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We study step wandering induced by the drift of adatoms in a conserved system. When steps are imperme-
able, in-phase wandering occurs with the step-down drift. The steps are unstable for long-wavelength fluctua-
tions and the wavelength of the most unstable mode is determined by the competition between the drift and the
step stiffness. When nonlinear effects are taken into account, the steps obey the same type of equation as that
of the step wandering due to the Ehrlich-Schwoebel effect in growth without evaporation. We carry out Monte
Carlo simulation and compare the results with the nonlinear evolution equation.
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I. INTRODUCTION

In a vicinal face two types of step instabilities occur
many kinds of crystals. One is step wandering, which is
instability for a fluctuation along the step and the other
step bunching, which is an instability for a fluctuation of t
step distance. In case of Si~111!, the instabilities occur when
a specimen is heated by direct electric current.1–8 The cause
of the instabilities is considered to be the drift of adato
induced by the current.9

The step wandering induced by the drift has been stud
with a continuum step model and by means of Monte Ca
simulations.10–14 When there is evaporation of adatoms, t
step wandering occurs with the step-down drift if the dr
velocity exceeds a critical value determined by the step s
ness. When a step is isolated in a large terrace, the step o
the Kuramoto-Sivashinsky~KS! equation15,16whose solution
shows spatiotemporal chaos. In a vicinal face, tw
dimensional analysis12 shows that grooves perpendicular
the steps appear, but the lateral fluctuation is so wild t
they sometimes pinch out. Thus the unstable surface sho
chaotic pattern.

The observation of step wandering has been made
Si~111! surfaces.4–8 The step wandering occurs when th
current is in the step-down direction. Since the drift is in t
same direction of the current,5 the drift direction to induce
the step wandering agrees with the linear stabi
analysis.10,11 However, the surface pattern is different fro
the chaotic pattern expected from the theory:12 all steps wan-
der in phase and straight grooves parallel to the current
produced.

Recently, step wandering induced by the Ehrlic
Schwoebel ~ES! effect17–19 has been studied
theoretically.20–26 With evaporation of adatoms, steps ob
the KS equation and grooves fluctuate much in a vici
face.20–23 Without evaporation, on the contrary, the fluctu
tion of grooves is suppressed and equidistant parallel stra
grooves appear.24–26

For step wandering induced by the drift of adatoms,
surface pattern may also be affected by the presenc
evaporation. In this paper we study the step wandering
duced by the drift of adatoms in a conserved system. We
0163-1829/2002/65~24!/245427~6!/$20.00 65 2454
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perform the linear stability analysis of steps in Sec. III. T
time evolution of the step pattern at late stages is derived
taking the nonlinear effect into account in Sec. IV. We ca
out Monte Carlo simulation and test the theory in Sec. V. W
give a short summary and discussion in Sec. VI.

II. MODEL

We use a continuum step model to study the linear sta
ity of a vicinal face. Our coordinate system is such thatx axis
is parallel to the steps andy axis is in the step-down direc
tion. We consider a conserved system such that impingem
and evaporation of adatoms are neglected. When the dri
in they direction, the diffusion equation of adatom density
given by27

]c

]t
5Ds¹

2c2v
]c

]y
, ~1!

whereDs is the diffusion coefficient andv is the drift veloc-
ity. Boundary conditions at themth step are given by13,28

6Dsn̂•“cu67n̂• ŷvcu65K6~cu62cm!1P~cu62cu7!,
~2!

whereK6 are kinetic coefficients,cm is the equilibrium ada-
tom density at themth step, andP represents the ste
permeability.29 n̂ is the unit vector normal to the step towa
the step-down direction,ŷ is the unit vector in they direc-
tion, and1(2) indicates the lower~upper! side terrace of
the step. The first term in the right-hand side of Eq.~2!
represents the number of solidified adatoms, which is prop
tional to the difference between the adatom density at
step and that at equilibrium. The difference of the kine
coefficients, K1 and K2 , represents the ES effect,17–19

which also causes step instabilities in sublimation and
growth even if there is no drift. To focus on the effect of dr
on the step instabilities, we neglect the ES effect and
K65K. The second term is the effect of step permeabi
and represents the adatom current between the neighbo
terraces bypassing solidification. When the parameterP50,
the adatom diffusion across the step vanishes and the st
called impermeable. WhenPÞ0, the adatom diffusion
©2002 The American Physical Society27-1
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across the step occurs ifcu1 and cu2 are different. If P
→`, thencu15cu2 , and the step is called perfectly perm
able.

If we neglect step-step interaction, the equilibrium adat
density is given by

cm5ceq
0 1

Vceq
0 b̃

kBT
k, ~3!

whereceq
0 is the equilibrium adatom density of an isolate

step,V is the atomic area,b̃ is the step stiffness, andk is the
curvature of the step. The second term is the Gibbs-Thom
effect, which stabilizes the straight step.

By solving the diffusion equation~1! with the boundary
conditions~2!, the adatom density on the terraces are de
mined. The normal step velocity is given by
c

-

24542
on

r-

Vm5VK~cu22cm!1VK~cu12cm!

5Vn̂@Ds~¹cu12¹cu2!2v ŷ~cu12cu2!#. ~4!

The position of themth step,y5zm(x), is related to the
normal velocity

]zm

]t
5VmA11S ]zm

]x D 2

. ~5!

III. LINEAR ANALYSIS

We study linear stability of an equidistant train of straig
steps with the distancel for a fluctuation along the steps. W
assume that the steps fluctuate in phase. With the wave n
ber of the fluctuationq and the amplification ratevq , the
position of themth step is given byzm5ml1dyeiqx1vqt and
the linear dispersion relation is calculated as
vq5
2VKv

G1
B1ev l /2DsDsq

2sinha l cosh
v l

2Ds
2

VK2v2

DsG1
B1ev l /2Dssinha l sinh

v l

2Ds
1

2VK2v
G1

B1ev l /2DsaS cosh
v l

2Ds
cosha l 21D

2
2DsVKG̃

G1
q2S Dsq

2sinha l 2Ka cosh
v l

2Ds
D2

2VK2G̃

G1
q2Dsa cosha l

1P
4VKv

G1
B1ev l /2Dsa cosh

v l

2Ds
S cosha l 2cosh

v l

2Ds
D2P

4VKG̃

G1
q2DsaS cosha l 2cosh

v l

2Ds
D , ~6!
q.
-

or
ect
zes
the
un-

a
ave-
are

ent

ion
on,
where

a5
1

2Av2

Ds
2

14q2, ~7!

G152DsaK cosha l 1Ds
2q2sinha l 1K2sinha l

12P@Dsa~cosha l 2coshv l /2Ds!1K sinha l #,

~8!

B15
2vceq

0

~K12P!~ev l /Ds21!1v~ev l /Ds11!
, ~9!

G̃5ceq
0 Vb̃

kBT
. ~10!

When the steps are perfectly permeable,P→`, the step
wandering does not occur. When the steps are not perfe
permeablePÞ` and the step distance is smallv l /Ds!1,
Kl /Ds!1, andPl/Ds!1, for the long-wavelength fluctua
tion a l !1, Eq. ~6! is expanded as

vq

Vceq
0

5v lq22
Vb̃

kBT
Dslq

4 ~11!
tly

up to the first order ofl. The stability for the long-
wavelength fluctuation is determined by the first term in E
~11!. The critical drift velocity to induce the instability van
ishes, in contrast to the case with evaporation.12,13 With the
step-down drift,v.0, the step wandering always occurs f
a long-wavelength fluctuation. The second term is the eff
of the step stiffness, which is always negative and stabili
the straight step. As a result of the competition between
first and the second terms, the wavelength of the most
stable mode is given by

lmax52pAVb̃Ds

kBTv
. ~12!

The fluctuation with the wavelengthlmax appears domi-
nantly in the initial stage of the wandering. In Ref. 8 Minod
and co-workers observed off-angle dependence of the w
length of in-phase wandering. At 1100 °C, where steps
considered to be permeable,29 the wavelength of in-phase
wandering is independent of the step distance, in agreem
with Eq. ~12!

IV. NONLINEAR EVOLUTION EQUATION

When step wandering occurs, the amplitude of fluctuat
increases rapidly. To predict the evolution of step positi
we must take into account the nonlinear effects.
7-2
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STEP WANDERING INDUCED BY THE DRIFT OF . . . PHYSICAL REVIEW B 65 245427
When the step wandering is caused by the ES effec
growth without evaporation, a nonlinear evolution equat
is derived systematically by the multiscale expansion.24,25

The behavior of its solution is different from a chaotic b
havior represented by the KS equation.15,16 When numerical
simulation of the nonlinear evolution equation is carried o
with a random initial fluctuation,24 a cellular pattern with the
wavelength of the most unstable mode appears and the
plitude of the step wandering increases with time ast1/2.

Though an evolution equation, which the drift-induc
step wandering obeys, may be derived systematically by
multiscale expansion, here we give a heuristic derivation
the nonlinear equation. For simplicity we assume that
steps are impermeable. We consider an equidistant trai
steps whose normal direction is tilted from they axis at an
angleu. We set thej axis along the step and thez axis in the
step-down normal direction. In thez direction the step dis-
tance is given byl'5 l cosu and the drift velocity isv'

5v cosu. The adatom density is given byc(z)5Az

1Bzexp(v'z/Ds), where

Az5
K~ev' l' /Ds21!ceq

0

K~ev' l' /Ds21!1v'~ev' l' /Ds11!
, ~13!

Bz5
2v'ceq

0

K~ev' l' /Ds21!1v'~ev' l' /Ds11!
. ~14!

The adatom current in thez direction j z(z) and in thej
direction j j(z) are given by

j z~z!52Ds

dc

dz
1v'c5v'Az , ~15!

j j~z!5c~z!v i , ~16!

where the drift velocity in thej direction isv i5v sinu. The
adatom current on the terrace in thex directionJx

(1) is given
by

Jx
(1)5E

0

l

dy@2 j z~z!sinu1 j j~z!cosu#52
Dsv sinu

K
Az

'ceq
0 lv sinu cosu, ~17!

where we have assumed that the step distance is s
v'l /Ds!1. Since there is no evaporation of adatoms,
change of adatom current is accompanied by solidification
melting of atoms at the steps.Jx

(1) is the adatom current du
to the tilt of the step. There is other type of adatom curr
Jx

(2) . It comes from the difference of the chemical potent
m along the step and given by

Jx
(2)5 l cosuDsceq

0 ]

]s S m

kBTD , ~18!

wheres is the arc length of the step and]x/]s5cosu. When
the step is curved, the Gibbs-Thomson effect determines
chemical potentialm5Vb̃k. Total adatom current in thex
direction is given byJx5Jx

(1)1Jx
(2) . By considering the
24542
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mass conservation and the geometrical condition, the
velocity in they direction]z/]t is given by

]z

]t
52V

]Jx

]x

52
]

]x FVceq
0 lvzx

11zx
2

1
V2l G̃

11zx
2

]

]x S zxx

~11zx
2!3/2D G , ~19!

where the subscriptx of z represents the partial derivativ
with respect tox. The first term in Eq.~19! comes from Eq.
~17!, the effect of the step tilting, and the second term com
from Eq. ~18!. The linear dispersion obtained from Eq.~19!
coincides with Eq.~11!. Since we have the same equation
that of Ref. 24, we expect the same wandering behavior

V. MONTE CARLO SIMULATION

A. Simulation model

To test the above analysis we carry out Monte Carlo sim
lation. The algorithm is the same as that in Ref. 13. W
consider a~001! vicinal face of a cubic lattice with the lattice
constanta51. x axis is parallel to the steps andy axis is in
the step-down direction. The boundary conditions are p
odic in the x direction and helical in they direction. The
steps are solid-on-solid steps, i.e., each step position
single-valued function ofx. Therefore, we denote the surfac
configuration by they coordinateym( i ) of the mth step on
the i th lattice site in thex direction. We forbid two-
dimensional nucleation and formation of multiple hig
steps. Then, solidification and melting occurs only at
steps.

We choose the time increment for each diffusion trial
such a way to make the surface diffusion coefficientDs51.
When the drift of adatoms is weakva/Ds!1, the drift mo-
tion is taken into account as a biased diffusion. If the drift
in the y direction, the probability for hopping of an adato
from the site (i , j ) to the site (i , j 61) is (16va/2kBT)/4
and to the site (i 61,j ) is 1/4, wherev(2v) corresponds to
the step-down~step-up! drift.

In Sec. IV we assumed that steps are impermeable in
riving the nonlinear evolution equation, Eq.~19!. Hereafter
we also assume that steps are impermeable: adatoms c
go to the neighboring terraces by diffusion. Adatoms can
to the neighboring terraces through successive solidifica
and melting. Solidification occurs when an adatom come
an edge of a terrace. When solidifying adatom is at the low
side edge, the atom solidifies on site. When the adatom
the upper side edge, it moves down to the lower side edg
solidify. However, it cannot solidify if the site is occupied b
another adatom.

The probability for the solidification is given by

ps5F11expS DEs1DU2f

kBT D G21

. ~20!

The increment of step energy is given b
DEs5e3~increment of the step perimeter length!, wheree
7-3



ity
d
.
e
n

ui

o

ve
o

iv

in
a
o
w
t

l
ur
tia

o

o
,
Th
e

e
h
io

ong

all.
ows

.
e-
el

SATO, UWAHA, SAITO, AND HIROSE PHYSICAL REVIEW B65 245427
is the nearest-neighbor bond energy. The bond energye is
related to the step stiffnessb̃ as

b̃

kBT
5

~12e2e/kBT!2

2e2e/kBT
. ~21!

DU is the change of step interaction energy. For simplic
the interaction between neighboring steps is approximate
an interaction within the samex coordinate in our simulation
We consider the elastic repulsive interaction, and we usU
5( iA/uym( i )2yn( i )u2 as the interaction potential betwee
the mth step andn(5m61)th step, whereA is a parameter
representing the strength of the interaction.f is the chemical
potential gain by solidification, which is related to the eq
librium adatom densityceq

0 as13

ceq
0 5

1

11ef/kBT
. ~22!

Melting of solid atom occurs when there is no adatom
top of the atom. The probability of melting is given by

pm5F11expS DEs1DU1f

kBT D G21

. ~23!

The melted atom stays there with probability 1/2 and mo
onto the upper terrace with probability 1/2 if the site is n
occupied by another adatom~otherwise, it cannot melt!. The
weak ES effect appears in the algorithm, but it does not g
serious effects in our simulation~see Ref. 13 for details!.

B. Simulation result

Figure 1 represents a vicinal face with drift of adatoms
a conserved system. We start simulation with equidist
train of straight steps. When the step is impermeable, b
step wandering and step bunching occur with step-do
drift.12,13Then we use strong step repulsion and suppress
step bunching. Figures 1~a! and 1~b! represent the vicina
face with step-down drift. In-phase step wandering occ
and a train of equidistant grooves appears. In the ini
stage, short small grooves appear like nucleation@Fig. 1~a!#.
With increasing time, the groove structure spreads the wh
surface and the amplitude of grooves grows@Fig. 1~b!#. The
pattern is similar to that of Ref. 8. When the amplitude
step wandering becomes comparable to the system size
groove structure is broken and the step bunching starts.
extreme situation is unphysical because we neglected th
teraction between steps in thex direction. With step-up drift,
the vicinal face is stable and wandering does not occur@Fig.
1~c!#. The drift direction to induce the step wandering agre
with the linear analysis, and the formation of straig
grooves agrees with the solution of the nonlinear evolut
equation.24,25

Figure 2 represents the time evolution of the step widthw
defined by
24542
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1

N (
n
A1

L (
i

S yn~ i ,t !2
1

L (
i

yn~ i ,t ! D 2

,

~24!

whereN is the number of steps,L is the system size in thex
direction. To suppress the step bunching we use the str
step repulsionA564. In the initial stage (t<2.03104), the
local wandering hardly occurs and the step width is sm
Once the in-phase step wandering occurs, the width gr
rapidly (2.03104<t<2.03105). With inceasing the width,
the growth becomes slow (t>2.03105) and obeysw;tb

with b&1/2. In the nonlinear analysis,24,25 the step width
increases with time ast1/2, which agrees with our simulation
The power law growth continues until the step width b
comes unphysically large and the validity of the mod
breaks down (t.6.03105).

FIG. 1. Snapshots of surface without evaporation of adatoms~a!
with the drift velocity va/2kBT50.2 at t'1.33104, ~b! with the
drift velocity va/2kBT50.2 at t'3.63104, and ~c! with va/2kBT
520.2 at t'4.13105. The system size isL3H52563256 and
the step number isN532. Other parameters aree51.0, f51.5,
A564.0.
7-4
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Figure 3 represents snapshots of the step wandering
a weaker step repulsion. Since the repulsion is weak, the
bunching, which is suppressed in Fig. 1, occurs. In the ini
stage@Fig. 3~a!#, local wandering occurs easily and man
narrow grooves appear. The initiation of groove formation
inhomogeneous and looks like nucleation. This feat
agrees with experiment.8 The fluctuation of grooves induc
the local step bunching, in contrast to the regular array
grooves with strong step repulsion~Fig. 1!.

Figure 4 represents a snapshot of step wandering
evaporation of adatoms. Except the evaporation, the par
eters are the same as those in Fig. 1. With the evapora
correlation between steps becomes weak and fluctuatio
grooves, which is suppressed in in Fig. 1, is large and br
of grooves occurs. In Ref. 12 we studied time evolution o

FIG. 2. Time evolution of the step width. The system size isL
3H51283128 with step numberN516. The drift velocity is
va/2kBT50.1. Other parameters are the same as in Fig. 1.

FIG. 3. Snapshots of step wandering with weak step repuls
A540.0 ~a! in an early stage (t'1.83104) and ~b! in a late stage
(t'3.23104) Other parameters are the same as in Fig. 1.
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vicinal face with impermeable steps under evaporati
When step bunching is suppressed by the strong step re
sion, in the initial stage, in-phase wandering occurs and p
allel straight grooves appear. However, with increasing a
plitude of wandering, the grooves fluctuate wildly an
pinching out of grooves occurs. The result of Monte Ca
simulation ~Fig. 4! exhibits this tendency.12 In our simula-
tion, the fluctuation of grooves is small because of we
evaporation. If the evaporation is strong, the fluctuat
probably becomes large. However, since the wavelength
step wandering is longer, large scale simulation is necess

VI. SUMMARY AND DISCUSSION

We studied step wandering induced by the drift of ad
toms in a conserved system. In the linear analysis the
phase step wandering occurs with the step-down drift if
step is not perfectly permeable,PÞ`. We derived the non-
linear evolution equation of in-phase wandering and show
that the type of the nonlinear equation is the same as tha
Refs. 24 and 25. We carried out Monte Carlo simulation w
impermeable steps. The results of simulation qualitativ
agree with the theoretical analysis.

In the step instabilities of Si~111! vicinal faces, tempera-
ture is separated into at least three ranges: rang
(830 °C–1000 °C), range II (1000 °C–1180 °C) and ran
III (1180 °C–1300 °C) according to the current direction
induce the step bunching.1–8,30 Since the step bunching i
observed in range I with step-down current and in range
with step-up current, the steps are considered to be imper
able in range I and permeable in range II.1–8,30

Recently, in-phase step wandering has been observe
range I and II when a crystal is sublimated with step-do
current.6 Since the drift of adatoms is parallel to the curren5

the step wandering occurs irrespective of step permeab
Then our analysis agrees with the experiment although
have neglected the evaporation of adatoms in our analysi
Si~111! the surface diffusion length is much larger than t
step distance and the effect of evaporation is not crucial

In a recent experiment8 the time dependence of the am
plitude of step wandering was measured in Si~111! vicinal
face at 1100 °C. When the step wandering occurs, the am
tude of wandering increases rapidly in the initial stage. In

n

FIG. 4. Snapshots of step wandering with evaporation of a
toms at t'3.63104. The adatom lifetime ist51024. The other
parameters are the same as in Fig. 1.
7-5
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late stage the growth rate decreases and saturation o
amplitude occurs. In the initial stage of the step wanderi
the growth of amplitude is rapid in our simulation and t
exponential growth is expected from the linear analysis. B
the linear analysis and the simulation agree with the exp
ment. In a late stage the amplitude increases astb with b
;1/2 in our simulation and in the nonlinear analysis. In t
experiment, slow growth is observed before the saturat
though it is not clear whether the growth law ist1/2. The
saturation of amplitude observed in the experiment does
agree with the nonlinear analysis. Even if thex component of
the step repulsion, which we neglected in our simulation
taken into account, the saturation of the amplitude does
occur.26 There are many discussions on this discrepancy
step fluctuation amplitude at the very late stages in the
periment and in the theoretical and numerical analyses,
the problem is not yet settled.

In our analysis, both the step wandering and the s
bunching occur with the step-down drift if the steps are i
permeable. In experiment,31 in range I, where the steps ar
considered to be impermeable, the in-phase step wande
occurs on the surface with large off angles and the s
bunching occurs with small off angles. We may interpret t
result as follows. When the off angle is large, the step d
tance is small and the repulsion between steps is stro
Then the step bunching is suppressed and only the step
dering is observed. When the off angle is small, the s
distance is large and the step repulsion is weak. Then the
bunching occurs.
,

ar

i,

c

i,

pn
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When the steps are perfectly permeable, neither the
bunching nor the step wandering occurs in a conserved
tem, In range II, where the step is considered to be per
able, both the step wandering and the step bunching
observed.4,6–8 To interpret the result, two scenarios are po
sible. One is that the steps are almost perfectly perme
and the evaporation of adatoms is not negligible. Then b
instabilities are possible but evaporation is not strong eno
to destroy the straight grooves produced by the step wan
ing. The other is the instabilities of the partially permeab
steps, and evaporation is negligible. When the steps are
tially permeable, as expected by Eq.~11!, the in-phase step
wandering occurs with the step-down drift despite the
sence of evaporation. Considering the result for perfe
permeable steps,13 we think that the step bunching may occ
with step-up drift if the step permeability is large enough.
clarify the scenario, we are investigating the instabilities w
a finite permeability.
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