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We study the two–dimensional crystal structure of two components of DNA nanopar-

ticles on a substrate by Brownian dynamics simulation. We use the Lennard–Jones

potential as the interaction potential between particles and assume that the interaction

length between different types of particles, σAB, is smaller than that between the same

types of particles, σ. Two types of particles form an alloy structure. With decreasing

σAB/σ, the crystal structure changes from a triangular lattice, to a square lattice, a

honeycomb lattice, a rectangular lattice, and a triangular lattice.

1. Introduction

Many researchers have paid much attention to the fabrication of various lattice

structures since the physical properties of materials depend on their structures. Using

nanosize building blocks is one of the methods of fabricating a well–ordered lattice

structure. For example, in the research field of electronic properties, Han et al. have

shown the use of a high–quality monolayer of closed–packed gold nanoparticles formed

by conformal printing as a microcontact–printed charge–trapping layer for applications

in flash memories.? As the obtained devices show good endurance properties and me-

chanical stabilities, the lattice structure is one of the important key factors for properties

of electronic devices. In the field of optical properties, a colloidal crystal with the face–

centered cubic lattice is one of the candidates of a three–dimensional photonic crystal.

The close–packed crystal can be used as a template for inverse opals with perfect pho-

tonic band gaps.?,? It is necessary to create a large colloidal crystal without defects.
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However, it is difficult to predict and control lattice structures over entropic effects.

Recently, nanoparticles covered with DNA have been investigated as useful building

blocks.?,?,? The size of nanoparticles is on the order of 10 nm, which is larger than

atoms. The individual nanoparticles become building blocks on the lattice structure.

As the nanoparticles are covered with DNA, the metallic property of the nanopar-

ticles disappears, and the hybridization of DNA is important for the interaction be-

tween nanoparticles. The DNA strands covering nanoparticles are programmable and

the DNA is a kind of tool for direct particle assembly because DNA double helix for-

mation provides the bridge based on those sequences. By this technique, Nykypanchuk

et al. have made the body–centered cubic lattice.? Macfarlane et al. have shown that

various three–dimensional superlattices can be fabricated.? Using a single type of DNA

nanoparticle, they have obtained simple structures, namely, face–centered cubic lattice,

body–centered cubic lattice, and hexagonal closed–packed structure. Using two types

of nanoparticles, they have also obtained some stable superlattices. Isogai et al. have

observed the triangular lattice? and the square lattice? of DNA functionalized gold

nanoparticles in a water solution by atomic force microscope. These lattices are fabri-

cated on the lipid bilayer substrate. The key points of the lipid bilayer are a large affinity

with DNA strands and a large fluidity. When DNA nanoparticles are captured on the

lipid substrate, they cannot be desorbed into a water solution, and can diffuse on the

substrate easily. Although they have shown the explicit alignment of DNA sequences

and obtained lattice structures, the requirement of DNA strands for fabricating any

lattice structure is unclear.

In this paper, keeping the formation of the lattice on a substrate using two types of

DNA covered gold nanoparticles in mind, we carry out Brownian dynamics simulation

and investigate the possibility of the formation of various two-dimensional lattices.

We show that the lattice structure depends on the optimal distance in the interaction

potential between different types of particles. In Sect. ??, we introduce the model. In

Sect. ??, we show results and carry out brief discussions. In Sect. ??, we summarize

our results.

2. Model

In Ref. ?, it is considered that DNA nanoparticles are strongly bound to a lipid

with DNA because of their affinities to each other. Thus, after the two–dimensional

migration of the DNA nanoparticles owing to the fluidity of the lipid bilayer, the DNA
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nanoparticles mainly crystallize on the lipid bilayer in an aqueous solution.

In order to investigate the lattice structure formed by DNA nanoparticles on the

lipid bilayer, we carry out a Brownian dynamics simulation, which is one of the powerful

methods of studying the properties of many–particle systems. Since the DNA nanopar-

ticles receive a random force from water molecules, the equation of motion of the ith

particle is given by the Langevin equation:

m
d2ri
dt2

= −ξ
dri
dt

+ Fi + F B
i , (1)

where m is the mass of a particle, ri is the position of the ith particle, ξ is the frictional

coefficient, and F B
i is the random force satisfying ⟨F B

i · F B
j ⟩ = 4ξkBTδijδ(t − t′). The

sum of the interaction force from other particles, Fi, is given by the gradient of the

central force potential U(rij) as

Fi =
∑
j

Fij = −
∑
j ̸=i

∂U(rij)

∂rij

rij
rij

, (2)

where rij = |rij| = |ri − rj|.
The form of the interaction potential U(rij) is important. The excluded volume effect

is not neglected since the size of the nanoparticles is finite. The short–range repulsive

force is required in the interaction potential. On the other hand, synthesis between the

DNA strands contributes to an attractive force.? The range of the attraction force is

finite because the length of DNA strands is finite. The Lennard–Jones (LJ) potential

satisfies those fundamental features except for the long–range attraction. This potential

is introduced as the potential between rare gas atoms and also applied to binary systems

in the field of glass systems.? For simplicity, we adopt the LJ potential as the interaction

potential between DNA nanoparticles.

The interaction potential between the ith and jth particles, U(rij), is given by

U(rij) = 4εij

{(
σij

rij

)12

−
(
σij

rij

)6
}
, (3)

where σij is the distance where U(σij) = 0. The potential profile is determined by the

two parameters, εij and σij. The potential takes its minimum −εij at rij = 21/6σij:

the interaction force is repulsive when rij < 21/6σij and attractive when rij > 21/6σij.

εij represents the strength of an attractive force and σij is proportional to the optimal

distance between particles.

In experiments,?, ? two types of nanoparticles covered by DNA are utilized for form-

ing various crystal structures. Taking account of such an experimental situation, we
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consider two types of particles, A and B, in our simulation. The set of the two parame-

ters (εij, σij) is classified into three types: (εAA, σAA) for the interaction between two A

particles, (εBB, σBB) for the interaction between two B particles, and (εAB, σAB) for the

interaction between an A particle and a B particle. Since the origin of the interaction

between nanoparticles is the DNA attached to each particle, these variables are related

to the designs of DNA strands, namely, the number of amino acid pairs, the number of

DNAs attached to the nanoparticle, and so forth. The number of amino acid pairs con-

tributing to the hybridization reflects the magnitude of the potential depth. The optimal

distance between nanoparticles is proportional to the length of DNA strands attached

to each nanoparticle. Therefore, the magnitude of those parameters in potentials is

almost arbitrary because amino acid sequences can be controlled freely. Hereafter, we

focus on the optimal distance between different types of nanoparticles. The parameter

set is assumed as σAA = σBB = σ > σAB and εAA = εBB = εAB = ε.

Since the friction from a solution is very large in the experiment,? we neglect the

acceleration in Eq. (??). The velocity of the ith particle is given by

dri
dt

=
Fi + F B

i

ξ
. (4)

Equation (??) is discretized as?

r̃i(t̃n+1) = r̃i(t̃n) + (F̃i + F̃ B
i )∆t̃, (5)

where r̃i = ri/σ, t̃n = εtn/ξσ
2, F̃i = σFi/ε, and t̃n+1 = t̃n + ∆t̃. The random force

F̃ B
i (t̃) satisfies ⟨F̃ B

i (t̃n) · F̃ B
j (t̃m)⟩ = 4kBTδijδmn/ε∆t̃.

The number of A and B particles is 256 each. Thus, the total number of particles

is 512. The system size is L2 = 23.732 with the periodic boundary condition. The area

fraction is 512×π(σ/2)2/L2 = 0.9. The magnitude of the random noise is kBT/ε = 0.1.

3. Results and Discussion

To investigate the two-dimensional lattice structure for various ratios of σAB to σ,

we introduce the length parameter s = σAB/σ. A very small s seems to be unrealistic

because of the steric hindrance. Although the realistic parameter range is unclear, the

parameter is set to 0.2 < s < 1 for the general study of the effect of s on the lattice

structure. Figure ?? shows typical snapshots of lattice structures, where s is (a) 1, (b)

0.7, (c) 0.6, (d) 0.45, and (e) 0.2. Red open circles and blue filled circles represent the

A and B particles, respectively. The superficial particle radius is set to about 0.1σ in

Fig. ??. When s = 1 [Fig. ??(a)], the connection distance between the A and B particles
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Fig. 1. (Color online) Typical snapshots of lattice structures for (a) s = 1.0, (b) s = 0.7, (c) s = 0.6,

(d) s = 0.45, and (e) s = 0.2.

is equivalent to that between the same type of particles. Thus, the two types of particles

mix at random and a triangular lattice, which is the close–packed structure, appears.

With decreasing s, the lattice symmetry changes: the square lattice, the hexagonal

lattice, and the rectangular lattice are formed when s is 0.7, 0.6, and 0.45, respectively

as shown in Figs. ??(b)–??(d). When s = 0.2 [Fig. ??(e)], the triangular lattice whose

unit is a dimer formed by a combination of the A and B particles seems to emerge. From

Fig. ??, we note as follows. The local symmetry of the lattice structure for s = 0.7 is

a square and seems to be different from that for other length parameters. For s < 0.6

as shown in Figs. ??(c)–??(e), the lattice for the same type of particles seems to be

maintained as a triangular although the lattice for all particles changes from a triangular

to the other lattices.

To study the relationship between s and the lattice structures more quantitatively,

we introduce an order parameter ϕk(i), which shows the local k–fold rotational sym-

metry around the ith particle, and a radial distribution function ḡ(r), which shows the

characteristic distance between particles. The definition of ϕk(i) is given by

ϕk(i) =


1

nNN

∣∣∣∣∣
r<r′∑
j

eikθij

∣∣∣∣∣ (nNN ≥ 2),

0 (nNN ≤ 1),

(6)

where nNN is the number of neighboring particles within the distance r′ = 1.2s, and

θij is the angle representing the direction of the jth particle when viewed from the
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Fig. 2. (Color online) Dependences of the rotational order parameters, (a) ⟨ϕ̄k⟩ and (b) ⟨ϕ̄hm
k ⟩, on

s. The order parameters are averaged over 100 samples. An error bar represents standard error. Lines

are guides for the eyes.

ith particle. Since s < 1, ϕk(i) shows the local rotational symmetry of the location of

particles whose type is different from that of the ith particle. We also estimate ϕhm
k (i),

which shows the rotational symmetry of the particles whose type is the same as that

of the ith particle. The definition of ϕhm
k (i) is similar to Eq. (??) except that we only

take account of the same type of particles within r′ = 21/6. To estimate the k–fold

rotational symmetry in a system, we use ϕ̄k and ϕ̄hm
k , which are averaged values of ϕk(i)

and ϕhm
k (i) in a system, respectively. Moreover, the sample average is taken and the

rotational order parameter is denoted by ⟨ϕ̄k⟩ and ⟨ϕ̄hm
k ⟩. We also calculate the radial

distribution function ⟨ḡ(r)⟩ for estimating the ordering of the system. The definition of

ḡ(r) in a system is given by

ḡ(r) =
1

N

∑
i

ni(r)

2πrδr
, (7)

where ni(r) is the number of particles between the distance r to r + δr for the ith

particle with δr = 10−2. The bracket means the sample average mentioned above. We
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also calculate the radial distribution function for the same type of particles as well in

the case of the order parameter.

Figure ?? shows the dependences of the rotational order parameters ⟨ϕ̄k⟩ and ⟨ϕ̄hm
k ⟩

on s. Squares, circles, triangles, and inverted triangles represent the dependences of

order parameters with k = 2, 3, 4, and 6, respectively. From Fig. ??, the rotational

lattice symmetry in the range s < 0.4 seems to be the same as that shown in Fig. ??(e).

This parameter region would not be feasible because of its smallness. To study a feasible

lattice structure, the radial distribution functions for various s > 0.45 are shown in

Fig. ??. The abscissa represents the normalized length r/r0, where r0 represents the

length of the first nearest neighbor. The value of s is 1 in Figs. ??(a) and ??(b), 0.7 in

Figs. ??(c) and ??(d), 0.6 in Figs. ??(e) and ??(f), and 0.45 in Figs. ??(g) and ??(h).

The radial distribution functions for all particles are shown in Figs. ??(a), ??(c), ??(e),

and ??(g), and for the same type of particles in Figs. ??(b), ??(d), ??(f), and ??(h).
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Fig. 3. (Color online) Radial distribution function for all particles [(a), (c), (e), and (g)] and the

same type of particles [(b), (d), (f), and (h)]. The value of s is 1 in (a) and (b), 0.7 in (c) and (d), 0.6

in (e) and (f), and 0.45 in (g) and (h). The abscissa is rescaled by r0 to adjust the position of the first

peak to be 1. r0 is 1.11 for s = 1, 0.79 for s = 0.7, 0.66 for s = 0.6, and 0.55 for s = 0.45. The data

are averaged over 100 samples. An error bar represents the standard error.
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When 0.8 < s ≤ 1, the large rotational order parameters are ⟨ϕ̄6⟩ and ⟨ϕ̄hm
6 ⟩. The

system has a sixfold rotational symmetry. The distribution function for the case of s = 1

[Fig. ??(a)] shows the number of first neighboring particles of about six, although the

value of the maximum peak is less than six because of the peak width. In each peak, the

ratio of the same type of particles is about half as shown in Figs. ??(a) and ??(b). The

triangular lattice with the mixture of A and B particles is found as shown in Fig. ??(a)

when the difference between σ and σAB is small.

With decreasing s, ⟨ϕ̄6⟩ and ⟨ϕ̄hm
6 ⟩ reduce and ⟨ϕ̄4⟩ and ⟨ϕ̄hm

4 ⟩ grow gradually. When

0.625 < s < 0.8, ⟨ϕ̄4⟩ and ⟨ϕ̄hm
4 ⟩ are larger than other parameters, which means that

both A and B particles are located with the fourfold symmetry around a particle. To de-

termine the locations of the particles more clearly, we investigate the radial distribution

functions for s = 0.7 shown in Figs. ??(c) and ??(d). From Fig. ??(c), the positions of

the second, third, fourth, and fifth nearest neighbors are estimated as
√
2r0, 2r0,

√
5r0,

and 2
√
2r0, respectively, and peaks also appear at

√
2r0, 2r0, and 2

√
2r0 in Fig. ??(d).

From the order parameters of the rotational symmetry and the distribution functions,

the typical lattice structure is determined as Fig. ??(a), which is consistent with the

square lattice observed in Fig. ??(b).

When s = 0.625, ⟨ϕ̄k⟩ and ⟨ϕ̄hm
k ⟩ markedly change. Since ⟨ϕ̄4⟩ and ⟨ϕ̄hm

4 ⟩ decrease,
the square lattices are broken. When 0.475 < s < 0.625, large order parameters are

⟨ϕ̄6⟩, ⟨ϕ̄hm
6 ⟩, and ⟨ϕ3⟩. When we focus on an A particle, the location of other A particles

around the focused A particle has a sixfold rotational symmetry, and B particles are

located at least with a threefold rotational symmetry. In Figs. ??(e) and ??(f), we

show the radial distribution functions with s = 0.6. From Fig. ??(e), the positions

of the second, third, and fourth nearest neighbors are estimated as
√
2r0,

√
3r0, and

√
7r0, respectively. The same type of particles appear at the second nearest neighbors

as shown in Fig. ??(f). Thus, the expected structure is given by Fig. ??(b), and the

honeycomb lattice shown in Fig. ??(c) is formed.

When 0.4 < s < 0.475, ⟨ϕ̄hm
6 ⟩ is large in Fig. ??(b), so that both A and B parti-

cles compose the triangular lattice. ⟨ϕ̄2⟩, ⟨ϕ̄4⟩, and ⟨ϕ̄6⟩ have large values as shown in

Fig. ??(a). Around one type of a given particle, another type of particles are located at

least with twofold rotational symmetry. The radial distribution functions with s = 0.45

[Figs. ??(g) and ??(h)] show that the third nearest neighbor located at
√
3r0 consists of

the same type of particles. Thus, the typical structure is expected as Fig. ??(c), which

is consistent with the rectangular lattice seen in Fig. ??(d).
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Fig. 4. (Color online) Typical lattice structures and the DNA length parameter s: (a) the square

lattice with s = 1/
√
2, (b) the honeycomb lattice with s = 1/

√
3, and (c) the rectangular lattice with

s = 1/2. The lengths of the solid line and dashed line show unity and s, respectively.

When s < 0.4, the clear local rotational order does not appear in ⟨ϕ̄k⟩ although ⟨ϕhm
6 ⟩

is larger than 0.9. Thus, the A and B particles form the triangular lattices individually.

When triangular lattices are overlapped, dimers of A and B particles are formed and

the triangular lattice with the dimers is formed as shown in Fig. ??(e).

To understand the relationship between the parameter s and the lattice structures

precisely, we need to consider the dependence of the free energies of the formation of

the lattice structures on s carefully. However, when we take into account the interaction

between particles up to the second nearest neighbors, we can instinctively understand

why the lattice structure changes with the parameter s. When the distance between

the same type of particles is unity, the distance between the different particles, which
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is given by the parameter s, becomes 1/
√
2 ≃ 0.71 for a square lattice. Thus, when

0.625 < s < 0.8, the A and B particles can form the square lattice stably. In Fig. ??(b),

the parameter s becomes 1/
√
3 ≃ 0.58, so that the particles are located comfortably

with the honeycomb lattice when 0.475 < s < 0.625. When the rectangular lattice

as shown in Fig. ??(c) is formed, the parameter s is 0.5, which is consistent with the

formation of the rectangular lattice with 0.475 < s < 0.625.

4. Summary

We demonstrated the lattice structure of the binary system of DNA nanoparticles on

the substrate by Brownian dynamics. We focused on the fact that the DNA strands are

programmable although the quantitative estimation of the interaction between DNA

nanoparticles is difficult. The length of DNA strands and the number of amino acid

pairs are probably related to the length of the optimal distance between particles and

the depth of the interaction potential well, respectively. The Lennard–Jones potential is

applied to the interaction potential between DNA nanoparticles. Two types of particles

are introduced and we took into account the difference in length between the different

types of particles for our focused features.

With the small length parameter s < 0.4, the dimer pair is formed and the two

types of triangular lattices overlap. When the length parameter increases, the lattice

structure changes to the rectangular, honeycomb, square, or triangular lattice. Since

the condition of the constant volume and the constant number of particles is used,

the lattice density changes for each length parameter. However, the lattice seems to be

formed robustly as shown in the rotational symmetry and radial distribution function.

Our results suggest that various lattice structures of nanoparticles can be fabricated

since it is possible that the length can be changed by changing a part of the strands

unrelated with binding amino acid pairs. We hope that the requirement for fabricating

various lattice structures is elucidated through such experiments.
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