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Keeping the formation of lattice structures by nanoparticles covered with DNA in mind,

we carry out Brownian dynamics simulations and study three-dimensional lattice struc-

tures formed by two species of particles. In our previous study [H. Katsuno, Y. Mae-

gawa, and M. Sato, J. Phys. Soc. Jpn. 85, 074605 (2016)], we used the Lennard–Jones

potential and studied two-dimensional structures formed in a binary system. When

the interaction length between the different species, σ′, is shorter than that between

the same species, σ, the lattice structure changes with the ratio σ′/σ. In this paper,

we use the same potential and study the formation of three-dimensional structures.

With decreasing ratio σ′/σ, the mixture of the face-centered-cubic (fcc) structure and

hexagonal-close-packed (hcp) structure is changed to the body-centered-cubic (bcc)

structure and the NaCl structure.

1. Introduction

Using nanoparticles covered with DNA strands, which we call DNA nanoparticles,

as building blocks is a promising method for creating various nanostructures because

the particle size, the particle shape, and the interaction between particles are controlled

easily. In experiments,1–7) linker strands are used to connect the DNA nanoparticles.

When a self-complementary linker is used, the system becomes a single-component

system and the face-centered-cubic (fcc) structure is formed. With two different non-

self-complementary linkers, the system becomes a binary system. The particles with

different types of linkers attract each other, and the body-centered-cubic (bcc) structure
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is formed. The NaCl structure is also formed when both the self-complementary linkers

and the non-self-complementary linkers are added to DNA nanoparticles.4) It is possible

to form more complicated structures such as CsCl, AlB2, Cr3Si, and Cs6C60 lattices

when DNA nanoparticles with two different sizes are used as building blocks.5)

Many lattice structures have been formed in experiments,1–7) and some rules for

designing the lattice structures have been proposed.4) However, there has been little

progress in obtaining a theoretical understanding of the mechanism for forming the

lattice structures, which is probably due to difficulties in modeling the interaction be-

tween the DNA nanoparticles.8,9) As a first step, it is necessary to study the formation

of lattice structures, assuming a concrete interaction between the particles. Thus, in our

previous paper,10) we introduced a simple system and studied two-dimensional struc-

tures formed in a binary system, in which the Lennard–Jones (LJ) potential was used

as the interaction potential between particles. In the model, we neglected the difference

in the interaction strength and focused on the difference in the interaction length: we

assumed that the interaction length between the different species, σ′, is smaller than

that between the same species, σ. We carried out Brownian dynamics simulations with

various ratios σ′/σ and showed that various two-dimensional structures were formed.

Experimentally, the three-dimensional lattice structures formed by DNA nanopar-

ticles1–5) have been studied more than the two-dimensional structures.6,7) Thus, in this

paper, we use the same model as that used in our previous study10) and investigate

the formation of three-dimensional structures. We carry out Brownian dynamics sim-

ulations to show how the three-dimensional structure changes with the ratio σ′/σ. In

Sect. 2, we introduce our model. In Sect. 3, we estimate the interaction energies for

some structures and consider the dependence of the lattice structures on the ratio σ′/σ.

Then, we carry out simulations with different values of σ′/σ. We calculate the radial dis-

tribution function and local orientation symmetries to determine the structure formed

in the binary system. In Sect. 4, we summarize our results and give a brief discussion.

2. Model

We consider nanoparticles moving in a solution. The particles are subjected to vis-

cous resistance and random thermal noise from the solution. The equation of motion

for the ith particle is given by

m
d2ri
dt2

= −ξ
dri
dt

+ Fi + F B
i , (1)
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where m is the particle mass, ri is the position of the ith particle, and ξ is the frictional

coefficient. F B
i represents the thermal noise satisfying ⟨F B

i ⟩ = 0 and ⟨FB
i,k(t)F

B
j,l(t

′)⟩ =
2ξkBTδijδklδ(t− t′), where FB

i,k(t) represents the component of the thermal noise acting

on the ith particle in the k-direction. Fi is the sum of the inertial forces for the ith

particle, which is expressed by the interaction potential U(rij) as

Fi =
∑
i̸=j

∇U(rij), (2)

where rij = |ri − rj|. We use the LJ potential as the interaction potential:

U(rij) = 4ϵij

{(
σij

rij

)12

−
(
σij

rij

)6
}
, (3)

where ϵij and σij represent the interaction strength and interaction length, respectively.

The interaction is repulsive when rij < 21/6σij. With deceasing rij, the repulsive force

increases sharply. Particles are subjected to an attractive force when rij > 21/6σij. The

attraction decreases gradually with increasing the distance between two particles and

becomes negligible when rij ≤ 3σij. Thus, owing to its simplicity, the LJ potential is

reasonably satisfactory as the interaction potential for hard nanoparticles covered with

fine and flexible DNA strands.

In our simulations, we consider a system consisting of two species, where the num-

bers of the two species are the same. In general, both ϵij and σij may depend on the

combination of the ith and jth particles, but we neglect the difference in ϵij for sim-

plicity. We assume that the interaction length for a pair of the same species, σ, is larger

than that for a pair of the different species, σ′, and study how the lattice structure

changes with the ratio σ′/σ.

We assume that the viscosity is very large so that we can solve Eq. (1) numerically

neglecting md2r/dt2. A simple difference equation for Eq. (1) is given by11)

r̃i(t̃n+1) = r̃i(t̃n) + F̃i∆t̃+∆r̃B
i , (4)

where r̃i = ri/σ, t̃n = ϵtn/(ξσ
2), F̃i = σFi/ϵ, and t̃n+1 = t̃n +∆t̃. The displacement by

the random force, ∆r̃B
i , satisfies ⟨∆r̃B

i ⟩ = 0 and ⟨∆r̃Bi,k(tn)∆r̃Bj,l(tm)⟩ = 2kBTδijδklδmn/ϵ,

where ∆r̃Bi,k(tn) represents the component of ∆r̃B
i in the kth direction.

To specify lattice structures formed by the simulations, we estimate the radial dis-

tribution function g(r) defined as

g(r) =
1

N

Ns∑
m

N∑
i

ni,m

4πr2δr
, (5)
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where ni,m represents the number of particles between distances r and r + δr for the

ith particle in the mth run. N and Ns represent the particle number in a sample and

the sample number, respectively. In our estimation, δr is set to 10−2.

Table I. Q4 and Q6 in perfectly symmetric configurations for the face-centered-cubic (fcc) structure,

the hexagonal-close-packed (hcp) structure, the body-centered-cubic (bcc) structure, and the simple

cubic (sc) structure.14)

fcc hcp bcc sc

Q4 0.190 0.097 0.509 0.764

Q6 0.575 0.484 0.629 0.354

We also estimate order parameters Q4(i) and Q6(i),
12,13) which represent the local

orientational symmetry around the ith particle. Ql(i) is defined as

Ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|ql,m(i)|2, (6)

where ql,m(i) is given by

ql,m(i) =
1

nn

nn∑
j=1

Y m
l (θij, ϕij). (7)

In Eq. (7), nn represents the number of neighbors of the ith particle, Y m
l (θij, ϕij) is

the spherical harmonics, and θij and ϕij represent the polar and azimuthal angles for

rj − ri, respectively. The values of Q4 and Q6 in perfectly symmetric configurations for

some lattice structures are shown in Table I.14)

3. Results

Before carrying out simulations, we set the distance between the same species to

21/6σ and consider the relationship between σ′/σ and the interaction energy for the

structures in Table I. The close-packed-structures, i.e., the fcc structure and the hcp

structure, are formed when the connection between the different species is equivalent to

that between the same species. If we neglect the effects of the third- and higher-order

neighbors, the interaction energy for the hcp structure is the same as that for the fcc

structure. The distances for the nearest neighbors and the next nearest neighbors are

21/6σ and
√
2× 21/6σ, respectively. Hereafter, we express 21/6σ as r0. If we assume that
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the two types of species are randomly located at the lattice positions, Efcc,hcp
LJ satisfies

Efcc,hcp
LJ

2ϵ
=

[
Nnn

2

{(
1

21/6

)12

−
(

1

21/6

)6
}

+
Nnnn

2

{(
1

21/6
√
2

)12

−
(

1

21/6
√
2

)6
}]

+

[
Nnn

2

{( s

21/6

)12

−
( s

21/6

)6
}
+

Nnnn

2

{(
s

21/6
√
2

)12

−
(

s

21/6
√
2

)6
}]

,(8)

where s = σ′/σ, and the numbers of nearest neighbors, Nnn, and next nearest neighbors,

Nnnn are 12 and 6, respectively.

To form the bcc structure, the most suitable distance between the different species

is given by
√
3r0/2. When we take the interaction between particles into account up to

the next nearest neighbors, the interaction energy per particle, Ebcc
LJ , satisfies

Ebcc
LJ

2ϵ
=

[
Nnn

{(
2s

21/6
√
3

)12

−
(

2s

21/6
√
3

)6
}

+Nnnn

{(
1

21/6

)12

−
(

1

21/6

)6
}]

, (9)

where Nnn = 8 and Nnnn = 6. The NaCl lattice is the most suitable structure when the

distance between the different species is
√
2r0/2. In the case, the interaction energy Esc

LJ

is given by

Esc
LJ

2ϵ
=

[
Nnn

{(
2s

21/6
√
2

)12

−
(

2s

21/6
√
2

)6
}

+Nnnn

{(
1

21/6

)12

−
(

1

21/6

)6
}]

, (10)

where Nnn = 6 and Nnnn = 12.
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 0  0.2  0.4  0.6  0.8  1
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J
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ε
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The fcc and hcp structures
The bcc structure
Nacl type structure

Fig. 1. (color online) Dependence of ELJ on the ratio s for the close-packed structures, the bcc

structure, and the NaCl structure.

Figure 1 shows the dependency of Ebcc
LJ , E

fcc,hcp
LJ , and Esc

LJ on s. The structure giving

the minimum energy changes from the close-packed structures to the bcc structure then

the NaCl structure with decreasing s; the close-packed structures, the bcc structure,

and the NaCl structure are formed when 0.92 ≤ s, 0.79 ≤ s ≤ 0.92, and s ≤ 0.79,
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respectively.

In the following, we carry out Brownian dynamics simulations with different values

of s and investigate the structures. In our simulations, kBT/ϵ is set to 0.1. We use a

small system owing to limited numerical resources. The number of particles is N = 500

and the number of each type of particle is N/2 = 250. A scaled cubic box with a

side length of 8 is used as the simulation box with the periodic boundary condition. If

we regard σ as the radius of the particles, the volume fraction is estimated to be 0.5.

Initially, N particles are placed at random in the system. After moving the particles for

a long time, we investigate the lattice structure.

3.1 Results for s = 0.95

x

y

z

Fig. 2. (color online) Snapshot of structure formed with s = 0.95, where the two species are distin-

guished by the difference in color.

From Fig. 1, the fcc structure, the hcp structure, or their mixture is expected to

be formed when 0.92 ≤ s. To confirm our expectation, we carried out 40 individual

runs with s = 0.95 until t ≃ 4.8 × 104 and obtained 15 ordered samples. Sharp peaks

in the radial distribution function g(r) appeared at t ∼ 103 in the ordered samples,

but the sharp peaks did not appear in the other samples when t > 104. Thus, we did

not carry out longer simulations and averaged g(r) over the ordered samples. In Fig. 2,

we show a typical snapshot in the ordered case, where we distinguish the two species
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(c)N=500, s=0.95, ε=1 
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Different type of particles

Fig. 3. (color online) (a) Radial distribution function g(r), (b) contributions of the same species

to g(r), and (c) that of different species to g(r) for s = 0.95. Results are averaged over 15 ordered

samples. Error bars represent standard errors.

by the difference in color. Figure 3 shows g(r) averaged over 15 ordered samples. The

contributions of the same and different species to g(r) are shown in Figs. 3(b) and 3(c),

respectively. Since the positions and heights of the peaks are the same in these figures,

the two species are mixed randomly, which seems to agree with Fig. 2. In Fig. 3(a), the

first peak clearly appears at r = r0. When we count Nnn within 1.16r0, the positions

of the second and third peaks are 1.47r0 and 1.73r0, respectively. Since the positions of
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these peaks are given by
√
2r0 and

√
3r0 for the fcc structure and

√
2r0 and 2

√
2r0/

√
3

for the hcp structure, the fcc structure appears to be formed in the samples. However,

owing to the broadness of the peaks, we cannot state clearly that the hcp structure is

not formed. Thus, we estimate Q4 and Q6.

 0.05 0.1 0.15 0.2 0.25
Q

4

 0.4

 0.45

 0.5

 0.55

 0.6

Q
6

 0

 2

 4

 6

 8

 10

Fig. 4. (color online) Distribution of Q4 and Q6 for s = 0.95, in which the particles with nine or

fewer neighbors are neglected. The distribution shows the sum of 15 ordered samples.

Figure 4 shows the distribution of Q4 and Q6. When Nn is small, we cannot calculate

the order parameters correctly. Thus, we estimated Q4 and Q6 for the particles with

Nn ≥ 10 in Fig. 4. High-density regions appear in the top -right and bottom-left, which

shows that both the fcc and hcp structures are formed by the mixture. The top-right

region is larger than that in the bottom-left one; thus, the fcc structure is more dominant

than the hcp structure, which is consistent with g(r).

3.2 Results for s = 0.85

When 0.79 ≤ s ≤ 0.92, the structure expected from Fig. 1 is the bcc lattice. Here, to

confirm the formation of the bcc structure, we carry out a simulation with s = 0.85 at

t ≃ 3.1×103. Figure 5 shows a typical snapshot. We find that the two species are mixed

well, but we cannot confirm the formation of the bcc structure from the figure. Thus,

we calculate g(r) to investigate the formation of the bcc structure. Figure 6 shows g(r)

with s = 0.85. The first peak at 0.78r0 is formed by the different species [Fig. 6(c)]. The

second peak, which is formed by the same species, appears at r = 0.98r0 [Fig. 6(b)].

The third peak at 1.63r0 is formed by both the same and different species [Figs. 6(b)

and 6(c)]. The structure appears to be the bcc structure, but the positions of these
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x

y

z

Fig. 5. (color online) Snapshot of the structure with s = 0.85, where the two species are distinguished

by the difference in color.

peaks are slightly misaligned from those for the perfect bcc structure. We cannot find

the fourth and subsequent peaks in Fig. 6(a): thus, long-range ordering does not occur.

The misalignment from the bcc structure is also confirmed from Q4 and Q6. The

ratios of the numbers of particles with eight, seven, and six neighbors to N are 0.5%,

11%, and 39%, respectively. Since the number of particles having eight or seven neigh-

bors is small, we estimate Q4 and Q6 for the particles with Nn ≥ 6. Figure 7 shows the

distribution of Q4 and Q6. If the perfect bcc structure is formed, Q4 and Q6 are 0.509

and 0.629, respectively. In Fig. 7, however, Q4 is distributed broadly and Q6 is shifted

to the lower side. In addition to g(r), the local orientational symmetry also deviates

from that in the bcc structure.

3.3 Results for s = 0.7

Figure 8 shows a snapshot for s = 0.7 at t ≃ 1.1 × 103, where we expect the

formation of the NaCl type lattice. In the figure, the two species appear to form a

regular structure. To confirm whether the regular structure is the NaCl structure, we

calculate the radial distribution function. Figure 9(a) shows g(r) for s = 0.7. Peaks

appear at r = 0.7r0, r0, 1.2r0, 1.4r0, 1.6r0, and 1.7r0. The first, third, and fifth peaks

consist of the different species [Fig. 9(c)] and the second, fourth, and sixth peaks consist

of the same species [Fig. 9(b)]. From these peaks, we confirm that the NaCl structure
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Fig. 6. (color online) (a) Radial distribution function g(r), (b) contribution of the same species to

g(r), and (c) that of different species to g(r) for that s = 0.85. Results are averaged over 40 runs. Error

bars represent standard errors.

with the lattice constant 1.4r0 is formed in the system. We calculate Q4 and Q6 for

the particles with Nnn ≥ 5. Figure 10 shows the distribution of Q4 and Q6. Although

there are two spots, they are mainly distributed around Q4 = 0.75 and Q6 = 0.35.

From Table I, we can confirm that the local orientational order parameters also show

the formation of the simple cubic lattice, which agrees with the formation of the NaCl

lattice.
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Fig. 7. (color online) Distribution of Q4 and Q6 for s = 0.85, which is the sum of 40 samples.

x

y

z

Fig. 8. (color online) Snapshot of the structure with s = 0.7, where the two species are distinguished

by the difference in color.

3.4 Results for s = 0.6

Small values of s do not seem to be realistic because of the steric hindrance. However,

some structures are formed for the small values of s in the two-dimensional system.10)

Thus, we investigate the case that s = 0.6. Figure 11 shows the radial distribution

function for s = 0.6 at t ≃ 2.2 × 103. The first peak formed by the different species

appears at r = 0.6r0 and the second peak formed by the same species appears at r = r0,

but the other peaks do not appear clearly. g(r) has a liquidlike form; thus, the lattice
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Fig. 9. (color online) (a) Radial distribution function g(r), (b) contributions of the same species to

g(r), and (c) that of different species to g(r) for s = 0.7. (a) shows g(r), and (b) and (c) show the

contributions of the same species and different species to g(r), respectively. Results are averaged over

40 runs. Error bars represent standard errors.

structure is not formed. We also carried out simulations for s = 0.5 and s = 0.4. In

both cases, the radial distribution function showed the formation of a similar liquidlike

structure. Thus, in our simulations, the formation of a lattice structure was not observed

with small values of s.
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Fig. 10. (color online) Distribution of Q4 and Q6 for s = 0.7, which is the sum of the 40 samples.
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Fig. 11. (color online) Radial distribution function for s = 0.6. The data are averaged over 40 runs.

Error bars represent standard errors.

4. Summary and Discussion

In this paper, keeping DNA nanoparticles in mind, we carried out Brownian dynam-

ics simulations and studied the three-dimensional structure in a binary system. We set

the interaction length between the different species, σ′, to be smaller than that between

the same species, σ. The formed structure changes with s, which is defined as s = σ′/σ :

a mixture of the fcc and hcp structures, the bcc structure, and the NaCl-type structure

were formed for s = 0.95, 0.85, and 0.7, respectively. These structures agreed with the

lattice expected from a simple energy estimation.

When s = 0.95, the simulation time was more than 10 times that in the cases

with s = 0.85, 0.75, and 0.6, but the ordered state was formed in only 15 samples.
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Long calculation time is probably needed for the disordered samples to relax to the

ordered state. Owing to our limited computational resources, we did not carry out long

calculation and estimated the radial distribution function g(r) for the ordered samples.

A mixture of the hcp and fcc structures was formed in the ordered samples although the

fcc structure is more stable than the hcp structure.15) When we carried out simulations

with s = 1.0, a mixture of the hcp and fcc structures was formed. Thus, the formation

of a metastable structure is not caused by the deviation of s from the most suitable

value. Although we carried out the simulations with a small system, a longer time is

probably necessary to form the most stable structure.

When s = 0.85, the formation of the bcc structure was expected from the rough

estimation of the interaction energy as shown in Fig. 1. Judging from the peaks in

the radial distribution function, the bcc structure appears to be formed locally, but a

long-range order is not formed. In previous experiments,1–5) the attraction between the

same species was neglected when the bcc structure was formed. On the other hand, the

attractive force acts on the same species in our simulation. The attraction between the

same species may prevent the formation of the long-range order. In future, we intend

to confirm the effect of attraction between the same species on the lattice structure.

Since both the attraction between the same species and that between the differ-

ent species are taken into account, our model is close to a system in which both

self-complementary linkers and non-self-complimentary linkers are added to DNA

nanoparticles.4) The interaction in our model will probably be realized if the non-self-

complimentary linkers are shorter than the self-complementary linkers. In our simula-

tion, the formed structures were less diverse than those in the experiment,5) which may

be because we used a very simplified model: we neglected the differences in the particle

size and interaction strength between the different species. If we take account of the

differences, more diverse types of structures may be formed. We next intend to study

the effect of these differences on the structures.
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