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Highlights 

• Amphioxus, Branchiostoma floridae, possesses three calcitonin (CT) family peptides 

designated as B. floridae CT family peptides 1–3 (Bf-CTFP1–3). 

• Bf-CTFPs suppress the ostoclastic activity of goldfish scales via the CT receptor. 

• Bf-CTFPs and salmon CT share common essential amino acids for ligand activity. 

• The alpha-helical structure of Bf-CTFP1 and 2 is conserved with that of teleost CT. 

• Bf-CTFP3 has a unique alpha-helical structure. 
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Abstract 

Calcitonin (CT) is a hormone which decreases serum calcium level by suppression 

ofosteoclastic activity in the vertebrate bone. In vertebrates, the structure-function relationship 

of CTs has been studied extensively. We recently identified three CT superfamily peptides, 

Bf-CTFP1 to 3, and uncovered the molecular and functional characteristics of their receptor and 

receptor activity-modifying protein in amphioxus, Branchiostoma floridae. However, the CT 

activity of Bf-CTFPs has yet to be investigated. In the present study, a functional analysis of 

Bf-CTFPs was performed using goldfish scales having both osteoclasts and osteoblasts. All 

Bf-CTFPs suppressed osteoclastic activity via a goldfish CT receptor. Although the primary 

amino acid sequences of the Bf-CTFPs showed low sequence similarity to vertebrate CTs, 

Bf-CTFP1 to 3 share three amino acids, Thr25, Thr27, and Pro32-NH2, that are required for 

receptor binding, with salmon CT. Moreover, homology model analysis revealed that the 

Bf-CTFPs form alpha-helical structure. The alpha-helical position and length of Bf-CTFP1 and 

2 were conserved with those of a highly potent ligand, teleost CT. Interestingly, the position and 

length of the alpha-helix of Bf-CTFP3 differed from those of teleost CT and non-potent ligand 

(mutated salmon CT), despite that the action of Bf-CTFP3 on goldfish scales was the same as 

that of Bf-CTFP1 and 2. Collectively, the present study provides new insights into the 

structure-function relationship of CT and its functional evolution in chordates. 
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1. Introduction 

Calcitonin (CT) is a 32-amino acid peptide that has been identified from a wide range of 

vertebrates, except cyclostomes (Lafont et al., 2007; Sakamoto et al., 2000; Sexton et al., 1999; 

Suzuki et al., 1997). CT is mainly synthesized in C-cells of the thyroid gland in mammals and 

the ultimobranchial gland in non-mammalian species (Hull et al., 1998). In mammals, CT 

decreases the serum calcium level as a hypocalcemic hormone. CT suppresses bone resorption 

by inhibiting osteoclastic activity and modulates calcium excretion from the kidney (Hirsch et 

al., 2001; Horne et al., 1994). These CT functions are mediated by the CT receptor (CTR), 

which is a secretin type G-protein coupled receptor and possesses a long N-terminal 

extracellular region, containing the hormone-binding domain (Martins et al., 2014). The 

structure-function relationship between CT and the CTR has been studied extensively. CT 

includes an N-terminal circular region formed by a disulfide bond between Cys1 and Cys7, an 

alpha-helical region, and a loop region (Meyer et al., 1991). The alpha-helical and loop regions 

bind to the N-terminal extracellular region of the CTR, whereas the N-terminal circular region 

interacts with the transmembrane domain of the CTR and is associated with CTR activation 

(Hoare, 2005; Watkins et al., 2012). 

We recently clarified the molecular and functional characteristics of the CT superfamily 

peptides, their authentic receptor, and the receptor activity-modifying protein (RAMP) in 

amphioxus, Branchiostoma floridae (Sekiguchi et al., 2016). In vertebrates, CT superfamily 

peptides, including CT, CT gene-related peptide, adrenomedullin (AM), amylin, and CT 

receptor-stimulating peptide, are involved in bone metabolism, vasodilation, regulation of blood 

pressure, glucose metabolism, and food intake regulation, respectively (Brain et al., 1993; 

Cooper et al., 1988; Kitamura et al., 1993; Sawada et al., 2006). These functions are mediated 

by the CTR or CTR-like receptor (CLR) (Martins et al., 2014). The receptor specificity of CT 

superfamily peptides is determined by the combination of CTR/CLR and 3 types of RMAP 

(Bomberger et al., 2012). Furthermore, RAMP is involved in the cell surface translocation of 

CLR (Bomberger et al., 2012). The amphioxus CT superfamily peptides, designated as 

Bf-CTFPs, activate the heterodimeric Bf-CTFP receptor (Bf-CTFP-R) and RAMP-like protein 

(Bf-RAMP-LP). However, the monomeric Bf-CTFP-R was not activated by Bf-CTFPs due to 

the lack of cell-surface expression. Accordingly, we have revealed the prototypical molecular 

function of CT superfamily in chordates, whereas the biological function of Bf-CTFPs remains 

unclear. 
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In the present study, to gain insights into the biological function of Bf-CTFPs, a functional 

analysis was performed using cultured goldfish scales, which is a model system used to study 

the function of CT (Suzuki et al., 2000). Furthermore, the primary and secondary structures of 

the Bf-CTFPs were elucidated by amino acid sequence comparison and homology modeling 

predictions, respectively. We found an evolutionarily conserved and unique CT 

structure-activity relationship in amphioxus. Our findings provide new insights into the 

evolution of the structure-function relationship of the CT family peptides in chordates. 

 

 

2. Material and Methods 

2.1. Animals 

Goldfish (Carassius auratus) were purchased from the Higashikawa Fish Farm 

(Yamatokoriyama, Japan). Female and male Goldfish (20−30 g) were used for artificial 

fertilization in the Graduate School of Marine Science and Technology, Tokyo University of 

Marine Science and Technology. After the hatched fish grew to 12–15 cm in body length, they 

were moved to the Noto Marine Laboratory in Kanazawa University and used for in-vitro 

bioassays. All experimental procedures were conducted in accordance with the Guide for the 

Care and Use of Laboratory Animals prepared by Kanazawa University. 

 

2.2. Effects of Bf-CTFPs on osteoclastic activities using cultured regenerating goldfish scales  

Goldfish were anesthetized with ethyl 3-aminobenzoate methanesulfonic acid 

(Sigma-Aldrich, St. Louis, MO, USA). Eight normally developed scales around the lateral line 

of both sides were removed to initiate scale regeneration (Yachiguchi et al., 2014). On day 14, 

the goldfish were again anesthetized and the regenerating scales were removed from both sides. 

The eight scales obtained from the left side were incubated for 6 h in Leibovitz's L-15 medium 

(Invitrogen, Grand Island, NY, USA) containing a 1% penicillin-streptomycin mixture (ICN 

Biomedical, Aurora, OH, USA) supplemented with 10-8 or 10-6 M Bf-CTFPs synthesized in the 

previous study (Sekiguchi et al., 2016). The effects of Bf-CTFPs on the osteoclasts were 

estimated by the measurement of tartrate-resistant acid phosphatase (TRAP) activity (Suzuki et 

al., 2000; Thamamongood et al., 2012). The mean for TRAP activity (obtained from 8 

individual scales of one goldfish) was compared with that of the scales from the right side 

(control untreated group). TRAP activities between the left and right side scales around the 
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lateral line in the same individual were almost similar by 48 h in culture (Omori et al., 2012; 

Yachiguchi et al., 2014). 

 

2.3. Effect of a CT antagonist on the suppression of osteoclastic activity by Bf-CTFP treatment 

To confirm that Bf-CTFPs activate the goldfish CTR specifically, 10-8 and 10-6 M 

Bf-CTFP1-3 were incubated the scales along with 10-8 and 10-6 M of a CTR antagonist (the 8–

32 fragment of salmon CT (GenScript, Piscataway Township, NJ, USA) for 6 h. After 

incubation, TRAP activity in the scales was then measured using previously described methods 

(Yachiguchi et al., 2014). The mean for TRAP activity following Bf-CTFP1-3 treatment 

(obtained from 8 individual scales from one goldfish) was compared with that of the right side 

(control untreated group).  

 

2.4. Homology modeling of Bf-CTFPs  

The Bf-CTFP1-3 sequences were aligned with that of salmon CT (PDB ID: 2GLG and 

2GLH), human CT (PDB ID: 2JXZ), and human AM (PDB ID: 2L7S), using Clustal W 

(Andreotti et al., 2006; Perez-Castells et al., 2012). Salmon CT (PDB ID: 2GLG) is a mutant in 

which Pro23 and Leu24 of wild type CT is substituted by Arg23 and Ala24, respectively. The 

mutant possesses a longer alpha-helical region and exhibits a lower binding affinity and potency 

compared with  wild type salmon CT (Andreotti et al., 2006). MODELLER 9.16 (Webb and 

Sali, 2014) was used to build the homologous models. For each peptide, 1000 models were 

created by introducing a disulfide restraint between conserved cysteines. The output structures 

were scored with DOPE score and the five lowest scored structures were selected for each 

peptide. Amidation of the C-terminus and energy minimization were performed with the 

CHARMM force field in Discovery Studio 3.5.1 (Accelrys, Burlington, MA, USA). To validate 

the structures, 10 ns equilibration in water was performed with GROMACS 4.6.1 (Hess et al.). 

The image for the structure with the lowest potential energy in GROMACS equilibration was 

visualized using the graphics program Chimera 11.10.1 (Pettersen et al., 2004). 

 

2.5. Statistical analysis 

All results are represented as the means ± SEM (n = 8). The statistical significance 

between the control and experimental groups was estimated by the paired t-test. 
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3. Results 

3.1. Effects of Bf-CTFPs on osteoclastic activities using cultured goldfish scales 

To evaluate the suppression of osteoclastic activity by Bf-CTFPs, we performed the TRAP 

assay. Treatment of goldfish scales with 10-8 M Bf-CTFPs for 6 h resulted in significant 

suppression of TRAP activity (P < 0.01) (Fig. 1A). This significant suppressive effect was also 

observed with 10-6 M Bf-CTFPs (P < 0.01) (Fig. 1A, B). At 10-9 M, none of the Bf-CTFPs 

affected TRAP activity in the goldfish scales (data not shown). The suppressive effect was 

similar between all Bf-CTFP peptides (Fig. 1A, B).  

No effect of antagonist alone treatment on osteoclastic activity was detected (data not 

shown). 

 

3.2. Analysis of Bf-CTFP specificity to CTR using a calcitonin antagonist 

CT possesses two functional domains: the N-terminal circular region and the region 

following circular region, which are the receptor-activated domain and receptor-binding domain, 

respectively (Watkins et al., 2012). Because of the occupation of the receptor with no activity, 

N-terminal-truncated CT is often used as an antagonist of CTR. To evaluate whether the 

Bf-CTFPs function specifically through binding to the goldfish CTR, we performed TRAP 

assay in the presence of the N-terminal truncated salmon CT antagonist. The suppressive effect 

of 10-8 and 10-6 M Bf-CTFPs on TRAP activity was inhibited by this treatment (Fig. 2A, B). 

 

3.3. Primary sequence comparison between Bf-CTFPs and vertebrate CTs 

To elucidate functional similarities between Bf-CTFPs and vertebrate CTs, we compared 

their primary amino acid sequences (Fig. 3). The sequence similarities of Bf-CTFP1, 2, and 3 to 

vertebrate CTs were 29.4–50, 33.3–38.9, and 26.5–41.2%, respectively (Table 1). The 

similarities between amphioxus and vertebrates were lower than those between human and 

teleosts (Table 1). The N-terminal circular region of all Bf-CTFPs formed by 6 amino acids 

showed similarity with that of human AM rather than vertebrate CTs (Fig. 3). In the region 

following the N-terminal circular region, four amino acids, Thr25, Thr27, Gly28, and Pro32-NH2, 

important for receptor-binding and truncated in the salmon CT antagonist, salmon CT–(22–32) 

(Lee et al., 2016), were conserved in Bf-CTFP2 (Thr25, Thr27, Gly28, and Pro33-NH2) and 

Bf-CTFP3 (Thr23, Thr25, Gly26, and Pro31-NH2). However, in Bf-CTFP1, three C-terminal amino 

acids (Thr23, Thr25, and Pro31-NH2) were conserved with that of salmon CT–(22–32) (Thr25, 

Thr27, and Pro32-NH2) (Fig. 3). 
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3.4. Homology modeling analysis of Bf-CTFPs, salmon CT, and human AM 

To gain insights into the structure-function relationship of Bf-CTFPs, we predicted their 

thermodynamically stable tertiary structure using the multiple template-based modeling 

software, MODELLER. The structures of wild type salmon CT (PDBID: 2GLH), eel CT 

(PDBID: 1BKU), human CT (PDBID: 1JZX), human AM (PDBID: 2L7S), and salmon CT with 

mutations (PDBID: 2GLG), which has a longer alpha-helix and shows lower affinity and 

potency than wild type salmon CT, were selected as templates. We defined the N-terminal, 

central, and C-terminal regions from salmon CT by NMR analysis (Fig. 4A) (Andreotti et al., 

2006). The N-terminal region is covered by a ring structure between Cys1 and Cys7. The central 

region that forms the alpha helical structure, and the C-terminal region that forms the flexible 

loop, are between V8 and T21, and Y22 and P32, respectively. The homology model estimations 

for all Bf-CTFPs revealed alpha-helical structures in the central region and loop domain in the 

C-terminus (Table 2 and Fig. 4A, 4B-d, 4B-h, and 4B-l). The number and length of 

alpha-helices of Bf-CTFP1 and 2 were similar to those of wild-type salmon CT (Table 2 and Fig. 

4A, 4B-d, 4B-e, 4B-h, and 4B-i). However, the alpha-helical region of mutated salmon CT was 

longer than that of Bf-CTFP1 and 2 (Table 2 and Fig. 4A, 4B-f, and 4B-j). Furthermore, the 

number and length of Bf-CTFP1 and 2 were different from human AM that does not bind the 

CTR (Table 2 and Fig. 4A, 4B-g, and 4B-k). Bf-CTFP3 possessed two alpha-helices in the 

central region (Table 2 and Fig. 4A, 4B-l). Although the length of the region, including two 

alpha-helices, was similar to that of teleost CT, Bf-CTFP3 had a 3-amino acid loop structure in 

the central region (Table 2 and Fig. 4A and 4B-m). In addition, although human AM, an 

inactive ligand of the CTR, possessed the two alpha-helices, the length and position of the 

alpha-helical region were completely different from that of Bf-CTFP3. Especially, the second 

alpha-helix of human AM was located in the C-terminal region, unlike the second helix of 

Bf-CTFP3 that was located in the central region (Table 2 and Fig. 4A and 4B-o). 

 

 

4. Discussion 

In vertebrates, CT superfamily peptides and their receptors comprise various paralogous 

genes. The CT superfamily receptor has two types: CTR and CLR. Since the combination of CT 

superfamily peptides and their receptors is complex, the conformation of the peptide-receptor 

recognition has been studied extensively (Hoare, 2005; Meyer et al., 1991). 
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In the present study, we focused on the structure-function relationship of the amphioxus 

CT superfamily peptide, Bf-CTFP. We first performed functional analyses of the Bf-CTFPs 

using goldfish scales. Treatment with 10-8 M Bf-CTFPs significantly suppressed the osteoclastic 

activity of the scales (Fig. 1). In a previous study, we demonstrated that 10-9 M salmon CT 

significantly suppressed the osteoclastic activity in a goldfish scale culture system (Sekiguchi et 

al., 2009). The active concentration of Bf-CTFPs was relatively higher than that of salmon CT. 

This may be related to the different structures of the N-terminal circular form of Bf-CTFPs and 

vertebrate CTs, showing lower activity of Bf-CTFPs (Fig. 3). Moreover, Bf-CTFP activity was 

inhibited by treatment with a salmon CT antagonist, proving that Bf-CTFPs bind specifically to 

the goldfish CTR (Fig. 2). Collectively, these data confirmed that CT-like activity is conserved 

in amphioxus CT superfamily peptides. 

The results of the primary sequence comparison suggested that Bf-CTFPs were a hybrid 

peptide consisting of vertebrate AM-like and CT-like sequences. The N-terminal circular region 

resembled that of vertebrate AM, whereas the central and C-terminal regions showed similarity 

with CT (Fig. 3). Furthermore, amino acid sequence similarities between Bf-CTFPs and 

vertebrate CTs were less than similarities among vertebrate CTs (Table 1). In contrast, the four 

C-terminal residues, including Thr25, Thr27, Gly28, and Pro33-NH2 of Bf-CTFP2, and Thr23, Thr25, 

Gly26, and Pro31-NH2 of Bf-CTFP3, were conserved when compared to that of salmon CT (Thr25, 

Thr27, Gly28, and Pro32-NH2) (Fig. 3). These amino acids are responsible for the CTR binding of 

salmon CT–(22–32), implying that Bf-CTFP2 and 3 possess a CTR binding mechanism similar 

to that of salmon CT. In Bf-CTFP1, three amino acids (Thr23, Thr25, and Pro31-NH2) were the 

same as those of the salmon CT antagonist (Thr25, Thr27, and Pro32-NH2). However, Gly28 in 

salmon CT was substituted by Ala26 in Bf-CTFP1. In salmon CT–(22–32), the Gly25 residue is 

associated with the flexibility of this fragment. Thus, this residue is likely necessary for the 

interaction between the CTR and the C-terminal Pro32-NH2 of salmon CT–(22–32). Bf-CTFP1 

has five amino acids (Asn27, Pro28, Tyr29, Ser30, and Pro31) after Ala26, all of which are involved 

in the flexible loop structure (Li et al., 2006). Taken together, these results suggest that a 

binding motif of salmon CT is conserved in a common ancestor of teleosts and amphioxus. 

  Prediction of the secondary structure by homology model analysis revealed that 

Bf-CTFPs possess an alpha-helix in the central region of the peptides (Table 2 and Fig. 4A, 

4B-d, 4B-h, and 4B-l). NMR and circular dichroism analyses demonstrated that alpha-helical 

regions are present in the central position of vertebrate CT (Castiglione Morelli et al., 1992; 

Meadows et al., 1991; Meyer et al., 1991; Motta et al., 1991). A comparative study of the 



 10 

structure-activity relationship between native and mutant CT indicates that the length of the 

alpha-helical region is responsible for CT activity (Andreotti et al., 2006), suggesting that the 

alpha helical structure negatively affects the binding motif (Thr25, Thr27, Gly28, and Pro32-NH2) 

in the C-terminal region. In addition, photoaffinity labeling assays using salmon CT indicates 

that the alpha-helical region interacts with the N-terminal region of the CTR (Dong et al., 2004; 

Pham et al., 2004). The current homology modeling analysis demonstrated that the length and 

position of the alpha-helix in Bf-CTFP1 and 2 is comparable to that of salmon and eel CT, 

which exhibit higher activity (Hoare, 2005; McDermott and Kidd, 1987), but not to that of 

human CT, which shows a lower activity (Table 2). These findings suggest that the interaction 

properties of Bf-CTFP1 and 2 with goldfish CTR are similar to those of teleost CTs (Table 2, 

4A, 4B-e, and 4B-i). The functional analysis using the goldfish scale system supports this 

notion (Fig. 1 and 2). However, the thermodynamically stable structure of Bf-CTFP3 is 

different from that of Bf-CTFP1 and 2; nevertheless, they all show similar activities in the 

cultured goldfish scale system. This finding suggests that Bf-CTFP3 functions with the goldfish 

CTR in two possible modes of action. One possibility is that the CTR-binding conformation of 

Bf-CTFP3 is similar to that of Bf-CTFP1 and 2. This is in good agreement with the fact that 

Bf-CTFP3 shares the same residues that are required for CTR binding with the salmon CT 

antagonist (Fig. 3). The other explanation is that another CTR-binding conformation exists in 

Bf-CTFP3. 

In a previous study, we demonstrated the suppression of osteoclastic activity of a CT-like 

peptide in the ascidian, Ciona intestinalis, using a goldfish scale culture system (Sekiguchi et al., 

2009). Ciona CT (Ci-CT) significantly and dose-dependently suppressed TRAP activity in 

cultured goldfish scales. Furthermore, Ci-CT possessed the alpha-helical region like vertebrate 

CT. However, the C-terminal residues of Ci-CT (Gln24, Val26, Gly27, and Pro30-NH2) were 

different from those of salmon CT (Thr25, Thr27, Gly28, and Pro32-NH2) (Fig. 3). The 

substitutions, Thr/Gln and Thr/Val, were detected between ascidian and salmon CT. The Val 

residue presents a similar amino acid side chain with Thr residues, and substitution of Thr/Val is 

widely observed in teleosts. Therefore, the replacement of Thr25 in salmon CT with Gln24 in 

ascidian CT is considered the most critical substitution. Vertebrates also present differences in 

terms of key amino acids for CTR binding compared to salmon CT. In cetartiodactyla including 

cow, pig, and whales, CT activates the CTR even though CTR-interacting residues are not 

conserved (Sasayama et al., 1992). For example, porcine CT possesses Met25, Phe27, Gly28, and 

Pro32-NH2 in the C-terminal region (Sasayama et al., 1992). Moreover, human and rat CT present 
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a motif composed of Thr25, Ile27, Gly28, and Pro32-NH2. These findings imply that vertebrate CT 

peptides possess at least three types of conformation for the binding and activation of the receptor. 

Altogether, amino acid differences observed in Ci-CT and Bf-CTFP1 suggest that they bind and 

activate CTR with different conformations from vertebrate CTs. 

In the present study, we performed a CT assay using goldfish scales. Teleost fish scale is a 

dermal skeleton that includes osteoblast, osteoclast, and the bone matrix (Bereiter-Hahn and 

Zylberberg, 1993; Sire and Akimenko, 2004). In zebrafish, sea bream, and goldfish, scale assay 

has been established (de Vrieze et al., 2014; Redruello et al., 2005; Suzuki and Hattori, 2002). 

The assay is suitable for interaction between osteoblast and osteoclast. Furthermore, goldfish 

culture system shows the high sensitivity and selectivity. CT was effective at 10-11 M for 18 h 

and did not affect osteoblastic activity (Sekiguchi et al., 2016; Suzuki et al., 2009). Therefore, 

goldfish scale culture system has been regarded as an excellent model for studying the effect of 

hormones and pollutants on bone homeostasis (Suzuki et al., , 2000; Suzuki and Hattori, 2002; 

Suzuki et al., 2004; Yachiguchi et al., 2014). The present study shows that this system can also 

be used to assess the functions of invertebrate CT-like peptides. To date, CT-like peptides have 

been identified and predicted in invertebrate deuterostomes such as acorn worm, sea urchin, sea 

star, and sea cucumber and protostomes such as polychaete and owl limpet (Rowe et al., 2014; 

Rowe and Elphick, 2012; Semmens et al., 2016). Using this system to analyze CT-like peptides 

might allow us to gain insights into the evolution of the structure-activity relationship in 

metazoan. 

In conclusion, we found that CT/CGRP family peptides of amphioxus possess typical CT 

bioactivities and form functional structures both unique and similar to those of vertebrate CT. 

These results suggest that the teleost CT-type active structure is the most primitive type in 

chordate CTs. This study paves the way for investigation of the unprecedented 

structure-function relationship and evolutionary aspects of the CT family peptides in chordates. 
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Figure Legends 

 

Fig. 1. Effect of Bf-CTFPs on tartrate-resistant acid phosphatase (TRAP) activity in cultured 

regenerating goldfish scales. Scales were incubated with individual Bf-CTFPs for 6 h. 

Double asterisks (**) indicate a significant difference at P < 0.01 compared to control scales. n 

= 8 samples; one sample per one fish. 

 

Fig. 2. Effects of a CT antagonist on the inhibition of Bf-CTFPs using cultured regenerating 

goldfish scales. No significant difference was observed between experimental and control scales. 

n = 8 samples; one sample per one fish. 

 

Fig. 3. Multiple alignments of Bf-CTFPs and vertebrate CTs. 

Amino acid sequences of Bf-CTFP1-3 were compared with those of chordate CT and human 

AM: human CT (NP_001029124), salmon CT (AAM18088), eel CT (760596A), Ciona CT 

(BAI63095), Bf-CTFP1 (BAU51800), Bf-CTFP2 (BAU51801), Bf-CTFP3 (BAU51802), and 

human AM (AAB26458). Multiple alignments were estimated by using CLUSTAL X2 Multiple 

Sequence Alignment software. Identical and similar amino acid sequences among half of the 

total members are shown by the black and gray boxes, respectively.  

 

Fig. 4. Homology modeling of Bf-CTFPs, salmon CT, mutated salmon CT, and human AM. 

(A) Location of the N-terminal, central, and C-terminal regions is defined by salmon CT 

structural data. The alpha helix is shown by the red bar. The ‘a’ following each peptide 

sequence indicates the amide. (B) The structure of salmon CT (a), mutated salmon CT (b), 

human AM (c), Bf-CTFP1 (d), Bf-CTFP2 (h), and Bf-CTFP3 (l) was calculated by homology 

modeling. The alpha-helical structure of salmon CT, mutated salmon CT, and human AM is 

depicted by light blue. The alpha-helix of Bf-CTFPs is shown by red. Bf-CTFP1 was compared 

with salmon CT (e), mutated salmon CT (f), and human AM (g) in an overlapping manner. 

Bf-CTFP2 was compared with salmon CT (i), mutated salmon CT (j), human AM (k) in an 

overlapping manner. Bf-CTFP3 was compared with salmon CT (m), mutated salmon CT (n), 

and human AM (o) in an overlapping manner. The conserved alpha-helical region in salmon CT, 

eel CT, and human CT is depicted by two green lines. 
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Table 1. Amino acid sequence similarity (%) in chordate CTs 

Multiple alignments of Bf-CTFPs and vertebrate CTs were performed by using BioEdit. 

Similarity was calculated by the pairwise alignment using the BLOSUM62 matrix. 

 Bf-CTFP1 Bf-CTFP2 Bf-CTFP3 human CT salmon CT 

Bf-CTFP1      

Bf-CTFP2 47.1     

Bf-CTFP3 35.3 41.7    

human CT 29.4 33.3 26.5   

salmon CT 50 38.9 44.1 68.8  

eel CT 44.1 36.1 41.2 71.9 96.9 
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Table 2. Predicted alpha-helical structure in homology modeling analysis 

Peptide Number of helices Distribution of helices Resides 

Bf-CTFP1 1 5–22 31 

Bf-CTFP2 1 7–26 33 

Bf-CTFP3 2 6–16, 20–24 33 

salmon CT (WT) 1 4–21 32 

salmon CT (mut) 1 5–30 32 

eel CT 1 5–19 32 

human CT 2 3–21, 25–28 32 

human AM 2 22–31, 43–52 52 

 

 

 

 

 

 

 

 










