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This paper suggests a general method for analysis of a reciprocating self-excited induction generator based on the coupled finite-
element/boundary-element method in a harmonic domain. The finite-element method is used for iron and copper parts in order to deal
with nonlinearity and eddy currents, while the boundary-element method is utilized for the air-gap region between the moving parts
using a free-space Green function that facilitates the application of a linear time periodic movement. The proposed method leads to
a static global matrix that is symmetrical for particular boundary conditions. The results agree well with those obtained by the time-
stepping methods.

Index Terms—Coupled finite-element/boundary-element method, harmonic balance method, reciprocating self-excited induction
generator.

I. INTRODUCTION

I NDUCTION generators are inexpensive and have no sepa-
rate excitation; they can operate for a long period with no

particular maintenance. Therefore, self-excited induction gen-
erators (SEIGs) can supply electrical power of an area far from
the power system transmission lines and where nonconventional
energies such as wind energy are available. However, SEIGs
have their own disadvantages, including large dependency of the
output voltage on the generator speed and load and the stator
terminal capacitance requirement, which requires accounting
for the speed and load variations. The models that are used for
analysis of the SEIG are classified into two major groups. In
the first group, a per phase equivalent circuit is utilized; in this
case, the nodal-admittance method or loop-impedance method
is used to establish the relationships of the machine-related pa-
rameters such as load, speed, and capacitance [1]. The second
group uses the model; other equations, expressing the de-
pendency between the steady-state parameters of the machine,
are obtained using the harmonic balance method [2], [3]. In the
above-mentioned methods, an attempt has been made to solve a
nonlinear equation by an iterative procedure, where the experi-
mental magnetization inductance versus magnetization current
are available.

In this paper, a reciprocating SEIG with tubular structure,
as shown in Fig. 1, is proposed. The SEIG is applicable in a
free-piston generator system that is a combination of a linear en-
gine and linear alternator. It is used in hybrid vehicles because
this combination is compact, light, and very reliable [4], [5]. It
has and windings, shunt exciting capacitances , and
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resistive loads. Its model is nonlinear because of magnetic sat-
uration, longitudinal end-effect, and unbalanced winding distri-
bution that make the model difficult to deal with by analytical
methods; thus, numerical methods are employed for its analysis.
A transverse edge effect does not exist due to the cylindrical
construction.

This paper uses the coupled finite-element/boundary-element
(FE–BE) method in harmonic domain for modeling a recipro-
cating SEIG [6]. Iron and copper parts of the generator are mod-
eled by the FE method; therefore, the nonlinearity and eddy
currents are taken into account. The air-gap region between the
moving parts is modeled by the BE method using the free-space
Green function. This method is especially suitable when a linear
motion is involved in the electromagnetic devices to uncouple
the moving and the stationary meshes. Here, the method is ex-
tended to the time periodic movement. For the particular case of
a two-dimensional (2-D) coupled FE–BE model of a linear ma-
chine, it only requires elementary manipulations of the Green
function and its normal derivative over a fundamental period.
In this manner, the SEIG model equations using time-stepping
numerical methods is converted to the matrix form of the static
coupled FE–BE equations, where they are used to obtain the
state variables of the steady-state operation.

The proposed method leads to a static global matrix that is
symmetrical for particular boundary conditions. However, this
symmetry does not hold, in general, for the BE method. The
results agree well with those obtained by time-stepping coupled
FE–BE and FE methods.

II. COUPLED FE–BE METHOD IN HARMONIC DOMAIN

WITH MOVEMENT

A. FE Regions

The primary and secondary domains were meshed using
three-node triangular finite elements as shown in Fig. 2. The
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Fig. 1. Reciprocating SEIG and equivalent circuits of d and q windings.

Fig. 2. Mesh of system.

equations are obtained using the Galerkin method. If F denotes
the finite element region, based on the equivalent circuits of
Fig. 1, the coupled field-circuit matrix equation of the proposed
reciprocating SEIG (RSEIG) is as follows [7]–[9]:

(1)

is the magnetic potential and
is its normal derivative for those elements which

have a side shared with the exterior domain . The exterior
domain is broadened to lie outside the magnetic iron core and

is the reluctivity of the air. and are
the electromotive forces and terminal voltages of the windings

and , respectively.
is the stiffness sparse symmetrical matrix, is the

damping symmetrical matrix due to eddy currents, and
are the matrices for taking into account the forcing cur-

rent densities and in the primary windings, as shown in
Fig. 1, . takes the exterior
domain into account, and is obtained as differential expres-
sions of using matrices and . Circuit equations

are incorporated using matrices and with a nodal
method [8].

B. BE Equations

The BE method is applied to the air gap that connects the pri-
mary and secondary domains [7], [8], [10]. This linear region
with constant magnetic permeability is geometri-
cally approximated by three-node boundary elements extracted
from the primary and secondary element meshes. The contri-
bution of all boundary elements to the magnetic field at a load
point , in terms of the magnetic vector potential,
is given by

(2)

(3)

(4)

and are the nodal values of magnetic vector
potential and its normal derivative, respectively. is the
boundary factor and is the linear shape function between
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each of the two adjacent boundary elements. is the Green
function in axisymmetric coordinates

(5)

and are complete elliptic integrals of the first and
second kind, respectively, and the derivative is either

or , according to the observation
point [11].

The application of this formulation to all boundary nodes,
using a collocation method, generates a BE system of equa-
tions. The values of the magnetic vector potential and its normal
derivative on the nodes are unknowns

(6)

The general expressions for and are as follows:

if

if

(7)

(8)

where and denote the normal derivatives and
and correspond to the mutual effects of the boundary
elements of primary ( ) and secondary ( ), when one of the load
or field points is placed on the primary boundary and the other
one is placed on the secondary boundary. Movement causes

and to be time variable as the distance
varies with displacement. Similarly, the same holds for
and .

A combination of (1) and (6) gives the following coupled
equations of the model:

(9)

where the continuity of the quantities and has been
considered

(10)

C. Harmonic Balance

The periodic time variation of variables is approximated by a
truncated Fourier series with frequency and period ,
where is the fundamental frequency of the reciprocating mo-
tion. Considering as nonzero harmonics, the corresponding

time-basis functions are

(11)

The harmonic time discretization of and
can thus be written as [12]

(12)

The harmonic balance (HB) system of algebraic equations can
be obtained by using the harmonic basis functions as weighting
functions as well. Considering system of (7) results in

(13)

The application of the time discretization leads to the following
system of equations:

(14)

where are the vectors of harmonic co-
efficients. If denotes a pair of harmonic functions, then

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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and so on for and that have diagonal block struc-
ture because of the orthonormality of the basis functions. Also

(23)

(24)

(25)

and so on, for and that are full matrices because
they require integration over a fundamental period of movement
and needs to be considered iron saturation.

To maintain the symmetry of the matrices, particular atten-
tion must be paid to matrices .

is required because of the differential expressions
and .

D. Creating Symmetrical Matrix Equations and Applying
Newton–Raphson Iteration

The last row of matrix (14), which is related to the boundary
element equations, allows us to obtain a relationship between
the nodal values of and on as follows:

(26)

Rewriting this expression in the matrix equation of the first row
in (14) and creating a new stiffness matrix , the system to
be solved is

(27)

For simplicity, the Neumann condition and
Dirichlet condition are applied to the boundaries

in Fig. 2. These assumptions do
not have a considerable effect on the results, as will be shown
in comparison with time-stepping FE method. In this case, by
considering (7) and (8), it can be proved that the BE matrices in
(6) are symmetrical ( and ) because
is equal to on the boundaries , so the final
matrix in the coupled system in (27) is symmetrical. However,
this symmetry does not hold, in general, for the BE method.

Nonlinearity of the magnetic core causes the element stiff-
ness matrix to be unknown and must be determined iter-
atively. In [13], the Newton–Raphson method has been adopted
in the FE-HB method using a differential reluctivity tensor that
is applied to (27)

Jacobian Residual (28)

where is the incremental vector of
at the th iteration. Also, and
are evaluated for the th approximate solu-

tion, using the analytical equation of the magnetic saturation
curve of the iron and , respectively.

Fig. 3. Time variation of main winding voltage during self-excitation process
of generator.

Fig. 4. Steady-state terminal voltages.

III. RESULTS

The proposed method for SEIGs is applied to the recipro-
cating generator of Fig. 1. The generator has a tubular structure
in which the secondary (translator) has been slotted to reduce
the effective air gap, instead of a smooth top cap layer of copper.
The secondary length is twice the primary length, and the pri-
mary length is equal to the stroke length. The primary has two
separate windings which constitute a two-phase structure and
each slot has one coil with 120 turns.

Taking into account the mass of the translator, the im-
posed motion profile of the secondary is assumed to be:

meters and the maximum relative
speed to be 10 m/s. The proposed SEIG for free-piston gener-
ator application has a higher reciprocating frequency compared
to the permanent magnet counterparts (25–30 Hz) [4], [5],
because the majority of the translator mass of the permanent
magnet-type generator belongs to the magnets, which leads to
the reduction of the reciprocating frequency compared with the
proposed induction type.

The fundamental period of movement is subdivided into 92
time steps to calculate the integrations (24–25) in the motion-
dependant entries of and . The
model is also simulated by a time-stepping hybrid FE–BE solver
[7], [10]. Fig. 3 shows the voltage build up as the main winding
voltage . Self-excitation of the generator begins either by
a residual air-gap flux or charge on the excitation capacitors.
This residual flux-linkage induces voltage in the primary wind-
ings when the translator moves. With sufficient capacitance, the
process continues leading to the increase of induced primary
voltages and until it settles down to a steady-state op-
erating condition determined by the air-gap flux saturation. The
steady-state results are shown in Fig. 4 for main ( ) and auxiliary
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Fig. 5. Instantaneous magnetic flux lines of generator.

Fig. 6. Spectrum of voltages U and U .

Fig. 7. Harmonic components of the flux lines of HB3: (a) first component,
(b) second component, (c) third component, and (d) fourth component.

( ) voltages , and its instantaneous magnetic flux dis-
tribution has been shown in Fig. 5. The spectrum of the terminal
voltages is depicted in Fig. 6, where the fundamental frequency
is 39.7 Hz.

Three HB simulations are carried out. The spectrum of these
three simulations based on the HB, denoted as HB1, HB2, and
HB3, is as follows: HB1: 0, 1 HB2: 0, 1, 2, and HB3: 0, 1, 2, 3,
4. The flux patterns for the HB3 simulation are shown in Fig. 7.
The third harmonic is concentrated around the air gap.

The HB results for are shown in Fig. 8, where harmonic
components 0, 39.7, 79.4, 119.1, and 158.8 Hz are taken into

Fig. 8. Waveform of voltage U obtained with HB1, HB2, HB3, and time
stepping.

Fig. 9. Mesh for time-stepping pure FE method.

Fig. 10. Waveform of thrust force between primary and secondary parts.

account. The HB results for steady-state operation are closely
identical to the time-stepping methods, including the transient
coupled FE–BE method and transient FE method. The mesh
for time-stepping pure FE is depicted in Fig. 9, [14] and the
results for time-stepping FE and time-stepping coupled FE–BE
at steady state are identical as shown in Fig. 8.

The required computation time, however, is very long for
the transient period; it depends on the exciting capacitance,
and sometimes it is longer than 6 h. For a similar situation, it
lasts approximately 3 h and 20 min for time-stepping FE, 1 h
and 30 min for the time-stepping coupled FE–BE method, and
15 min for the HB3 method. This indicates the benefits of the
HB method over the time-stepping methods. In the coupled
FE–BE method, the whole mesh includes 1280 elements and
977 nodes, while the air-gap region is treated by the BE method.
For transient FE simulation, the whole mesh includes 1800
elements and 1548 nodes. In comparison with the FE method,
the coupled FE–BE method reduces the dimensions of the
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Fig. 11. Peak of thrust force versus capacitance.

Fig. 12. Effective value of output voltages versus capacitance.

system matrices and avoids dominant changes in the global
stiffness matrix at each time step because of geometry changes.

The waveform of the thrust force between the primary and
secondary parts has been depicted in Fig. 10, which shows a
pulsed power due to the reciprocating linear motion.

For different exciting capacitances, the fundamental fre-
quency does not vary, because it is determined by the funda-
mental frequency of the imposed motion profile. As the exciting
capacitance increases, the saturation level increases, and the
peak value of the thrust force increases as shown in Fig. 11.
As a result, the output voltages and , and thus output
power, increase. A variation of versus has
been plotted in Fig. 12. There is no self-excitation where the
capacitance is smaller than or larger than and
voltage de-excitation occurs [2].

IV. CONCLUSION

The calculation procedure for the coupled FE–BE method
combined with HB method has been presented and extended
to include time-periodic movement. It has been suggested for
steady-state analysis of a reciprocating SEIG. The proposed nu-
merical method provides a straightforward procedure for the
analysis of the self-excited systems. To analyze the SEIG, only
the magnetization characteristic of the iron is required, while
the analytical methods require an experimental magnetization
inductance curve (versus magnetization current). This could be

helpful in the design of an SEIG and reluctance generator that
need Ferro-resonance phenomenon to stabilize the self-excita-
tion. Although the proposed numerical method is more compli-
cated than the analytical ones, it can accurately deal with mag-
netic core saturation.

For the 2-D case of a linear machine with linear time-pe-
riodic movement, it only requires elementary manipulations
of the Green function and its normal derivative. For particular
boundary conditions, the static global matrix is symmetrical.

The results obtained by the proposed numerical method and
that of time-stepping FE and coupled FE–BE methods has been
compared, which shows a favorable computing time for the pro-
posed method to acquire the steady-state solution.
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