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Abstract

Trichothecenes are a closely related family of phytotoxins produced by phytopathogenic 

fungi. In Arabidopsis, expression of AtNFXL1, a homologue of the putative human 

transcription repressor NF-X1, was significantly induced by application of type A 

trichothecenes, such as T-2 toxin. An atnfxl1 mutant growing on medium lacking 

trichothecenes showed no phenotype, whereas a hypersensitivity phenotype was 

observed in T-2 toxin-treated atnfxl1 mutant plants. Microarray analysis indicated that 

several defense-related genes (i.e. WRKYs, NBS-LRRs, EDS5, ICS1, etc.) were 

upregulated in T-2 toxin-treated atnfxl1 mutant compared to wild type plants. In 

addition, enhanced salicylic acid (SA) accumulation was observed in T-2 toxin-treated 

atnfxl1 mutant plants, which suggests that AtNFXL1 functions as a negative regulator of 

these defense-related genes via an SA-dependent signaling pathway. We also found that 

expression of AtNFXL1 was induced by SA and flg22 treatment. Moreover, the 

atnfxl1 mutant was less susceptible to a compatible phytopathogen, Pseudomonas 

syringae pv. tomato strain DC3000 (Pst DC3000). Taken together, these results indicate 

Page 3 of 54

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

ዊ�

that AtNFXL1 plays an important role in the trichothecene response, as well as the 

general defense response in Arabidopsis. 
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Introduction

Trichothecenes are a major type of mycotoxin, and are important in human health due to 

the risk of ingesting contaminated food (Kimura et al., 2006). Phytopathogenic fungi 

capable of producing trichothecenes are found throughout the world, and include certain 

species of Fusarium, Myrotherium and Stachybotrys (Eudes et al., 2001). The 

production of mycotoxins by these species of phytopathogenic fungi is determined by 

genetic factors and environmental growth conditions. Trichothecenes have a 

sesquiterpenoid ring structure, and can be classified according to the presence or 

absence of characteristic functional groups (Shifrin and Anderson, 1999). Type A 

trichothecenes, such as T-2 toxin, and type B trichothecenes, such as deoxynivalenol 

(DON), are natural contaminants of certain agricultural commodities, as well as 

commercial foods (Sudakin, 2003). Among the trichothecenes, type A trichothecenes 

are highly toxic at low concentrations.

Trichothecenes inhibit peptidyltransferase activity in eukaryotic cells by 

binding to the 60S ribosomal subunit. The antiproliferative activity of trichothecenes is 

presumed to be a consequence of their ability to inhibit protein synthesis (Shifrin and 
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Anderson, 1999). Thus, trichothecenes also function as phytotoxins. Specific disruption 

of a trichothecene synthase gene (Tri5) in F. graminearum resulted in a strain that was 

less virulent in the infection of wheat compared to wild type strains (Desjardins et al., 

2000). For this reason, Desjardins et al. have suggested that in certain Fusarium species,

trichothecenes act as virulence factors in the infection of plants (Desjardins et al., 2000). 

Trichothecene-producing Fusarium species have strain-specific trichothecene 

metabolite profiles (Ward et al., 2002), and these trichothecene chemotypes are also 

believed to play a role in the virulence of individual strains of Fusarium. 

Recently, we reported that type A trichothecenes, such as T-2 toxin, have an 

elicitor-like activity in Arabidopsis thaliana at a concentration of 1 µM (Nishiuchi et al., 

2006). Type A trichothecene-inducible lesions were also formed in SA-, jasmonic acid 

(JA)- and ethylene (ET)-mutants, and in SA-deficient NahG transgenic plants 

(Nishiuchi et al., 2006). These results implied that T-2 toxin-induced cell death has little 

to do with these host defense pathways; rather, the toxin contributes directly to the 

virulence of necrotrophic phytopathogens. In contrast to T-2 toxin, 10 µM DON 

inhibited protein translation in Arabidopsis cells, whereas it failed to activate the 
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elicitor-like signaling pathway (Nishiuchi et al., 2006), which suggests that Fusarium

utilizes DON as a non-defense-inducing translational inhibitor during the spread of 

disease in host plants (Bai et al., 2001). Thus, the role of type B trichothecenes in 

virulence might be different from that of type A trichothecenes. Urban et al. reported 

that the DON-producing, wheat-attacking fungal pathogens F. graminearum and F. 

culmorum can infect the flowers of Arabidopsis contaminated with DON (Urban et al.,

2002). 

We recently reported that AtNFXL1 is upregulated in T-2 toxin-treated 

Arabidopsis (Masuda et al., 2007). AtNFXL1 encodes a putative transcription factor 

with similarity to the human transcription repressor NF-X1 (Lisso et al., 2006). Human 

NF-X1 was identified as a binding factor for the conserved X1 box regulatory element 

in the proximal promoters of class II MHC genes, and contains a nuclear localization 

signal (NLS), a RING-CH finger domain, several NF-X1-type zinc (Zn) finger domains, 

and an R3H domain (Song et al., 1994). Song et al. suggested that NF-X1 is involved in 

regulating disease states by suppressing the expression of class II MHC genes (Song et 

al., 1994). The RING-CH finger domain is implicated in the targeting of proteins for 
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ubiquitination (Lorick et al., 1999). The yeast NF-X1 homologue, FAP1, was identified 

in a genetic screen for suppressors of rapamycin toxicity (Kunz et al., 2000). FAP1 

interacted physically with a FK506-binding protein 12 (FKBP12) in vivo and in vitro, 

and suppressed the cytotoxic effects of rapamycin (Kunz et al., 2000). Strombakis et al.

suggested that the Drosophila NF-X1 homologue, shuttle craft (stc), is essential for 

embryogenesis by regulating the activity of a subset of genes that play a role in either 

the guidance or spatial maintenance of axon tracts (Strombakis et al., 1996). Taken 

together, these results suggest that the NF-X1 family of proteins has unique functions in 

different organisms. 

In this paper, we demonstrated that atnfxl1 mutant plants exhibit a hypersensitivity 

phenotype to a type A trichothecene, T-2 toxin. Microarray analysis revealed that many 

defense-related genes are upregulated in the atnfxl1 mutant in the presence of 

trichothecenes, compared to wild type plants. High levels of SA accumulated in T-2 

toxin-treated atnfxl1 mutant plants compared to wild type plants, which suggests that 

AtNFXL1 functions as a negative regulator of defense-related genes via an

SA-dependent signaling pathway. In addition, we found that the expression of AtNFXL1
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is induced by application of SA. Moreover, the atnfxl1 mutant was less susceptible to 

the compatible phytopathogen Pst DC3000. Thus, AtNFXL1 also appears to play an 

important role in the defense response to compatible phytopathgens in Arabidopsis.

Results

AtNFXL1 belongs to the NF-X1 family of proteins

Based on its predicted amino acid sequence, AtNFXL1 encoded a protein with a 

molecular weight of 130 kDa that has similarity to the human transcription repressor 

NF-X1 (Supplemental Figures 1a and b). AtNFXL1 contains several functional regions 

and domains, including an NLS, a RING-CH finger domain, and nine NF-X1-type Zn 

finger domains (Supplemental Figure 1a). These domains are also conserved in Oryza 

sativa OsNF-X1, Homo sapiens NF-X1, Drosophila melanogaster STC, and 

Saccharomyces cerevisiae FAP1. The R3H domain, which is involved in binding of 

single stranded RNA, is present only in NF-X1 family proteins of non-plant eukaryotes 

(Supplemental Figure 1a). Phylogenetic analysis indicated that plant NF-X1-like 

proteins are more closely related to human NF-X1 than to FAP1 or STC (Supplemental
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Figure 1b). AtNFXL1 contains an intron in its 5’UTR (data not shown). The NF-X1-type 

Zn finger domains are unique motifs, and the Zn finger repeats are conserved in 

AtNFXL1 (Supplemental Figure 1c) . It has been reported that a green fluorescent 

protein (GFP)-AtNFXL1 fusion protein localizes to the nucleus in onion epidermal cells 

(Lisso et al., 2006).  We also examined the localization of a GFP-AtNFXL1 fusion 

protein in Arabidopsis, and found that GFP-AtNFXL1 localizes to the nucleus in 

Arabidopsis T87 suspension cultured cells (Supplemental Figure 2).

The atnfxl1 mutant displays a hypersensitivity phenotype to the type A 

trichothecene, T-2 toxin.

We recently demonstrated that AtNFXL1 is a trichothecene-inducible gene (Masuda et 

al., 2007). To determine the function of AtNFXL1, we investigated the trichothecene 

response of atnfxl1 (atnfxl1-1) mutant plants. The atnfxl1-1 mutant was generated by 

transferred-DNA (T-DNA) insertion at position +2,082 (relative to the first basepair of 

the initiation codon at +1) of the open reading frame of AtNFXL1 (Munich Information 

Center for Protein Sequence designation At1g10170), as previously described (Figure 
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1a; Lisso et al., 2007). In wild type plants, AtNFXL1 was weakly expressed in the 

absence of T-2 toxin, whereas it was induced by 1 µM T-2 toxin treatment, as previously 

reported (Figure 1b; Masuda et al., 2007). In the atnfxl1 mutant, we observed a 

truncated transcript of AtNFXL1 (Figure 1b). The deduced amino acid sequence of the 

truncated mRNA in the atnfxl1 mutant lacked two of the nine NF-X1-type Zn finger 

domains. Therefore, it is likely that the truncated form of atnfxl1 mRNA in mutant

plants does not encode a functional protein. The atnfxl1 mutant exhibited no apparent 

phenotype on MS agar medium alone (without trichothecene) compared to wild type 

plants (Figures 1c and 1d). In addition, general phenotypes, such as growth rate, organ 

development, and morphology of untreated atnfxl1 mutant were similar to wild type

plants (data not shown). In contrast, atnfxl1 mutant exhibited a severe growth defect on 

MS medium containing 0.1 µM T-2 toxin (Figures 1c and 1d). As previously reported 

(Masuda et al., 2007), cell death was not induced when seedlings were transferred to 

0.1-1 µM T-2 toxin-containing medium. The T2 segregation ratio of the 

toxin-hypersensitivity phenotype was nearly 1:3 in self-pollinated offspring of 

heterozygous atnfxl1 plants, which indicated that the mutation was inherited as a single 
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recessive trait. As shown in Figure 1d, the growth defects of DON-treated atnfxl1

mutant were similar to DON-treated wild type plants. 

To determine whether the T-2 toxin-sensitive phenotype of atnfxl1 mutant

plants was due to a defect in AtNFXL1, we carried out a complementation analysis. 

Introduction of a complementation plasmid containing the promoter and the coding 

sequence of AtNFXL1 (AtNFXL1 promoter::AtNFXL1, see Experimental Procedures)

into atnfxl1 mutant plants clearly rescued the hypersensitivity phenotype in the presence 

of 0.1 µM T-2 toxin in 7 of 8 plant lines (Figures 1c and 1d). These results demonstrated 

that the hypersensitivity to T-2 toxin of atnfxl1 mutant plants was due to a defect in 

AtNFXL1. 

Defense-related genes are upregulated in trichothecene-treated atnfxl1 mutant 

plants.

We performed a transcriptome analysis of approximately 14,880 genes to obtain the 

expression profiles of putative AtNFXL1-regulated genes. This analysis was carried out 

using two independent wild-type plants, and two independent mutant plant lines. As 

Page 12 of 54

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

ዊ�ዊ�

seen in Figure 1b, atnfxl1 mutant plants displayed no visible phenotype in the absence 

of trichothecenes. In accordance with this result, none of the genes we examined were 

upregulated more than 3-fold in atnfxl1 mutant plants compared to wild type plants in 

the absence of trichothecenes (data not shown). A single gene was down-regulated 

greater than 3-fold in atnfxl1 mutant plants compared to wild type plants (data not 

shown). These results indicated that in the absence of trichothecenes, AtNFXL1 has a 

minor effect on the global regulation of gene expression.  

In contrast, in 1 µM T-2 toxin-treated atnfxl1 mutant plants, 130 genes were 

upregulated greater than 3-fold compared to T-2 toxin-treated wild type plants (Table 1). 

As seen in Table 1, 18 of the upregulated genes were putative transcriptional regulators. 

In particular, 8 WRKY family genes were upregulated in T-2 toxin-treated atnfxl1 mutant

plants. WRKY transcription factors play pivotal roles in the plant defense response 

(Eulgem et al., 2000), and expression of some WRKY family genes confers enhanced 

disease resistance in Arabidopsis and tobacco (Asai et al., 2002; Liu et al., 2004; Chen 

and Chen, 2002).  . 

The largest category of putative AtNFXL1-regulated genes (28 genes) encoded 
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cellular communication and signal transduction factors (Table 1). This category 

included 9 genes that encode serine/threonine protein kinases, including a Pto-like 

kinase, and 7 genes that encode receptor-like protein kinases, which suggests that these 

genes function as components of AtNFXL1-regulated defense signaling pathways. 

Several defense-related genes also appeared to be regulated by AtNFXL1, including 5 

genes that encode disease resistance proteins, as well as EDS5 and ICS1. EDS5 was 

identified as an essential component of SA-dependent signaling in resistance to Pst

DC3000 in Arabidopsis (Nawrath et al., 2002). ICS1 encodes an isochorismate synthase, 

and is required for biosynthesis of SA (Wildermuth et al., 2001). These results 

suggested that AtNFXL1 is involved in SA-dependent defense signaling pathways in 

trichothecene-treated Arabidopsis.

Table 2 lists the genes that were down-regulated greater than 3-fold in T-2 

toxin-treated atnfxl1 mutant plants compared to wild type plants. The list of genes 

included LHCB2-4, which suggests that hyperactivation of the defense response affects

the expression of phytosynthesis-related genes. 

To validate the results of the microarray analysis, we selected 6 genes that 

Page 14 of 54

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

ዊ�ዊ�

were upregulated, and 1 gene that was down-regulated in T-2 toxin-treated atnfxl1 

mutant plants, and analyzed them by real time PCR. As shown in Table 3, we obtained 

similar results using real time PCR, although the magnitude of the expression change of 

some of the genes was greater than what was observed by microarry analysis. 

Enhanced SA accumulation in T-2 toxin-treated atnfxl1 mutant plants. 

Microarray analysis revealed that defense-related genes, including genes involved in SA 

biosyntheis, were upregulated in atnfxl1 mutant compared to wild type plants. PR-1 

(At2g14160), which is regulated in an SA-dependent manner, was not present on the 

Agilent Arabidopsis 1 microarray. When we examined the expression of PR-1 by

RT-PCR, we found that PR-1 was weakly induced 24 hours (hr) after T-2 toxin

treatment in both wild type and atnfxl1 mutant, as previously described (Masuda et al., 

2007). The T-2 toxin-induced expression of ICS1 was enhanced in atnfxl1 mutant plants

compared to wild type plants (Figure 2a). These results suggested that SA biosynthesis 

is activated in atnfxl1 mutant plants. We next measured free and total SA levels in wild 

type and atnfxl1 mutant plants in the presence or absence of T-2 toxin. As seen in 
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Figures 2b and 2c, T-2 toxin-induced SA accumulation was enhanced in atnfxl1 mutant

plants compared to wild type plants. Taken together, these results suggested that 

enhanced SA accumulation in atnfxl1 mutant plants leads to the induction of 

defense-related genes (Table 1). 

SA and flg22 activate the transcription of AtNFXL1.

To investigate the expression pattern of AtNFXL1 in more detail, we generated 

transgenic plants carrying an AtNFXL1 promoter::β-glucuronidase (GUS) gene fusion 

construct. As shown in Figure 3a, in seedlings of AtNFXL1::GUS transformants, in the 

absence of trichothecene, GUS activity was present in the vascular bundle and 

meristematic tissue. AtNFXL1 promoter activity was increased up to approximately 

18-fold by 0.1 µM T-2 toxin treatment compared to mock (no trichothecene) treatment 

(Figures 3a, 3b and 3d). Treatment with 2.5 µM DAS induced an 8-fold increase in 

promoter activity, while treatment with 10 µM DON resulted in a 3-fold induction of

promoter activity (Figure 3d). Since AtNFXL1 is predicted to play a role in defense 

signaling, including SA-dependent signaling, we also investigated whether other 
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elicitors and defense-related signals affected the expression of AtNFXL1. AtNFXL1 

promoter activity was increased approximately 5-fold by flg22, a peptide elicitor 

derived from phytopathogenic bacteria (Figure 3d). SA treatment induced an 

approximate 40-fold increase in GUS activity in AtNFXL1 promoter::GUS

transformants (Figure 3a, 3c, and 3d), and 1-aminocyclopropane-1-carboxylic acid

(ACC) and methyl jasmonate (MeJA) induced a 2.5-fold and 3.2-fold increase in 

promoter activity, respectively (Figure 3d). These results suggested that AtNFXL1 plays 

a role not only in the action of trichothecenes, but also in the general defense response 

of Arabidopsis.

The atnfxl1 mutant is less susceptible to Pst DC3000.

To determine whether AtNFXL1 is involved in disease resistance to phytopathogens, 

wild type and atnfxl1 mutant plants were inoculated with the compatible pathogen Pst

DC3000. As shown in Figure 4a, the growth of Pst DC3000 in atnfxl1 mutant plants

was slower than in wild type plants, which indicated that atnfxl1 mutant plants are less 

susceptible to Pst DC3000. The reduced susceptibility to the compatible pathogen Pst
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DC3000 was not observed after complementation with wild type AtNFXL1 (Figure 4b).  

These results indicated that the reduced susceptibility phenotype of atnfxl1 mutant is 

due to a defect in AtNFXL1. These results also provided further evidence that AtNFXL1 

functions not only in the trichothecene response, but also in the general defense 

response in Arabidopsis.

Discussion

The action of trichothecenes in host plants can not simply be attributed to 

general toxicity, such as inhibition of translation.  For example, we previously reported 

that some type A trichothecenes have an elicitor-like activity in infiltrated Arabidopsis

leaves (Nishiuchi et al., 2006). Both DON and DAS preferentially inhibit root 

elongation, whereas T-2 toxin-treated seedlings exhibit dwarfism and aberrant 

morphological changes (Masuda et al., 2007). In contrast, neither feature was observed 

in seedlings treated with a general translational inhibitor, cycloheximide (CHX). 

These results indicate that the action of trichothecenes in plants differs significantly 

according to molecular species, and highlight the importance of examining the site of 
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action of trichothecenes in host plants. In this study, we demonstrated that AtNFXL1 is 

an important regulator of trichothecene action in Arabidopsis. Our results may provide a 

key to understanding the molecular mechanism of phytotoxic trichothecenes in host 

plants.

AtNFXL1 was upregulated not only by type A trichothecenes, but also SA and 

flagellin (Figure 3). SA, in particular, drastically induced the expression of AtNFXL1. 

We identified several putative AtNFXL1-regulated genes using microarray analysis, 

including many defense-related genes, such as WRKYs, RLKs, and NBS-LRRs (Table 1).

Since these genes are putative regulators of defense signaling pathways in Arabidopsis, 

it is likely that AtNFXL1 functions as a component of these pathways, particularly the 

SA-dependent signaling pathway. Dong et al. reported that many of the Arabidopsis

WRKY family genes are induced by pathogen-infection and/or SA treatment, including 

the putative AtNFXL1-regulated WRKY genes that we identified in the current study 

(Dong et al., 2003). Overexpression of WRKY6 and WRKY53 results in a dwarfed 

phenotype in transgenic plants (Robatzek and Somssich, 2002; Ulker and Somssich, 

2004); thus, upregulation of these two genes in atnfxl1 mutant plants may contribute to 
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the severe growth defects of these plants in the presence of type A trichothecenes. EDS5,

which is an essential component of SA-dependent signaling in resistance to Pst DC3000 

in Arabidopsis (Nawrath et al., 2002), and ICS1, which encodes an isochorismate 

synthase that is required for biosynthesis of SA (Wildermuth et al., 2001), were also 

upregulated in T-2 toxin-treated atnfxl1 mutant plants. In fact, AtNFXL1 appeared to be 

involved in the negative regulation of SA biosynthesis in response to T-2 toxin (Figures 

2b and 2c), and possibly other elicitors and infectious pathogens as well. In this manner, 

AtNFXL1 may act to suppress the hyperactivation of defense responses to elicitors or 

pathogens. In support of this hypothesis, atnfxl1 mutant plants displayed less 

susceptibility to the compatible phytopathogen Pst DC3000 (Figure 4). The atnfxl1

mutant could not repress the defense response induced by type A trichothecenes, 

resulting in severe growth defects in trichothecene-treated Arabidopsis seedlings. This 

phenotype was similar to that of the constitutive defense response mutant cpr1 

(Bowling et al., 1994).

Lisso et al. reported that AtNFXL1 is induced by salt stress and osmotic stress, 

and that atnfxl1 mutant plants display reduced survival rates after salt stress compared 
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to wild type plants (Lisso et al., 2006). In addition, certain salt-responsive genes, such 

as COR15A, KIN1, and RAB18, showed weaker expression levels in atnfxl1 mutant

under salt stress compared to the wild type plants (Lisso et al., 2006). The expression of 

COR15A, KIN1, and RAB18 is also induced by ABA in Arabidopsis (Baker et al., 1994; 

Kurkela and Franck, 1990; Lang and Palva, 1992). In contrast, transgenic 

35S::AtNFXL1 plants exhibited an enhanced survival rate under salt stress, and higher 

expression of salt-responsive genes. These results indicate that AtNFXL1 functions as a 

positive regulator of expression of salt-inducible genes under salt stress conditions

(Figure 5). We demonstrated that AtNFXL1 negatively regulates the expression of 

several defense-related genes in trichothecene-treated Arabidopsis plants (Figure 5). 

Thus, it seems likely that AtNFXL1 has opposing functions in the salt stress response 

and defense response. ABA plays a negative role in defense signaling pathways,

including SA-, JA-, and ET-dependent signaling pathways (Mauch-Mani and Mauch, 

2005). Therefore, AtNFXL1-controlled stress signaling might depend on components of 

both the defense and the ABA signaling pathways. 

Human NF-X1 binds directly to cis-elements in target genes in vitro, and 

Page 21 of 54

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

ዊ�ዊ�

regulates transcription through these elements in vivo (Song et al., 1994; Gewin et al., 

2004). However, activation or repression domains have not been identified in any 

NF-X1 family protein to date. AtNFXL1 contains a RING-CH finger domain, which is 

a binding motif for the ubiquitin-conjugating enzyme E2s (Lorick et al., 1999). Thus, 

AtNFXL1 may function as a repressor by mediating the degradation of its binding 

partners. NF-X1 exists as two isoforms: NFX1-123 and NFX1-91. Recently it was 

shown that NFX1-123 and c-Myc function cooperatively to activate the hTERT

promoter, whereas NFX1-91 repressed hTERT promoter activity (Gewin et al., 2004). 

These results raise the possibility that NF-X1 family proteins function as negative 

regulators of their targets. In support of this hypothesis, Lisso et al. reported that 

another Arabidopsis NF-X1-like protein, AtNFXL2, is a negative regulator of the salt 

stress response (Lisso et al. 2006). It has been reported that some elicitor-responsive 

RING-H2 finger proteins have roles in plant defense signaling pathways (Takai et al., 

2002; Serrano and Guzman, 2004). Thus, the RING-CH finger domain of AtNFXL1 

may have a role in regulating the stability of defense-related target proteins. 

NF-X1 represses INF-γ-inducible expression of class II MHC genes in 
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INF-γ-treated cells, whereas it has no effect on the expression of these genes in 

untreated cells (Song et al. 1994). In addition, FAP1 was identified as a suppressor of 

rapamycin toxicity. FAP1 physically interacts with FKBP12 in vivo and in vitro to 

suppress the function of rapamycin, and FAP1 is targeted to the nucleus by rapamycin 

treatment. In the current study, we showed that atnfxl1 mutant plants are hypersensitive 

to the type A trichothecene, T-2 toxin (Figure 2), but display no phenotype in the 

absence of chemical. Taken together, these results suggest that AtNFXL1, NF-X1, and 

FAP1 are together involved responding to chemical stimuli, but have no apparent 

phenotype in the absence of chemicals. 

In summary, we have presented evidence that the trichothecene-inducible

gene AtNFXL1 negatively regulates many defense-related genes, at least in part through 

the regulation of SA biosynthesis (Figure 5). Additional studies that investigate how 

atnfxl1 mutant behave when challenged by necrotrophic pathogens, such as 

trichothecene-producing fungi, are needed. While we have not established a

Fusarium-Arabidopsis pathosystem for interaction studies, it has been reported that A. 

thaliana is susceptible to type B DON-producing species of Fusarium (Uraban et al., 
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2002). Studies to determine whether Arabidopsis is susceptible to T-2 toxin-producing 

fungi such as Fusarium spoichiomerdes are ongoing, and will further our understanding 

of the role of AtNFXL1 in host plant resistance to trichothecene-producing fungi. 

Experimental procedures

Plant growth and trichothecene treatment

The Columbia (Col-0) ecotype of Arabidopsis thaliana (L.) Heynh was used as the wild 

type plant in this study. Sterile seeds were sown on Murashige and Skoog (MS) medium 

that contained 3% (w/v) sucrose and 0.3% (w/v) gelrite (San-Ei Gen F.F.I., Inc.) in 

plastic petri dishes, and then stratified for 2 days (d) at 4ºC in the dark. Plants were 

grown at 22ºC under long day conditions (16 hours (hr) light/8 hr dark cycles or 

continuous light) in a growth chamber. A T-DNA insertion mutant (atnfxl1-1) of 

AtNFXL1 (N501399) was obtained from the Arabidopsis Biological Resource Center, 

Ohio State University, Columbus, Ohio. For trichothecene or defense-related molecule

treatment, Arabidopsis seeds were sown on MS agar medium containing the indicated 
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substance, and plants were continuously grown. Alternatively, Arabidopsis plants were 

first grown on MS medium without treatment, and then transferred to MS medium

containing the indicated molecules. Additional details of each treatment are noted in the 

text or figure legends.

Generation of transgenic plants

A region of the AtNFXL1 promoter (-795 basepairs relative to the start site at +1) was 

amplified by PCR using primers 1 

(5’-GCGAAGCTTACTGGTTAGATTGGTTTAAG-3’) and 2 

(5’-GCGGGATCCATTCTGCCTTGACTCCACAAA-3’), and then introduced into the 

HindIII and BamHI sites of pBI121. For complementation analysis, a SacI fragment of 

the F14N23 BAC clone containing the promoter region and coding region of AtNFXL1

was introduced into the SacI site of pSMAH621. Plasmids were introduced into wild 

type or atnfxl1 mutant plants by in planta transformation, as previously described 

(Asano et al., 2004). Several independent transformants were obtained, and detailed 

analysis was carried out on T2 and T3 plants. 
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Reverse transcription-polymerase chain reaction (RT-PCR) analysis

In a total volume of 20 µl, cDNAs were synthesized from 1 µg of total RNA using 

SuperScript III reverse transcriptase (Invitrogen) with a oligo(dT)16 primer, and then 0.5 

µl of the cDNA was subsequently used for PCR analysis. All PCR reactions were 

performed in a total volume of 10 µl, for 24-28 cycles under the following conditions: 

denaturation, 94ºC, 30 seconds (s); annealing, 55ºC, 30 s; extension, 72ºC, 30 s. The 

following gene-specific primers were used: AtNFXL1 120-438, 5’-

CCCATATGCCTCCTAATACAGATAGAAATTC-3’ and 

5’-ACGTCGACCTCAGGAGCATTATTTCTTCTATG-3’; AtNFXL1 2363-3568, 5’-

CGCCATATGCATGTGGTCGTATAACCGCTA-3’ and 

5’-GACGTCGACCTCACATACCTTCTCCCAGT-3’; ACT2/8, 5’-

CATCACACTTTCTACAATGAGCT-3’ and 5’-CGACCTTAATCTTCATGCTGC-3’. 

Real time PCR analysis

Real time PCR was performed using the LightCycler Quick System 350S (Roche 

Page 26 of 54

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

ዊ�ዊ�

Diagnostics K.K., Tokyo, Japan) with SYBR Premix Ex Taq (TAKARA BIO INC., 

Shiga, Japan). The PCR reaction contained 1 x SYBR Premix Ex Taq, 0.2 µM of each 

primer, and the appropriate dilution of cDNA in a final volume of 20 µl. The following 

PCR program was used: initial denaturation, 95ºC, 10 s; 40 cycles of 95ºC, 5 s and 60ºC, 

20 s with a temperature transition rate of 20ºC/s; melting curve analysis, 95ºC, 0 s, 65ºC, 

15 s, and an increase to 95ºC with a temperature transition rate of 0.1ºC/s. To generate a 

standard curve, homologous standards were used as external standards in all 

experiments. Template DNA was quantified using the second derivative maximum 

methods of the LightCycler Software Ver.3.5 (Roche Diagnostics), then normalized to 

Actin2/8 mRNA. The following gene-specific primers were used: At5g25930, 5’-

ACATTGCTCCAGAATACGC-3’ and 5’-CATCGCCTCAGTCGTG-3’; WRKY15, 

5’-TGCTCGAAGAAAAGAAAGATAAAAC-3’ and 5’-

AGTAACAATCAACATGGACG-3’; At5g41750, 

5’-AAAGGAACAGGTACTGAATCT-3’ and 5’-

TGTAGTAACCTAACAGGAGGTAT-3’; Hsf21, 5’-GCCAGCTTAACACATATGGT-3’ 

and 5’-TCTGATTATTCATTCTCACTCGT-3’; EDS5, 5’-GGTACATTGCTGGCGG-3’ 
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and 5’-GTATGCCTCCAGGCGA-3’; At3g60420, 

5’-AGATCAAGGTGGCTATTGAA-3’ and 5’- CTCAAAGGCTTGTGCAG-3’; MYB29, 

5’-TTCTCGCGGCAACAAG-3’ and 5’- GCTGGTTATCTCCGGTACA-3’; Actin2/8, 

5′-GGTAACATTGTGCTCAGTGGTGG-3′ and 

5′-AACGACCTTAATCTTCATGCTGC-3′; ICS1, 5’-

ATGAGATTCAGCCTCGCTGT-3’ and 5’-TGATGGATCTCCAATCGTCA-3’; PR-1,

5’- ATTACTTCATTAGTATGGCTTCT-3’ and 5’-CTTGTCTGGCGTCTCC-3’. All kits 

were used according to the manufacture’s protocols. 

 

Microarray analysis 

Ten-day-old seedlings of wild type and atnfxl1 mutant plants were grown on MS plates

and harvested after mock or 1 µM T-2 toxin treatment for 24 hr. Samples for microarray 

analysis were taken at the middle stage of the light period. Total RNA was prepared 

from T-2 toxin-treated or untreated Arabidopsis shoots using a guanidine 

hydrochloride–phenol-chloroform extraction method, as previously described 

(Nishiuchi et al., 2006). The quality of RNA was assessed using the RNA 6000 Nano 
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LabChip Kit (Bioanalyzer 2100; Agilent Technologies, Inc.), then the microarray 

experiment was carried out using the Agilent Arabidopsis 1 Oligo Microarray (Agilent 

Technologies, Inc.), according to the Agilent 60-mer Oligo Microarray Processing 

Protocol (Agilent Technologies, Inc.). Total RNA (5 µg) from wild type and atnfxl1

mutant plants was used to prepare Cy3- and Cy5-labeled cDNAs, respectively, using a 

Fluorescent Direct Labeling Kit (Agilent Technologies). The two different fluorescently 

labeled cDNAs were combined and purified using an RNeasy RNA purification Kit 

(Qiagen Inc.). Following hybridization and washing, arrays were scanned under 

maximum laser intensity with both the Cy3 and Cy5 channels using an Agilent 

microarray scanner (G2565BA; Agilent Technologies). Images were analyzed with 

Feature Extraction Software (version 7.0; Agilent Technologies). Two independent 

experiments were carried out using different plant samples to demonstrate the 

reproducibility of the microarray analysis.  Upregulated or downregulated genes were 

designated as such if a 3-fold or greater change in expression relative to wild type plants

was observed. All changes in gene expression were statistically significant (P<0.01).  
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SA measurement.

SA and SAG levels in mock- or T-2 toxin-treated samples were measured as described 

previously (Nakashita et al., 2002).

GUS assays

For GUS staining, plants were continuously treated with the indicated substance for 8 

days. The AtNFXL1 promoter::GUS transformants were fixed in 90% acetone at -20oC, 

then incubated in a solution containing 0.5 mM K4[Fe(CN)6], 0.5 mM 

K4[Fe(CN)6]
.3H2O, 1 mM EDTA, and 1 mM X-Gluc in 100 mM phosphate buffer 

(pH7.2) at 37 oC for 2 hr. Samples were destained by a series of ethanol washes. For the 

fluorometric assay, 8-day-old plants were transferred to medium containing the 

indicated substance, incubated for 24 hr, and then subjected to quantification of GUS 

activity. The fluorometric assay of GUS activity was performed as previously described

(Nishiuchi et al., 1995).

Bacterial Infection
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The PstDC3000 infection assay was performed as previously described (Yasuda et al., 

2003). 

Visualization of the GFP-AtNFXL1 fusion protein.

The entire coding region of AtNFXL1 was amplified from cDNA by PCR using the 

following primers: 5’-CACCATGAGCTTTCAAGTCAGGCG-3’ and 

5’-TCACTCACATACCTTCTCCC-3’. The PCR fragment was inserted into the 

pENTRTM/D-TOPO entry vector (Invitrogen Inc, Germany), then introduced into 

pH7WGF2 (Karimi et al., 2002). Protoplasts of Arabidopsis T87 suspension culture 

cells were transiently transfected with the GFP-AtNFXL1 plasmid using the 

polyethylene glycol (PEG) method (Abel and Theologis, 1994). GFP was visualized by 

microscopy (BX-50; Olympus Optical, Tokyo) using a built-in BX-FLA epifluorescent 

unit.
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Table 1. Upregulated genes in 1 µM T-2 toxin-treated atnfxl1  mutant plants compared to T-2 toxin-treated wild type plants.
Functional subcategory AGI code Descriptions

Cellular Communication / Signal Transductiona

protein kinase FCb P valuec FC P value
At5g26920 serine  threonine kinase-like protein 7.8 1.9E-05 6.0 5.5E-05
At5g39670 serine  threonine kinase-like protein 6.6 3.6E-05 4.9 1.4E-04
At5g59680 protein kinase-like protein 4.8 3.8E-04 5.3 1.7E-03
At4g11890 NAK-like protein kinase 5.1 1.2E-04 4.8 1.6E-04
At4g23200 similar to serine/threonine/tyrosine-specific protein 4.7 2.0E-04 3.4 1.7E-03
At5g06860 serine threonine kinase - like protein 3.4 1.3E-03 4.2 3.5E-04
At5g67080 protein kinase-like protein (MAPKKK19) 4.3 3.3E-04 3.1 5.8E-03
At5g65600 protein kinase-like protein 3.5 1.2E-03 3.3 6.4E-03

receptor-like protein kinase
At5g18470 putative receptor-like protein kinase 6.3 4.2E-05 6.1 4.9E-05
At3g25600 similar to receptor-like serine/ threonine protein kinase 3.5 1.0E-03 5.3 9.8E-05
At4g04500 receptor-like protein kinase-like 5.7 7.6E-05 3.1 2.3E-03
At5g25930 receptor protein kinase-like protein 4.2 3.6E-04 3.8 6.1E-04
At3g47480 receptor protein kinase-like protein 4.6 2.0E-04 3.3 1.4E-03
At4g08850 receptor protein kinase-like protein 3.3 1.5E-03 4.2 3.6E-04
At5g39020 S-receptor kinase homolog 2 precursor 3.6 9.6E-04 3.7 1.3E-03
At4g23280 similar to disease resistance protein kinase Pto 3.6 8.9E-04 3.6 1.9E-03
At5g60900 serine threonine-specific protein kinase-like (RLK1) 3.9 5.6E-04 3.1 2.2E-03

calcium-binding  portein
At2g41100 putative calcium-binding protein (TCH3) 6.8 3.2E-05 7.5 2.1E-05
At4g17660 hypothetical protein, EF-hand calcium-binding domain 6.0 7.3E-05 6.0 1.6E-04
At4g27280 calcium-binding protein-like 3.4 1.4E-03 9.5 9.8E-06
At5g42380 putative caltractin 5.9 5.6E-05 4.2 3.2E-04
At5g25440 putative protein, EF-hand calcium-binding domain 5.0 1.3E-04 4.9 1.7E-04

calmodulin-related porotein
At3g01830 calmodulin-binding-like protein 5.6 7.2E-05 6.0 5.2E-05
At5g13320 calmodulin-related protein 5.8 6.0E-05 5.7 6.5E-05
At4g23150 calmodulin-like protein 4.1 4.2E-04 3.2 2.2E-03
At5g61560 calmodulin, putative 3.1 2.5E-03 4.1 4.2E-04

others
At4g37010 caltractin-like protein 4.1 4.4E-04 4.1 5.9E-04
At4g39890 small GTP-binding protein-like 3.0 3.0E-03 4.1 7.3E-04

Transcription
WRKY family protein

At2g23320 putative WRKY-type DNA-binding protein (WRKY15) 5.3 9.7E-05 5.1 1.2E-04
At5g13080 WRKY-like protein (WRKY75) 6.5 3.8E-05 3.3 1.7E-03
At4g23810 similar to WRKY transcription factor AR411 (WRKY53) 4.0 4.4E-04 4.4 2.9E-04
At5g49520 similar to WRKY-type DNA binding protein (WRKY48) 3.4 1.4E-03 4.7 2.2E-04
At2g30250 putative WRKY-type DNA binding protein (WRKY25) 3.4 1.2E-03 4.4 2.5E-04
At1g62300 transcription factor WRKY6 4.5 2.4E-04 3.2 2.1E-03
At5g22570 WRKY transcription factor 38 (WRKY38) 3.2 2.2E-03 3.3 3.1E-03
At5g26170 WRKY transcription factor 50 (WRKY50) 3.1 2.2E-03 3.2 2.0E-03

NAC family protein
At5g22380 NAC-domain protein-like (ANAC090) 3.3 1.7E-03 10.1 1.4E-05
At2g17040 NAM (no apical meristem)-like protein (ANAC036) 3.5 1.0E-03 4.0 4.8E-04

others
At1g27730 salt-tolerance zinc finger protein (Zat10) 5.7 7.0E-05 6.3 4.3E-05
At5g59820 zinc finger protein Zat12 6.0 5.3E-05 5.5 7.7E-05
At3g56710 SigA binding protein 4.5 2.2E-04 5.7 6.9E-05
At3g46600 scarecrow-like 11 protein 3.2 1.9E-03 4.1 4.0E-04
At1g18570 putative myb transciption factor (MYB51) 3.7 1.0E-03 3.2 2.4E-03
At4g18880 heat shock transcription factor 21 (AtHSF21) 3.4 1.2E-03 3.2 1.9E-03
At5g61010 putative protein 3.3 1.5E-03 3.3 1.6E-03
At1g68840 putative DNA-binding protein (RAV2-like) 3.3 1.6E-03 3.1 2.3E-03

Defence Stress and Detoxification
disease resistance protein

At5g41750 disease resistance protein-like 5.9 5.7E-05 6.0 5.2E-05
At1g57630 disease resistance protein RPP1-WsB, putative 5.9 5.7E-05 3.2 1.7E-03
At5g41740 disease resistance protein-like 4.3 3.0E-04 4.4 2.7E-04
At1g72900 virus resistance protein, putative 3.8 6.5E-04 3.9 5.1E-04
At4g33300 similar to NBS/LRR disease resistance protein (RFL1) 3.5 1.1E-03 3.8 6.4E-04

glutathione S-transferase
At1g17170 putative glutathione transferase 6.2 4.5E-05 6.0 5.1E-05
At2g47730 glutathione S-transferase (GST6) 3.4 1.4E-03 3.4 1.3E-03

others
At5g02780 putative protein, similar to In2 7.6 2.1E-05 5.7 7.4E-05
At2g35980 similar to harpin-induced protein hin1 from tobacco 6.1 5.0E-05 5.0 1.3E-04
At4g14630 germin precursor oxalate oxidase 5.1 1.2E-04 3.1 2.2E-03

Cellular Transport and Transport Mechanisms
ABC transporter 

At1g15520 ABC transporter, putative 7.2 2.5E-05 3.3 1.4E-03
At2g47000 putative ABC transporter 3.3 1.5E-03 4.0 4.4E-04

calcium-ATPase
At3g63380 Ca2+-transporting ATPase-like protein 4.1 4.0E-04 3.7 7.0E-04
At3g22910 calmodulin-stimulated calcium-ATPase, putative 5.3 9.4E-05 4.6 2.0E-04

others
At4g21680 peptide transporter-like protein 3.3 1.6E-03 9.5 1.1E-05
At4g35180 amino acid permease-like protein 5.4 8.9E-05 5.2 1.1E-04
At2g13810 putative aspartate aminotransferase 6.3 4.6E-05 3.7 8.0E-04
At5g26340 hexose transporter-like protein 4.2 3.4E-04 3.9 5.0E-04
At3g52400 syntaxin-like protein synt4 3.6 9.2E-04 4.1 3.8E-04
At5g61900 copine-like protein 3.1 2.4E-03 4.6 2.1E-04
At5g40780 amino acid permease 3.7 6.7E-04 3.4 1.2E-03
At1g08930 putative sugar transporter (ERD6) 3.1 2.6E-03 4.0 4.3E-04

Metabolism
UDP-glucose glucosyltransferase

At1g22400 UDP-glucose glucosyltransferase, putative 6.3 4.6E-05 3.1 2.5E-03
At2g43820 putative glucosyltransferase 4.0 4.7E-04 3.6 9.2E-04
At2g30140 putative glucosyltransferase 4.1 4.1E-04 3.5 1.1E-03
At1g05560 UDP-glucose:indole-3-acetate beta-D- 4.1 4.0E-04 3.1 2.1E-03
At4g34131 glucosyltransferase -like protein 3.3 1.6E-03 3.9 5.6E-04

cytochrome p450 family
At3g26830 putative cytochrome P450 9.8 9.1E-06 4.5 2.2E-04
At5g45340 cytochrome P450 3.7 9.3E-04 7.3 7.9E-05
At4g37370 cytochrome P450-like protein 4.4 2.4E-04 3.9 5.4E-04

FAD-linked oxidoreductase family
At5g44360 berberine bridge enzyme 4.3 2.9E-04 4.9 2.0E-04
At4g20830 reticuline oxidase-like protein 4.3 3.1E-04 4.4 2.6E-04
At4g20860 berberine bridge enzyme-like protein 3.7 7.0E-04 4.3 3.1E-04

flavanone 3-hydroxylase-like protein
At5g24530 flavanone 3-hydroxylase-like protein 4.8 1.5E-04 4.3 3.0E-04
At3g19010 oxidase like protein 3.5 1.0E-03 3.1 2.1E-03

others
At3g22600 predicted GPI-anchored protein 8.1 1.6E-05 4.5 2.2E-04
At4g25810 xyloglucan endo-1,4-beta-D-glucanase (XTR-6) 4.9 1.5E-04 6.7 3.3E-05
At5g42830 N-hydroxycinnamoyl benzoyltransferase-like protein 5.6 7.4E-05 5.4 9.4E-05
At2g26560 similar to latex allergen from Hevea brasiliensis 6.2 4.5E-05 4.7 1.7E-04
At5g17330 glutamate decarboxylase 1 (GAD 1) (sp Q42521) 5.0 1.2E-04 5.1 1.1E-04
At5g38900 frnE protein-like 5.1 1.2E-04 4.1 3.7E-04
At5g51830 fructokinase 1 3.6 8.8E-04 5.2 1.1E-04
At4g39830 putative L-ascorbate oxidase 3.6 9.5E-04 4.7 1.9E-04
At4g00700 putative phosphoribosylanthranilate transferase 4.7 1.7E-04 3.3 1.5E-03
At4g01700 putative chitinase 3.6 8.2E-04 3.6 9.2E-04
At5g38710 proline oxidase, mitochondrial precursor-like protein 3.3 1.7E-03 3.9 1.3E-03
At1g74710 isochorismate synthase (icsI) 3.7 7.2E-04 3.3 1.5E-03
At5g19440 cinnamyl-alcohol dehydrogenase-like protein 3.4 1.2E-03 3.1 2.3E-03

DNA Synthesis and Processing
At2g32020 putative alanine acetyl transferase 3.3 1.6E-03 4.8 1.5E-04
At5g01100 putative protein 3.6 1.3E-03 4.3 3.3E-03
At4g39030 enhanced disease susceptibility 5 gene (EDS5) 4.0 4.5E-04 3.5 1.1E-03

Protein Fate
At5g60800 putative protein, similar to GMFP5 4.1 4.1E-04 8.6 1.5E-05
At3g50930 BCS1 protein-like protein 5.2 1.1E-04 5.7 6.8E-05

Cellular Structural Organization
At5g64310 arabinogalactan-protein (gb AAC77823.1) 5.2 1.1E-04 4.6 2.0E-04

Energy
At1g32350 oxidase, putative 7.8 1.9E-05 3.7 7.1E-04

Protein Synthesis
At4g16680 RNA helicase 4.4 2.9E-04 3.7 1.7E-03

Unclassified Protein
At3g60420 putative protein 11.7 5.7E-06 14.1 3.9E-06
At5g40990 GDSL-motif lipase hydrolase-like protein 12.0 6.3E-06 9.2 5.5E-05
At1g19250 unknown protein 7.1 2.7E-05 6.6 3.6E-05
At2g16060 class 1 non-symbiotic hemoglobin (AHB1) 5.6 7.2E-05 7.8 1.8E-05
At5g11140 putative protein, similar to pEARLI 4 5.8 6.1E-05 5.4 9.0E-05
At4g01870 predicted protein of unknown function 3.7 7.1E-04 6.9 2.9E-05
At1g65500 unknown protein 4.4 2.6E-04 5.1 1.1E-04
At1g22890 unknown protein 4.4 2.6E-04 4.6 2.0E-04
At5g48410 ligand-gated ion channel protein-like (AtGLR1.3) 5.8 6.6E-05 3.4 2.5E-03
At5g27420 RING-H2 zinc finger protein-like 4.7 1.9E-04 4.2 7.0E-04
At3g14225 unknown protein 5.3 2.9E-04 3.5 3.9E-03
At1g56060 hypothetical protein 6.1 5.3E-05 3.0 2.9E-03
At4g22530 putative protein 4.3 2.9E-04 4.0 4.5E-04
At5g49700 putative protein 3.4 1.2E-03 5.0 2.0E-04
At5g48400 ligand-gated ion channel protein-like; glutamate receptor- 5.0 1.3E-04 3.2 2.1E-03
At1g55450 hypothetical protein 3.6 8.5E-04 4.3 2.9E-04
At4g40020 putative protein, similar to myosin heavy chain 3.5 1.4E-03 4.5 9.6E-04
At5g63230 putative protein 3.8 8.4E-04 3.9 6.2E-03
At2g46600 polygalacturonase inhibiting protein 1; PGIP1 (gb 3.4 1.2E-03 3.8 6.1E-04
At1g16420 hypothetical protein 3.9 5.8E-04 3.1 2.2E-03
At4g12720 growth factor like protein 3.8 6.0E-04 3.1 2.6E-03
At1g23710 unknown protein 3.5 1.0E-03 3.3 1.7E-03
At1g63840 putative RING zinc finger protein 3.7 7.5E-04 3.1 2.6E-03
At5g64000 3(2),5-bisphosphate nucleotidase (SAL2) 3.0 3.2E-03 3.7 1.9E-03
At4g38540 monooxygenase 2 (MO2) 3.0 2.7E-03 3.7 8.3E-04
At4g24160 putative protein 3.1 2.5E-03 3.5 1.0E-03
At5g62180 putative protein, similar to PrMC3 3.0 2.8E-03 3.3 3.2E-03
At5g52810 putative protein 3.1 2.3E-03 3.0 2.8E-03

Ten-day-old seedlings of wild type and atnfxl1  mutant plants were grown MS plates and harvested after 1 µM T-2 toxin treatment for 24 hr
Genes in bold-face: expression was verified by real time RT-PCR (see Table 3).
aClassification of functional category was based on information from the Munich Information Center for Protein Sequence (MIPS).
bUpregulated genes were designated as such based on a 3-fold or greater change (FC) in the normalized signal between T-2 toxin-treated atnfxl1  mutant vs T-2 toxin-wild type plants in two arrays.
cAll of these changes in gene expression were statistically significant, with at P<0.01.
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Table 2. Downregulated genes in the T-2 toxin-treated atnfxl1  mutant plants compared to T-2 toxin-treated wild type plants.

AGI code Descriptions FCa P valueb FC P value
At4g19170 neoxanthin cleavage enzyme-like protein 0.164 5.6E-03 0.073 2.0E-03
At4g16830 nuclear antigen homolog 0.111 3.3E-03 0.164 5.7E-03
At5g50950 fumarate hydratase 0.150 4.8E-03 0.137 4.3E-03
At5g23010 2-isopropylmalate synthase-like 0.206 8.7E-03 0.090 2.5E-03
At4g13770 cytochrome P450 monooxygenase (CYP83A1) 0.193 7.7E-03 0.111 3.2E-03
At5g07690 myb family transcription factor (MYB29) 0.200 8.7E-03 0.116 3.6E-03
At1g14250 nucleoside phosphatase family protein / GDA1/CD39 family protein 0.200 8.3E-03 0.128 4.0E-03
At5g03760 glycosyl transferase family 2 protein 0.161 5.8E-03 0.174 7.3E-03
At4g21650 subtilisin proteinase - like 0.206 8.9E-03 0.151 5.0E-03
At3g27690 chlorophyll A-B binding protein (LHCB2:4) 0.196 7.9E-03 0.164 5.6E-03
At5g12250 tubulin beta-6 chain 0.189 7.3E-03 0.186 7.2E-03
At4g21960 peroxidase 42 (PER42) 0.217 9.8E-03 0.199 8.1E-03
Ten-day-old seedlings of wild type and atnfxl1 mutant plants were grown MS plates and harvested after mock or 1 µM T-2 toxin treatment for 24 hr
The expression of MYB29 (bold-face) was verified by real time RT-PCR analysis (see Table 3).
aDownregulated genes were designated as such based on a 3-fold or greater change in the normalized signal of T-2 toxin-treated atnfxl1  mutants compared to T-2 toxin-wild type plants in two  arrays.
bAll of these changes in gene expression were statistically significant, with  at P<0.01.

exp.1 exp.2
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Table 3. Validation of microarray results in the 1µM T-2 toxin-treated plants by real time PCR.

AGI code Microarraya real time PCRb Description
Upregulated Genes

At5g25930 4.00 11.6±1.39 receptor protein kinase-like protein
At2g23320 5.17 4.87±0.26 putative WRKY-type DNA-binding protein (WRKY15)
At4g18880 3.30 5.21±0.68 heat shock transcription factor 21 (AtHSF21)
At5g41750 5.97 12.08±1.56 disease resistance protein-like
At4g39030 3.76 7.52±1.04 enhanced disease susceptibility 5 gene (EDS5)
At3g60420 12.84 11.56±2.16 putative protein

Downregulated genes
At5g07690 0.15 0.12±0.02 Myb family transcription factor (MYB29)

Ten-day-old seedlings of wild type and atnfxl1  mutant were grown MS plate and harvested after 1 µM T-2 toxin treatment for 24 hr.
aFold change in microarray results is the average value of two arrays.
bFold change in real time PCR is an average value of four independent biological sample sets.

Fold change (atnfxl1 mutant vs wild type)
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Figure legends

Figure 1. An atnfxl1 mutant (atnfxl1-1) is hypersensitive to type A trichothecenes. (a)

Schematic diagram of AtNFXL1 in Arabidopsis thaliana. Boxes indicate exons. The 

organization of the exon-intron boundary was predicted by the nucleotide sequence of 

the full length cDNA, and is identical to our results. The T-DNA insertion site is 

indicated by a triangle. Two different regions (basepairs 120-438 and 2368-3568) of 

AtNFXL1 for RT-PCR analysis is indicated by thick lines. (b) A truncated transcript of 

AtNFXL1 was observed in the atnfxl1-1 mutant. Ten-day-old seedlings of wild type and 

atnfxl1-1 mutant plants were grown on MS plates and harvested after mock treatment,

or 1 µM T-2 toxin treatment for 24 hr. Total RNA was prepared from the seedlings and

used for RT-PCR analysis. Two different regions (basepairs 120-438 and 2368-3568) of 

AtNFXL1 were amplified by specific primer sets. Actin2/8 was used as a loading control. 

(c) Representative photographs of wild type, atnfxl1, and complementation plant lines

that were mock-treated (upper row), or treated with 0.1 µM T-2 toxin (lower row). 

Sterile seeds were sown on MS medium with or without 0.1 µM T-2 toxin, and then 

stratified for 2 d at 4ºC in the dark. Plants were grown for 8 days in a growth chamber, 
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and then photographed. Scale bars = 1 cm. (d) The fresh weight of each plant is 

expressed relative (%) to mock-treated wild type. Plants were treated with 0.1 µM T-2 

toxin or 10 µM DON without trichothecenes, as stated above. 

atnfxl1:PAtNFXL1::AtNFXL1 (line #5) refers to an atnfxl1 mutant carrying an AtNFXL1 

promoter::AtNFXL1 gene fusion. Data is representative of two independent experiments. 

*, P < 0.01, based on the Student’s t-test. Similar results were obtained in other six 

independent complementation lines.

Figure 2. AtNFXL1 is involved in SA biosynthesis and expression of SA-related genes. 

Eight-day-old plants were either mock-treated or treated with 1 µM T-2 toxin for 24 hr

and then subjected to Real time PCR analysis (a) or SA quantification (b-c). (a) Real 

time PCR analysis of PR-1 and ICS1 of atnfxl1 mutant and wild type plants. Total RNA 

was isolated from each sample and then subjected to Real time PCR analysis. The levels 

of mRNA were determined by real-time RT-PCR, and normalized with that of Actin2/8.

Expression levels are relative to that of mock-treated wild type samples. Data is the 

average of three independent samples. Error bars indicate the standard deviation. (b-c) 
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Enhanced accumulation of SA in T-2 toxin-treated atnfxl1 mutant plants. (b) Free and 

(c) total SA levels were quantified by high-performance liquid chromatography (data 

represents the means ± standard deviation, n=4). 

Figure 3. GUS staining and quantification of GUS activity in AtNFXL1 promoter::GUS 

stable transformants in response to elicitor, phytohormone, or trichothecene treatment.

GUS staining of mock- (a), T-2 toxin- (b) or SA-treated 8 day old plants (c). Sterile 

seeds were sown on MS agar medium with 0.1 µM T-2 or 100 µM SA, and then 

stratified for 2 d at 4ºC in the dark. Plants were grown for 8 days in a growth chamber, 

and then subjected to GUS staining. Scale bars = 1 mm. (d) Quantification of GUS 

activity in AtNFXL1 promoter::GUS stable transformants treated with the indicated 

substances. Plants were grown for 8 days on MS agar medium in a growth chamber, and 

then either mock-treated or treated with the indicated substance for 24 hr and used for 

quantitative GUS assays. GUS activity in treated samples relative to mock-treated 

samples was measured using a fluorometric GUS assays (n=4). Data is representative of 

two independent experiments.
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Figure 4. Reduced susceptibility of atnfxl1 mutant plants to the compatible pathogen Pst

DC3000. (a) Leaves of atnfxl1 mutant (closed circles) and wild type (open circles) 

plants were collected 0, 1, 2 and 4 days post-inoculation and homogenized in 10 mM 

MgCl2. The number of colony-forming units (CFU) was estimated by growth on 

nutrient broth agar plates after the appropriate dilution. Data represents the averages ± 

standard deviation (n=6). A significant difference between wild type and atnfxl1 mutant

plants was observed in the number of CFU/g fresh weight (p<0.05, ANOVA). Data is 

representative of two independent experiments. (b) Complementation analysis of the 

reduced susceptibility to PstDC3000 in an atnfxl1 mutant. Leaves of wild type, atnfxl1, 

and complementation plant line were collected 2 days post-inoculation. Data represents 

the averages ± standard deviation (n=6). A significant difference between the number of 

CFU/g fresh weight of atnfxl1 mutant plants and wild type/complementation line #4 

plants was observed (p<0.05, ANOVA). Similar results were obtained in 

complementation lines #1 and #3.
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Figure 5. Model of opposing functions of AtNFXL1 in biotic and abiotic stress response.

Biotic stress often causes accumulation of elicitors and/or SA in host plants. SA and 

elicitors including T-2 toxin induce the expression of AtNFXL1. An atnfxl1 mutant

exhibits a hypersensitivity phenotype to T-2 toxin due to excessive defense responses. 

AtNFXL1 functions as a negative regulator of defense-related genes via an

SA-dependent signaling pathway, which resulting in reduced susceptibility to a virulent 

pathogen, Pst DC3000 in the atnfxl1 mutant. Abiotic stress such as salt and osmotic 

stress also induces the expression of AtNFXL1 (Lisso et al., 2006). AtNFXL1 functions

as a positive regulator of salt-responsive genes (Lisso et al., 2006). The atnfxl1 mutant

exhibited a reduced survival rate under salt stress (Lisso et al., 2006).

Supplemental Figure 1. AtNFXL1 belongs to the NF-X1 family of proteins. 

(a) Schematic diagram of AtNFXL1 in Arabidopsis thaliana (Accession no. 

AAD32867) and comparison of AtNFXL-1 with the following homologues: OsNF-X1, 

Oryza sativa (Accession no. BAD46154); NF-X1, Homo sapiens (Accession no. 

NP_002495); STC, Drosophila melanogaster (Accession no. NP_476599); Fap1, 
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Saccharomyces cerevisiae (Accession no. NP_014375). The purple regions indicate the 

NLS; red and blue indicate the RING-CH finger domain and the nine NF-X1-type Zn 

finger domains, respectively; green indicates the R3H domain. (b) A rooted 

maximum-likelihood phylogenetic tree of AtNFXL1 and AtNFXL1 homologues.  

DrNF-X1, Danio rerio (Accession no. XP_690559); MmNF-X1, Mus musculus

(Accession no. AAF34700); CeNF-X1, Caenorhabditis elegans (Accession no. 

NP_498394); and SpNF-X1, Schizosaccharomyces pombe (Accession no. CAA21417).

(c) Alignment of the amino acid sequences of the nine AtNFXL1-type Zn finger 

domains. The number to the left of each repeat indicates its position in the AtNFXL1 

protein sequence. The consensus sequence for the Zn finger repeat is shown above the 

sequences, and is based on matches in seven of the nine aligned sequences.  

Supplemental Figure 2. Subcellular localization of GFP-AtNFXL1 and GFP proteins in 

Arabidopsis cells. Protoplasts of Arabidopsis T87 suspension culture cells were 

transfected using the polyethylene glycol (PEG) method. GFP-AtNFXL1 fusion protein 

localized to the nucleus of Arabidopsis cells (a-c). In contrast, GFP localized to the 
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cytosol (d-f). GFP fluorescence was visualized in using a fluorescence microscope.
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