
Formation of finger-like step patterns on a Si(111)
vicinal face

言語: eng

出版者: 

公開日: 2017-10-05

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/00028554URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Formation of finger-like step patterns on a Si(111) Vicinal Face

Formation of Finger-like Step Patterns on a Si(111) Vicinal Face

Masahide Sato, Shinji Kondo1 and Makio Uwaha1

Information Media Center, Kanazawa University, Kakuma-cho, Kanazawa 920-1192, Japan
1Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

(Dated: December 7, 2010)

During deposition of Ga atoms, the structure of a Si(111) vicinal face is transformed from the√
3×

√
3 structure to the 6.3×6.3 structure. The transformation occurs preferentially from the lower

side of steps. Since the density of Si atoms needed to form the 6.3×6.3 structure is lower than that to
form the

√
3×

√
3 structure, Si atoms are supplied onto the surface during the structural transition.

The steps advance by incorporating the extra adatoms, and show a finger-like wandering pattern (H.
Hibino, H. Kageshima and M. Uwaha, Surf. Sci. 602 (2008) 2421). To study the formation of the
finger-like pattern, we carry out Monte Carlo simulations. When atoms are supplied immediately in
front of a straight step, the step becomes unstable. Step wandering occurs and a step shows a finger-
like pattern. The characteristic period of the fingers is consistent with the linear stability analysis
and proportional to (β̃/V )1/2, where β̃ is the step stiffness and V is the step velocity (deposition
rate).

PACS numbers: 81.10.Aj, 05.70.Ln, 47.20.Hw, 68.35.Fx
Keywords: A1. Crystal Morphology, A1. Growth Model, A1 Surfaces

I. INTRODUCTION

In equilibrium, steps on a crystal surface are straight
with small thermal fluctuation along the step, but dur-
ing growth, the straight steps sometimes become unstable
and wander. It is called step wandering. The step wan-
dering is caused by an asymmetry of the surface diffusion
field. One of the causes to induce the asymmetry is the
Erlich-Schwoebel (ES) effect [1–6]. If a large potential
barrier is present at the step edge, adatoms attach to the
step from the lower side terrace more easily than from the
upper side. Owing to the asymmetry of the step kinet-
ics, the surface diffusion field becomes asymmetric, and
wandering of the advancing steps occurs. The ES effect
is believed to induce the step wandering on Cu(1,1,17)
during homoepitaxial growth [7].

When Ga atoms are deposited on a Si(111) vicinal face
at 580◦C, the 7 × 7 structure is first transformed to the√
3×

√
3 structure. With more deposition of Ga atoms,

the structural transition from the
√
3 ×

√
3 structure to

the 6.3 × 6.3 structure occurs [8–11]. Since the density

of Si atoms in the top layer to form the
√
3 ×

√
3 struc-

ture is higher than that to form the 6.3 × 6.3 structure,
Si atoms are released onto the surface during the struc-
tural transition. The released atoms are incorporated
into steps and the steps advance. Since the transition
from the

√
3 ×

√
3 structure to the 6.3 × 6.3 structure

mainly occurs immediately in front of the steps. The
incorporation of Si atoms from the lower side of a step
is more than that from the upper side. The asymmetry
causes wandering of advancing steps, and a step shows a
finger-like pattern [11].

The finger-like wandering pattern is very different from
that predicted in previous studies [4–6, 12, 13]. When
evaporation of adatoms is present, the motion of a wan-
dering step is described by the Kuramoto-Sivashinsky
equation. The amplitude of step wandering is satu-

rated, and the wandering step shows a chaotic behav-
ior [4, 5, 12]. When evaporation of atoms is neglected, the
motion of steps is described by another type of nonlinear
equation whose solution shows a regular pattern [6, 13].
When the wavelength of the step pattern is longer than
the terrace width, grooves perpendicular to the steps are
formed. The formation of the grooves is observed on
some vicinal faces [7, 14–16]. In the case of step wander-
ing on a Si(111) vicinal face during Ga deposition [11],
the wandering pattern is regular. The typical width of
the finger-like branches is, however, much smaller than
the terrace width and grooves are not formed. In the
previous study [11], the formation of finger-like branches
is attributed to the phase boundary immediately in front
of the step, but this hypothesis has not been confirmed
yet.

In this paper, to study step wandering on a Si(111)
vicinal face during deposition of Ga atoms, we perform
Monte Carlo simulation. In Sec. II, we introduce a lattice
model for Monte Carlo simulation. In the simulation, we
confirm the formation of branches and find an effect of
the crystal anisotropy of steps. In Sec. III, we carry out
a linear stability analysis to determine the characteristic
length of the pattern and compare the results with the
simulation. In Sec. IV, we give a brief summary.

II. MODEL OF SIMULATION

For simplicity, we use a square lattice to investigate the
motion of a single step. We take the lattice constant a as
the length unit in the simulation. Initially, the step is
straight. It is parallel to the x-direction and advances to
the y-direction. The periodic boundary condition is used
in the x-direction. Since the phase boundary between
the 6.3× 6.3 and the

√
3×

√
3 structures, which acts as

the source of adatoms, is located immediately in front of
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the step [11], incorporation of atoms to the step mainly
occurs from the lower side. Thus, we place a linear source
of adatoms in front of the step. Diffusion of adatoms from
the phase boundary will induce a wandering instability.
In our simulation, active atoms are adatoms and solid

atoms at the step edge, which we call step atoms. In
a Monte Carlo trial, we choose one of the active atoms.
When a chosen atom is an adatom, a diffusion trial is
carried out. We choose one of the nearest neighbor sites
with the probability 1/4. When the chosen site is empty,
the adatom moves to the site. The increase of time for
a diffusion trial is set as ∆t = 1/(4Ng), where Ng is
the number of adatoms, to make the diffusion coefficient
unity. If the adatom is attached to a step atom after the
diffusion trial, a solidification trial is successively carried
out.
When a chosen atom is a step atom, a melting trial

is carried out. The solidification probability p+ and the
melting probability p− are given by [5]

p± =

[
1 + exp

(
∆E ∓ ϕ

kBT

)]−1

, (1)

where ϕ is the chemical potential gain by solidification
and ∆E = ϵ× (increment of step perimeter) is the in-
crement of step energy by solidification. The equilibrium
adatom density c0eq is given by

c0eq = exp

(
− ϕ

kBT

)
. (2)

In the experiment [11], during the formation of finger-
like branches, the phase boundary seems straight and
the top of the intruding step appears to follow the phase
boundary. Thus, to mimic this behavior, we keep the dis-
tance between the top of intruding part and the straight
phase boundary constant at the value l by shifting the
position of the straight phase boundary every several dif-
fusion trials. In the simulation, the phase boundary is
represented by a thin buffer layer of a constant adatom
density c0.
We use two types of steps, a [01] step and a [11] step

in the simulation. The step stiffness of the [01] step, β̃[01]

and that of the [11] step, β̃[11] are given by [5]

β̃[01] =
2kBT

a
sinh2

ϵ

2kBT
, (3)

β̃[11] =

√
2kBT

a

[
1 + cosh2

ϵ

kBT

]−1

sinh2
ϵ

kBT
. (4)

Figure 1 shows snapshots of finger-like branches. The
system size in the x direction, Lx, is 1024 (Note that we
put a = 1 in the simulation). The size in the y-direction
is expanded with growth of branches. The initial step
position is y = 10. We use ϕ/kBT = 3.0 so that c0eq is

4.98× 10−2. The distance l is 3 and the adatom density
in the buffer layer c0 is 0.15. The blue area, the red
lines and the green dots represent solid atoms, step edge
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FIG. 1: Snapshots of (a) a [01] step and (b) a [11] step.

atoms and adatoms, respectively. The adatom density
is high around the top of branches and approaches the
equilibrium value around the lower part.

Many branches appear in an initial stage. Tall
branches obtain many adatoms and grow faster than
short branches. Since the short branches can hardly
grow, the distance between branches increases during
growth. In Fig. 1, the bonding energy ϵ/kBT is 2.0, and

the step stiffnesses β̃[01]/kBT and β̃[11]/kBT are esti-
mated to be 2.76 and 1.23, respectively. Since a bump
of a step grows more easily into the direction of a small
stiffness, branches tend to grow into ⟨11⟩ directions. As
a result, a branch in [11] direction has few side branches,
and a branch in [01] direction develops many branching
in the tilted directions.

III. LINEAR STABILITY ANALYSIS AND
INITIAL BRANCH FORMATION

To study the characteristic length of wandering, we
perform a linear stability analysis. We consider a straight
step moving steadily at the velocity V0. In the frame of
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reference moving with the step, the diffusion equation of
adatom density is given by

∂c(r)

∂t
− V0

∂c(r)

∂y
= Ds∇2c(r), (5)

where Ds is the diffusion coefficient. We assume that
solidification and melting of atoms at the step is so fast
that the adatom density is in equilibrium with the steps:

c|y=ζ(x,t)−V0t
= ceq, (6)

where ζ(x, t) represents the step position in the frame
of the crystal. The equilibrium adatom density ceq is
expressed as

ceq = c0eq

(
1 +

Ωβ̃

kBT
κ

)
, (7)

where Ω is the atomic area (Ω = a2 = 1 in the simula-

tion), β̃ is the stiffness and κ is the curvature of the step.
In the simulation, the diffusion field exists in 0 ≤ y ≤ l,
but, for simplicity, we consider the diffusion field in the
region 0 ≤ y. To realize the steady state of the straight
step, the boundary condition at y → ∞ should satisfy

c|y→∞ → Ω−1. (8)

By solving the diffusion equation, eq. (5) with bound-
ary conditions, eqs. (6) and (8), we obtain the step ve-
locity Vn as

(Ω−1 − ceq)ΩVn = n̂ · ΩDs∇ c|y=ζ(x,t)−V0t
, (9)

where n̂ is the unit vector normal to the step. When the
step moves at the velocity V0, the distribution of adatom
density c(0)(y) is given by

c(0)(y) = −(Ω−1 − c0eq)e
−V0y/Ds +Ω−1. (10)

In our simulation, the adatom density at y = l is kept
constant, c(l) = c0. Then, the step velocity V0 and the
diffusion length lD are related to c0 and l as

V0 ≡ Ds

lD
= −Ds

l
ln

1− Ωc0
1− Ωc0eq

. (11)

We give a small perturbation to the steady solution.
The step position and the distribution of adatom density
are expressed as

ζ(x, t) = V0t+ δζeiqx+ωqt, (12)

c(x, y, t) = c(0)(y) + δc1e
iqx−Λqy+ωqt, (13)

where q and Λq are the wavenumbers parallel and perpen-
dicular to the step, and ωq is the amplification rate of the
perturbation. By solving the diffusion equation with the

boundary conditions, the adatom density is determined
and the amplification rate ωq is obtained as

ωq

Ds
=

|q|√1 +
1

4

(
Γq

Ω−1 − c0eq

)2

− 1

2

Γq2

(Ω−1 − c0eq)


×
(
V0

Ds
− Γq2

Ω−1 − c0eq

)
, (14)

where Γ = c0eqΩβ̃/kBT . The second factor of the amplifi-
cation rate (14) is positive, and the first factor determines
the sign. With a small q, the amplification rate ωq is pos-
itive and the step is unstable with the fluctuation. For
long wavelength modes (ΩΓq ≪ 1), the amplification
rate is approximated as

ωq

Ds
= |q|

(
V0

Ds
− Γq2

Ω−1 − c0eq

)
. (15)

The wavelength λmax of the most unstable mode, in
which ωq becomes the largest, is given by

λmax = 2π

√
3Ω2β̃c0eqlD

kBT (1− Ωc0eq)
. (16)

In eq. (16), the factor lD/(1−Ωc0eq) may be approximated

by l/Ω(c0 − c0eq) in terms of the parameters used in the
simulation.

If the formation of branches is controlled by the linear
instability scenario, the characteristic wavelength in the
initial stage of the formation of branches should be given
by the wavelength of the most unstable mode, eq. (16).
Thus, we need to investigate the initial stage of simu-
lation in more detail. In an early stage, fluctuation in
the position of the top of branches is too large in the
present algorithm, and we modify the model to obtain
the data as follows. We keep the distance between the
average height of the step, instead of the top height, and
the phase boundary constant. The initial adatom distri-
bution is adjusted to satisfy the steady state solution.

Figure 2 shows snapshots of a [01] step in an early
stage. The blue line shows the system size in the y-
direction. The pink line represents the position of average
height. The adatom density between the blue line and the
red line is kept c0. We count the number N of branches
which cross the pink line at y = 30, and estimate the
characteristic wavelength λ∗ as λ∗ = Lx/N . The number
N is 33 in (a), 27 in (b) and 29 in (c), giving λ∗ = 31 and
38, and 35. The three conditions in Fig. 2 all correspond
to lD = 90, and λmax calculated from eq. (16) is 39. The
observed wavelengths λ∗ are slightly shorter than λmax.

We carry out simulation with various parameters and
compare the data with the linear stability analysis. Fig-
ure 3 shows the dependence of λ∗ on β̃ with various
values of c0 and l, which correspond to lD = 269 or
V0 = 3.71× 10−3. The changed parameters of the sim-
ulation are ϵ, c0 and l, while ϕ and T are kept constant.



4

1

2 3
4
5 6

7 9
8

10

11 12

21

20

19

18
17

16

15

1413

23

22 24 25
26

27
28

3

32

31
3029

3

(a)

1
2

3

4

5 6 7 9
8

10

11

12

21

20

1918
17

161514

13

23
22

24

25 26

27

(b)

1
2

3 4 5

6

7
9

8 10
11
12

21

20
1918

17

1615
14

13
23

22

24
2526 27

2829

(c)

FIG. 2: Formation of branches in an early stage with a [01]
step. The adatom density in the buffer layer and the distance
l are (a) c0 = 0.24 and l = 20, (b) c0 = 0.32 and l = 30 and
(c) c0 = 0.46 and l = 50. Other parameters are the same as
those in Fig. 1

The data in an early stage are measured when the aver-
age height y is 30 or 50, and averaged over 50 runs. The
characteristic wavelength λ∗ in the initial stage is slightly
shorter than λmax given by eq. (16) as λ∗ = 0.9λmax. The
λ∗ in a late stage, where the finger-like pattern appears,
is measured at y = 700, 750, · · · , 1000, and the minimum
value is adopted for each sample. The data are aver-
aged over 10 runs. The change of λ∗ with large stiffness
seems consistent with λ∗ ∝ β̃1/2, but the value is about
2.5 times larger than λmax of the linear stablity analy-
sis. With small stiffness, λ∗ in the late stage appears
independent of β̃.
Figure 4 shows the dependence of λ∗ on V0. For a

given V0, we use various values of c0 and l, and the step
stiffness is kept constant. All data show that the result
does not depend on c0 and l, and the relevant quantity is
only the diffusion length lD in this parameter range. The
characteristic wavelength λ∗ in both early and late stages

decreases with the velocity as λ∗ ∝ V
−1/2
0 , in agreement

with the linear instability analysis. The characteristic
wavelength λ∗ is slighly shorter than λmax in the early
stage (λ∗ = 0.9λmax), but about 2.5 times larger in the
late stage.

IV. SUMMARY AND DISCUSSION

In order to study the step wandering of a Ga-deposited
Si(111) vicinal face, we carried out Monte Carlo simula-
tion using a lattice model with a step and a straight phase
boundary. When the straight source of adatoms in front
of the step moves with the top of the step, finger-like

õã

10
0

10
1

40

50

60

70

80
90

100

200

300

400

ìà=kBT

ìà1=2

FIG. 3: The dependence of λ∗ on β̃ with various values of
c0 and l. The data in the initial stage with c0 = 0.15, 0.24,
0.32, 0.39 and 0.46 are plotted with red circles, blue squares,
green triangles, circles with dot and diamonds, respectively.
The data in the late stage with c0 = 0.15, 0.24, 0.32 are
plotted with open circles, open squares and open triangles,
respectively. The dotted lines are λ ∝ β̃1/2 (The red dotted
line shows λmax given by eq. (16)). The system size l is so
chosen that lD = 269.
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FIG. 4: Dependence of λ∗ on V0. The marks are the same as
those in Fig. 3. The step stiffness is β̃/kBT = 2.76.

branches are formed. The shape of branches changes as
the anisotropy of a step. The main branch of a [11] step
is straighter than that of a [01] step. More side branches
are formed in the [01] step than in the [11] step. In the
experiment [11], the branches are straight and have few
side branches. They are similar to the [11] step in the
simulation.

In our simulation, the characteristic wavelength λ∗

is proportional to λmax and depends on β̃ and V0 as
λ∗ ∼ (β̃/V0)

1/2. In an early stage, λ∗ ≈ λmax, and
the step behavior is controlled by linear instability. In
the late stage, tall branches get more adatoms and move
faster than short ones. The short branches stop grow-
ing and vanish by thermal relaxation. Thus, the distance



5

between branches becomes longer as they grow. In the
experiment [11], the wavelength is proportional to V −1/2,
in agreement with our results.
In our simulation, we have assumed that the phase

boundary moves at the same velocity as the top of
branches. The velocity of the top determines the velocity
of the phase boundary. In the experiment [11], however,
motion of the phase boundary must be determined by
the Ga deposition rate and the velocity of phase bound-
ary is the controlling parameter. Now we have made a
new model with a steadily moving source. Since there is
not any steady solution with a straight step in the new

model, the linear stability analysis is not possible. Care-
ful study of the relation to the present model is under
way.
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