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We study the dependence of the critical size of the nucleus on the density of impurity by carrying out a Monte
Carlo simulation. We assume that the impurities are fixed on a crystal surface, and neglect restoration of bonds
between an impurity atom and an adsorbed atom. We initially prepare one cluster in the system and investigate
the change of the cluster size. When the cluster size is the critical value, the frequency of increasing the cluster
size is equal to that of decreasing the size. With increasing the impurity density, the critical nucleus becomes
large. When the impurity density is sufficiently high, regardless of the initial cluster size, the cluster vanishes
after a long time interval, namely, the critical cluster size is diverged.
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I. INTRODUCTION

Foreign substitutional atoms attached on the surface act as
trapping centers for adatoms and/or as obstacles preventing
growth of an adsorbate [1–4], and affect behaviors of steps
and surface morphology [5–13]. When the period between
impurities is shorter than the critical nucleus size, the step
cannot advance because of the thermodynamic tension, which
depends on the step curvature. In their experiment, Nakada
and co-workers [14] studied the effect of impurities on a
lysozyme crystal using atomic force microscopy. On the
(101) surface, many small particles were observed and these
act as impurities. The particles are formed by dimers of
lysozyme molecules. With increasing the dimer density, the
step velocity decreases. When the steps stop advancing, the
distance between impurities on a step is as large as the critical
nucleus diameter determined by the free energy. Zepeta and
co-workers [15] observed adsorption kinetics of antifreeze
glycoproteins (AFGPs) attached to an ice interface during
solution growth. When the molecules of AFGPs are adsorbed
to a specific interface, the growth of the interface is prevented,
and the form of the interface becomes a facet. These results
[14,15] are explained by pinning with impurities [5]: The
impurities halt step advancing when the distance between
impurities is comparable with the radius of the critical nucleus.

Recently, Dai and co-workers [16] observed spiral steps on
a monoclinic lysozyme crystal. They measured the dependence
of step velocities on the distance between adjacent spiral steps
and found that the interstep distance is about 50 times larger
than the expected value. The interstep distance is proportional
to the radius of the critical nucleus, so the experiment
suggests that the critical nucleus size is much larger than that
expected by the change of free energy in the formation of the
nucleus. Since many impurities are contained in commercially
purchased protein [14–20], the cause of the unusual interstep
distance [16] may be impurities, but previous studies [5–13]
cannot explain the enlargement of the critical nucleus size.

In the previous studies [5–13], the effect of impurities
attaching on an advancing step is taken into account, but the
effect of impurities included in the solid phase is neglected.
To explain the enlargement of the critical nucleus size, we
need to consider the increase of free energy, which is caused

by the impurities included in the nucleus. Thus, in this
paper, taking account of the effect of impurities included
in a two-dimensional cluster, we study the possibility of the
increase of the critical nucleus radius by immobile impurities.
In Sec. II, we introduce our model and estimate the critical
nucleus radius and the critical impurity concentration from the
thermodynamic point of view. In Sec. III, we carry out a Monte
Carlo simulation. In Sec. IV, we summarize results and give
brief discussions.

II. MODEL

The critical nucleus radius is thermodynamically de-
termined by the change in free energy �G during two-
dimensional nucleation. For a pure system, �G is expressed
as

�G = − S

�
�μ + Lβ, (1)

where S is the area of a two-dimensional nucleus, �μ is the
chemical potential gain during solidification per unit molecule,
� is the area occupied by a unit molecule in a nucleus, L is the
perimeter of a nucleus, and β is the step free energy. If the step
energy is isotropic, the shape of the nucleus is circular. When
the radius of the nucleus is r , S = πr2 and L = 2πr . �G has
the maximum value with the critical nucleus radius. From the
condition d�G/dr = 0, the critical nucleus radius rc is given
by

rc = �β

�μ
. (2)

We assume that the density of impurity is cimp and study
how the critical nucleus radius changes on the surface with
uniform, immobile impurity concentration cimp. When a two-
dimensional nucleus with radius r is formed on the surface,
the number of impurities in the nucleus is given by cimpπr2.
When the area of one impurity is expressed as �imp, the total
area of impurities is given by cimpπr2�imp. By taking account
of impurities in the nucleus, the chemical potential gain due to
solidification is given by

−πr2(1 − �impcimp)�μ

�
. (3)
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For simplicity, we assume that recuperation of bonds between
an impurity and a molecule in the horizontal direction is
neglected. Owing to the formation of the interface between
impurities and solid atoms, the increase of the step free energy
by nucleation is expressed as

2πrβ + cimpπr2Limpβ, (4)

where Limp is the perimeter of an impurity. In Eq. (4), we
assumed that the interface energy between impurities and
molecules is as large as the step energy. From Eqs. (3) and
(4), the total change of the free energy is given by

�G = −πr2

�
�μ

(
1 − cimp�imp − cimp�

Limpβ

�μ

)
+ 2πrβ.

(5)

The radius of the critical nucleus rc
imp is given by

rc
imp = rc

[
1 − cimp

(
�imp + �Limpβ

�μ

)]−1

. (6)

From Eq. (6), we find that the critical nucleus size on the
surface with impurities is larger than that on a clean surface.
When cimp is small, rc

imp increases proportionally to cimp. Then,
the increase of rc

imp is accelerated with increasing cimp, and rc
imp

is diverged when the impurity density is the critical value cc
imp,

defined as

cc
imp =

(
�imp + �Limpβ

�μ

)−1

= 1

�imp + Limprc
. (7)

Generally, the radius of impurity is much smaller than the
critical nucleus radius in a pure system, so that cc

imp ≈
(Limprc)−1.

III. MONTE CARLO SIMULATION

To confirm the relation between the critical nucleus radius
and the impurity density, we introduce a Monte Carlo simu-
lation model. The algorithm of our simulation is very simple.
We consider a square lattice with the lattice constant a = 1.
The system size is Lx × Ly = L2 with the periodic boundary
condition. For simplicity, we assume that impurities are
immobile: They are prohibited from adsorption, evaporation,
and diffusion. Initially, impurities are put on a crystal surface,
and there is no impingement of impurities. Impurities act as
obstacles for adatoms on the surface. Thus, we can regard the
growth of the cluster as that with one component atoms. Then,
atoms impinge to one of the sites neighboring on the edge of
the cluster with the impingement rate F . The atoms solidify
at the edge of the cluster and do not migrate on the surface.
Solid atoms forming the edge of the cluster can evaporate.
The frequency of the evaporation depends on the number of
horizontal bonds nJ , and is expressed as ω exp(−nJ EJ /kBT ),
where EJ is the bonding energy between nearest-neighboring
atoms and ω is the evaporation rate of a lonely adatom. We
exclude the number of impurities from nJ , and forbid the
evaporation of impurities.

In equilibrium, the infinitely long, straight step could not
advance and recede. From the viewpoint of the microscopic
process, the evaporation and the impingement of atoms are

(a) (b)

FIG. 1. Changes of cluster size and form for the supersaturation
σ = 0.125 with initial cluster size of (a) 62 in a pure system and
(b) 92 in a system with immobile impurities. The gray circles show
an atom forming the initial cluster, and the crosses show a temporal
cluster whose size is roughly as large as the critical nucleus size. The
open circles in (a) show a form of the cluster at a later stage; note
that the cluster vanishes in (b). Filled squares in (b) show immobile
impurities.

balanced at kink sites. Since nj = 2 at a kink site, the
impingement rate in equilibrium, F st, is expressed as

F st = ω exp

(
−2EJ

kBT

)
. (8)

When the chemical potential gain by solidification is �μ, the
impingement rate F is related to F st as

F = F st exp

(
�μ

kBT

)
. (9)

Since the supersaturation, σ = (F − F st)/F st, is related to �μ

as �μ = kBT ln(1 + σ ), σ is expressed as

σ = F exp

(
2EJ

kBT

)
− 1. (10)

In our simulation, the system size is larger than L2 = 602 and
the bonding energy satisfies exp(−EJ /kBT ) = 0.1.

Figure 1 shows a typical change of a cluster form during
growth [Fig. 1(a)] and shrinking [Fig. 1(b)]. The initial cluster
shape is set to square. Since an atom is bound by nearest-
neighboring atoms, and we use a square lattice, the initial
shape is an equilibrium shape. In Fig. 1(a), the size of the initial
cluster, which is expressed by gray circles, is 62 and impurities
are absent in the system. The cluster expressed by crosses
shows a temporal form. During simulation, the desorption and
the evaporation of adatoms repeat many times at the cluster
edges, so that the form of the cluster is fluctuated and slightly
rougher than the initial square. Similarly to a nucleus form in
another model [21], the temporal form of the nucleus is not
compact. The temporal cluster size is smaller than the initial
size because of random fluctuation, but it is as large as the
critical nucleus size, which we will mention later. A form of
the cluster in the later stage is represented by open circles.
After many Monte Carlo trials, the size of the cluster is much
larger than the initial size, and the cluster grows steadily.
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Figure 1(b) shows the evolution of the shape of the cluster
including impurities. The initial cluster size is about 92, which
is 2.25 times larger than that in Fig. 1(a), and four impurities
are included in the initial cluster. Although the initial size of
the cluster is much larger than the critical nucleus size in a pure
system, the cluster vanishes. The shape of a temporal cluster,
whose size is as large as the critical nucleus size, is rougher
than that in Fig. 1(a). Although the initial size is larger than
the critical nucleus size in a pure system, the cluster cannot
grow large, and vanishes after a long time.

In Fig. 1(b), the cluster shrinks when only a few impurities
are included in a cluster, which means that the critical nucleus
size becomes larger than that in a pure system owing to
impurities. In order to confirm that this observation does not
apply only to this one particular case, we determine the critical
nucleus size by carrying out many runs, and show that the
critical nucleus size increases due to impurities included in
the cluster. We initially set immobile impurities at regular
intervals and one cluster at random on a surface. To determine
the critical nucleus size for various impurity concentrations,
we define the probability of irreversible attachment J (N ) as

J (N ) = P+(N ) − P−(N )

P+(N ) + P−(N )
, (11)

where P+(N ) is the frequency of increasing the cluster size
from N to N + 1, and P−(N ) is the frequency of decreasing the
size from N to N − 1. With a negative J (N ), the probability of
the decrease of the cluster size is larger than that of the increase
of the size, so that the cluster size decreases on average. With
a positive J (N ), the cluster size increases on average. The
critical nucleus size is determined from the condition that
J (N ) = 0. In our simulation, the separation of a cluster into
a few small clusters and the coalescence of clusters occurs.
When we count P±(N ), we except the event of separation and
coalescence of clusters, and take account of attachment and
detachment between an atom and a cluster. When a cluster
size is sufficiently larger than the critical value, shrinking of
the cluster hardly occurs and the cluster keeps growing. Thus,
in a run, we repeat impingement and evaporation of atoms
until the cluster vanishes or is larger than NL

max, which is larger
than the critical value.

First, we determine the critical nucleus size in a pure system.
Figure 2 shows the dependence of J (N ) on N with σ = 0.125

0 50 100
−1

−0.5

0

0.5

N

J(N)

FIG. 2. Dependence of J (N ) on N with σ = 0.125 in a pure
system.

( )−2

10−1 100

101

102

Δµ/k BT

N c
Δµ

FIG. 3. Dependence of N c on �μ in a pure system.

in a pure system. NL
max = 150, and P±(N ) is summed up for

more than 10 000 independent runs. With a small N , the effect
of the discreteness of the square lattice is not neglected. When
N = 4 and 6, owing to the symmetry of the lattice, the compact
cluster is stable. Except for these cluster sizes, when N �
10, J (N ) rapidly increases with increasing N . Then, J (N )
increases gradually. From Fig. 2, the critical nucleus size N c

is estimated to 26.0. Using various �μ, we investigate the
dependence of N c on �μ (Fig. 3). Since the side length Lc

is equal to (N c)1/2 for the square shape, the dependency of
the nucleus size on the chemical potential agrees with the
traditional thermodynamic theory given by Eq. (2).

From the above results, we confirm the validity of our model
in a pure system. Then, we carry out the simulation and study
the effect of impurities included in a cluster on the critical
cluster size. From Eq. (6), the dependence of the size of the
critical nucleus with impurity N

imp
c on cimp is expressed as

N c
imp = Nc

[
1 − cimp

(
�imp + �Limpβ

�μ

)]−2

. (12)

In Fig. 2, the critical nucleus size in a pure system is estimated
to be N c = 26.0. Since we use a square lattice with a lattice
constant a = 1, the circumference of impurity Limp = 4, and
Simp = ss = a2 = 1 in our model. If we assume that the form

0.6 0.8 1

0.6

0.8

1

1 − cimp/c c
imp

Nc
imp

Nc

√

FIG. 4. Dependence of N c
imp on cimp with σ = 0.125 in the system

with impurities. Dotted line represents Eq. (12) with N c = 26 and
Eq. (13).
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d

(a) (b)

FIG. 5. Schematic picture of (a) Cabrera’s model and (b) our
model. The solid gray circles represent impurities whose effect is
taken into account in the cluster’s behavior, and the open dotted-line
circles represent impurities that are not assumed to affect the cluster’s
behavior.

of the nucleus is round, then β/�μ is given by
√

N c/π from
Eq. (2). Thus, the critical impurity density satisfies

1

cc
imp

=
(

�imp + �Limpβ

�μ

)
≈ 12.5. (13)

In order to confirm the dependence of the impurity
concentration on the critical nucleus size, we perform the
simulation with immobile impurities on a surface at regular
intervals. Figure 4 shows the dependence of the critical cluster
size N c

imp(cimp) on the impurity density. The supersaturation
σ = 0.125 and the critical nucleus size N c ≈ 26, which are
obtained from Fig. 2. We count P±(N ) until the cluster size
becomes NL

max = 500 or 0 in a run. The impurity density cimp

is defined as 1/n2, where n is an integer. The open circles
represent the results of the simulation. In Fig. 4, we use cc

imp
obtained from Eq. (13), and the dotted line shows the relation
given by Eq. (12). In Eq. (13), the estimation is carried out
under the assumption of a round cluster, but in our simulation,
we use a square lattice and the form of the cluster is not round.
Irrespective of the difference, the results of our simulation
agree with Eq. (12).

IV. SUMMARY AND DISCUSSIONS

In this paper, we studied the possibility of the increase of the
critical nucleus size by impurity. We assumed that immobile
impurities were attached on a surface and investigated the
change of the free energy by the formation of a cluster. When
a cluster is formed in the system with impurities, compared
with the nucleation in a pure system, the chemical potential
gain decreases and the step energy increases. These effects
enlarge the critical cluster size.

To confirm our thermodynamical prediction, we carried out
Monte Carlo simulations using a simple model. With a large
supersaturation, the dependence of critical cluster size on the

chemical potential gain and the impurity density agrees with
theoretical results. From Eq. (7), we found that cc

imp depended
on two terms, � and Limpr

c. The first term is the effect of the
decrease of the solid area by impurities and the second term
is that of the increase of the interface by impurities. When the
impurity size is smaller than the critical size, cc

imp is mainly
determined by the latter effect.

Figure 5 schematically shows the difference between
Cabrera’s model [5] and our model. In Cabrera’s model [5,6]
[Fig. 5(a)], once a step passes by impurities and impurities
are included in the cluster, the included impurities do not
affect the behavior of the cluster shape. Only the impurities
attaching a step impede the motion of the step segment. If the
distance between impurities d is larger than the critical nucleus
size 2rc, the step can form the convex curve energetically
and advance. As a result, the cluster surrounds impurities.
Once the impurities are included in a cluster, they do not
affect the motion of the cluster’s edge, and the edge moves
again. However, if d < 2rc, the edge of the cluster cannot
form the curve sufficiently, so that the cluster cannot surround
impurities. Thus, the pinning by impurities occurs and the edge
stops advancing [Fig. 5(a)] when cimp ∼ (rc)−2.

On the other hand, in our model [Fig. 5(b)], the interface
energy between the solid atom and impurities included
in a cluster are taken into account. By the interface en-
ergy, the chemical potential gain in solidification decreases
and the critical nucleus size increases. Our results suggest that
the critical cluster size diverges when cimp ≈ (Limpr

c)−1 ∼
(rc)−1. In Fig. 1(b), all the impurities were initially put in a
cluster and were not on the step edge. The size of the initial
cluster was larger than the critical value in a pure system,
but the cluster vanished. The simulation result suggests that
the shrinking of the cluster is not caused by the Cabrera’s
scenario, but caused by our scenario.

In our model, the impurities were immobile and the
detachment from the surface was neglected. The case that
we considered was a very idealized case. To compare the
results in real systems, we need to clarify the effect of mobility,
namely, the effect of evaporation and surface migration. The
investigation of the effect of the mobile impurity on the critical
nucleation size is underway.
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