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By taking account of the alternation of structural parameters, we study bunching of
impermeable steps induced by drift of adatoms on a vicinal face of Si(001). With the
alternation of diffusion coefficient, the step bunching occurs irrespective of the direction
of the drift if the step distance is large. Like the bunching of permeable steps, the type
of large terraces is determined by the drift direction. With step-down drift, step bunches
grows faster than those with step-up drift. The ratio of the growth rates is as large as
the ratio of the diffusion coefficients. Evaporation of adatoms, which does not cause the
step bunching, decreases the difference. If only the alternation of kinetic coefficient is
taken into account, the step bunching occurs with step-down drift. In an early stage,
the initial fluctuation of the step distance determines the type of large terraces, but in
a later stage, the type of large terraces is opposite to the case of alternating diffusion
coefficient.
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1. Introduction

When a Si(001) vicinal face is tilted in the 〈110〉 direction, two types of terraces, 1 × 2 and

2 × 1 terraces, appear alternately. In the 1 × 2 terrace, which we call 1) TB, the surface diffusion

perpendicular to the steps is faster than that parallel to the steps. In the 2 × 1 terrace, which we

call TA, the relation is opposite.

The two adjacent terraces are separated by a monoatomic height step. The type of the steps

also changes alternately: the step at the lower side edge of TA, which we call SA, is smoother than

that of TB, which we call SB. Then, parameters like kinetic coefficient and the step stiffness may

change for the two kinds of steps.

When a Si(001) vicinal face is heated by direct electric current, the vicinal face is unstable and

step bunching occurs irrespective of the current direction.2,3) The type of large terraces between

bunches is TB with step-down current and TA with step-up current. Cause of the step bunching is

considered to be the drift of adatoms4) induced by the current. By using a one-dimensional step

model, where the alternation of diffusion coefficient and that of kinetic coefficient are taken into

account, Stoyanov5) theoretically studied the stability of a vicinal face for pairing of steps. With

large kinetic coefficients, the step pairing occurs irrespective of the direction of the drift, and the
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type of large terraces between step pairs is determined by the current direction. To study behaviors

of step pairs, Natori and co-workers carried out numerical simulation of a similar one-dimensional

step model.6,7) With step-down drift, the step bunching occurs via coalescence of step pairs, but

the step bunching does not occur with step-up drift, which disagrees with the experiments.2,3)

Recently, we carried out Monte Carlo simulation,8) where the alternation of anisotropic surface

diffusion was taken into account. In contrast to the previous studies,6,7) the step bunching occurs

irrespective of the direction of the drift as in the experiment.2,3) In our model,8) the steps are

perfectly permeable, and the alternation of kinetic coefficient and the evaporation of adatoms are

neglected. On the other hand, the steps are impermeable and both the alternation of kinetic

coefficient and the evaporation are taken into account in the previous models.6,7) Since there are

many differences between the models, it is not clear what is the most important factor to cause the

different results.

In this paper, we use a one-dimensional model of impermeable steps to study the drift-induced

step bunching. In Sec. 2, we introduce the model. In Sec. 3, we analyze the model with alternating

diffusion coefficient and perform a numerical simulation. We compare the results with our previous

study.8) In Sec. 4, we study the model with the alternating kinetic coefficient. The effect of

evaporation, which is neglected in Ref. 8, is also studied in Secs. 3 and 4. In Sec. 5 we summarize

the results and give a brief discussion.

2. Model

We use a one-dimensional step flow model.5–7) The y-coordinate is taken in the step-down

direction. When the drift of adatoms is parallel to the y-axis, the diffusion equation of adatom

density c(y, t) is given by

∂c

∂t
= Dm

∂2c

∂y2
− DmF

kBT

∂c

∂y
− 1

τ
c, (1)

where Dm is the diffusion coefficient in the mth terrace, F the force to cause the drift and τ the

lifetime of adatoms for evaporation.

Boundary conditions at the mth step are given by5,9)

Km(c|+ − cm) = Dm

(
∂c

∂y

∣∣∣∣
+

− F

kBT
c|+
)

−Pm(c|+ − c|−), (2)

Km(c|− − cm) = −Dm−1

(
∂c

∂y

∣∣∣∣
−
− F

kBT
c|−
)

−Pm(c|− − c|+), (3)

where cm is the equilibrium adatom density, Km kinetic coefficient of the mth step and +(−)

indicates the lower (upper) side of the step. TA and TB appear alternately, and we assume steps
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with odd numbers are SB steps and those with even numbers are SA steps (Figure 1). The diffusion

coefficients and the kinetic coefficients are given by (D2n,K2n) = (DB,KA) and (D2n−1,K2n−1) =

(DA,KB). Bearing a Si(001) vicinal face in mind, we set DB > DA and KB > KA. The second

terms in the right hand side of eqs. (2) and (3) represent the adatom current through the step

without solidification. With Pm → ∞, the difference between c|+ and c|− vanishes and the step is

called perfectly permeable. With Pm = 0, the step is called impermeable and the surface diffusion

field is separated by the step. Hereafter we deal with the impermeable steps.

SA
SB TA TB

DA DB KA
KB

2n−1 2n−1 2n 2n

Fig. 1. A restructed Si(001) vicinal face. Short lines represent dimers.

When the neighboring steps interact with the potential ζm, the equilibrium adatom density at

the mth step cm is given by10,11)

cm = c0
eq +

Ωc0
eq

kBT

∂ζm

∂ym

= c0
eq

[
1 − Ãν̃

(
1

lν̃m−1

− 1
lν̃m

)]
(4)

where c0
eq is the equilibrium adatom density of an isolated step, Ω the atomic area, ym the position

of the mth step and lm = (ym+1 − ym) is the width of the mth terrace. If the step interaction

potential ζm is given by ζm = −A(ln lm−1 + ln lm) as in a Si(001) vicinal face,12) the exponent is

ν̃ = 1 and Ãν̃ = ΩA/kBT .

By solving eq. (1) with the boundary conditions, eqs. (2) and (3), in a quasi-static approx-

imation (∂c/∂t = 0), we determine the adatom density. The velocity of the mth step is given

by

Vm = Km(c|+ − cm) + Km(c|− − cm)

= Ω
(

Dm
∂c

∂y

∣∣∣∣
+

− DmF

kBT
c|+
)

−Ω
(

Dm−1
∂c

∂y

∣∣∣∣
−
− Dm−1F

kBT
c|−
)

. (5)
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In the following, to see how the step bunching changes with the alternation of parameters, we

separately study the effect of diffusion coefficients and that with kinetic coefficients.

3. Step bunching with alternation of diffusion coefficient

We use the model of impermeable steps to study the step bunching with alternation of diffusion

coefficient. We compare results wtih the previous study8) to see the effect of step permeability. For

simplicity, the alternation of kinetic coefficient is neglected.

3.1 Step bunching induced by drift in a conserved system

We first study the step bunching in a conserved system. Without the evaporation, the step

velocity is given by

Vm =
ΩKDm−1f(cm−1e

flm−1 − cm)
(eflm−1 − 1)K + (eflm−1 + 1)Dm−1f

− ΩKDmf(cmeflm − cm+1)
(eflm − 1)K + (eflm + 1)Dmf

, (6)

where f = F/kBT .

In a vicinal face with the step distance l, the step velocities are given by

V2n = −V2n−1

=
ΩK2fc0

eq(e
fl − 1)2(DA − DB)
vAvB

, (7)

where vA and vB are

vA = (efl − 1)K + (efl + 1)DAf,

vB = (efl − 1)K + (efl + 1)DBf. (8)

Since the diffusion coefficient DB is larger than DA, SB steps advance and SA steps recede with

step-down drift (f > 0). With step-up drift (f < 0), the direction of the step motion is reversed.

In the initial stage of the instability, formation of large TB(TA) terrace with step-down (step-

up) drift is expected due to the step pairing. To study the motion of pairs of steps, we carry out

numerical integration of eq. (6). In addition to the step distance l, there are two characteristic

lengths in the vicinal face. One is f−1 ∼ kBT/eE,13) which is a characteristic length determined by

the drift and usually much larger than the step distance. The other is DB/K, which is characteristic

length determined by step kinetics. When the step distance l is much smaller than DB/K, the step

kinetics is more important than the surface diffusion. We assume that f−1 is larger than DB/K,

and study the time evolution in two cases; DB/K < l and l < DB/K.

Figure 2 represents the time evolution of step positions with DB/K � l � f−1. This is the case

in which the diffusion is slow and controls the time evolution. Solid lines represent the evolution
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y

(a) (b)

Fig. 2. Time evolution of step position. The step distance l is larger than DA/K and DB/K. The drift direction is
(a) step-down drift and (b) step-up, and the drift velocities satisfy |fl| = 0.1. The number of steps is 32 and the
system size is 16 with the periodic boundary condition. Ãν̃ = 5 × 10−3 with ν̃ = 1, DB/Kl = 0.2, DA/Kl = 0.02
and t̃ ≡ Ωc0

eqt.

of the positions of SB and dotted lines represent SA. The characteristic length f−1 is f−1 = 200

and the scaled time t̃ is given by t̃ ≡ Ωc0
eqt. The initial step distance is about the same, but with a

random fluctuation. In the initial stage, the step pairing occurs irrespective of the drift direction.

Large terraces are TB with step-down drift (Fig. 2(a)) and TA with step-up drift (Fig. 2(b)), which

agrees with eq. (7) and the previous analysis.5–7)

In a later stage, large bunches appear irrespective of the drift direction. The type of large

terraces is the same as in the initial stage. Free single steps or pairs do not exist on the large

terraces and the bunches grow via coalescence of small bunches. Though the formation process of

large bunches is similar in both cases, the step density with step-down drift is higher than that

with step-up drift, and the growth is much faster. The ratio of the growth rate of step bunches

is as large as the ratio of the diffusion coefficients. In the numerical study of Natori et al.,6,7) the

formation of large bunches with step-up drift did not occur in contrast to our simulation. For the

very slow growth rate of step bunches, their simulation time might be too short to produce large

bunches.

Figure 3 represents the step bunching with l � DA/K, i.e., the step kinetics-control case. The

amplitude of the initial fluctuation is the same as that in Fig. 2. When the drift is in the step-down

direction (Fig. 3(a)), the equidistant step train is unstable and the step bunching occurs. The

terrace type between step bunches is determined by the initial fluctuation and both types of large

terraces coexist. When the drift is in the step-up direction (Fig. 3(b)), the step bunching does not

seem to occur. The results are very different from Fig. 2.

To find the reason that the step behavior changes with the kinetic coefficients, we analyse the

change of alternating terrace width. We assume the width of TB is l2n = l + ∆l/2 and that of
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(a) (b)

Fig. 3. Time evolution of step position with step distance l � DA/K,DB/K with (a) step-down drift and (b) step-up
drift. The number of steps is 32 and the system size is 16 with the periodic boundary condition. Ãν̃ = 4 × 10−3

with ν̃ = 1, |fl|=0.1, DB/Kl = 200 and DA/Kl = 20.

d∆l

dt

−1 0 1

0

5

∆l/2l

d∆l

dt

−1 0 1

0

∆l/2l

(a) (b)

Fig. 4. Time derivative of the terrace width change ∆l with (a) step-down drift and (b) step-up drift. Parameters
are the same as in Fig. 2.
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TA is l2n−1 = l − ∆l/2. Figure 4 represents the time derivative of ∆l for large kinetic coefficients.

Parameters are the same as in Fig. 2. With step-down drift (Fig. 4(a)), the initial vicinal face

∆l = 0 is unstable and ∆l increases up to the stable fixed point near ∆l = 2l. The surface consists

of large TB terraces and small TA terraces, i.e., tight step pairs. With step-up drift (Fig. 4(b)), the

initial stage is also unstable and ∆l decreases to the stable fixed point near ∆l = −2l. The surface

consists of small TB terraces and large TA terraces. The results agree with the initial pairing stage

of Fig. 2.

Figure 5 represents the time derivative of ∆l for small kinetic coefficients. With step-down drift

(Fig. 5(a)), there are three fixed points. The fixed point (open circle) near the center is unstable

and two other fixed points (filled circles) are stable. Since the unstable fixed point is very close to

∆l = 0, the final stage is not unique if the initial fluctuation is included. In Fig. 3(a), the initial

random fluctuation is not negligible and some terraces move to the fixed point with positive ∆l

and two types of terraces coexist.

d∆l

dt

−1 0 1
−0.0005

0

0.0005

∆l/2l

d∆l

dt

−1 0 1

−0.002

0

0.002

0.004

∆l/2l

(a) (b)

Fig. 5. Time derivative of the terrace width change ∆l with (a) step-down drift and (b) step-up drift. Parameters
are the same as in Fig. 3.

With step-up drift, there is only one stable fixed point with a small negative ∆l. From the

condition Vm in eq. (6), the difference of step distance ∆l in the fixed point near ∆l = 0 is given

by

∆l

l
=

Kl(DA − DB)
2DADB

, (9)

where we neglected the step-step repulsive interaction. The sign of ∆l is determined by the diffusion

coefficients and independent of the drift direction as seen in Fig. 3(b).

3.2 Step bunching induced by evaporation

Since the experiments2,3) were carried out at high temperatures, the evaporation of adatoms

may not be negligible for the step bunching.
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We first neglect the drift of adatoms and see if the step bunching occurs with the evaporation.

For simplicity, we consider the limit of the fast step kinetics, K → ∞. If the step repulsion is

absent, the step velocity is given by

Vm

Ωc0
eq

= −Dm

xm
tanh

lm
2xm

− Dm−1

xm−1
tanh

lm−1

2xm−1
, (10)

where xm =
√

Dmτ is the surface diffusion length in the mth terrace. With the same step distance

l, the step velocity is given by

V2n = V2n−1

= −Ωc0
eq

[
DA

xA
tanh

l

2xA
+

DB

xB
tanh

l

2xB

]
, (11)

where xA(xB) represents the surface diffusion length in TA(TB) and the equidistant train of steps

is a steady state. When the terrace widths change alternately and are given by l2n = l + ∆l/2 and

l2n−1 = l − ∆l/2, from eq. (10) the time evolution of ∆l is given by

1
2

d∆l

dt
= V2n − V2n−1 = 0. (12)

The vicinal face is marginal to the perturbation. If the repulsive interaction is taken into account,

the vicinal face is stable and the step pairing does not occur. With the alternation of diffusion

coefficient, the evaporation alone does not cause the step bunching.

When both the drift and the evaporation are present, the step velocity is given by

Vm

Ω
=

(Dm−1 − Dm)fcm

2

− Dm−1αm−1(cm cosh αm−1lm−1 − e−flm−1/2cm−1)
sinhαm−1lm−1

− Dmαm(cm coshαmlm − e−flm/2cm+1),
sinhαmlm

. (13)

The parameter αm is defined by

αm =
1
2

√
f2 +

4
x2

m

. (14)

α−1
m is the characteristic length of the diffusion field in the mth terrace.

We carry out numerical integration of eq. (13). The time evolution of step positions (Figure 6)

shows the drift-induced step bunching with the evaporation, where the characteristic length scale

in TB is α−1
2n = 14.9 and that in TA is α−1

2n−1 = 8.9. Irrespective of the drift direction, very fast

pairing of receding steps occurs at the initial stage. The type of large terraces is the same as in

Fig 2 and not changed by the evaporation.

Large bunches appear by coalescence of small bunches. With step-down drift, coalescence of

step bunches occurs successively, but the time interval of the coalescence increases with increasing
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(a) (b)

Fig. 6. Time evolution of step position with evaporation with (a) step-down drift and (b) step-up drift. The number
of steps is 16 and system size is 8. The diffusion coefficients are DA = 2 and DB = 10. Other parameters are
f = 0.1 νΩA/kBT = 10−4 with ν = 1, and τ = 50.

the terrace width between bunches (Fig. 6(a)). With step-up drift, coalescence of step pairs does

not occur until t̃ ≈ 150. However, once the coalescence of step pairs starts, the interval does not

seem to increase much (Fig. 6(b)). The difference between the growth rate of bunch size with

step-down drift and that with step-up drift is much smaller than that without the evaporation.

4. Step bunching with alternation of kinetic coefficient

In a Si(001) vicinal face, not only diffusion coefficients but also the type of steps changes

alternately. In this section, we study the step bunching due to the alternation of kinetic coefficient

and compare the result with Sec. 3.

4.1 Step bunching induced by drift

To focus on the alternation of step kinetics, we neglect the alternation of diffusion coefficients.

First, we neglect the evaporation. Without the evaporation, the step velocity is given by

Vm =
ΩDsfKmKm−1(eflm−1cm−1 − cm)

Km−1(Dsf − Km) + Km(Dsf + Km−1)eflm−1

− ΩDsfKmKm+1(eflmcm − cm+1)
Km(Dsf − Km+1) + Km+1(Dsf + Km)eflm

, (15)

where Ds is the diffusion coefficient.

In a vicinal face with equidistant steps, the step velocities are given by

V2n = −V2n−1

=
ΩDsKAKBc0

eqf
2(efl − 1)2(KB − KA)
gAgB

, (16)
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(a) (b)

Fig. 7. Time evolution of step position with alternating change of kinetic coefficient with step distance Ds/KA � 1.
Drift is in (a) step-down direction and (b) the step-up direction. The number of steps is 32 and the system size
is 32 with the periodic boundary condition. Parameters are Ãν̃ = 2 × 10−3 with ν̃ = 1, |fl| = 0.2, Ds/KAl = 0.1.
and Ds/KBl = 1.0 × 10−2.

where gA and gB are

gA = [KA(Dsf − KB) + KB(Dsf + KA)efl],

gB = [KB(Dsf − KA) + KA(Dsf + KB)efl]. (17)

Since the kinetic coefficient KB is larger than KA, SA steps advance and SB steps recede. Alternation

of large TA terraces and small TB terraces is expected by formation of step pairs.

d∆l

dt

−1 0 1

−0.04

0.01

∆l/2l

d∆l

dt

−1 0 1

−0.2

0

0.2

∆l/2l

(a) (b)

Fig. 8. Time derivative of the terrace width change with (a) step-down drift and (b) step-up drift. Parameters are
the same as in Fig. 7

When the kinetic coefficient KB is large, Ds/KB � l, time evolution of step positions is shown

in Fig. 7. With step-down drift (Fig. 7(a)), most steps form pairs and large TA terraces appear in

the initial stage, but formation of triplets also occurs and a large TB is produced. In a later stage,
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all large terraces become TA after coalescence of small bunches. With step-up drift (Fig. 7(b)), the

pairing does not seem to occur.

Figure 8 represents the growth rate of ∆l, which is defined in the same way as in Sec. 3.1.

With step-down drift, an unstable fixed point with a small positive ∆l and two stable fixed points

with a large amplitude of |∆l| are present. From the condition Vm = 0 in eq. (15), the difference

of terrace width at the fixed point near ∆l = 0 is given by

∆l

l
=

KA − KB

KA + KB
fl, (18)

where we have used fl � 1 and neglected the step-step repulsion. In eq. (9) ∆l is determined only

by structural parameters and independent of the drift, but in eq. (18) ∆l depends on the drift and

changes the sign with the drift direction. Expect for the sign of ∆l in the unstable fixed points,

the form of d∆l/dt is the same as in Fig. 5. The initial vicinal face moves to the steady state with

the large negative ∆l if the initial fluctuation is small, but it can move to the other steady state

with large ∆l if the initial fluctuation is large. In Fig. 7(a), formation of a large TB in the initial

stage is due to a large fluctuation of terrace width.

With step-up drift, there is only one fixed point with a negative ∆l. The steady state is stable.

Since the difference of terrace width ∆l is small, the surface does not look like changing in Fig. 7(b).

With the alternation of diffusion coefficient, the form of d∆l/dt changes with decreasing the

kinetic coefficients (Figs. 4 and 5). On the other hand, with the alternation of kinetic coefficient, the

form of d∆l/dt does not change even if Ds/K changes. Thus the bunching behavior is insensitive

to the ratio Ds/K.

4.2 Step bunching induced by evaporation

If the evaporation is present and the drift is absent, the step velocity is given by

xsVm

ΩDs
=

−(λm+1 sinh lm/xs + cosh lm/xs)cn − cn+1

hm+1(lm)

−(λm−1 sinh lm−1/xs + cosh lm−1/xs)cn − cn−1

hm(lm−1)
, (19)

where λm = Ds/Kmxs, and hm(l) is

hm(l) = (λm−1λm + 1) sinh l/xs

+(λm + λm−1) cosh l/xs. (20)

Due to the evaporation, both SA steps and SB steps recede. When the steps are equidistant, the

difference of step velocities is given by

V2n − V2n−1 =
(λA − λB) tanh l/xs

(1 + λAλB) tanh l/xs + (λA + λB)
. (21)
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Since λA is smaller than λB, SB recedes faster than SA. The vicinal face is unstable, and large TA

terraces and small TB terraces appear by step pairing.

t̃

0 2 4 6 8
0

10000

20000

y

Fig. 9. Time evolution of step position. xs = 15, KA = 0.125, KB = 1.0, Ds = 1.0. The number of step is 16 and
the system size is 8 with the periodic boundary condition. Ãν̃ = ×10−4 with ν̃ = 1.

Figure 9 represents the time evolution of step positions, which is obtained by numerical inte-

gration of eq. (19). In the simulation, the difference of kinetic coefficients is very large. In very

early stage, pairing of steps occurs and large TA terraces appear. Via coalescence of step pairs,

step bunches appear. The type of large terrace is the same as that in the step bunching induced by

the drift. In large terraces, isolated step pairs are present. When a collision between a step bunch

and a step pair occurs, another step pair leaves from the upper side of the step bunch. A step

pair breaks into single steps, but only temporarily. Repeating of such collisions is seen in other

bucnhing systems.15,16) Here a step pair is the fundamental unit.

5. Summary and Discussion

In this paper, we studied the drift-induced step bunching with the alternation of structural

parameters: the diffusion coefficient and the kinetic coefficient.

With the alternation of diffusion coefficients on consecutive terraces, the step bunching occurs

irrespective of the drift direction if the kinetic coefficients are large. The type of large terraces is

determined by the drift direction. When the kinetic coefficients are small, the step bunching occurs

with step-down drift and the initial fluctuation of step distance influences the type of step pairs.

The growth rate of bunch size with the step-down drift is much faster than that with the step-up

drift, but the difference of growth rates decreases with the evaporation. Without drift of adatoms,

the evaporation does not induce bunching.

With the alternation of kinetic coefficient at consecutive steps, the step bunching occurs with

the step-down drift and does not occur with the step-up drift. The type of large terraces is influenced

by the initial fluctuation of step distance. The evaporation induces step bunching even if the drift
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is absent, in contrast to the case with the alternation of the diffusion coefficient.

In the experiments,2,3) the type of terraces between bunches changes with the drift direction

when the initial step distance is large. From our result we may conclude that the alternation of the

diffusion coefficient is essential to the bunching and that of kinetic coefficient is not so important.

Also the kinetic coefficients are large if the steps are impermeable. Impermeable steps with large

kinetic coefficients are effectively equivalent to the permeable steps.8,18) However, when the step

distance is smaller than the critical value, the step bunching occurs only with the step-up current

in the experiment,2) which is not explained by our model. In the previous studies,18,19) the dift

direction to cause the step bunching on a Si(111) vicinal face is affected by the step permeability. In

a similar way, the disagreement in a Si(001) vicinal face may be explained by the step permeability,

which remains to be explored.

The difference of growth rate of step bunches as the change of current direction is very small

in the experiment3) in contrast to the present result. The evaporation probably plays an important

role, but the difference does not vanish only with the evaporation. In the Monte Carlo simulation,8)

in which steps are permeable and evaporation is neglected, the bunches also grow faster with step-

down drift. In addition, the two-dimensional step pattern changes with the drift direction. The

bunches are straight with step-down drift and wandering with step-up drift. The difference of

the two-dimensional motion may reduce the difference of the growth rate for a large system (the

system size of the Monte Carlo simulation is very limited). In any case, all these effects are not

strong enough to eliminate such a large difference, and we still do not understand the origin of the

disagreement.
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