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Determination of the monopole condensate from monopole action in quenched SU„2… QCD
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We study the effective monopole action obtained in the maximal Abelian projection of the quenched SU~2!
lattice QCD. We determine the quadratic part of the lattice action using analytical blocking from the continuum
dual superconductor model to the lattice model. The leading contribution to the quadratic action depends
explicitly on the value of the monopole condensate. We show that the analytical monopole action matches the
numerically obtained action in quenched SU~2! QCD with a good accuracy. The comparison of numerical and
analytical results gives us the value of the monopole condensate in quenched SU~2! QCD, h5243(42)
MeV.
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I. INTRODUCTION

The dual superconductor mechanism@1# is one of the
most promising mechanisms invented to explain the confi
ment of color in non-Abelian gauge theories. The basic e
ment of this mechanism is the existence of specific fi
configurations—called Abelian monopoles—in the QC
vacuum. The monopoles are identified with the help of
Abelian projection method@2#, which uses the partial gaug
fixing of the SU(N) gauge symmetry up to an Abelian su
group. The Abelian monopoles appear naturally in the A
lian gauge as a result of the compactness of the resi
Abelian group.

Various numerical simulations indicate that the Abeli
monopoles may be responsible for the confinement of qu
~for a review, see, e.g., Ref.@3#!. The Abelian monopoles
provide a dominant contribution to the tension of the fund
mental chromoelectric string@4–6#. In Ref. @7# it was quali-
tatively shown that the monopole condensate is formed in
low-temperature~confinement! phase and it disappears in th
high-temperature~deconfinement! phase. The energy profil
of the chromoelectric string as well as the field distributi
inside it can be described with good accuracy by the d
superconductor model@6,8,9#.

There were various attempts to determine the dual
grangian and the values of its couplings@8–14#. The simplest
version of the dual superconductor model for SU~2! gauge
theory contains three independent parameters: the mas
the monopoleMF , the monopole chargeg, and the value of
the monopole condensate,h. Knowledge of the values o
these couplings is important because of the possible phen
enological applications. The parameters of the dual mo
determine the basic properties of the chromoelectric str
the string tension, the thickness of the string, the rigidity
the string@15#, etc. These characteristics must affect in tu
the spectrum of the quark bound states. The paramete
the model determine also the strength and sign of the fo
acting between the strings at large distances. The value o
monopole condensate plays a central role in phenomeno
0556-2821/2004/69~9!/094508~12!/$22.50 69 0945
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cal applications because the condensate is the only dim
sional parameter of the dual model.

In Ref. @8# the SU~2! string profile was compared with th
classical string solution of the dual superconductor in
continuum, and the mass of the dual gauge boson,MB
5gh, and the monopole mass were shown to be equ1

MB'MF'1.3 GeV. These values are close to the results
other groups. The value of the monopole condensate der
from the chromoelectric string analysis of Ref.@8# is h
5194(19) MeV.

In this paper we determine the value of the monop
condensate from the effective monopole action obtained
the numerical simulations of quenched SU~2! QCD. Our
strategy is the following. We relate thelattice monopole
model on the lattice with thecontinuumdual superconducto
model using the approach of blocking of the continuum va
ables to the lattice proposed in Ref.@16#. Generally, this
method allows us to construct perfect lattice actions and
erators in various field theories. In particular, this meth
was used in Ref.@17# for the quenched SU~2! QCD at high
temperatures to study the dynamics of the static monopo
The lattice monopole action obtained with the help of su
blocking depends on the parameters of the original c
tinuum model. The comparison of the analytical form of t
lattice monopole action with the corresponding numeri
results allows us in general to fix the parameters of the c
tinuum model. In this paper we concentrate on the deter
nation of the monopole condensate in the quenched SU~2!
QCD in the maximal Abelian projection@18#.

The plan of the paper is the following: In Sec. II w
propose the method of blocking from continuum to the l
tice of the monopole currents in four-dimensional spa
time. We compute the quadratic part of the monopole act
analytically in Sec. III, while the numerical computation
done in Sec. IV. In Sec. V we compare the numerical d

1In this paper we quote the first set of parameters of Ref.@8#,
which is self-consistent.
©2004 The American Physical Society08-1
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CHERNODUB, ISHIGURO, AND SUZUKI PHYSICAL REVIEW D69, 094508 ~2004!
with the analytically calculated action and fix the value
the monopole condensate. Our conclusions are present
the last section.

II. BLOCKING FROM THE CONTINUUM
IN FOUR DIMENSIONS

The method of blocking of continuum variables to t
lattice @16,17# constructs the lattice model~at given finite
lattice spacingb) starting from a model in continuum. Th
essence of this method is simple. Consider, for example,
blocking of the topological variables, such as the monop
charge in three space-time dimensions@17#. In three dimen-
sions the monopoles are instantons characterized by thei
sitions and the magnetic charges. Suppose that the dyna
of these monopole charges in continuum is described b
Coulomb gas model with two parameters, the fugacityz, and
the monopole chargeg. Let us superimpose a cubic lattic
with the lattice spacingb on a particular configuration of th
monopoles. Each of the lattice three-dimensional~3D! cells
can be characterized by the integer magnetic charge it
tains. Thus we can relate the continuum configuration of
monopoles to the lattice configuration characterized by m
netic charge inside each cell~see Fig. 1 for an illustration!.
The next step is to construct a ‘‘lattice quantity’’~for ex-
ample, the absolute value of the magnetic charge inside a
cell! and calculate analytically the average of this quan
over all configurations of the continuum monopoles. T
value of this averaged quantity would depend on the size
the cell b and on the parameters of the continuum mo
~i.e., onz andg). Similarly, one can study numerically th
same quantity in a pure lattice model@i.e., in the dimension-
ally reduced quenched SU~2! QCD as in Ref.@17##, and re-
late both numerical and analytical results for the density w
each other. Since the averaged density depends on the
b, the fitting of the numerical results to the analytically o
tained formula gives information about the parameters of
continuum model,z and g. The fitting also provides infor-
mation about the self-consistency of this approach, or
other words, about the validity of the description of the l
tice quantities by the continuum model.

Therefore this method allows us to describe the latt

FIG. 1. Blocking of the continuum monopoles to the lattice
~a! three and~b! four dimensions. In three dimensions the char
corresponding to the lattice cubeC is given by the total magnetic
charge of the continuum monopoles inside this cube. In four dim
sions the charge is proportional to the linking number of the mo
pole trajectoryk with the surface of the 3D cubeC.
09450
f
in

he
le

o-
ics
a

n-
e
g-

D
y
e
of
l

h
ale

e

n
-

e

observables by the continuum model. In Ref.@17# the block-
ing was performed for the monopoles in three dimensio
which are instantonlike objects. Below we generalize t
approach to the 4D case.

The partition function of the dual superconductor can
described in terms of the monopole trajectories as follow

ZmonX DkE DB expH 2E d4xF 1

4g2
Fmn

2 1 ikm~x!Bm~x!G
2Sint~k!J , ~1!

whereFmn5]mBn2]nBm is the field stress tensor of the du
gauge fieldBm , andSint(k) is the action of the closed mono
pole currentsk,

km~x!5 R dt
] x̃m~t!

]t
d (4)

„x2 x̃~t!…. ~2!

Here the 4D vector functionx̃m(t) defines the trajectory o
the monopole current. In Eq.~1! the integration is carried ou
over the dual gauge fields and over all possible monop
trajectories~the sum over disconnected parts of the mon
pole trajectories is also implicitly assumed!.

The action in Eq.~1! contains three parts: the kinetic ter
for the dual gauge field, the interaction of the dual gau
field with the monopole current, and the self-interaction
the monopole currents. The integration over the monop
trajectories gives the Lagrangian of the dual Abelian Hig
model @10#:

Zmon}ZDAHM5E DFE DB expH 2E d4xF 1

4g2
Fmn

2

1
1

2
u~]m1 iBm!Fu21V~F!G J , ~3!

where F is the complex monopole field. The sel
interactions of the monopole trajectories described by
actionSint in Eq. ~1! lead to the self-interaction of the mono
pole fieldF described by the potential termV(F) in Eq. ~3!.

Now let us embed the hypercubic lattice with the latti
spacingb into the continuum space. The 3D cubes are
fined as follows:

Cs,m5H bS sn2
1

2D<xn<bS sn1
1

2D
for nÞm and xm5bsm J , ~4!

wheresn is the dimensionless lattice coordinate of the latt
cubeCs,m andxn is the continuum coordinate. The directio
of the 3D cube in 4D space is defined by the Lorentz ind
m.

As in the 3D example described above, let us conside
configuration of the monopole currents superimposed on

-
-

8-2
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DETERMINATION OF THE MONOPOLE CONDENSATE . . . PHYSICALREVIEW D 69, 094508 ~2004!
lattice ~4!. The monopole chargeKC inside the lattice cube
Cs,m is equal to the total charge of the continuum monopo
k, which pass through this cube. Geometrically, the to
monopole corresponds to the linking number between
cube C and the monopole trajectoriesk ~an illustration is
presented in Fig. 1!. The mutual orientation of the cube an
the monopole trajectory is obviously important. The cor
sponding mathematical expression for the monopole cha
KC inside the cubeC is a generalization of the Gauss linkin
number to the 4D space-time:

KC~k![L~]C,k!

5
1

2E d4xE d4yemnabSmn
]C~x!ka~y!]bD (4)~x2y!

5
1

4p2
E d4xE d4yemnabSmn

]C~x!ka~y!
~x2y!b

ux2yu4
.

~5!

Here the functionSmn
]C(x) is the 2Dd function representing

the boundary]C of the cubeC. In general form it can be
written as follows:

Sab~x!5E
S
dt1dt2

x[a,~tW !

]ta

xb]~tW !

]tb
d (4)@x2 x̃~tW !#, ~6!

where the 4D vectorx̃(tW ) parametrizes the position of the 2
surfaceS. The functionD (4) in Eq. ~5! is the inverse La-
placian in four dimensions,]m

2 D (4)(x)5d (4)(x). It is obvi-
ous that the lattice currentsKs,m are closed,

]8K50, ~7!

due to the conservation of the continuum monopole cha
]mkm50. In Eq. ~7! the symbol]8 denotes the backwar
derivative on the lattice. We present a proof of Eq.~7! in
Appendix A.

Let us rewrite the dual superconductor model~3! in terms
of the lattice currentsKC , Eq. ~5!. To this end we insert the
unity,

15 (
KCPZ

)
C

d „KC2L~]C,k!…, ~8!

into the partition function~1! ~here d represents the Kro
necker symbol!. Then we integrate the continuum degrees
freedom,km andBm , getting the partition function in term
of the lattice chargesKC . The simplest way to do so is t
represent the product of the Kronecker symbols in Eq.~8! in
terms of the integrals,

15 (
KCPZ

F)
C

E
2`

`

duCG
3expH i(

C
uCKC2 i E d4xkm~x!B̃m~u;x!J , ~9!

where
09450
s,
l
e

-
ge
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f

B̃m~u;x!5
1

2E d4yemnab]nD (4)~x2y!(
C

uCSab
]C~y!.

~10!

To derive Eqs.~9! and~10! from Eq.~8! we used relation~5!.
Substituting Eq.~9! into Eq. ~1! we get

Zmon5X DkE DB (
KCPZ

F)
C

E
2`

`

duCGexpH i(
C

uCKC

2E d4F 1

4g2
Fmn

2 1 ikm~x!Bm~x!1B̃m~u;x!G
2Sint~k!J . ~11!

One can see that the substitution of the unity~9! effectively
shifts the gauge field in the interaction term with the mon
pole current,Bm→Bm1B̃m . Therefore the integration ove
the monopole trajectorieskm in Eq. ~11! is very similar to the
integration that relates Eq.~1! and Eq.~3!. Thus, we get

Zmon}ZDAHM

5E DFE DB (
KCPZ

F)
C

E
2`

`

duCG
3expH i(

C
uCKC2E d4xF 1

4g2
Fmn

2

1
1

2
u$]m1 i @Bm~x!1B̃m~u;x!#%Fu21V~F!G J .

~12!

Summarizing this section, we rewrite the continuum du
superconductor model in terms of the lattice monopole c
rentsK:

ZDAHM5 (
Kx,mPZ

e2Smon(K), ~13!

where the monopole action is defined via the lattice Fou
transformation:

e2Smon(K)5E
2`

`

DuC exp$2S̃~u!1 i ~u,K !%, ~14!

and the action of the compact lattice fieldsu is expressed in
terms of the dual Abelian Higgs model~AHM ! in the con-
tinuum:
8-3
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e2S̃(u)5E DFE DB expH 2E d4xF 1

4g2
Fmn

2

1
1

2
u$]m1 i ~Bm1B̃m~u!%Fu21V~F!G J .

~15!

Equations~10!, and ~13!–~15! are the main result of this
section.

III. QUADRATIC PART OF THE MONOPOLE ACTION

An exact integration over the monopoleF and dual gauge
gluon Bm fields in Eq.~15! is impossible in a general cas
However, in this paper we are interested in the quadratic
of the monopole action that is dominated by the contribut
of the one dual gluon exchange. Therefore we do not c
sider the effect of the fluctuations of the monopole fieldF,
which lead to the higher-point interactions in the effecti
monopole action2 @19#. Effectively, the neglect of the quan
tum fluctuations of the monopole field corresponds to a m
field approximation with respect to this field,F→^F&. In
this case the AHM action becomes quadratic and Eq.~15!
can be rewritten as

e2S̃(u)5E DB expH 2E d4x

3F 1

4g2
Fmn

2 1
h2

2
@Bm1B̃m~u!#2G J , ~16!

whereh5u^F&u is the monopole condensate.
The Gaussian integration over the dual gauge field can

done explicitly. In momentum space the effective action~up
to an irrelevant additive constant! reads as follows:

S̃~u!5
h2

2
E d4p

~2p!4
B̃m~u,p!

p2dmn2pmpn

p21MB
2

B̃m~u,2p!,

~17!

whereB̃m(u,p) is related to the fieldB̃m(u,x), given in Eq.
~10!, by a continuum Fourier transformation:

B̃m~u,p!5
b3

p2
(
s,a

@p2dmaQa~pb!

2pmpaQa~pb!#e2 ib(p,s)us,a , ~18!

with

2The fluctuations of the monopole fields and their effect on
blocked monopole action will be considered in a subsequent pa
09450
rt
n
n-

n

e

Qm~x!5 )
nÞm

sinxn/2

xn/2
. ~19!

To get Eq.~18! from Eq. ~10! we notice that

1

2
emnabSab

]C~x!5] [m ,Vn]
C ~x!, ~20!

where Vm
C is the characteristic function of the lattice ce

Cs,m . Namely, the characteristic function of the 3D cu
with the lattice coordinatesm and the directiona is

Vm~Cs,a ,x!5dm,ad~xa2bsa! )
gÞa

Q„b~sg11/2!2xg…

3Q„xg2b~sg21/2!…, ~21!

whereQ(x) is the Heaviside function. The Fourier transfor
of the function~21! is

Vm~Cx,a ,p!5dm,ab3Qa~pb!e2 ib(p,s). ~22!

Substituting Eq.~18! into Eq.~17! and changing the momen
tum variable,q5bp, we get the following expression for th
quadratic action:

S̃~u!5
h2b2

2 (
s,s8

(
a,a8

us,aF ss8,aa8
21 us8aus8,a8 , ~23!

where

F ss8,aa8
21

5E d4q

~2p!4

q2daa82qaqa8

q21m2

3Qa~q!Qa8~q!eiq(s82s). ~24!

Here we have introduced the dimensionless parameter

m5MBb. ~25!

The next step is to substitute Eq.~23! into Eq. ~14! and
integrate over the variablesu to get the quadratic monopol
action:

Smon~K !5(
s,s8

(
a,a8

Ks,aSss8,aa8Ks8,a8 ,

Sss8,aa85
1

2h2b2
Fss8,aa8 . ~26!

We could not find an explicit form for the operatorF 21 and
therefore we calculate it in them→` limit. This limit corre-
sponds to large values ofb that are consistent with the qua
dratic form of the monopole action@19#. The details of the
calculation are given in Appendix B, and the result is

e
er.
8-4
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F ss8,aa8
21

5
daa8

4p
dsa ,s

a8FG~0,tUVm2!D a
(3)
„~sW2sW8!'…

1
2

m
Ga„~sW2sW8!'…1

3

pm2
Ha„~sW2sW8!'…G ,

~27!

D a
(3)~sW !5 (

i , j ,kÞa
cyclic

Dsi
dsj

dsk
,

Ga~sW !5 (
i , j ,kÞa

cyclic

Dsi
Dsj

dsk
, Ha~sW !5)

iÞa
Dsi

.

Here Da
(3)(sW') is the 3D Laplacian acting in a time slic

perpendicular to the directionâ, ds is the Kronecker symbol
Ds[D (1)(s) is the 1D Laplacian operator~double deriva-
tive! defined in Eq.~B15!, G(a,x) is the incomplete gamma
function, andtUV is an ultraviolet cutoff. In Eq.~27! expo-
nentially suppressed corrections of the orderO(e2constm) are
omitted.

Inverting the operator~27! and expanding it in inverse
powers ofm we get the quadratic operatorS in the monopole
action ~26!:

Sss8,aa85
2p

h2b2G
daa8dsa ,s

a8FD a
212

2

mG
D a

21GaD a
21

1
1

pm2G2
~4pD a

21GaD a
21GaD a

21

23GD a
21HaD a

21!1O~m23!G
(sW2sW8)'

, ~28!

whereDa[D a
(3) , G[G(0,tUVMB

2b2). The operator expan
sion in Eq.~28! is written in symbolic form.

IV. MONOPOLE ACTION IN QUENCHED SU „2… QCD

Having determined the action of the blocked monopo
analytically, we are going to determine the same in
quenched SU~2! QCD using numerical calculations. W
simulate the quenched SU~2! gluodynamics with the lattice
Wilson action,S(U)52(b/2)(PTr UP , whereb is the cou-
pling constant andUP is the SU~2! plaquette constructed
from the link fields. We express all dimensional quantities
units of the string tension,s5(440 MeV)2.

Our results are obtained in the maximal Abelian~MA !
gauge@18# which is defined by the maximization of the la
tice functional

R5(
s,m̂

Tr@s3Ũ~s,m!s3Ũ†~s,m!#, ~29!
09450
s
e

with respect to the SU~2! gauge transformationsU(s,m)
→Ũ(s,m)5V(s)U(s,m)V†(s1m̂). The local condition
of maximization can be written in the continuum lim
as the differential equation (]m1 igAm

3 )(Am
1 2 iAm

2 )50.
Both this condition and the functional~29! are invariant
under residual U~1! gauge transformations,VAbel(v)
5diag(eiv(s),e2 iv(s)).

After the gauge fixing is done we get the Abelian va
ables applying the Abelian projection to the non-Abelian li
variables. The Abelian gauge field is extracted from t
SU~2! link variables as follows:

Ũ~s,m!5S @12uc~s,m!u2#1/2 2c* ~s,m!

c~s,m! @12uc~s,m!u2#1/2D
3S u~s,m! 0

0 u* ~s,m!
D , ~30!

whereu(s,m)5exp@iu(s,m)# represents the Abelian link field
andc(s,m) corresponds to the charged~off-diagonal! matter
fields. The Abelian field strengthumn(s)P(24p,4p) is de-
fined on the lattice plaquettes by the Abelian link ang
u(s,m)P@2p,p) as follows:umn(s)5u(s,m)1u(s1m̂,n)
2u(s1 n̂,m)2u(s,n).

To construct the Abelian monopoles we decompose
field strengthumn(s) into two parts,

umn~s!5 ūmn~s!12pmmn~s!, ~31!

where ūmn(s)P@2p,p) is interpreted as the electromag
netic flux through the plaquette andmmn(s) can be regarded
as a number of the Dirac strings piercing the plaquette. T
elementary~i.e., defined on the 13 lattice cubes! monopole
currents are determined by the DeGrand-Toussaint@20# for-
mula:

km~s!5
1

2
emnrs]nmrs~s1m̂ !, ~32!

where ] is the forward lattice derivative. The elementa
monopole current is defined on a link of the dual lattice a
takes values 0,61,62. Moreover the elementary monopo
current satisfies the conservation condition by constructio

]m8 km~s!50, ~33!

where]8 is the backward derivative on the dual lattice.
Besides the elementary monopoles one can also study

so called extended monopoles@21#. The extended monopole
are usually used to define the monopole current on a cub
a large size without getting artificial lattice corrections of t
order of the lattice spacing,a. Then3 extended monopole is
defined on a sublattice with the lattice spacingb5na. The
explicit construction of the extended monopoles correspo
to a block spin transformation of the monopole currents w
the scale factorn,
8-5
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TABLE I. The quadratic interactions in the monopole action determined numerically.

Coupling Distance Type Coupling Distance Type

g1 ~0,0,0,0! km(s) g15 ~2,1,1,0! km(s12m̂1 n̂1 r̂)
g2 ~1,0,0,0! km(s1m̂) g16 ~1,2,1,0! km(s1m̂12n̂1 r̂)
g3 ~0,1,0,0! km(s1 n̂) g17 ~0,2,1,1! km(s12n̂1 r̂1ŝ)
g4 ~1,1,0,0! km(s1m̂1 n̂) g18 ~2,1,1,1! km(s12m̂1 n̂1 r̂1ŝ)
g5 ~0,1,1,0! km(s1 n̂1 r̂) g19 ~1,2,1,1! km(s1m̂12n̂1 r̂1ŝ)
g6 ~2,0,0,0! km(s12m̂) g20 ~2,2,0,0! km(s12m̂12n̂)
g7 ~0,2,0,0! km(s12n̂) g21 ~0,2,2,0! km(s12n̂12r̂)
g8 ~1,1,1,1! km(s1m̂1 n̂1 r̂1ŝ) g22 ~3,0,0,0! km(s13m̂)
g9 ~1,1,1,0! km(s1m̂1 n̂1 r̂) g23 ~0,3,0,0! km(s13n̂)
g10 ~0,1,1,1! km(s1 n̂1 r̂1ŝ) g24 ~2,2,1,0! km(s12m̂12n̂1 r̂)
g11 ~2,1,0,0! km(s12m̂1 n̂) g25 ~1,2,2,0! km(s1m̂12n̂12r̂)
g12 ~1,2,0,0! km(s1m̂12n̂) g26 ~0,2,2,1! km(s12n̂12r̂1ŝ)
g13 ~0,2,1,0! km(s12n̂1 r̂) g27 ~2,1,1,0! kr(s12m̂12n̂1 r̂)
g14 ~2,1,0,0! kn(s12m̂1 n̂)
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(n)~s!5 (

i , j ,l 50

n21

km@ns1~n21!m̂1 i n̂1 j r̂1 l ŝ#. ~34!

The spacinga of the original lattice and, consequently, th
artificial lattice corrections@which are of the order ofO(a)]
can be arbitrarily small while the size of the blocked mon
pole can be fixed in physical units. In our studied we ha
studiedn52,3,4,6,8 blocked monopoles on a 484 lattice.

Applying consecutively the gauge fixing and the Abeli
projection and using formula~34!, one can construct the
Abelian monopole ensemble for any ensemble of the n
Abelian fields of quenched SU~2! QCD. Then using an in-
verse Monte Carlo method one can get the effective mo
pole action. The details of this procedure can be found
Refs. @19,22,23#. In our simulations we have used 200 co
figurations on a 484 lattice. The maximal Abelian gauge wa
fixed with the help of the standard iterative procedure.

In general, the monopole action,Seff
mon, can be represente

as a sum of then-point (n>2) operatorsSi , Refs.@19,22#:

S@k#5(
i

giSi@k#, ~35!

wheregi are coupling constants. In this paper we adopt o
the two-point interactions of the formSi;km(s)km8(s8),
which works well at large values ofb. Using the inverse
Monte Carlo method we calculate the monopole action
rametrized by 27 couplingsgi . The maximal distance be
tween the interacting currents in this action is 3 in units
the blocked lattice spacingb. The contributions of higher-
distance interactions are very small. The mutual separat
and directions of the monopole currents corresponding to
couplingsgi are summarized in Table I. We visualize the fir
seven most essential coupling constants in the monopole
tion in Fig. 2.
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The action determined above takes into account all mo
pole trajectories. However, a typical monopole configurat
in the confinement phase consists of one large monop
trajectory ~percolating cluster! supplemented by a lot o
small ~ultraviolet! monopole clusters@24#. The percolating
cluster fills the whole volume of the lattice and it makes
dominant contribution to the tension of the chromoelect
string. The properties of the largest percolating cluster w
studied both numerically@24–26# and analytically@27#. The
percolating cluster is associated with the monopole cond
sate@28,22#.

If our determination of the monopole action is se
consistent, then at large scalesb the ultraviolet clusters
should not give any contribution neither to the monopo
action nor to the monopole condensate. The correctnes
the first statement for the leading parameter,g1 , was con-
firmed in Ref.@25#. In Figs. 3~a! and 3~b! we show the cou-
plingsg1 andg2 for all clusters and for the percolating clus
ter. These couplings show an approximate scaling: t
depend only on the productb5an and do not depend on th
variablesa andn separately whenn>3 are considered. The
largerb, the better the scaling.

The comparison of the couplings computed on all clust

FIG. 2. The graphic representation of the first seven types of
quadratic interactions in the lattice monopole action schematize
Table I.
8-6
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FIG. 3. The couplingsg1 andg2 of the monopole action~a! for the all-cluster case and~b! for the percolating cluster. In this and othe
figures the error bars are smaller than the size of symbols and the scaleb is shown in units of the string tension.
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and on the percolating cluster only are shown in Figs. 4~a!
and 4~b!. Again, one can clearly observe that at large scaleb
the coupling constants evaluated on the different types of
monopole ensembles coincide with each other, contrary
the small-b case.

V. MONOPOLE CONDENSATE FROM MONOPOLE
ACTION

To get the value of the monopole condensate we hav
compare the monopole action calculated analytically in S
III with the numerical results described in Sec. IV. To th
end we first note that due to the closeness of the mono
currentsKx,m only the transverse part of the monopole o
erator~28! has significance. Indeed, the shift of the quadra
operatorS→S1a]]8 ~with a being an arbitrary paramete!
does not change the monopole action~26! due to conserva-
tion condition~7!. Therefore, in order to relate the theoretic
and numerical results we need to get the transverse pa
the operator~28!.

A simplest and also a practical way to extract the tra
verse part of the quadratic monopole operator is to calcu
09450
e
to

to
c.

le
-
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l
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-
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the monopole action on a set of closed monopole trajecto
K ( i ). We consider six types of such monopole trajectori
which are depicted in Fig. 5.

Let us consider the analytical prediction for the transve
part of the monopole action. Since we are working in t
m@q limit, we disregardO(m21) corrections to the qua
dratic action~28!. The validity of such approximation is dis
cussed below. The leading contribution to the monopole
tion evaluated on closed trajectoriesK ( i ) is

f i~b![
S~K ( i )!

uK ( i )u
5

2pdi

h2b2G~0,b2MB
2 tUV!

, ~36!

whereuK ( i )u is the length of the trajectoryK ( i ) and

d05D (3)~0,0,0!50.248028 . . . ,

d15D (3)~0,0,0!2D (3)~1,0,0!

50.166665 . . . ,
FIG. 4. The comparison of the couplings~a! g1,2 and ~b! g3,4 computed for the all-cluster case and for the percolating cluster.
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d25D (3)~0,0,0!2 2
3 D (3)~1,0,0!2 1

3 D (3)~2,0,0!

50.181055 . . . ,

d35D (3)~0,0,0!2 3
4 D (3)~1,0,0!

2 1
4 D (3)~3,0,0!50.181292 . . . , ~37!

FIG. 5. Set of lattice currents used to get transverse elemenf i

of the monopole action operator. The leftmost curveK (0) is closed
through boundary conditions.
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d45D (3)~0,0,0!2D (3)~2,0,0!

50.209836 . . . ,

d55D (3)~0,0,0!2 2
3 D (3)~1,0,0!

2 1
3 D (3)~1,1,0!50.176956 . . .

are the linear combinations of the values of the inverse
Laplacian D (3) at certain points. The numerical value
shown in Eq.~37! correspond to the lattice 483. Below we
call the combinationsf ( i ) of the g couplings as ‘‘transverse
couplings.’’

Using Table I one can get the transverse combination
couplings corresponding to the numerically calculated
tion:
f 05g112g212g612g22, f 15g12g3 ,

f 25g11 2
3 ~g22g32g4!2 1

3 g7 , f 35g11g22
3

4
g32g41 1

2 g62 1
2 g112

1
4 g23,

f 45g11g22g72g12, f 55g12 2
3 g32 1

3 g5 . ~38!
e

n

ac-
and

the
Note that the transverse components of the analytical ac
~36! with two free parameters should describe six transve
combinations~38! obtained numerically. We fit thef i com-
ponents by~36! independently for eachi 50,1,. . . ,5 and
then compare in Table II the fitting parametersh andmUV as
a self-consistency test. Since we are working in them@1
limit we fitted the numerical data for then56 blocked
monopoles. A lower value ofn corresponds to the smalle
scaleb and in this case we notice sizable deviations of
numerical results from our fitting function. This is expect
n
e

e

because we are working in the limitb→`. One the other
hand, the higher value,n58, corresponds to the small lattic
size of the coarse lattice, (N/n)4564, which may lead to
large finite-volume artifacts. Therefore we concentrate on
56 blocked monopoles.

The fits of the transverse couplings of the monopole
tion corresponding both to the all monopole cluster case
to the percolating cluster are visualized in Figs. 6~a! and
6~b!, respectively. The best fit parameters obtained from
fits of different transverse couplingsf i ~Table II! are very
t
r

TABLE II. The values of the condensateh and the ultraviolet cutofftUV obtained in a set of independen
fits of then56 transverse monopole couplings~38! by function~36! for the all monopole cluster case and fo
the percolating monopole cluster. The best parameters of the overall fit of the transverse couplingsf 1 , . . . ,f 6

are shown in the last row.

h/As AtMB /As

Coupling All clusters Max cluster All clusters Max cluster

f 0 0.521~25! 0.509~23! 0.046~9! 0.042~8!

f 1 0.577~41! 0.580~45! 0.020~9! 0.022~10!

f 2 0.565~34! 0.537~37! 0.031~9! 0.025~9!

f 3 0.544~32! 0.522~35! 0.032~9! 0.026~9!

f 4 0.554~28! 0.532~30! 0.041~9! 0.034~9!

f 5 0.591~38! 0.590~42! 0.025~9! 0.026~10!

Average 0.552~13! 0.534~13! 0.036~4! 0.031~4!
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FIG. 6. The fits of then56 transverse monopole couplings~38! by function ~36! ~a! for the all monopole cluster case and~b! for the
percolating monopole cluster.
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close to each other, which provides a nice self-consiste
test of our approach. Moreover, the value of the monop
condensateh calculated in large-b limit from the all-cluster
case and the percolating cluster monopole action are
same within error bars, as expected. The numerical valu
the monopole condensate~obtained by averaging of the re
sults of the six independent fits! is h5243(6) MeV.

Finally, let us discuss the validity of the largem approxi-
mation used in this paper. We are working in the range

momentabAs;1 –4. The mass of the dual gauge bos
obtained from the fitting of the string profile by a classic

string solution @8# is estimated asMB'1.3 GeV'3As.
Therefore the value ofm, Eq. ~25!, is in the rangem
;3 –12. There are two types of corrections to our analyti
results: ~i! the exponentially suppressed corrections to
operatorF 21 ~discussed in Appendix B! are smaller than
5%; ~ii ! theO(m21) correction of Eq.~28! is of the order of
10% because of the local nature of theG and H operators,
and due to low values of the inverse Laplacia
D (3)(0,0,0)'1/4. Thus we estimate the systematic corre
tions to the value of the monopole condensate to be of
order of 15%. Taking into account the systematic errors
get h5243(42) MeV.

VI. DISCUSSION AND CONCLUSION

We have obtained the value of the monopole conden
using the method of blocking from the continuum to t
lattice. Namely, we have obtained numerically the effect
monopole action in the maximal Abelian projection
quenched SU~2! lattice QCD. Then we have calculated an
lytically the effective lattice monopole action starting fro
the continuum dual Ginzburg-Landau model. In our simu
tions we restricted ourselves to the large values of the par
eterb. This parameter defines a scale at which the monop
charge is measured on the lattice. In large-b limit the action
of the monopoles is dominated by the quadratic part,
higher monopole interactions are suppressed. Thus in
analytical calculations we have neglected the quantum c
tributions of the scalar monopole fields that are respons
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for the higher-order corrections to the effective monop
Lagrangian@19#.

The comparison of the numerical and analytical results
the blocked action gives us the value of the monopole c
densate,h5243(42) MeV. This value is in a quantitativ
agreement with another estimation of the monopole cond
sate,h5194(19) MeV, obtained in Ref.@8# using a com-
pletely different method. Moreover, we have shown that o
method is self-consistent, since is allows to describe vari
quadratic interaction of the monopole action using appro
mately the same values of the monopole condensate.

A few words about the ultraviolet cutofftUV are now in
order. This cutoff—which enters the effective monopole a
tion ~28!—is an independent fitting parameter of the effe
tive monopole action at large scales, Eq.~36!. In this paper
we have neglected the fluctuations of the monopole sc
fields since we were working at large scalesb. Effectively,
this corresponds to taking the London limit of the Ginzbur
Landau model. The London limit possesses known logar
mic divergences~i.e., the tension of the Abrikosov vortex i
a logarithmically divergent function of an ultraviolet scale!.
The physics of the monopole field fluctuations is ‘‘hidden’’
the value of this cutoff. Strictly speaking, we have to ren
malize the model and consider the monopole field fluct
tions to relate a logarithmic divergence to the values of
physical parameters entering the Lagrangian of the mo
This procedure becomes meaningful at small scalesb.

At small values of the scaleb the higher-order interaction
~four-point, six-point, etc.! become essential@19#. Thus at
short distances the scalar monopole field contributes to
effective monopole action. From the point of view of th
blocking from the continuum, at small values ofb the cou-
plings of the monopole action become dependent on the
rameters of the potential of the monopole field. Thus, a co
parison of the effective monopole action with the block
action at small scalesb may allow us to determine the shap
of the monopole potential. We will discuss this problem in
forthcoming publication@29#.
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APPENDIX A: PROOF OF CLOSENESS OF LATTICE
MONOPOLE CURRENTS

In order to prove the relation~7! it is convenient to rep-
resent the lattice monopole current~5! as the integral over
momentum. Using Eq.~20! and Eq.~22! we get

1

2
emnabSab~Cg,s ,x!5 i ~pmdng2pndmg!b3Qg~pb!e2 ib(p,s),

~A1!

where Sab(C,x)[Sab
]C(x), the vectorQa is given in Eq.

~19!, and no summation over the indexg is assumed. Then
Eq. ~5! can be rewritten as follows:

Ks,g52b3E d4p

~2p!4
~pmdng2pndmg!

3 k̃m~2p!
pn

p2
Qg~pb!e2 ib(p,s)

52b3E d4p

~2p!4
k̃g~2p!Qg~pb!e2 ib(p,s), ~A2!

where k̃m(p)5*dxkm(x)e2 i (p,x) is the Fourier transformed
continuum monopole current. There is no summation o
the indexg in Eq. ~A2!. To get the second line of Eq.~A2!
we used the closeness condition of the continuum mono
currents,

pmk̃m~p!50. ~A3!

According to Eq.~4! the lattice monopole currentsKs,m are
associated with the centers of the three-dimensional cu
Cs,m . The positions of the cube centers are characterized
the integer-valued coordinatess. The corners of the cube
belong to the original lattice while the monopole curren
themselves are associated with the dual lattice. The site
the dual lattice are shifted by the 4D vector (1/2,1/2,1/2,1
with respect to the sites of the original lattice. Thus, t
center of the cubeKs,m does not belong to the dual lattic
because thesm coordinate of the center of the cube corr
sponds to the time slice of the original lattice. In our coor
nates, the monopole current defined on the cubeKs,m must
be associated with the point* s5s1m̂/2 belonging to the
dual lattice.

Thus, the closeness condition~7! at the site* s of the dual
lattice is
09450
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)

-

~]8K !* s5 (
g51

4

~K * s,g2K * s2ĝ,g!

[ (
g51

4

~Ks1
1

2
ĝ,g2Ks2

1

2
ĝ,g!

52ib3E d4p

~2p!4
k̃g~2p! sin~bpg/2!

3Qg~pb!e2 ib(p,s). ~A4!

Using Eq. ~19! we notice that 2 sin(bpg/2)Qg(pb)
5pgQ(pb), where the quantity Q(x)5)n@(sinxn/2)/
(xn/2)# does not carry any Lorentz index. Then Eq.~A4!
together with the conservation of the continuum monop
charge~A3! implies the closeness of the lattice monopo
currents,

~]8K !s5 ib3E d4p

~2p!4
pgk̃g~2p!Q~pb!e2 ib(p,s)[0.

APPENDIX B: CALCULATION OF THE OPERATOR FÀ1

In this appendix we calculate the expression for the
verse operatorF 21, presented in Eq.~24!, for m[MBb
@1. Let us consider first the diagonal components of
inverse operatorF 21. Without loss of generality we take
m5n54 ands850. We get

F s0,44
21 5E d4q

~2p!4

qW 2

q4
21qW 21m2

)
i 51

3 S sinqi /2

qi /2
D 2

eiq4s41 i (qW ,sW).

~B1!

It is convenient to introduce the additional integral

1

q4
21qW 21m2

5E
0

`

dte2(q4
2
1qW 21m2)t, ~B2!

and represent the integral~B1! in the form

F s0,44
21 5E

0

`

dte2m2tP0~s4 ,t !(
i 51

3

P1~si ,t !)
j Þ i
j 51

3

P2~sj ,t !,

~B3!

where

P0~s,t !5E
2`

` dq

2p
e2tq21 iqs5

1

2Apt
e2s2/4t, ~B4!
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P1~s,t !54E
2`

` dq

2p
sin2S q

2
D e2tq21 iqs

52
1

2Apt
~e2(s11)2/4t1e2(s21)2/4t22e2s2/4t!,

~B5!

P2~s,t !5E
2`

` dq

2p
S sinq/2

q/2
D 2

e2tq21 iqs

5A t

p
~e2(s11)2/4t1e2(s21)2/4t22e2s2/4t!

1
1

2 F ~s11!ErfS s11

2At
D

1~s21!ErfS s21

2At
D 22sErfS s

2At
D G , ~B6!

and Erf(x) is the error function

Erf~x!5
2

Ap
E

0

x

dye2y2
.

To calculate the off-diagonal components of the inve
operatorF 21 we take (m,n)5(1,2) ands850 ~again, with-
out any loss of generality!:

F s0,12
21

5E d4q

~2p!4

2q1q2

q21m2
)
i 51

2 sinqi /2

qi /2
)
j 53

4 S sinqj /2

qj /2
D 2

ei (q,s)

52E
0

`

dte2m2t )
i 51

2

P3~si ,t !)
j 53

4

P1~si ,t !, ~B7!

where

P3~s,t !52E
2`

` dq

2p
sinS q

2
D e2tq21 iqs

5
i

2Apt
~e2(2s21)2/16t2e2(2s11)2/16t!. ~B8!

Equations~B1!–~B8! represent the exact expressions for t
diagonal and off-diagonal elements of the inverse oper
F 21. Unfortunately, due to the presence of the Erf functio
in P1 , Eq. ~B5!, the integrals~B1! and~B7! cannot be taken
analytically. However, in the limitm→`, which corresponds
to Eq. ~25! concerning large blocking scalesb, leading con-
tributions to these integrals can be easily estimated.

Let us first consider Eq.~B1!. The main contribution to
this integral comes from the region of smallt. At small t the
error function can be represented as
09450
e

or
s

Erf~x!5sgn~x!2
e2x2

Apx
@11O~x22!# for x@1. ~B9!

Therefore at general values ofs the expression~B1! is given
by a sum of integrals of the form

I ~m,s̃!5E
0

`

dt exp$2m2t2 s̃2/t1C log t%, ~B10!

whereC is a constant of the order of unity and the quantitys̃

depends on the value ofs @i.e., s̃5s/2,(s21)/2, etc.#. The
value ofs̃ is either of the order of unity or zero. Ats;̃1 and
large m we get I (m,s̃);exp$22ms%!1. Thus the integral
~B10! with sÞ̃0 is exponentially suppressed and therefore
will be neglected below. The leading contribution to the o
eratorF 21 comes from the integrals of the form~B10! with
s̃50, which are saturated at smallt.

Using the expansion~B9! we get to leading order in the
limit t→0:

P0~s,t !5
1

2Apt
ds1O~e2const/t!, ~B11!

P1~s,t !52
1

2Apt
Ds1O~e2const/t!, ~B12!

P2~s,t !5A t

p
Ds1ds1O~e2const/t!, ~B13!

P3~s,t !5O~e2const/t!, ~B14!

where

ds5H 1, s50

0, otherwise,
Ds5H 1, s51,21

22, s50

0, otherwise
~B15!

are the Kronecker symbol and the one-dimensional lat
Laplacian, respectively.

According to Eqs.~B7! and ~B14!, the elements withm
Þn of the operatorF 21 are exponentially suppresse
F mÞn

21 ;O(e2constm). As for the diagonal elements of thi
operator,m5n, we get

F s0,44
21 5

1

4p2
E

0

`

dte2m2tds4(
i 51

3

Dsi)
j Þ i
j 51

3 S Dsj
1Ap

t
dsj

D
1O~e2constm!
8-11
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5
1

4p
ds4FG~0,tUVm2!~Ds1

ds2
ds3

1cyclic!

1
2

m
~Ds1

Ds2
ds3

1cyclic!1
3

pm2
Ds1

Ds2
Ds3G

1O~e2constm!. ~B16!
.

-

s.

i,

v.

B
,

-

i,

09450
Here G is the incomplete gamma function,G(a,x)
5*x

`ta21e2tdt, and ‘‘cyclic’’ means cyclic permutations
over the indicessi . To get Eq.~B16! we used Eqs.~B3!,
~B11!, ~B12!, and ~B13!. We also introduced the ultraviole
cutoff, tUV , to regularize the logarithmically divergent piec
of Eq. ~B16!. Noticing that D 4

(3)(sW)5Ds1
ds2

ds3
1cyclic is

the 3D Laplacian, we get the final expression forF 21 pre-
sented in Eq.~27!.
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