CAFs on tumor cells. CAFs can induce tumor cells to 

enhance their tumor initiating capacity (stemness), and to undergo EMT. CAFs 

provide tumor cells with various growth factors to promote their growth. CAFs 

can also instigate a pro-metastatic niche by inducing tumor cell cluster and 

angiogenesis, and suppressing tumor cell apoptosis. CAFs: Cancer associated 

fibroblasts; EMT: Epithelial-mesenchymal transition; VEGF: Vascular endothelial 

growth factor. 

 

Figure 3 Cancer associated fibroblasts in tumor microenvironment formation. 

CAFs promote pro-tumorigenic microenvironment by: producing extracellular 

matrix to provide tumor cells with a growth advantage, recruiting 

tumor-associated macrophages (TAMs) to foster tumor cell growth, and by 

inducing neovascularization. CAFs: Cancer associated fibroblasts; EMT: 

Epithelial-mesenchymal transition; VEGF: Vascular endothelial growth factor; 

ECM: Extracellular matrix proteins; EPCs: Endothelial progenitor cells; MMP: 

Matrix metalloproteinase; HIF-1α: Hypoxia-inducible factor 1α. 

 

Figure 4 Double-edged actions of cancer associated fibroblasts in tumor 

immunity. CAFs exhibit double-edged actions in tumor immunity. In most cancer 

types, CAFs can dampen tumor immunity by suppressing T cell proliferation, NK 



cell activity, DC maturation, and by inducing Treg proliferation and MDSC 

accumulation. In some types of cancers, such as pancreatic ductal adenocarcinoma, 

CAFs can enhance tumor immunity by enhancing effector T cell and NK cell 

functions and depressing Treg activities. CAFs: Cancer associated fibroblasts; 

VEGF: Vascular endothelial growth factor; MDSC: Myeloid-derived suppressor 

cells; NK: Natural killer. 
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Figure 1. The origin of cancer-associated fibroblasts (CAFs) 
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Figure 2. CAFs promote tumor proliferation, and maintain cancer cell stemness and migratory capacity 
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Figure 3. CAFs promote the formation of tumor microenvironments. 
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Figure 4. CAFs regulate tumor immunity 
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• Pancreatic ductal adenocarcinoma • Hepatocellular carcinoma 
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