
Gauge problem of monopole dynamics in SU(2)
lattice gauge theory

言語: eng

出版者: 

公開日: 2017-10-05

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/00028517URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PHYSICAL REVIEW D 67, 074504 ~2003!
Gauge problem of monopole dynamics inSU„2… lattice gauge theory
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The gauge problem of monopole dynamics is studied inSU(2) lattice gauge theory. We study first the
Abelian and monopole contributions to the static potential in four smooth gauges, i.e., the Laplacian Abelian,
maximally Abelian Wilson loop, andL-type gauges in comparison with the maximally Abelian~MA ! gauge.
They all reproduce the string tension in good agreement with theSU(2) string tension. The MA gauge is not
the only choice of a good gauge which is suitable for the color confinement mechanism. Using an inverse
Monte Carlo method and block spin transformation, we determine the effective monopole actions and the
renormalization group~RG! flows of its coupling constants in various Abelian projection schemes. Every RG
flow appears to converge to a unique curve which suggests gauge independence in the infrared region.
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I. INTRODUCTION

It is important to understand the color confineme
mechanism in quantum chromodynamics~QCD!. Many nu-
merical simulations have been done and they support
dual superconductor scenario of the QCD vacuum as a
finement mechanism@1,2#. Magnetic monopoles are induce
by performing an Abelian projection@3#, i.e., a partial gauge
fixing that keepsU(1)^ U(1). It is known that the string
tension calculated from the Abelian and the monopole p
reproduces well the original one when we perform an A
lian projection in the maximally Abelian~MA ! gauge where
link variables are Abelianized as much as possible. In ad
tion to the string tension, many low-energy physical prop
ties of QCD are reproduced from the Abelian and monop
degrees of freedom alone. It is called ‘‘Abelian and mon
pole dominance.’’ These facts suggest that monopoles
an important role for the confinement mechanism. Actually
low-energy effective theory that is described in terms
monopole currents has been derived by Shiba and Suzuk@4#
and an almost perfect monopole action showing the sca
behavior has been derived by Chernodubet al. @5#. Mono-
pole condensation occurs due to energy-entropy balance@4#.
The Abelian color-electric flux is squeezed into a stringli
shape@6,7# by the superconducting monopole current. Th
squeezed color flux causes a confinement potential betw
quarks.

We note that we have infinite degrees of freedom wh
we perform an Abelian projection. That is to say, whi
gauge should be chosen? Recently the Laplacian Abe
~LA ! gauge was proposed and it appears to have sim
good properties@8,9#. Actually the MA and LA gauges are
very similar. Are the MA and LA gauges exceptional? If su
is the case, there must exist a reason to justify it, althoug
seems very difficult to find this reason. Another interpre
tion is that monopole dynamics does not depend on
choice of gauge in the continuum limit, although it see
dependent on the gauge choice at the present stage of la
study. In other words, the MA gauge and LA gauge are c
sidered to have a wider window even at present to see
continuum limit than other gauges.
0556-2821/2003/67~7!/074504~12!/$20.00 67 0745
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Our aim in this paper is to show first that the MA gauge
not a special choice of a good gauge for color confineme
We restrict ourselves to pureSU(2) QCD for simplicity.
Here we discuss two new gauges in addition to the
gauge. They have a different continuum limit but they can
reproduce well theSU(2) string tension. The second aim
to derive an effective monopole action and to study the blo
spin transformation of the monopole currents in various A
lian projections. If their renormalization group~RG! flows
converge onto the same line with a finite number of blo
spin transformations, we can expect gauge independenc
monopole dynamics in the infrared region. The paper is
ganized as follows. In Sec. II, we present some theoret
and phenomenological arguments which support gauge in
pendence of Abelian and monopole dominance. In Sec.
we describe by gauge fixing procedures being used. In S
IV, we show that theSU(2) string tension is well reproduce
from Abelian or monopole degrees of freedom alone in fo
different Abelian projection schemes. In Sec. V, we pres
our results from RG flow study of effective monopole a
tions in various Abelian projections. In Sec. VI, we summ
rize our conclusions.

II. THEORETICAL AND PHENOMENOLOGICAL
BACKGROUND

A. Gauge fixings and Abelian dominance

It is known that the Abelian Wilson loop reproduces we
theSU(2) string tension numerically, if the MA or LA gaug
is applied @9,10#. In the case of the Polyakov gauge, th
string tension which is calculated from Abelian Polyak
loop correlators is exactly the same as that ofSU(2) @11#.
Shoji et al. developed a stochastic gauge fixing meth
which interpolates between the MA gauge and no gauge
ing @12#. They found that Abelian dominance for the hea
quark potential is realized even in a gauge that is far from
MA gauge. In a finite temperature system, Abelian Polyak
loops in various gauges reproduce the phase transition
havior of theSU(2) Polyakov loop@13# ~see Fig. 1!.

Abelian dominance is also shown analytically. Abelia
Wilson loops constructed without any gauge fixing give t
©2003 The American Physical Society04-1
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same string tension as that ofSU(2) Wilson loops in the
strong coupling expansion@10#. The same fact for any cou
pling region has been proved by Ogilvie using the chara
expansion@14#. An Abelian Wilson loop operator is given b

WA@C#5
1

2
TrF )

s,mPC
um~s!G ,

whereum is an Abelian projectedU(1) link variable. Since
WA is not a class function of theSU(2) group, only the
SU(2) invariant part extracted fromWA is nonvanishing in
the expectation value. This can be written as

WA
inv5

1

2E Dg TrF )
s,mPC

g~s!um~s!g†~s1m̂ !G .
Using a character expansion, we get an expression for
expectation value of the Abelian Wilson loop in terms
SU(2) Wilson loops:

^WA
inv&5S 2

3D P(C)

^WSU(2)&1/2

1~half integer higher representations!.

Since the lowest representation is dominant, we can s
that theSU(2) string tensionsSU(2) can be reproduced per
fectly from the Abelian string tensionsA :

sA52 lim
I ,J→`

ln
^WA~ I 11,J11!&^WA~ I ,J!&

^WA~ I 11,J!&^WA~ I ,J11!&
5sSU(2) .

Furthermore, Ogilvie has shown that similar arguments h
even with the gauge fixing function

Sg f5l( Tr@Um~s!s3Um
† ~s!s3#,

if the gauge parameterl is small enough.

FIG. 1. SU(2) Polyakov loop vs Abelian Polyakov loop in var
ous gauges. The behavior of theSU(2) Polyakov loop is well re-
produced by the Abelian Polyakov loop in these gauges.
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B. Monopole dominance

There are numerical results supporting monopole do
nance.SU(2) string tension is well reproduced only from
the monopole part of Abelian Wilson loops in the MA gau
@15,16# and LA gauge@9#. We note also that monopol
Polyakov loops in various gauges reproduce the phase t
sition behavior of theSU(2) Polyakov loop@13# ~see Fig. 2!.

In addition to this numerical evidence, we can prove a
lytically the gauge independence of monopole dominanc
Abelian dominance is gauge independent@17#. If Abelian
dominance is gauge independent, a common Abelian ef
tive actionSe f f written in terms of the Abelian gauge fiel
surely exists in any gauge and works well in the infrar
region as in the MA gauge. SinceSe f f takes the form of a
modified compact QED, an effective monopole action can
derived analytically. One can evaluate the contribution
monopoles to the Abelian Wilson loop using this effecti
monopole action.

In the MA gauge, it is known numerically that an effectiv
monopole action composed of two-point self1 Coulomb1
nearest-neighbor interactions is a good approximation in
infrared region. The action can be transformed exactly int
modified compact QED action in the generic Villain form:

Z5E
2p

p

Du (
nPZ

expF2
1

4p2
~du12pn,DD

3~du12pn!!1 i ~J,u!G ,

where D;bD211a1gD. The expectation value of the
Abelian Wilson loopW5ei (u,J) can be estimated using thi
action, whereJ is the color electric current which takes th
values61 on a closed loop. When we use the Berensk
Kosterlitz-Thouless~BKT! transformation@18,19#, we get
the expectation value of the Abelian Wilson loop in terms
monopole currentsk:

FIG. 2. SU(2) Polyakov loop vs monopole Polyakov loop i
various gauges. The behavior of theSU(2) Polyakov loop is well
reproduced by the monopole Polyakov loop in these gauges.
4-2
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GAUGE PROBLEM OF MONOPOLE DYNAMICS INSU(2) . . . PHYSICAL REVIEW D67, 074504 ~2003!
^W&5
1

Z (
kPZ,dk50

exp$2~k,Dk!22p i ~k,dD21M !

2p2@J,~D2D !21J#%, ~1!

whereM takes the values61 on a surface whose bounda
is J (J5dM ). Electric-electric current (J-J) interactions are
of a modified Coulomb interaction and have no line sing
larity leading to a linear potential. The linear potential of t
Abelian Wilson loop originates from the second term of t
monopole contribution. The gauge independence of mo
pole dominance is derived from that of Abelian dominan
The gauge independence of an order parameter is also
served in Ref.@20#.

C. The objection to gauge independence

As we have shown in previous subsections, there is
couraging evidence that supports gauge independence o
confinement scenario in terms of monopoles. On the o
hand, there is a strong objection to the idea of gauge in
pendence.

Consider a gauge called the Polyakov gauge where Po
kov loop operators are diagonalized in continuum fini
temperature QCD. It is proved@21,22# that the singularities
of the gauge fixing run only in the timelike direction. Th
means that there are only timelike monopoles in the sys
when the Polyakov gauge is employed, if the degener
points in Abelian projection correspond only to monopo
as ’t Hooft argued. Since such timelike monopoles do
contribute to the physical string tension@23#, monopole
dominance is violated.

But numerically the above theoretical expectation see
to be inconsistent with numerical data. We show our prelim
nary result in Fig. 3. The spatial and temporal monop
densities are plotted in Fig. 3 as a function of lattice spac
a in the unit of physical string tensionAsp. These densities
are defined as

rs~b!5

1

3 (
s

(
i 51,2,3

uki~s!u

~Nsa!3N4

,

FIG. 3. Monopole density in Polyakov gauge versus latt
spacing.
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~Nsa!3N4

,

respectively. Figure 3 shows that the spatial~lattice! mono-
pole density may take nonzero values even in thea→0 limit.
This is not compatible with the theoretical expectati
above. In the authors’ opinion, the continuum limit of lattic
monopoles must contain extra ingredients different from
expected monopoles corresponding to singularities of Po
kov loop operators. We will give a detailed analysis els
where.

III. VARIOUS ABELIAN PROJECTIONS ON A LATTICE

To check gauge~in!dependence of monopole dynamic
we study the Abelian projection in various gauges.

~1! MA gauge. The most well known is the maximall
Abelian gauge. It is defined by maximizing the followin
quantity (RMA):

RMA5T (
s,m

Um~s!s3Um
† ~s!s3 . ~2!

This is achieved by diagonalizing the operator

XMA~s!5(
m

@Um~s!s3Um
† ~s!1Um

† ~s2m̂ !s3Um~s2m̂ !#.

That is,

XMA~s!→XMA8 ~s!5V~s!XMA~s!V†~s!

5diag$l1 ,l2%,

whereV(s) is a gauge transformation matrix. The diagon
ization corresponds to the condition

(
m

~]m7 iAm
3 !Am

650 ~3!

in the continuum limit.
~2! LA gauge@8#. First consider the MA gauge again. T

maximizeRMA in Eq. ~2! is to minimize the functional

SMA5(
s,m

H 12
1

2
Tr@F~s!Um~s!F~s1m̂ !Um

† ~s!#J
5(

s,m
$12fa~s!Rm

ab~s!fb~s1m̂ !%, ~4!

whereRm is a gauge field in the adjoint representation,

Rm
ab~s!5

1

2
Tr@saUm~s!sbUm

† ~s!#.

F is parametrized by a spin variablef which satisfies the
local constraint
4-3
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F~s!5V†~s!s3V~s!5 (
a51

3

fa~s!sa , ~5!

(
a51

3

@fa~s!#251. ~6!

Because of the local constraint from the normalization, i
very difficult to find a set off which realizes the absolut
minimum of Eq.~4!.

The key idea of the LA gauge fixing is to relax this co
straint:

(
a51

3

@fa~s!#251→(
s

(
a51

3

@fa~s!#251.

The functional to minimize becomes

SLA5
1

2 (
x,a

(
y,b

fa~x!~2hxy
ab!fb~y!, ~7!

where

2hxy
ab5(

m
@2dxyd

ab2Rm
ab~x!dy,x1m̂2Rm

ba~y!dy,x2m̂#.

~8!

Minimizing Eq. ~7! amounts to finding the eigenvector b
longing to the lowest eigenvalue of the covariant Laplac
operator. This eigenvalue problem can be solved numeric
~we used an implicitly restarted Arnoldi method; for e
ample, see Ref.@24#!. The gauge transformation matrixV(s)
is defined by

V†~s!s3V~s!5 (
a51

3

f̂a~s!sa , ~9!

where

fa~s!5r~s!f̂a~s!, ~10!

r2~s!5 (
a51

3

~fa~s!!2. ~11!

In the continuum limit, the LA gauge corresponds to t
gauge condition

(
m

~]m7 iAm
3 !~r2Am

6!50. ~12!

~3! MAWL gauge @25#. The maximally Abelian Wilson
loop ~MAWL ! gauge is a gauge that maximizes a Wils
loop operator written in terms of Abelian link variables:

WA5cosQmn~s!, ~13!

where Qmn(s)5um(s)1un(s1m̂)2um(s1 n̂)2un(s). It is
achieved by diagonalizing the following operator:
07450
s

n
lly

XMAWL~s!5 (
m5” n

$e~s,m!@U~s,m!s3U†~s,m!#2e~s2m̂,m!

3@U†~s2m̂,m!s3U~s2m̂,m!#%,

where

e~s,m![
sinQmn~s!2sinQmn~s2 n̂ !

U0
2~s,m!1U3

2~s,m!
.

In the continuum limit, we get the following gauge con
dition:

(
m5” n

]n f mnAm
650. ~14!

~4! L-type gauge. There are infinitely many gauges sim
to the MA gauge. Here we show one of the simplest ext
sions called theL-type gauge. It is defined by maximizing

RL5Tr (
s,m5” n

Um~s!s3Un~s1m̂ !s3Un
†~s1m̂ !s3Un

†~s!s3 .

This is given by diagonalizing

XL~s!5 (
m5” n

@Um~s!s3Um
† ~s!s3Un~s!s3Un

†~s!

1Um
† ~s2m̂ !s3Un~s2m̂ !

3s3Un
†~s2m̂ !s3Um~s2m̂ !#.

A schematic representation ofRL is shown in Fig. 4.
In the continuum limit, we get the following gauge con

dition:

(
m5” n

$~]m6 iagAm
3 !1~]n6 iagAn

3!%~Am
71An

7!50.

~15!

~5! There are various gauges called the unitary gauge.
Polyakov gauge andF12 gauge are defined with the follow
ing operators, which are diagonalized:

XPol~s!5)
i 51

N4

U4~s1~ i 21!4̂!, ~16!

FIG. 4. Schematic representation ofL-type gauge.
4-4
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XF12
~s!5U1~s!U2~s11̂!U1

†~s12̂!U2
†~s!, ~17!

respectively.
In the continuum, the Polyakov gauge is reduced to

A0
6~x!50, ~18!

whereas theF12 gauge gives

F12
6 ~x!50. ~19!

~6! We also consider simple Abelian components e
tracted without gauge fixing, where exact Abelian dominan
is proved analytically@14#.

IV. STRING TENSION

As a first step, we measure Abelian and monopole con
butions to the string tension in various Abelian projectio
We used 100 configurations of a 323316 lattice for the mea-
surement. In this case, the critical point lies nearbc;2.7.
We set the gauge couplingb to 2.5, so that the system is i
the confinement phase. To reduce the statistical errors
ciently, we adapted hypercubic blocking@26# to the original
configurations.

The value of Polyakov loop correlators corresponds to
static potential between one pair of quark and antiquark:

^Tr P~0!Tr P†~R!&5e2V(R)/T, ~20!

where P(R) is the Polyakov loop operator Eq.~16!. V(R)
gives the interquark potential

V~R!5sR2
a

R
1c, ~21!

andT51/(N4a) is the temperature of the system.
The Abelian Polyakov loop operator is written as

Pa5expF i (
i 50

N421

u4~sW1 i 4̂!G . ~22!

Equation~22! can be decomposed into photon and monop
parts@11# as follows:

Pa5Pp•Pm ,

Pp5expF2 i (
i 50

N421

(
s8

D~sW1 i 4̂2s8!]n8Q̄n4~s8!G ,

Pm5expF22p i (
i 50

N421

(
s8

D~sW1 i 4̂2s8!]n8nn4~s8!G ,

where we use the identity

u4~s!52(
s8

D~s2s8!@]n8Qn4~s8!1]4„]n8un~s8!…#.

The Abelian field strength tensor
07450
-
e

i-
.

fi-

e

e

Qmn~s![um~s!1un~s1m̂ !2um~s1 n̂ !2un~s!

can be decomposed into two parts:

Qmn~s![Q̄mn~s!12pnmn~s!,

where Qmn(s)P@24p,4p) and Q̄mn(s)P@2p,p). Here,
Q̄mn(s) is interpreted as the electro-magnetic flux throu
the plaquette, and the integer valuednmn(s) corresponds to
the number of Dirac strings piercing the plaquette.D(s
2s8) is the Coulomb propagator on a lattice.

Figures 5, 6, 7, and 8 show the values ofSU(2), Abelian,
and monopole Polyakov loop correlators in the MA, LA
MAWL, and L-type gauges, respectively. The values of Ab
lian and monopole Polyakov loop correlators in each ga
are almost degenerate. The string tensions can be extracted
from these values by fitting them to Eq.~20!. Fitted lines are
also plotted in the same figure. In the case of the MA gau
the fitted values are consistent with the results by Baliet al.
@27#. In the case of other gauges like a unitary gauge,
cannot extract the string tension clearly from the Abelian a
monopole Polyakov loop correlators due to large statist
errors.

Explicit values of the fitted string tension are shown
Table I. They almost agree with each other, although th
four gauges have different gauge fixing conditions in t
continuum limit.

V. RG FLOWS OF THE EFFECTIVE ACTION IN VARIOUS
ABELIAN PROJECTIONS

To clarify what is happening in the monopole dynamic
we study the effective monopole actions in various gauge
this section.

A. Simulation method

Our method to derive an effective monopole action is
following. We generateSU(2) gauge fields$Um(s)% using
the standardSU(2) Wilson action. We consider a 484 hyper-

FIG. 5. Abelian and monopole Polyakov loop correlator in t
MA gauge.
4-5
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cubic lattice forb from 2.1 to 2.5. We took 50 independe
configurations after 10000 thermalization sweeps. Then,
perform an Abelian projection in six different gauge fixin
to extract Abelian gauge fields$um(s)% from SU(2) gauge
fields.

One can define magnetic monopole currents from Abe
field strength tensor following DeGrand and Toussaint@28#.
We can define the monopole currentkm(s) as

km~s!5
1

2
emnrs]nnrs~s1m̂ !. ~23!

By definition, it satisfies the current conservation law

]m8 km~s!50,

where]m and]m8 denote the forward and the backward d
ferences, respectively, in them direction.

We want to get an effective monopole actionS@k# on the
dual lattice, integrating out all degrees of freedom except
the monopoles:

FIG. 6. Abelian and monopole Polyakov loop correlator in t
LA gauge.

FIG. 7. Abelian and monopole Polyakov loop correlator in t
MAWL gauge.
07450
e

n

r

Z5E DUe2S[U]d~X6!DF~U !

5E DuF E DCe2S[U]d~X6!D~U !G
5E Due2Se f f[u]

5S) ( D E Due2Se f f[u]d„k, f ~u!…

5)
s,m

(
km(s)52`

` S)
m,n

d]
n8kn(m),0De2S[k] ,

whereUm5Cmum andX6 is the off-diagonal element of the
matrix X which is diagonalized in the procedure of Abelia
projection. DF(U) is the Faddeev-Popov determinant a
d„k, f (u)… gives the definition of the monopole currentk as a
function of the Abelian gauge fieldu.

The above integrations are done numerically. We cre
vacuum ensembles of monopole currents using the Mo
Carlo method and the definition of the monopole current E
~23!. Then, we construct the effective monopole action fro
monopole vacua using Swendsen’s inverse Monte C
method, which was developed originally by Swendsen@29#
and extended by Shiba and Suzuki@4#.

We consider a set of independent and local monopole
teractions which are summed up over the whole lattice.
denote each interaction term asSi@k#. Then the effective
monopole action can be written as a linear combination
these operators:

FIG. 8. Abelian and monopole Polyakov loop correlator in t
L-type gauge.

TABLE I. Fitted string tensions (323316 lattice, b
52.5) sSU(2)50.03446(105).

MA LA MAWL L-type

Abelian 0.03054~45! 0.03011~34! 0.03051~45! 0.03065~43!

Monopole 0.02545~31! 0.02536~28! 0.02546~31! 0.02624~34!
4-6
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S@k#5(
i

giSi@k#, ~24!

wheregi denotes the effective coupling constants. Expli
forms of the interaction terms are listed in Tables II and
We determine the set of couplings$gi% from the monopole
current ensemble$km(s)% with the aid of an inverse Monte
Carlo method. In practice, we have to restrict the numbe
interaction terms. The form of action adopted here is 27 q
dratic interactions and four-point and six-point interactio
@5,30#.

We perform a block spin transformation in terms of t
monopole currents on the dual lattice to study the RG flo
The n-step blocked current is defined by

Km~s(n)!5 (
i , j ,l 50

n21

km@ns(n)1~n21!m̂1 i n̂1 j r̂1 l ŝ#.

~25!

The blocked lattice spacingb is given asb5na(b) and the
continuum limit is taken as the limitn→` for a fixed physi-
cal scaleb. We determine the effective monopole action fro

TABLE II. The quadratic interactions used for the modifie
Swendsen method.

Coupling Distance Type

g1 ~0,0,0,0! km(s)
g2 ~1,0,0,0! km(s1m̂)
g3 ~0,1,0,0! km(s1 n̂)
g4 ~1,1,0,0! km(s1m̂1 n̂)
g5 ~0,1,1,0! km(s1 n̂1 r̂)
g6 ~2,0,0,0! km(s12m̂)
g7 ~0,2,0,0! km(s12n̂)
g8 ~1,1,1,1! km(s1m̂1 n̂1 r̂1ŝ)
g9 ~1,1,1,0! km(s1m̂1 n̂1 r̂)
g10 ~0,1,1,1! km(s1 n̂1 r̂1ŝ)
g11 ~2,1,0,0! km(s12m̂1 n̂)
g12 ~1,2,0,0! km(s1m̂12n̂)
g13 ~0,2,1,0! km(s12n̂1 r̂)
g14 ~2,1,0,0! kn(s12m̂1 n̂)
g15 ~2,1,1,0! km(s12m̂1 n̂1 r̂)
g16 ~1,2,1,0! km(s1m̂12n̂1 r̂)
g17 ~0,2,1,1! km(s12n̂1 r̂1ŝ)
g18 ~2,1,1,1! km(s12m̂1 n̂1 r̂1ŝ)
g19 ~1,2,1,1! km(s1m̂12n̂1 r̂1ŝ)
g20 ~2,2,0,0! km(s12m̂12n̂)
g21 ~0,2,2,0! km(s12n̂12r̂)
g22 ~3,0,0,0! km(s13m̂)
g23 ~0,3,0,0! km(s13n̂)
g24 ~2,2,1,0! km(s12m̂12n̂1 r̂)
g25 ~1,2,2,0! km(s1m̂12n̂12r̂)
g26 ~0,2,2,1! km(s12n̂12r̂1ŝ)
g27 ~2,2,1,0! kr(s12m̂12n̂1 r̂)
07450
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the blocked monopole current ensemble$Km(s(n))%. Then
one can obtain the RG flow in the 29-dimensional coupli
constant space.

B. Numerical results

The effective monopole action is determined successfu
All coupling constants that are contained in the effecti
monopole action are obtained with relatively small erro
We use the jackknife method for the error estimation. The
effective monopole actions except in the MA gauge are
termined for the first time in this paper. Moreover, the
effective monopole actions are determined from the block
monopole configurations, too. The results are summarize
follows.

~1! Only the quadratic interaction subspace seems su
cient in the coupling space for the low-energy region
QCD. Figures 9 and 10 show coupling constants for fo
point and six-point interaction terms versus physical scaleb.
Here, note that the effective coupling constants for the blo
ing factorn51 are omitted in Figs. 9, 10, and 14–23. In th
case of the MA, LA, MAWL, andL-type gauges, these cou
pling constants take relatively larger absolute values for
smallb region. They become negligibly small for the largeb
region. In the case of Polyakov,F12, no gauge fixings, the
coupling constants for four-point and six-point interactio
terms take the values very close to zero in the whole reg
of b.

TABLE III. The higher order interactions used for the modifie
Swendsen method.

Coupling Type

Four-pointg28 (s((m524
4 km

2 (s))2

Six-point g29 (s((m524
4 km

2 (s))3

FIG. 9. ~Color online! Four-point couplingg28 vs physical scale
b.
4-7
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~2! Typical cases of the coupling constants for quadra
interaction terms versus squared distances in lattice units
shown in Fig. 11. We see that the coupling constants for
self-interaction termg1 and the nearest-neighbor interactio
g2 and g3 are dominant, andg2.g3. Other couplings de-
crease exponentially as the distance between the two m
pole currents grows. This behavior does not depend o
gauge coupling constantb. Therefore, we concentrate ou
analysis on the coupling constants of quadratic interact
terms, especiallyg1 andg2.

~3! We used a standard iterative gauge fixing proced
for the MA, MAWL, and L-type gauges. In this case, gaug
fixing sweeps may be stuck in some local minima of a gau
fixing functional. Different local minima give rise to differ
ent gauge transformations, but they cannot be distinguis
from the viewpoint of the iterative gauge fixing procedur
These are the lattice Gribov copies. Indeed, Baliet al.
showed that the effect of such copies on the Abelian str
tension is not very small@27#. To check the effect of copies
on the effective couplings, we generate 100SU(2) configu-
rations on a 244 lattice atb52.5. Then, we generate seve
of gauge equivalent configurations~i.e., copies! via a random
gauge transformation. Using these gauge copies, we c
struct effective monopole actions and compare their effec
couplings. Fig. 12 showsg1 in the case of the MA gauge.g1
for the different blocking factors are described in differe
symbols. We see some fluctuations ing1 for the MA gauge.
This is nothing but the effect of lattice Gribov copies. Th
effect of the copies, however, is negligibly small. Therefo
the qualitative analyses that are given later will not be
fected. In principle, the LA gauge does not have such cop
@8#. Indeed, we confirmed that effective couplings for the L
gauge are not affected by Gribov copies~Fig. 13!.

~4! Figures 14 and 15 show the most dominant quadra
self-coupling constantg1 and quadratic nearest-neighbo
coupling constantg2 versus the physical scaleb in the cases
of the MA, LA, MAWL, and L-type gauges, respectively. I
these gauges, the effective coupling constants take large
ues in the smallb region and the scaling behavior~i.e., the

FIG. 10. ~Color online! Six-point couplingg29 vs physical scale
b.
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unique curve for different blocking factorsn) is seen even in
the smallb region. The effective actions which are obtaine
here appear to be a good approximation of the action on
renormalized trajectory corresponding to the continuu
limit. In addition to this, the coupling constants for these fo
gauges are very close to each other, although these ga
have a completely different form in the continuum limit.

~5! However, in the cases of Polyakov,F12 and no gauge
fixings, the coupling constants are different from those in
above four gauges~see Figs. 16 and 17!. In these gauges
coupling constants take smaller values and the scaling
havior is not seen, especially in smallb region. To clarify the
scaling properties of these coupling constants, we give
ures showing a distinction between the different blocki
factorsn in two typical gauges. In the case of the Polyako
gauge~Fig. 18!, the coupling constants depend on the bloc
ing factorn strongly in the smallb region. On the other hand
in the case of the LA gauge~Fig. 19!, the renormalized cou-
pling constants lie on a unique curve.

~6! Once the effective actions are fixed, we can see fr
the energy-entropy balance of the system whether monop
condensation occurs or not. If the entropy of a monop
loop exceeds the energy, the monopole loop condenses in
QCD vacuum. In four-dimensional lattice theory, the entro

FIG. 11. ~Color online! Effective couplings vs squared distance
in lattice unit.~MA gauge,b52.1,2.3, and 2.5, effective coupling
for n58 blocked monopole.!

FIG. 12. Gribov copy effect forg1 ~MA gauge!.
4-8



o
rd

el
o

no
e
. 1
ov
r

ro

a
e

po
ng

tri-
c-

for
en-
-
and
are

in
fied
tive

he
,
for
ns
ese
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of a monopole loop can be estimated as ln 7 per unit lo
length. It is determined by a random walk without backwa
tracking. The action can be approximated by the s
interaction termg1 alone since the interactions with tw
separate currents are almost canceled@31#. The free energy
per unit monopole length is approximated by

F;g12 ln 7, ~26!

sinceg1 can be regarded as the self-energy per unit mo
pole loop length. Ifg1, ln 7, the entropy dominates over th
energy, that is, monopole condensation occurs. In Figs
and 16, we see that the entropy of the system dominates
the energy in the largeb region for all gauges. In othe
words, monopole condensation occurs@4# in the largeb re-
gion for all gauges.

~7! Figures 20, 21, 22, and 23 show the RG flows p
jected onto theg1-g2 , g1-g5 , g1-g7, and g1-g10 coupling
planes, respectively. The effective coupling constants for
gauges seem to converge to the identical line for the largb
region. This may show gauge independence of the mono
condensation in the low-energy region. Although all coupli
constants become very small in the largeb region, it is im-
portant that the slopes of the renormalization flows seem
converge in all gauges.

FIG. 13. Gribov copy effect forg1 ~LA gauge!.

FIG. 14. ~Color online! The most dominant self-couplingg1 vs
physical scaleb in the MA, LA, MAWL, and L-type gauges.
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VI. SUMMARY

We measured first the Abelian and the monopole con
butions to the string tension in four types of Abelian proje
tion, i.e., the MA, LA, MAWL, and L-type gauges. They
show a good agreement with each other. Similar results
the MA and LA gauges have already been obtained by Ilg
fritz et al. in Ref. @32#. Monopole string tensions are ex
tracted in the same manner as Abelian string tensions,
they also agree with each other. The MA and LA gauges
not unique good gauges.

Next, we determined the effective monopole actions
various gauges from monopole vacua using the modi
Swendsen method. In the case of the MA gauge, an effec
monopole action has already been obtained in Ref.@4#. In
addition to this action, the effective monopole actions in t
Polyakov gauge,F12 gauge, LA gauge, MAWL gauge
L-type gauge, and no gauge fixing are also determined
the first time in this paper. Moreover, these effective actio
are determined on the blocked monopole vacua, too. In th

FIG. 15. ~Color online! Nearest-neighbor couplingg2 vs physi-
cal b in the MA, LA, MAWL, and L-type gauges.

FIG. 16. ~Color online! The most dominant self-couplingg1 vs
physical scaleb in MA, Polyakov,F12, and no gauge fixings.
4-9
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ITO et al. PHYSICAL REVIEW D 67, 074504 ~2003!
effective actions, two-point interactions are domina
whereas four-point and six-point effective coupling consta
are negligibly small in the infrared region. The RG flow
seem to converge to the identical line when the block s
transformation is repeated. It is important that the slopes
renormalization flows in all gauges seem to converge. T
data are compatible with the assumption of gauge indep
dence of the monopole dynamics in the continuum limit. T
energy-entropy balance also tells us that monopole con
sation occurs in the largeb region for all gauges.
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FIG. 17. ~Color online! Nearest-neighbor couplingg2 vs physi-
cal scaleb in MA, Polyakov,F12, and no gauge fixings.

FIG. 18. ~Color online! g1 versusb in the MA and Polyakov
gauges. Each symbol corresponds to a different blocking facton.
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APPENDIX: MAXIMALLY ABELIAN WILSON LOOP
„MAWL … GAUGE

The SU(2) gauge fieldUm(s) can be parametrized by it
isospin components. In this section, we denote each iso
component ofUm(s) asU0(s,m), U1(s,m), and so on, for
simplicity. This gauge is realized by maximizing the Abelia
Wilson loop of 131 size:

R5 (
s,m5” n

cosQmn~s!, ~A1!

where the Abelian link field is extracted as

u~s,m!5arctan@U3~s,m!/U0~s,m!#. ~A2!

Let us consider an infinitesimal gauge transformation ofU,

U8~s,m!5@11 ia i~s!s i #@U0~s,m!I 1 iU j~s,m!s j #

3@12 iak~s1m̂ !sk#.

FIG. 19. ~Color online! g1 versusb in the MA and LA gauges.
Each symbol correspond to a different blocking factorsn.

FIG. 20. ~Color online! RG flows of effective monopole action
projected onto theg1-g2 coupling plane.
4-10
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This gives

dU0~s,m!52@a i~s!2a i~s1m̂ !#Ui~s,m!, ~A3!

dUk~s,m!5@ak~s!2ak~s1m̂ !#U0~s,m!

2e i jk@a i~s!1a i~s1m̂ !#U j~s,m!. ~A4!

ThenR changes as

dR52 (
s,mÞn

sinQmn~s!$du~s,m!1du~s1m̂,n!

2du~s1m̂,m!2du~s,n!%, ~A5!

where

du~s,m!5
U0~s,m!dU3~s,m!2U3~s,m!dU0~s,m!

U0
2~s,m!1U3

2~s,m!
.

~A6!

FIG. 21. ~Color online! RG flows of effective monopole action
projected onto theg1-g5 coupling plane.

FIG. 22. ~Color online! RG flows of effective monopole action
projected onto theg1-g7 coupling plane.
07450
One can check thatR is invariant under theU(1) trans-
formation. Hence we do not need to consider thea3(s) part.
First, let us consider thea1 part. Since there is a sum ove
whole lattice sitess, one can shift the site variable, for ex
ample,s to s2m̂. Also one can use the~anti!symmetric prop-
erty with respect to them andn directions. Finally, one gets

2
dR

2
5 (

s,m5” n
@a1~s!X1~s,m,n!1a2~s!X2~s,m,n!#,

~A7!

X1~s,m,n!5e~s,m!@U1~s,m!U3~s,m!2U0~s,m!U2~s,m!#

2e~s2m̂,m!@U1~s2m̂,m!U3~s2m̂,m!

1U0~s2m̂,m!U2~s2m̂,m!#, ~A8!

X2~s,m,n!5e~s,m!@U2~s,m!U3~s,m!1U0~s,m!U1~s,m!#

2e~s2m̂,m!@U2~s2m̂,m!U3~s2m̂,m!

2U0~s2m̂,m!U1~s2m̂,m!#, ~A9!

where

e~s,m!5
sinQmn~s!2sinQmn~s2 n̂ !

U0
2~s,m!1U3

2~s,m!
. ~A10!

When we writeX65X16 iX2, it is easy to see thatX6 trans-
forms covariantly under the residualU(1).

Finally, one gets the matrix which is diagonalized in th
gauge,

X~s!5 (
m5” n

$e~s,m!@U~s,m!s3U†~s,m!#2e~s2m̂,m!

3U†~s2m̂,m!s3U~s2m̂,m!%.

FIG. 23. ~Color online! RG flows of effective monopole action
projected onto theg1-g10 coupling plane.
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Because of the nonlocality of the gauge condition, one c
not calculate the gauge transformation matrix that diago
izesX(s) in a simple way. Therefore, we employed an ite
tive update procedure to satisfy the gauge condition.

~1! Make a trial gauge transformation, adoptinga1 and
a2 as follows:a1(s)52kX1(s), a2(s)52kX2(s).

~2! MeasureR. If R becomes larger than before, acce
this trial and repeat step 1. IfR becomes smaller than befor
takeknew5kold/2 and adopt the gauge transformation us
this knew with respect to the configuration before trial, an
then repeat step 1.
g

v.

hi

ett

sh

hy

S
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~3! If the off-diagonal element ofX(s) becomes smaller
than a suitable threshold~we set this to 1.0), one can rega
the gauge fixing procedure as having been completed.

We set the initial value ofk to 0.1. R can be maximized
as long as we takek.0. We apply the MA gauge fixing as
preconditioning for the MAWL gauge fixing and then w
perform the above procedure on the MA fixed configuratio
This preconditioning is required to improve the convergen
property of the MAWL gauge fixing. We have to note th
the configurations obtained via the above procedure are
perfectly gauge fixed because the off-diagonal elements
X(s) still remain not very small.
cl.
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