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Numerical determination of monopole entropy in pure SU„2… QCD
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We study numerically the length distributions of the infrared monopole clusters in pure SU~2! QCD. These
distributions are Gaussian for all studied blocking steps of monopoles, lattice volumes and lattice coupling
constant. We also investigate the monopole action for the infrared monopole clusters. The knowledge of both
the length distribution and the monopole action allows us to determine the effective entropy of the monopole
currents. The entropy is a descending function of blocking scale, indicating that the effective degrees of
freedom of the extended monopoles are getting smaller as the blocking scale increases.
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I. INTRODUCTION

The dual superconductor picture@1# of the QCD vacuum
is one of the most promising approaches to the problem
color confinement. This picture is based on the existenc
Abelian monopoles in the vacuum of QCD. The monopo
are identified with the help of the Abelian projection meth
@2#, which is based on a partial gauge fixing of the SU~N!
gauge symmetry up to an Abelian subgroup. The monop
naturally appear in the Abelian projection due to compa
ness of the residual Abelian group.

There are various numerical indications that the mo
poles are responsible for the confinement of quarks~for a
review, see Ref.@3#!. One of the most important observation
is the monopole condensation in the low temperature~con-
finement! phase@4,5#. According to the dual superconducto
mechanism the monopole condensation gives rise to the
mation of the chromoelectric string which confines the fu
damental color sources. This expectation is confirmed by
fact that the nonzero tension of the chromoelectric string
dominated by the Abelian monopole contributions@6–8#.

In the numerical simulations one observes that the tra
tories of the Abelian monopoles form clusters, which can
divided into two ensembles: finite-sized clusters and o
large percolating cluster@9–11#. The percolating cluster@or
infrared ~IF! cluster# occupies the whole lattice while th
finite-sized clusters have an ultraviolet~UV! nature. The ex-
istence of the IR cluster is related to the monopole cond
sation@9#. The importance of the IR cluster for the confin
ment of quarks was also stressed in numerical calculat
@10#: the tension of the confining string gets a dominant c
tribution from the monopoles belonging to the IR clust
while the contribution of the UV clusters to the string tensi
is negligible. The IR cluster disappears in the deconfinem
phase@9,10#, as expected.

The balance between energy and entropy of the elem
tary monopole trajectories plays an important role. For
ample, the compact U~1! gauge model in four dimension
has a phase transition associated with the monopole con
sation. Actually the phase transition occurs at the point
the phase diagram where the entropy and the energy o
monopole trajectories are the same. The authors of Ref.@22#
found the critical value of the U~1! gauge coupling constan
0556-2821/2004/69~1!/014509~10!/$22.50 69 0145
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with a great accuracy using the fact. The energy-entropy
ance was also studied numerically for the monopoles in co
pact U~1! gauge theory@23# and in finite-temperature pur
SU~2! gauge theory@10#.

In this paper we mostly concentrate on the numerical
vestigation of the properties of the infrared monopole clus
The length distributions and other properties of the UV a
the IR clusters were studied previously in Refs.@10–14,18#.
In this publication we investigate thoroughly the propert
of the length distributions of the monopole clusters for va
ous lattice volumes and sizes of the extended monopole

The plan of the paper is the following. In Sec. II w
describe the model and provide the details of numer
simulations. Section III is devoted to the investigation of t
Abelian monopole action obtained by an inverse Mon
Carlo method. The distribution of the cluster length in t
infrared clusters is studied in Sec. IV. The knowledge of
monopole action and cluster distribution allows us, for t
first time, to calculate the entropy of the lattice monopoles
various sizes. Our conclusions are presented in the last
tion.

II. MODEL AND SIMULATION DETAILS

We study the pure SU~2! gluodynamics with the lattice
Wilson action,S(U)52(b/2)TrUP , whereb is the cou-
pling constant andUP is the SU~2! plaquette constructed
from the link fields. All our results are obtained in the max
mal Abelian~MA ! gauge@15# which is defined by the maxi-
mization of a lattice functional

R5(
s,m̂

Tr~s3Ũ~s,m!s3Ũ†~s,m!!, ~1!

with respect to gauge transformationsU(s,m)→Ũ(s,m)
5V(s)U(s,m)V†(s1m̂). The local condition of maximiza-
tion can be written in the continuum limit as the differenti
equation (]m1 igAm

3 )(Am
1 2 iAm

2 )50. Both this condition and
the functional~1! are invariant under residual U~1! gauge
transformations,VAbel(v)5diag(eiv(s),e2 iv(s)).
©2004 The American Physical Society09-1
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The next step is Abelian projection of non-Abelian lin
variables to the Abelian ones after the gauge fixing is do
An Abelian gauge field is extracted from theSU(2) link
variables as follows:

Ũ~s,m!5S @12uc~s,m!u2#1/2 2c* ~s,m!

c~s,m! @12uc~s,m!u2#1/2D
3S u~s,m! 0

0 u* ~s,m!
D , ~2!

where u(s,m)5exp„iu(s,m)… represents the Abelian link
field andc(s,m) corresponds to charged matter fields.

The Abelian field strengthumn(s)P(24p,4p) is defined
on lattice plaquettes by a link angleu(s,m)P@2p,p) as
umn(s)5u(s,m)1u(s1m̂,n)2u(s1 n̂,m)2u(s,n). The
field strengthumn(s) can be decomposed into two parts,

umn~s!5 ūmn~s!12pmmn~s!, ~3!

where ūmn(s)P@2p,p) is interpreted as the electroma
netic flux through the plaquette andmmn(s) can be regarded
as a number of the Dirac strings piercing the plaquette.

The elementary monopole current is conventionally c
structed using the DeGrand-Toussaint@16# definition:

km~s!5
1

2
emnrs]nmrs~s1m̂ !, ~4!

where] is the forward lattice derivative. The monopole cu
rent is defined on a link of the dual lattice and takes val
0,61,62. Moreover the monopole current satisfies the c
servation law automatically,

]m8 km~s!50, ~5!

where]8 is the backward derivative on the dual lattice.
Besides the elementary monopoles one can also de

extended monopoles@9#. In this paper we use the type-
construction according to the classification of the exten
monopoles adopted in Ref.@9#. Then3 extended monopole is
defined on a sublattice with the lattice spacingb5na, where
a is the spacing of the original lattice. Thus the construct
of the extended monopoles corresponds to a block spin tr
formation of the monopole currents with the scale factorn,

km
(n)~s!5 (

i , j ,l 50

n21

km@ns1~n21!m̂1 i n̂1 j r̂1 l ŝ#. ~6!

The Abelian dominance and the monopole dominance
the infrared region of QCD imply that at least importa
infrared observables~such as the fundamental string tensio!
can be calculated using the Abelian fields or the monop
degrees of freedom only.

In what follows we discuss an effective model of th
monopole currents corresponding to pure SU~2! QCD. For-
mally, we get this effective model through the gauge fixi
procedure applied to the original model. We integrate out
degrees of freedom but the monopole ones. An effec
01450
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Abelian action is related to the original non-Abelian acti
S@C,u# @matterC and Abelian gaugeu fields in Eq.~2!# as
follows:

Z5E DuF E DCe2S[C,u]d~X!DFP~U !G
5E Due2Se f f[u] . ~7!

Here and below we omit irrelevant constant terms in front
the partition functions. In Eq.~7! the termd(X) represents
the gauge-fixing condition1 andDFP(U) is the corresponding
Faddeev-Popov determinant. Next step is to relate the ef
tive U~1! action to the effective monopole action:

Z5S )
s,m

(
km(s)52`

` D
3E Dud~km~s!2km~s;u!!e2Seff

Abel[u] ~8!

5S )
s,m

(
km(s)52`

` D S)
s

d]
m8 km(s),0De2Seff

mon[k] , ~9!

wherekm(s;u) is the monopole current defined as a functi
of the Abelian fieldsu as shown in Eqs.~3! and ~4!.

Our simulation statistics is represented in Table I. T
gauge configurations were generated with the help of
standard Monte Carlo algorithm. In most simulations we u
the usual iterative algorithm to fix the MA gauge. Howev
in order to check the Gribov copy dependence of the M
gauge fixing we also use the so called simulated annea
~SA! algorithm with five Gribov copies. We refer the read
for a detailed description of the SA method to Ref.@17#,
where the advantages of the SA method compared to
iterative algorithm are illustrated.

1As we discussed above, the MA gauge fixing condition is giv
by the maximization of the functional~1! and therefore the use o
the local conditionX50 in Eq. ~7! is a formal simplified notation.

TABLE I. Simulation statistics.

Lattice b Blocking Number of
size factor configurations

6 2.1–2.4 1 3000
8 2.1–2.4 1 3000
10 2.1–2.4 1 3000
12 2.1–2.4 2 3000
14 2.1–2.4 1 3000
16 2.1–2.4 2 3000
24 2.1–2.4 2,3,4 3000
32~SA! 2.1–2.6 2,3 950
48 2.1–2.6 2,3,4,6,8 2200
9-2
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FIG. 1. Distribution of the lengths of the monopole trajectories at variousb for ~a! elementary and~b! n52 blocked monopoles.
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III. MONOPOLE ACTION FOR VARIOUS CLUSTERS

It is well known that monopole trajectories can be se
rated into the infrared and the ultraviolet monopole clust
in gluodynamics. Each configuration contains typically on
one IR monopole cluster. This cluster occupies all volume
the lattice and the length of the IR monopole trajectory
proportional to the volume of the lattice. Besides the IR cl
ter each configuration contains also a large number of sho
monopole trajectories~UV clusters!.

A simplest characteristics of the monopole trajectory is
length. Using a large enough number of the vacuum confi
rations, one can construct a distribution of the lengthsD(L)
of the IR and the UV monopole clusters. The length dis
bution is a function of the length of the monopole trajecto
which is equal to the number of clusters with the monop
length L found in the ensembles of the vacuum configu
tions.

In Fig. 1~a! we show typical distributions of the elemen
tary (n51) monopoles. The distribution at each value of t
coupling constantb has two peaks corresponding to the U
monopole clusters~the peak at smallL) and to the IR clus-
ters~at largeL). We plot the distributions calculated at var
ous values of the lattice coupling constantb in the figure.
The relevant value ofb is indicated near the peaks corr
sponding to the IR clusters. One can see that the leftm
peaks, corresponding to the UV clusters, are almost indis
guishable in this figure. We also note that for all conside
values ofb the infrared cluster and the ultraviolet cluste
can be unambiguously separated due to a wide gap betw
them.

A similar picture is observed for blocked monopoles. Th
can be seen from Fig. 1~b! in which we show typical distri-
butions ofn52 blocked monopoles.

According to Figs. 1~a! and 1~b! the gap between IR an
UV clusters becomes smaller as thephysicallattice size de-
creases. At very small lattice size the gap between UV
IR clusters disappears and the IR and UV clusters canno
separated. This behavior of the monopole clusters lead
the deconfining transition~‘‘crossover’’! which takes place in
sufficiently small physical volumes.

The distribution of the ultraviolet clusters was studi
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both numerically@11,14# and analytically@13,18#. The distri-
bution can be described by a power lawDUV}L2t, where
the powert is very close to 3. This behavior indicates th
the monopoles in the UV clusters show a random walk p
ture@13#. In our simulations we mainly concentrate on the
monopole cluster because, as we have already mentione
the Introduction, the IR cluster is important for the confin
ment of quarks.

In general, the monopole actionSeff
mon could be represented

as a sum ofn-point (n>2) operatorsSi @4,20#:

S@k#5(
i

f iSi@k#, ~10!

where f i are coupling constants. In this paper we adopt o
dominant two-point interactions in the monopole action@i.e.
interactions of the formSi;km(s)km8(s8)] @19#. Following
Ref. @4# we derive the effective monopole action~10! from
the configurations of monopole currents,$km(s)% using an
inverse Monte Carlo method.2 The original monopole con-
figurations were generated by the usual heat-bath Mo
Carlo algorithm of SU~2! gluodynamics.

The dominant term in the monopole action~10! is the
most local self-interaction of the monopole currents,S1@k#
5(s,mkm

2 (s). The contributions to the action from other in
teractions are small compared to the leading term. As
example we show the leading contribution and the full act
associated with the IR monopole cluster forb52.4 andn
51,2 in Fig. 2. Moreover, one can find that both the mon
pole action and the leading self-coupling contribution to
are proportional with a good accuracy to the length of
monopole loop.

In Fig. 3 we plot the ratioS@k#/L for various lattice vol-
umes and blocking sizes.3 One can notice thatS/L depends
almost only on a productb5a•n and does not depend on th
variablesa andn separately. This was first observed in Re

2The detailed algorithm is described in Appendix A of Ref.@19#.
3In this figure and all other figures below we plot all dimension

quantities in units of the string tension,s.
9-3
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FIG. 2. The total monopole action and the contribution of the self-interaction term to the action for~a! elementary and~b! n52 extended
monopoles vs length of the monopole trajectory in the IR cluster as calculated on 244 lattice atb52.4.
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@4#. Below we will observe this type of scaling in many oth
monopole quantities. Another observation is that the mo
poles obtained with the SA procedure have the same ac
as that of the monopoles defined by the usual iterative ga
fixing algorithm.

It would also be interesting to compare the monopole
tion associated with the IR cluster and the action associ
with the whole monopole ensemble. The simplest quantity
compare is thef 1 self-coupling parameter which is a dom
nant coupling in the action. In Fig. 4 we showf 1 for both
ensembles. First, we easily notice that the coupling cons
f 1 is independent of the lattice volume. Second, we see
for large blocking scalesb the type of the ensemble~the IR
cluster or the whole ensemble! is not essential for the deter
mination of f 1. However, at smallb values,bAs&0.5, the
type of the lattice ensemble becomes important, since in
region

f 1
IR. f 1

total, for bAs&0.5. ~11!

The observed difference between the couplings can be
fected by finite-size effects since the leftmost points in o
data correspond to elementary~of sizea) monopoles. More-
over, in our studies we included only the two-point intera
tions in the monopole action~10!. However, two-point ac-

FIG. 3. The ratioS/L, in physical units, as a function ofb for
various latticesN4 and blocking stepsn.
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tions alone becomes unreliable at too small values ofb and
one has to include higher-point interactions@19#.

The observation~11! may have a physical meaning relate
to a simple fact that the larger couplingf 1 corresponds to the
smaller density of the monopoles. Thus Eq.~11! is in agree-
ment with the numerical fact that at large lattice couplingb
~i.e., at small lattice spacinga) the density of the monopole
in the largest cluster is noticeably smaller than the to
monopole density@21#.

IV. MONOPOLE LENGTH DISTRIBUTION
FOR IR CLUSTER

Since the density of the elementary monopoles from
frared clusters is finite~in terms of physical units! in the
continuum limit @21#, we may expect that the density of th
extended monopoles~with a fixed blocking scaleb) is finite
as well. The finiteness of the density is consistent with
observation that the monopole length distribution is localiz
around a certain value of the monopole lengthLmax ~see Fig.
1!. As will be shown, this value is proportional to the phys
cal volumeV of the system,Lmax}V. Indeed, as one can
qualitatively find from Fig. 1, the position of the peak of th
IR length distribution increases as the physical volume of

FIG. 4. The self-interaction coupling constantf 1 as the function
of b calculated for the largest monopole cluster and for the wh
monopole ensemble on lattices 244 and 484.
9-4
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FIG. 5. Illustration of the Gaussian distribution of the IR monopole clusters on 244 lattice ~a! for elementary monopoles atb52.4 and
~b! for blocked,n52 monopoles atb52.1. The original histograms of the length distribution in the IR cluster are shown by gray sha
The averaged distributions are shown by circles, and the fits by the function~14! are represented by the dashed line.
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system. Note that the physical volume of the system
creases as the lattice couplingb becomes larger.

The length distribution function,D(L), is proportional to
the weight with which the particular trajectory of the leng
L contributes to the partition function. On the other hand,
action of a monopole trajectory is proportional to the leng
of the trajectory,S}L, as we have illustrated in the previou
section. Thus the monopole action contributes to the we
in a form of an exponential factor,}e2 f L. Heref is a param-
eter which is close to the self-couplingf 1 according to Fig.
4. The entropy of the monopole trajectory also contributes
the monopole length distribution, which is proportional
mL ~with m being a positive number! for sufficiently large
monopole lengthL. Thus the distribution of the monopol
trajectories in the infinite volume limit must be described
a function

D inf
IR~L !}mL

•e2 f L5egL, g5 ln m2 f . ~12!

In this equation we neglect a power-law prefactor which
essential for the distribution of the ultraviolet clusters4 @13#.

The observed localization of the infrared cluster distrib
tion implies a certain cut which depends on the volume
the system. The simplest distribution of this kind may
described by a function

DIR~L !5exp$2aLh1gL%, ~13!

wherea, g andh are certain parameters.
As we find below, the parameterh which characterizes

the cut due to the volume effect ish'2. Moreover, as we
mentioned, the parameterg characterizes the action and th
entropy of the monopole currents and thus it must dep

4Below we work with the distribution of the pure exponenti
form ~12!. We also repeated our analysis with the prefactorL23

included. We observed that the results with and without the pow
law prefactor are the same within the small error bars.
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only on the physical size of the blocked monopole,g
5g(b). On the other hand,a must depend both on th
physical size and the volume, i.e.,a5a(b,V). Thus we as-
sume the following parametrization of the IR monopole d
tribution at finite volume:

DIR~L !5exp$2a~b,V!L21g~b!L%. ~14!

Then the peak of the distribution~14! becomes

Lmax5
g~b!

2a~b,V!
. ~15!

The IR monopole density is given by

r IR5
Lmax

V
5

g~b!

2a~b,V!V
, ~16!

in the thermodynamic limit,V→` and is expected to be
finite. Hence we seeLmax}V. From Eq.~16! we conclude
that

a~b,V!5A~b!/V, ~17!

where the functionA(b) depends only on the size of th
blocked monopole,b. Equation~17! implies that in the ther-
modynamic limit the parametera vanishes and the finite
volume distribution~13! is reduced to Eq.~12!, as expected.

Let us check the distribution~14! numerically. We show
typical examples of the IR cluster distributions in Fig. 5. O
can see that these histograms have an almost symm
structure. But due to the lack of statistics, these histogra
cannot be fitted by the function~14!. In order to show that
the distribution of the lengths of the monopole trajector
follows Eq.~14!, we smooth the noise in Fig. 5 by increasin
the bin size from the original size ofdL52 to dL5200 @for
the case presented in Fig. 5~a!# and todL570 @for Fig. 5~b!#.
Thus, effectively, we average the data inside each coarse
and, as a result, we reduce the noise.

r-
9-5
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FIG. 6. The distribution of the parametera andg for elementary monopoles atb52.4 on 244 lattice. The fits by a Gaussian function a
shown by the solid lines and the value of the errors are indicated by shadowed regions.
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The averaged~and suitably rescaled! histograms and thei
fits by the function~14! are shown in Fig. 5. One can see th
the averaged histograms are very close to the Gaussian
tribution. Similar behavior can also be observed for all
monopole cluster distributions we have studied in this pa

In order to justify the chosen value of the parameterh in
Eq. ~14! we have also fitted the averaged histogram data
Eq. ~13! in which h is treated as a fitting parameter. The be
fit ~for b52.4 andn51 on 244 lattice, as an example! gives
us the resulth52.05(15). Fits of other histograms give u
similar results. Thus we fix belowh52.

The histograms in Fig. 5 were obtained with rather hi
simulation statistics~3000 configurations according to Tab
I!. However, in order to get a perfect Gaussian, we n
much more statistics which require a lot of CPU time.
avoid this lengthy procedure we assume5 that the numerical
data for length distribution of the IR monopoles are d
scribed by Eq.~14!. Then one can evaluate the central valu
of the parametersa andg using simple formulas~valid for a
Gaussian distribution!,

a5
1

2

1

^L2&2^L&2
, g5

^L&

^L2&2^L&2
, ~18!

where the averaginĝ•••& is performed using weights from
the histograms.

To evaluate the errors for the parametersa andg, we use
the standard bootstrap method. Namely, we make a res
pling of the original length distribution of the IR monopo
clusters,Lmax. We construct a resampled distribution by s
lecting ncon f random values ofLmax wherencon f is the total
number of the monopole configurations. Note that any e
ment of the original distribution may enter the resamp
distribution more than one time.

After the resampled configuration is constructed
evaluate the values of the parametersa and g on this con-

5We are checking this assumption on a smaller lattice at the en
this section.
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figuration using Eq.~18!. We generate a number of suc
configurations and then construct the distributions of the
rametersa andg. These distributions are the Gaussian fun
tions with the widths equal to the corresponding errors.
plot examples of the histograms fora andg values in Figs.
6~a! and 6~b!.

We have checked the applicability of Eqs.~18! and the
use of the bootstrap method on a smaller, 164, lattice.
Namely, we have generated length distributions using fr
low statistics ~2000 configurations! to high statistics (105

configurations! ensembles. We used the bootstrap meth
along with Eqs.~18! to evaluate the coefficientsa andb for
the distribution measured with the lowest statistics. On
other hand, the high statistics distribution is a~almost per-
fect! Gaussian and therefore we get the desired coefficie
directly from the fit~14!. The comparison of the coefficient
shows that the central values as well as the estimated e
for the low and for the high statistics ensembles coinc
with each other within a few percent. We illustrate our ana
sis in Fig. 7 forb52.1 andb52.2 using the parameterg as
an example. The values ofg obtained with the standard
method are plotted vs number of configurations,Ncon f , used
in the analysis. The horizontal lines represent the res
coming from the bootstrap method applied to the lo

of FIG. 7. Check of the bootstrap method on 164 lattice illustration
with parameterg ~the explanation is given in the text!.
9-6



NUMERICAL DETERMINATION OF MONOPOLE ENTROPY . . . PHYSICAL REVIEW D 69, 014509 ~2004!
FIG. 8. ~a! The fitting parametera as a function of the sizeN/n of the coarse lattice;~b! the parametera multiplied by the lattice volume
as a function of the lattice sizeN.
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statistic ensemble~the statistical errors are indicated by sha
owed regions!. We conclude that the bootstrap method giv
reliable results using the distributions with low statistics.

In order to confirm our expectation~17! we plot the pa-
rametera vs the ratioN/n in Fig. 8~a! for selected sets o
coupling constantsb and the blocking steps of the mono
pole, n. Since the volume of the blocked lattice is (N/n)4,
we expect that the parametera behaves asa}(N/n)24. This
behavior is seen in Figs. 8~a! and 8~b!. The parametera
multiplied by the lattice volume is almost independent of t
lattice sizeN according to Fig. 8~b!.

According to our discussion above, the fitting parameteg
must be a function of the blocking sizeb alone and does no
depend on the volume of the lattice. In Fig. 9 we show
parameterg is indeed independent of the lattice sizeN.

The fitting parametersa andg are shown as functions o
the physical scaleb in Figs. 10~a! and 10~b!, respectively.
The parameterg shows the scaling behavior in a sense tha
depends on the blocking stepn and lattice spacinga only in
the form of the productb5n•a.

V. MONOPOLE DENSITY AND ENTROPY

A. Monopole density

The simplest physical observable of the monopole
semble is its density. It is interesting to compare the mo

FIG. 9. The illustration of the independence of the fitting para
eterg on the lattice size,N.
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pole density obtained from the IR monopole cluster distrib
tion, Eq. ~16!, with the direct observation of the monopo
density,

r IR5
1

4~na!3
•~N/n!4 K (s,m

ukm
(n)~s!u L . ~19!

Here the blocked monopole currentkm
(n) is defined by Eq.~6!.

The normalization factor in Eq.~19! appears naturally if one
notes thatb5na and 4(N/n)4 are the lattice spacing and th
number of links of the coarse lattice, respectively.

If the fitting function~14! describes the data correctly, on
should observe the same infrared monopole density obta
from the fits of the monopole distributions~14!, ~16! as that
obtained in a direct way~19!. This is indeed the case accord
ing to Fig. 11~a!.

We note that the value of the blocked monopole dens
quoted above is about 30% larger than the value of den
@21# of the elementaryinfrared monopoles in the continuum
limit.

The monopole density is known to be sensitive to t
details of the gauge fixing procedure@21#. In order to check
the effect of the gauge fixing we compare in Fig. 11~b! the
infrared monopole density obtained using the SA and ite
tive gauge fixing algorithms. One can see from this figu
that at largeb there is practically no difference between th
monopole densities obtained with the use of the differ
algorithms. However, there exists some difference at smab
since the SA monopole density is smaller than the den
obtained with the help of the iterative algorithm. This slig
dependence of the density on the gauge fixing algorithm
smallb may explain the discrepancy between our results
the results of Ref.@21# mentioned above. Another source
the discrepancy is the qualitative difference between the
ementary and the blocked monopoles. Since the scaleb is
taken to be independent of the lattice spacinga while a tends
to zero in the continuum limit, the elementary monopo
are expected to be more affected by the ultraviolet latt
artifacts.

-
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FIG. 10. The fitting parameters~a! a and ~b! g as a function ofb for various lattice volumesN4 and monopole blocking stepsn.
d
y
w

s t
no
na
o

g
k

s
th

r

ap-
de-
e
o
e
ck-
to

le
r
ow-

al
qua-

tion
nly

.
o-

tion
B. Monopole entropy

The distribution of the monopole trajectories depen
both on the monopole action and on the monopole entrop
we have already discussed in Sec. IV. Therefore the kno
edge of the distribution and the monopole action allows u
extract the entropy of the monopole currents. If the mo
poles make a simple random walk on the four-dimensio
hypercubic lattice, the entropy factor for elementary mon
poles is expected to be equal to seven,m57, since there are
seven choices at each site for the monopole current to
further ~the monopole trajectory is obviously nonbacktrac
ing due to the presence of the magnetic charge!.

The entropy factorm of the infrared monopole trajectorie
can be obtained from the IR cluster distribution and
monopole action according to Eq.~12!,

m5eg1 f . ~20!

We calculate numerically the parametersg and f to find the
entropy factorm for various scalesb and lattice sizes. Ou
01450
s
as
l-
o
-
l
-

o
-

e

results are presented in Fig. 12. The entropy shows an
proximate scaling behavior in a sense that the entropy
pends only on the scaleb and is independent of the lattic
spacinga and the blocking factorn separately. One can als
notice that the entropym is independent of the volume of th
lattice. The largest scaling violation happens at small blo
ing sizesn51,2 where the finite-size artifacts are expected
be strong.

The entropy factorm is a descending function of the sca
b. As discussed above, one can expect that the factom
should be equal to seven for elementary monopoles. H
ever, we seem.7 for small values ofb from Fig. 12. We
explain this small-b behavior as an artifact of our numeric
procedure adopted in this paper. Indeed, we used the
dratic monopole action. However, at smallb, higher-point
interaction terms are essential and thus the monopole ac
cannot be reliably described by the quadratic terms o
@19,20#.

At large b the entropy factor~20! is smaller than seven
Formally this means that the motion of the blocked mon
poles is constrained. We have fitted the entropy by a func
FIG. 11. ~a! Comparison of the infrared monopole density obtained from the fits of the monopole distributions~14!, ~16! with the density
obtained in a direct way~19!. ~b! Comparison of the effect of the gauge fixing procedure~iterative vs simulated annealing! on the infrared
monopole density.
9-8
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NUMERICAL DETERMINATION OF MONOPOLE ENTROPY . . . PHYSICAL REVIEW D 69, 014509 ~2004!
mfit5m`1Cm2q, ~21!

where m` , C and q are fitting parameters. The best fit
shown in Fig. 12 by the dashed line. The corresponding b
fit parameters arem`51.6(4), C51.7(5) andq51.2(2).
The most interesting fitting parameter ism` which is the
asymptotic value of the entropy in the infrared limitbs1/2

→` according to Eq.~21!. Unfortunately, the value of the
asymptotic entropy is obtained with a big error bar in t
above fit. In order to increase the accuracy we notice that
powerq is very close to unity. Fixingq51 in Eq. ~21! and
repeating the fitting procedure again, we getm`51.15(25)
andC52.2(1). Thecorresponding best fit curve is shown
Fig. 12 by the solid line.

The fact that the asymptotic value of the entropy is ve
close to unity in the limitbs1/2→` may have a simple ex
planation. The monopole with a large blocking sizeb be-
haves as a classical object and its motion is never a sim
random walk. The predominant motion of the large-b mono-
pole is close to a straight line.

FIG. 12. Entropy factorm vs b. The dashed line represents th
fit by Eq. ~21! with free q parameter and the solid line correspon
to the fixed parameter,q51.
.

ki
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VI. CONCLUSION

We studied numerically the distributions of the infrare
monopole currents of various blocking sizesn on the lattices
with different spacingsa and volumesN. The distributions
can be described by a Gaussian ansatz with a good accu
The ansatz contains two important terms:~i! the linear term
which has information about the energy and the entropy
the monopole currents; and~ii ! the quadratic term which
suppresses too large infrared clusters. The linear term is
dependent of the lattice volume while the quadratic term
inversely proportional to the volume. The monopole dens
determined from the parameters of the Gaussian fits c
cides with the result of the direct numerical calculation.

We also studied the action of the monopoles belonging
the infrared clusters and compared it with the action of
total monopole ensemble. It turns out that the self-coupl
coefficients for both these ensembles are almost the sam
large b. However, as the blocking scaleb is decreased the
self-coupling coefficient for an infrared monopole clust
gets noticeably larger than the coefficient for the total mo
pole ensemble. This can be explained by the fact that
self-interaction coefficient is related directly to the monopo
density.

The knowledge of both the coefficient in front of the lin
ear term of the Gaussian distribution and the monopole
tion for infrared clusters allows us to determine the entro
factor of the extended~blocked! monopole currents. We hav
numerically shown that the entropy of the blocked monop
currents is a descending function ofb5na, indicating that
the effective degrees of freedom of the blocked monopo
are getting smaller as the physical classical picture:
monopole becomes a macroscopic object and the motio
such a monopole is close to a straight line.
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