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Abstract 

Dissolved organic matter (DOM) in river water was studied to understand the 

transport behavior of DOM in a small watershed with forest and paddy fields. Field 

experiments were conducted under normal flow conditions in the Kumaki River, which 

is located in the central part of the Noto Peninsula in Japan, during the period 

2009–2010. The concentrations and structural properties of fulvic acid-like components, 

which are the major components of DOM, were determined using three-dimensional 

excitation–emission matrix spectroscopy and high-performance size-exclusion 

chromatography. The relative fluorescence intensity for fulvic acid-like components at 

an excitation wavelength of 305–335 nm and an emission wavelength of 425–440 nm 

increased from the upper forest area to the lower paddy field area and increased 

seasonally in this river system in the following order: winter, autumn, spring, summer. 

Fulvic acid-like components with a higher molecular weight were observed in the 

summer samples. These results suggest that higher precipitation and agricultural activity 

in the summer season increase the amount of fulvic acid-like components with higher 

molecular weight that are transported from the watershed into the river. 
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Introduction  

Dissolved organic matter (DOM) in natural waters is composed of a 

heterogeneous mixture of organic components with molecular weights ranging from less 

than 100 to over 300,000 Daltons (Da) (Thurman 1985; Kalbitz 2001; Mostofa et al. 

2013). This DOM typically originates from three major sources: (i) allochthonous 

sources, such as terrestrial material from soils; (ii) autochthonous sources, such as 

surface water-derived matter of algal or phytoplankton origin; and (iii) synthetic organic 

substances of man-made or industrial origin. DOM is known to contribute significantly 

to material cycles in terrestrial and aquatic ecosystems (Dawson et al. 1981; Qualls et al. 

1991; Kalbitz et al. 1999; Kalbitz 2001), particularly because of its complexation ability 

(especially for trace elements) and its pH buffering ability. DOM also plays an 

important role in the mobilization of organic pollutants in aquatic environments (Chiou 

et al. 1986; Fukushima and Tatsumi 1999; Sparks et al. 1996).  

Numerous researchers have reported that the concentrations and chemical 

properties of DOM in soil and river waters depend on the land use patterns and 

vegetation types in the associated watersheds and the impacts of human activities 

(McDowell and Likens 1988; Qualls et al. 1991; Kalbitz 2001, Park et al. 2002; 

Chantigny 2003). Dissolved organic carbon (DOC) concentrations are generally higher 
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in coniferous forests than deciduous forests (Qualls et al. 1991; Currie et al. 1996; Yano 

et al. 2000), and the abundance of high-molecular-weight DOM is typically greater in 

forest soil than in agricultural and paddy soil because the degradation of litter occurs in 

surface soils in forest areas (Cronan et al. 1999; Leinweber et al. 2001; Chantigny 2003). 

Agricultural activity leads to increases in the export of DOM from watersheds into river 

waters due to increases in the supply of drainage waters from paddy fields and upland 

fields (Lee et al. 2002). However, the DOC concentration flowing into a river is 

decreased by the growth of underbrush and inactive irrigation drainage after the 

abandonment of paddy fields. Moreover, the amount of high-molecular-weight DOM 

flowing into a river decreases with increasing the area of upland agricultural zone 

(Cronan et al. 1999).  

To better understand the transport behavior of DOM in river systems, we focus on 

particular components of DOM in aquatic environments. Humic substances composed 

of humic and fulvic acid account for 40–80% of DOM in river water (Malcolm 1985; 

Mostofa et al. 2010). Thus, they play an important role in biogeochemical processes, 

such as buffering pH and aiding complexation of trace elements in aquatic environments 

(Matsunaga et al. 1998; Krachler et al. 2005; Nakagawa et al. 2008). Moreover, these 

substances exhibit various structural features because of differences in their source 
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materials and formation environment (Malcolm 1985; Kalbitz 2001). Therefore, humic 

substances can be used as a parameter of DOM export, reflecting differences in 

watershed environments (Malcolm 1985; Coble 1996; Kalbitz et al. 1999). Many 

studies in various large rivers that include forest and agricultural areas in their 

watersheds have reported the transport of humic substances, especially fulvic acids, 

which constitute a major fraction of humic substances (Coble 1996; Cronan et al. 1999; 

McKnight et al. 2001; Baker 2005; Mostofa et al. 2010). Japanese river systems 

typically have small watersheds and high river bottom slopes and experience high 

precipitation. A few previous studies have reported the dynamics of humic substances in 

such small river systems incorporating forest and agricultural areas (e.g., Nagao et al. 

2003; Mostofa et al. 2005; Sazawa et al. 2011). Typically, transport of humic substances 

and its seasonal variation have been shown to be controlled by precipitation, 

temperature, agricultural activities, and plant communities (Sazawa et al. 2011; 

Asakawa et al. 2007). 

The present study aims to investigate spatial and seasonal variations in the 

concentrations and characteristics of humic substances in river water running through 

forests and paddy fields, corresponding to a typical Japanese river system. The river 

research was conducted under normal flow conditions in the Kumaki River, the 
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watershed of which includes distributed forests and paddy fields, in the Noto Peninsula 

from June 2009 to July 2010. This area is suitable for investigation of the export of 

humic substances in river systems because it is a small watershed area with a simple 

land use pattern, as shown in Fig. 1. We focus on fulvic acid and determine its 

abundance through direct analytical methods using three-dimensional 

excitation–emission matrix (3-D EEM) spectroscopy and high-performance 

size-exclusion chromatography (HPSEC). Therefore, the present study expresses 

dissolved humic substances as fulvic acid-like components and discusses their dynamics 

and sources in the Kumaki River over a year. 
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Materials and methods 

Study area  

The Kumaki River system is located in the central part of the Noto Peninsula in 

Ishikawa Prefecture, Japan. The river system consists of the Kumaki River and two 

major tributaries (Fig. 1). The Kumaki River has a watershed area of 47.2 km2 and a 

main channel length of 14.8 km (Ishikawa Prefecture 2008). The river runs through 

forest, farmland, and rural areas in its watershed and flows into the western part of 

Nanao Bay with a semi-closed coastal bay. Mean annual precipitation was 2183 mm at 

the Nishiyachi Station in 2009–2012 (Rivers Division of Ishikawa Prefecture 2012); this 

is higher than the average value (ca. 1700 mm) for Japan (Ministry of Land, 

Infrastructure, Transport and Tourism, Japan 2012). Many small rainfall events occur 

each year in this watershed and most of the annual precipitation is concentrated in the 

summer season (Rivers Division of Ishikawa Prefecture 2012). Here, we focus on the 

dynamics of fulvic acid-like components under normal flow conditions, when the water 

level is 0.08–0.32 m at the Kamo-Bashi Bridge in the downstream reaches of the river 

(Fig. 2 and Table 1) (Rivers Division of Ishikawa Prefecture 2012). For most 

observation dates, no rain events were recorded within the 5 h preceding the research; 

the sampling in February 2010 was the exception to this. In 2009–2012, the mean 
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annual water level at the Kamo-Bashi Bridge was 0.07 m (Rivers Division of Ishikawa 

Prefecture 2012).  

Around 93% of the upstream area is covered by forest. Paddy fields are 

distributed over 4% of the midstream area and 12% of the downstream area. The forest 

in the Kumaki River basin is composed primarily of a plantation forest and a secondary 

forest (Fig. 1). The dominant tree species are cedar (Cryptomeria japonica) and Cypress 

(Chamaecyparis obtusa and Thujopsis dolabrata var. hondae) and the dominant species 

in the secondary forest is Japanese oak (Quercus serrata Thunb.) (Ministry of the 

Environment of Japan 2001). The soil is classified as Haplic Red in the mountain ridge 

area, Terrace Yellow and Terrace Brown Forest soil in the mountain side area, and 

Strong Gley Lowland and Haplic Gray Lowland soil around the Kumaki River 

(National Institute for Agro-Environmental Sciences 2011). 

 

Materials 

River water samples were collected from surface water in the center of the river at 

three sites along the Kumaki River (Fig. 1) from June 2009 to July 2010 under normal 

flow conditions. These water samples were collected using a 5 l of bucket. The mean 

water level is 0.03 m in April–May (spring), 0.10 m in June–August (summer), 0.09 m 
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in September–November (autumn), and 0.11 m in December–February (winter) (Rivers 

Division of Ishikawa Prefecture 2012). The seasonal fluctuation of the river water level 

is smaller than that of other rivers during April to August owing to agricultural activities. 

However, drainage water from paddy fields flows into the midstream and downstream 

areas, especially during the rice planting period in spring. Samples of drainage water 

from a paddy field were collected near the midstream site in August 2009 and April 

2010. All water samples were filtered with Whatman GF/F glass fiber filters (pore size 

ca. 0.7 μm) after combustion at 450 °C for 6 h; then, the filtered samples were kept in a 

freezer at –30 °C until analysis. We focused on fulvic acid-like components because 

fulvic acids account for 60–80% of humic substances and have high fluorescence 

(Malcolm 1985; Mostofa et al. 2010). To identify the peak of fulvic acid-like 

components in the 3-D EEM spectra and the basic features of the size-exclusion 

chromatogram, humic and fulvic acids were isolated and purified from two river water 

samples from the Teshio and Tokachi Rivers, the watersheds of which are 47–70% 

forest and 14–27% agricultural area (Hokkaido Regional Development 2012).  

 

Sample preparation of fulvic acids (FA) isolated from river water 

The water samples from the Teshio and Tokachi Rivers were acidified to pH 1.5 
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with HCl and pumped onto a column packed with Supelite DAX-8 resin (Thurman and 

Malcolm 1981). The humic substances adsorbed on the resin were eluted with 0.1 M 

NaOH and separated into fulvic acid at pH 1.5. The river fulvic acid was dissolved in a 

dilute NaOH solution and then adjusted using 0.01 M NaClO4 solution at pH 8.0 to 

form fulvic acid with a concentration of 10 mg l-1. 

 

Analysis 

The DOC concentration was measured according to a high-temperature 

combustion method (Peltzer and Brewer 1993). The water sample was acidified by 1 M 

HCl solution to remove carbonate and purged by N2 gas for 1.5 min. Then, 150 μl of 

acidified and purged natural waters was injected into a Shimadzu TOC-V CSN total 

organic carbon analyzer. The injected samples were combusted at 680 °C and the 

resultant CO2 was purified and measured with a Non-Dispersive Infra Red (NDIR) 

detector. Calibration curves were made using potassium phthalate as standard solution. 

All of the measurements were conducted at least in duplicate with a precision of ±3%. 

The detection limit was 50 μgC l-1. 

The 3-D EEM spectra of the water samples were measured with a Hitachi F-4500 

fluorescence spectrophotometer with a 150 W ozone-free xenon lamp (Coble et al. 
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1993; Nagao et al. 1997). The spectra were recorded at excitation (Ex.) wavelengths 

from 250 to 500 nm and emission (Em.) wavelengths from 250 to 550 nm at 5 nm 

intervals. The scan speed was 2400 nm min-1. The slit width was 5 and 10 nm for Ex. 

and Em. wavelengths, respectively. The photomultiplier voltage was set to 400 V. The 

relative fluorescence intensity (RFI) of the water samples was expressed in terms of 

quinine standard units (QSU), where 10 QSU corresponds to the fluorescence intensity 

of quinine sulfate (10 μg l-1 in 0.05 M sulfuric acid) at excitation and emission 

wavelengths of 345 nm and 455 nm, respectively. 

The molecular size distribution of humic substances was measured using HPSEC 

(Nagao et al. 2003). Size-exclusion chromatography (SEC) column separation was 

performed with a stainless steel column (Hitachi GL-W530; 300 mm × 10.7 mm ID) 

packed with water-soluble polyacrylate gel resin. The water samples were injected into 

the SEC column at a carrier flow rate of 1 ml min-1. The mobile phase was a 0.01 M 

Tris-HCl buffer solution containing 0.01 M NaCl and adjusted to pH 8.0. Fluorescence 

was monitored at excitation and emission wavelengths of 320 nm and 430 nm, 

respectively. The void volume (Vo) and total effective column volume (Vo + Vi) of the 

SEC column were 8.4 and 23.6 ml, respectively. The SEC column was calibrated with 

Blue Dextran (molecular weight (MW) of 2000000), polyethylene glycols (MW of 106, 
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194, 400, 1010, 1900, 22450, and 50000), and acetone (MW of 58). The peaks were 

detected by a refractive index detector. The relative standard deviation of the peak 

height was less than 9% for the natural waters in duplicate measurements. Lake Biwa 

fulvic acid purchased from the Japanese Humic Substances Society was measured in 

each analysis as a running standard to check reproducibility in peak retention volume, 

peak area, and peak height. Four peaks of the Lake Biwa fulvic acid were detected at 

retention volumes of 9.5 ml (Peak 1), 9.8 ml (Peak 2), 10.4 ml (Peak 3), and 11.9 ml 

(Peak 4). 10 mg l-1 solution of fulvic acid isolated from the water samples from the 

Teshio and Tokachi Rivers were also determined using 3-D EEM spectroscopy and 

HPSEC. 

 

Parallel factor analysis (PARAFAC) modeling 

PARAFAC statistically decomposes the complex mixture of DOM fluorophores 

into components without making any assumptions regarding their spectral shape or 

number (Stedmon et al. 2003). We used water samples collected from June 2009 to July 

2011, including water samples collected during rainfall events, to obtain the necessary 

number of samples required to attain statistical significance for PARAFAC modeling. 

The water samples collected during rainfall events will be discussed in a future study. 
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The dataset for the PARAFAC modeling was composed of 76 river water samples, 5 

drainage water samples from paddy fields, and 2 water samples from paddy fields. For 

PARAFAC modeling, excitation and emissions wavelengths of 240–450 and 300–500 

nm, respectively, were used at 5 nm intervals. The analysis was conducted using 

MATLAB with the “N-way Toolbox for MATLAB” (Andersson and Bro 2000). 

Split-half analysis was used to validate the identified components (Stedmon et al. 2003; 

Cory and McKnight 2005). 
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Results 

DOC concentration 

DOC concentrations were found to be in the ranges 0.25–2.97 and 0.50–0.85 

mgC l-1 in the Kumaki River water and drainage water, respectively (Table 2 and Fig. 3). 

In the river water, DOC concentrations were 0.25–1.13, 0.41–2.97, and 0.46–2.29 mgC 

l-1 in the upstream, midstream, and downstream areas, respectively. Thus, DOC 

concentrations generally increased from the upstream to the downstream region, except 

for the water samples from November 2009 and April 2010. The river water exhibited 

its highest DOC concentration in August 2009 and seasonal variation is apparent in the 

DOC concentration result. 

 

3-D EEM spectra 

Two fluorescent peaks in the 3-D EEM spectra were detected for the Kumaki 

River water samples (Table 3 and Fig. 4(a)–(d)), as follows: Ex./Em. of 

305–340/425–440 nm for peak M and 320–340/445–465 nm for peak C. Three 

fluorescent components were identified by PARAFAC modeling using 83 EEM spectra 

of Kumaki River water samples and drainage water samples from paddy fields. The 

excitation and emission pairs of the main peak positions for the three components are 
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shown in Table 4 and Fig. 5 together with the results of previous studies (Coble 1996; 

Yamashita et al. 2008; Mostofa et al. 2010). Component 1 indicates the occurrence of 

humic-like materials with two fluorophores at Ex./Em. of 310/410 nm of Peak M and 

240/410 nm of Peak A1 (Fig. 5(a)). Component 2 corresponds to the occurrence of 

terrestrial humic-like materials with two fluorescence peaks at Ex./Em. of 245/480 nm 

of Peak A2 and 360/480 nm of Peak C (Fig. 5(b)). Component 3 corresponds to 

tryptophan-like materials with a fluorescent peak: Peak T at Ex./Em. of 275/315 nm 

(Fig. 5(c)). Fulvic acid peaks in the 3-D EEM spectra for the Teshio and Tokachi River 

water samples (Table 4 and Fig. 4(e) and (f)) were detected for Ex./Em. of 310/430–435 

nm for peak M. These peak positions are similar to peaks M and C observed for the 

Kumaki River water samples and could correspond to terrestrial fulvic acid-like 

components originating from the decomposition of plant materials (Mostofa et al. 

2013).  

Figure 6 illustrates the variation in the RFI of fulvic acid-like components based 

on 3-D EEM spectra for the research period. The RFI values for peak M were in the 

range 4.0–24.4 QSU and appeared to exhibit seasonal variation, with high values in 

summer and low values in winter. Moreover, the RFI ranged from 4.6 to 9.5 for the 

upstream waters, 4.0 to 14.1 for the midstream waters, and 4.5 to 24.4 for the 
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downstream waters of the watershed.  

 

Size-exclusion chromatograms 

Size-exclusion chromatograms of the water samples from the Kumaki River and 

drainage water obtained from a paddy field in August 2009 are shown in Fig. 7 together 

with two riverine fulvic acids. Four peaks were detected at retention volumes of 9.5 ml 

(Peak 1), 9.8 ml (Peak 2), 10.4 ml (Peak 3), and 11.9 ml (Peak 4). Four peaks were also 

detected in the size-exclusion chromatograms of the Teshio and Tokachi River water 

samples at the same retention volumes. Based on the calibration curve (r2 = 0.98, p < 

0.04) for the SEC column, the apparent molecular weights (MW) of peaks 1–4 were 

estimated to be >15.0, 12.4, 8.2, and 3.3 kDa, respectively. The higher MW fulvic 

acid-like components of peaks 1 and 2, which correspond to MW greater than 10 kDa 

and fluorescence at Em. wavelengths of 400–500 nm, are consistent with those of other 

river fulvic acids documented in previous studies (Dawson et al. 1981; Kalbitz 2001; 

Nagao et al. 2003; Asakawa et al. 2007). The peak height of peak 1 for fulvic acid-like 

components ranges from 268 to 4887 μV in the Kumaki River waters (Fig. 8(a)), with 

ranges of 375–2285, 317–2784, and 268–4887 μV in the upstream, midstream, and 

downstream areas, respectively. Moreover, ranges of 486–1308, 632–4887, 437–876, 
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and 268–663 μV were found in spring, summer, autumn, and winter, respectively. 

Overall, the peak height remained almost constant from the upstream to downstream 

areas, except in June and August 2009 and April 2010, when peak height was found to 

increase downstream.  

The peak height ratio of peaks 1 and 2 for the fulvic acid-like components, which 

is a simple indicator of the molecular size distribution, was found to range from 0.35 to 

0.94 in the Kumaki River waters (Fig. 8(b)). This ratio was found to be 0.41–0.94, 

0.35–0.85, and 0.34–0.87 in the upstream, midstream, and downstream areas, 

respectively, with ratios of 0.41–0.58, 0.45–0.94, 0.52–0.66, and 0.34–0.51 in spring, 

summer, autumn, and winter, respectively. Thus, this ratio exhibits a distribution similar 

to that of the peak height of peak 1.
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Discussion 

Variations in DOC concentration and RFI of fulvic acid-like components 

The DOC concentrations observed in the present study are lower than or similar 

to those recorded for other Japanese river systems (Kawasaki et al. 2002: 1.5 mgC l-1; 

Nagao et al. 2003: 1.1–2.1 mgC l-1; Asakawa et al. 2007: 0.8–2.0 mgC l-1; Sazawa et al. 

2011: 0.5–1.2 mgC l-1). The variation in DOC concentrations from upstream to 

downstream in the Kumaki River system is 0.25–2.97 mgC l-1; this is higher than values 

reported previously (Nagao et al. 2003; Sazawa et al. 2011). 

The distributions of RFI values of fulvic acid-like components and DOC 

concentrations in the Kumaki River are presented in Fig. 9. For the upstream waters, we 

found no correlation between DOC concentration and the RFI. A weak correlation (r2 = 

0.47, p < 0.03) is apparent for the midstream waters, except for the April sample. For 

the downstream waters, a positive correlation exists (r2 = 0.76, p < 0.0004) for all 

samples. The ratio of the RFI value to the DOC concentration is 8.0 QSU (mgC l-1)-1 for 

the midstream samples and 9.8 QSU (mgC l-1)-1 for the downstream samples. This 

suggests that the concentrations of DOC and fulvic acid-like components exhibited 

similar variations in the midstream and downstream waters. Other studies in Japanese 

river systems have demonstrated a difference in RFI/DOC ratio between upstream and 
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downstream water (Mostofa et al. 2005; Sazawa et al. 2011), which are typically 

associated with forest and agricultural areas, respectively. Thus, these results show that 

river water in agricultural areas typically exhibits a strong correlation between DOC 

concentration and RFI value, although no such correlation exists for river water in forest 

areas. In the present study, the Kumaki River system is a small watershed and has forest 

in its upstream areas and agricultural areas (such as paddy fields) along its midstream 

and downstream reaches. Therefore, the variation in correlation between DOC 

concentrations and RFI values found for the Kumaki River reflects differences in land 

use pattern between the upstream and midstream/downstream areas; such differences 

have been reported previously in several DOM studies (Cronan et al. 1999; Kalbitz 

2001; Mostofa et al. 2005; Sazawa et al. 2011). 

The distribution of RFI values of fulvic acid-like components and DOC 

concentrations for each season are illustrated in Fig. 10. The spring samples produced 

scattered plots or two correlation lines. The DOC concentrations in the upstream and 

midstream areas in April 2010 were higher than those in other months. Plowing and 

irrigation of the paddy field was undertaken in April before rice seedlings were 

transplanted, such that the majority of paddy water input to the river in its midstream 

reaches would have been associated with use of a paddy soil rotary in April 2010. In 
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fact, the water level at the downstream observation point rose by 20 mm because of the 

input of drainage water from paddy fields in the spring season (Rivers Division of 

Ishikawa Prefecture 2012). The DOC concentration in the midstream area was higher 

than that in the downstream area in April 2010. However, the RFI values increased from 

upstream to downstream. Therefore, typical components released from paddy fields 

were relatively low-fluorescence organic materials. We found a positive correlation 

between RFI values and DOC concentrations in the summer (r2 = 0.80, p < 0.001), 

autumn (r2 = 0.64, p < 0.01), and winter samples (r2 = 0.98, p < 0.000005). The ratio of 

RFI value to DOC concentration was found to be similar (9.2–10.6) in these three 

seasons, indicating that the proportion of fulvic acid-like components to DOM was 

almost constant from summer to winter. 

The fluctuation of the river water level due to instantaneous variation is small, 

although antecedent precipitation of over 5 mm h-1 occurred in August and December 

of 2009 and in February and May of 2010 (Table 1). Plots of DOC and RFI values with 

maximum precipitation intensity within 24 h before sampling are shown in Fig. 11. We 

found a positive correlation between DOC and maximum precipitation intensity (r2 = 

0.84, p < 0.00008). Similarly, a positive correlation is evident for the RFI values and 

maximum precipitation intensity (r2 = 0.79, p < 0.0006), except for the June sample, 



22 
 

which was not associated with any precipitation. However, we found no correlation 

between DOC and RFI values and rainfall duration (not shown). These results indicate 

that the precipitation intensity within 24 h before sampling contributes to variations in 

the concentration of DOC and fulvic acid-like components in the Kumaki River.  

 

Sources of fulvic acid-like components in the Kumaki River  

A seasonal variation of MW is apparent for fulvic acid-like components in the 

Kumaki River (Fig. 8). The apparent variation of the river water level is small owing to 

agricultural activity (i.e., rice paddy cultivation) during April to August (Rivers Division 

of Ishikawa Prefecture 2012). However, the peak height ratios for the river water 

samples collected in summer were twice as high as those in spring and winter. This 

suggests that fulvic acid-like components exported from the watershed in summer are 

rich in higher molecular size fractions. 

The average RFI values and peak height ratios of peaks 1 and 2 for fulvic 

acid-like components are shown in Fig. 12. The average RFI values were found to 

increase from upstream to downstream in the following order: winter = autumn < spring 

< summer. Conversely, the peak height ratio exhibits a different variation pattern. The 

ratio was found to be almost constant from upstream to downstream in autumn and 
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winter, although the ratio in spring was higher in the midstream and downstream areas 

than the upstream area. In summer, the peak height ratios decreased slightly and the RFI 

values increased significantly from upstream to downstream. Asakawa et al. (2007) 

suggested that, in spring, autumn, and winter, humic substances with lower molecular 

size are derived from the deeper horizons of forest soil in a small forest watershed in 

Japan. The Kumaki River system exhibits lower RFI values and molecular weight of 

fulvic acid-like components in autumn and winter than summer. This is considered to be 

due to the contribution of fulvic acid-like components from basement flow in the deeper 

soil horizons. Conversely, the autumn samples show the presence of fulvic acid-like 

components with relatively high molecular weight. The difference in the RFI and peak 

height ratio may be delay in the transport of fulvic acid-like components from the 

surface soil to deeper soil horizons. In spring, the RFI and peak height ratio were higher 

than the winter season samples and increased from the upstream to downstream areas. 

The peak height ratio of drainage water from the paddy field was found to be 0.69, 

which is higher than that of river water in the midstream and downstream areas. The 

downstream fluorescent spectral form is consistent with that of drainage water from the 

paddy field (Fig. 4(c)–(d) and Table 3). Rice planting is performed in this area in April. 

Other studies conducted in forest and farmland catchments (Mostofa et al. 2005; 
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Sazawa et al. 2011) have shown that higher RFI values are observed not only at low 

water flow rates but also for high fluxes of drainage water from agricultural land 

(mainly paddy fields) located in downstream areas. Therefore, the variation observed in 

spring season indicates that a large contribution of fulvic acid-like components from the 

paddy fields occurred in the midstream and downstream areas in the Kumaki River. 

Cronan et al. (1999) have shown that the molecular size of DOM in river water is higher 

in forest areas than in agricultural areas. Moreover, Asakawa et al. (2007) demonstrated 

that humic substances in streams have higher molecular sizes in summer than that in 

autumn and winter and are typically derived from the surface of forest soil. Therefore, 

the peak height ratio for the Kumaki River samples in summer suggests that fulvic 

acid-like components with higher molecular size fractions are supplied from the forest 

soil located in the upstream area. The fulvic acid-like components are also supplied 

from the paddy fields located in the midstream and downstream reaches of the 

watershed. Summer is an active period for surface and subsurface flow from the 

upstream forest and the midstream and downstream paddy fields owing to the 

abundance of rainfall events, as shown in Fig. 2. 

The results of a t-test conducted on each seasonal sample for comparison between 

seasons demonstrate that the seasonal variation of the peak height ratio is not significant 
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for any of the watersheds. However, the summer season exhibits wide fluctuations in the 

peak height ratio for the fulvic acid-like components in the river water. The peak height 

ratio in June and August 2009 is about two times that in July 2010. Similar variations 

were found in the RFI values for fulvic acid-like components. These results suggest that 

the summer season in the Kumaki River system is particularly sensitive to the discharge 

of DOM and humic substances from the watershed.  

Based on our results, we conclude that the Kumaki River watershed has three 

main sources of fulvic acid-like components that are transported into the river: 1) 

materials supplied by basement flow from deeper soil horizons; 2) materials derived 

from forests located in the upstream area; and 3) materials derived from paddy fields 

located in the midstream and downstream areas. Variations in the input of fulvic 

acid-like components from the watershed to the river depend on watershed conditions 

such as precipitation, land use type, and agricultural activity.  
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Conclusions  

The export of fulvic acid-like components, which are the major components of 

DOM, was studied in the Kumaki River system under normal conditions in 2009–2010 

to understand the factors controlling the transport behavior of fulvic acid-like 

components over a year. Field experiments were conducted at forest areas located in the 

upstream areas and paddy fields located in the midstream and downstream areas. The 

following results were obtained. Two fulvic acid-like component peaks were observed 

at excitation wavelengths of 305–335 nm and emission wavelengths of 425–440 nm in 

the 3-D EEM spectra of all water samples. Four peaks were detected in the 

size-exclusion chromatograms of all water samples, corresponding to the features 

shown in the chromatograms for the riverine fulvic acids. DOC concentration and 

relative fluorescent intensity (RFI) increased from the upstream to the downstream area. 

For the upstream waters, we found no correlation between DOC concentration and the 

RFI, but a positive correlation was observed for the midstream and downstream waters, 

except for the April sample. This suggests that the DOC concentration and fulvic 

acid-like components show similar variations in the midstream and downstream areas. 

The variation in RFI/DOC reflects differences in land use pattern. The RFI values 

increased in the following order: winter, autumn, spring, summer. The peak height ratio 
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of peak 1/peak 2 (corresponding to MWs of 15.0 and 12.4 kDa) for the fulvic acid-like 

components was also found to be highest in the summer samples. The ratio was found to 

decrease broadly from upstream to downstream (upstream > midstream = downstream), 

although it increased from upstream to downstream in spring. These results suggest that, 

in summer, fulvic acid-like components with high molecular weight fractions are 

supplied from forest soil located in the upstream area and from the paddy fields located 

in the midstream and downstream reaches of the watershed. This can be attributed to the 

higher precipitation and more intense agricultural activity during this period. 
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Table 1 Observed water level at downstream station and precipitation intensity and duration time within 24 h before sampling in the 

Kumaki River system from June 2009 to July 2010 

Sample 
  Water level 

Maximum 
precipitation 

intensity 

Time before 
sampling 

Total 
precipitation 

Rainfall 
duration  

 
  m mm h-1 h mm h 

River water 
      

 
2009/6/18 

 
0.13 0 0 0 0 

        
 

2009/8/29 ☆ 0.13 15 12 29 5 

        
 

2009/9/24 
 

0.13 0 0 0 0 

        
 

2009/10/16 
 

0.13 0 0 0 0 

        
 

2009/11/30 
 

0.15 1 20 1 1 

        
 

2009/12/28 ☆ 0.32 7 5 16 4 

        
 

2010/1/27 
 

0.13 0 0 0 0 

        
 

2010/2/26 ☆ 0.08 6 0 * 9 3 



37 
 

        
 

2010/4/28 
 

0.11 3 8 15 4 

        
 

2010/5/26 ☆ 0.16 5 22 ** 19 5 

        
 

2010/7/1 
 

0.11 0 0 0 0 
      

     
* Rainfall during sampling period 

    
** Rainfall of about 1 mm h-1 during sampling period 

  
☆ Rainfall of over 5 mm h-1 within 24 h before sampling 
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Table 2 Water qualities and dissolved organic carbon (DOC) concentrations in the Kumaki River from June 2009 to July 2010 

Sample pH DO EC TURB WT DOC 

        (mg l-1) (mS m-1) (NTU) (°C) (mgC l-1) 

River water 
        

 
2009/6/18 

        
  

Upstream 7.2 10.4  8.4   7.4 15.6 0.25 ± 0.01 

  
Midstream 7.4 10.0 11.9   5.6 18.5 0.56 ± 0.02 

  
Downstream 7.4  9.1 17.5   7.2 20.9 1.05 ± 0.00 

 
2009/8/29 

        
  

Upstream 7.2 10.1  6.7   4.3 19.2 0.60 ± 0.00 

  
Midstream 7.5  9.7  9.5  14.3 22.9 1.21 ± 0.00 

  
Downstream 7.4  9.4 10.0  15.7 22.1 2.29 ± 0.02 

 
2009/9/24 

        
  

Upstream 6.1 14.3  7.2  22.6 17.7 0.41 ± 0.00 

  
Midstream 5.8 15.2 11.4  20.3 22.4 0.61 ± 0.01 

  
Downstream 6.9 17.1 13.9   3.3 22.1 0.74 ± 0.01 

 
2009/10/16 

        
  

Upstream 6.9 15.2  6.0   3.4 12.7 0.26 ± 0.00 

  
Midstream 7.2 15.5  9.6   6.4 16.0 0.41 ± 0.01 

  
Downstream 7.9 15.1 11.4   2.8 15.2 0.46 ± 0.01 

 
2009/11/30 

        
  

Upstream 6.8 12.4  6.0   5.8 10.8 0.39 ± 0.01 



39 
 

  
Midstream 7.0 13.3  8.0   7.7  9.7 0.65 ± 0.01 

  
Downstream 6.9 13.4 11.6   7.9  9.9 0.57 ± 0.01 

 
2009/12/28 

        
  

Upstream 5.9 18.0  5.8   6.8  5.5 0.64 ± 0.00 

  
Midstream 5.3 17.2  8.1  17.4  7.7 0.84 ± 0.01 

  
Downstream 5.2 17.4  8.5  34.8  7.5 1.01 ± 0.01 

 
2010/1/27 

        
  

Upstream   n.m.* n.m. n.m. n.m. n.m. n.m. 

  
Midstream 6.0 13.9  6.8   7.8  7.8 0.42 ± 0.00 

  
Downstream 6.2 14.4  8.0  20.1  8.1 0.47 ± 0.01 

 
2010/2/26 

        
  

Upstream 6.1 12.6  8.4  16.3  9.4 0.84 ± 0.01 

  
Midstream 4.5 14.0  7.3  26.4 10.1 1.02 ± 0.00 

  
Downstream 3.7 13.9  8.4  51.9 10.8 1.17 ± 0.01 

 
2010/4/28 

        
  

Upstream 7.3 10.2  6.2  15.2 11.1 1.13 ± 0.23 

  
Midstream 5.6 10.8  8.2  25.1 11.5 2.97 ± 0.05 

  
Downstream 6.2 10.6  9.1  52.4 13.5 0.81 ± 0.08 

 
2010/5/26 

        
  

Upstream 7.2  6.1  9.5 101.2 12.6 0.54 ± 0.01 

  
Midstream 5.8  8.2  9.9  52.5 13.8 0.79 ± 0.01 

  
Downstream 5.9  8.6  9.7  49.2 14.4 0.91 ± 0.00 

 
2010/7/1 
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Upstream 7.0  8.3  5.2   8.7 16.6 0.38 ± 0.00 

  
Midstream 7.6  8.1  8.4  16.4 19.9 0.52 ± 0.01 

  
Downstream 7.6  7.8  9.1  11.7 20.6 0.53 ± 0.00 

          
Drainage water from paddy field 

       
 

2009/8/29 7.5  9.5  9.9   9.2 21.1 0.85 ± 0.01 

 
2010/4/28 n.m. n.m. n.m. n.m. n.m. 0.50 ± 0.13 

                      

* n.m. = river water samples not measured owing to snow cover 
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Table 3 Peak position and relative fluorescence intensity (RFI) of fulvic acid-like 

components in the Kumaki River from June 2009 to July 2010 

 

Sample Peak M Peak C 

   
Peak position RFI Peak position RFI 

      (Ex./Em.) (QSU) (Ex./Em.) (QSU) 

Kumaki River water 
    

 
2009/6/18 

    
  

Upstream 310/435  8.0 335/455  7.5 

  
Midstream 305/430 12.7 335/465 11.5 

  
Downstream 335/430 20.3 340/460 17.7 

 
2009/8/29 

    
  

Upstream 310/435  9.5 340/465  8.9 

  
Midstream 305/435 14.1 330/465 13.0 

  
Downstream 330/435 24.4 340/460 22.9 

 
2009/9/24 

    
  

Upstream 310/430  7.2 340/465  6.9 

  
Midstream 310/435  9.0 330/450  8.6 

  
Downstream 310/435 11.2 335/460 10.4 

 
2009/10/16 

    
  

Upstream 305/440  5.0 330/450  4.9 

  
Midstream 310/430  6.3 340/460  5.8 

  
Downstream 320/435  7.4 340/460  6.8 

 
2009/11/30 

    
  

Upstream 310/440  4.8 335/460  4.4 

  
Midstream 310/430  6.4 340/445  6.0 

  
Downstream 325/430  8.4 335/460  7.5 

 
2009/12/28 

    
  

Upstream 310/435  5.4 330/460  4.9 

  
Midstream 320/435  7.8 335/460  7.4 

  
Downstream 305/430  9.4 335/450  9.0 

 
2010/1/27 

    
  

Upstream   n.m.* n.m. n.m. n.m. 
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Midstream 325/435  4.0 340/465  3.3 

  
Downstream 315/435  4.5 335/460  3.9 

 
2010/2/26 

    
  

Upstream 310/430  7.1 325/455  6.4 

  
Midstream 310/430  9.9 325/455  8.9 

  
Downstream 310/435 11.6 330/460 10.4 

 
2010/4/28 

    
  

Upstream 325/425  4.6 325/450  4.3 

  
Midstream 310/430  8.4 330/460  7.7 

  
Downstream 305/430 10.4 330/455  9.7 

 
2010/5/26 

    
  

Upstream 310/435  7.0 320/445  6.6 

  
Midstream 310/435  9.3 330/445  8.6 

  
Downstream 310/430 11.6 330/450 10.5 

 
2010/7/1 

    
  

Upstream 305/435  5.7 325/465  5.2 

  
Midstream 310/430  6.7 330/455  6.1 

  
Downstream 310/435  7.5 320/445  7.1 

      
Drainage water from paddy field in the Kumaki River basin 

  
 

2009/8/29 340/435 12.4 340/460 11.8 

 
2010/4/28 320/425  7.0 330/450  6.5 

              

* n.m. = river water samples not measured owing to snow cover 
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Table 4 Fluorescent peak position at excitation/emission (Ex./Em.) wavelength of dissolved humic substances 

Samples  

  Peak C region   

References 
 

Peak M Peak C Peak A 

  Ex./Em. (nm) Ex./Em. (nm) Ex./Em. (nm) 

Yodo River FA 
 

305/430  n.d. * n.d. Nagao et al. (2003) 
Suwannee River FA 

 
305/430 325/460 n.d. 

 
       
Ado River FA (extracted) 

 
300–310/420–430 n.d. 260–270/430–440 Sugiyama et al. (2005) 

       
Suwannee River FA (IHSS standard) 

 
n.d. 333 ± 3/469 ± 6 n.d. Mostofa et al. (2005) 

Suwannnee River HA (IHSS 
standard)  

n.d. 330 ± 13/484 ± 13 n.d. 
 

       
Bekanbeushi River FA 

 
n.d. 345/460 n.d. Kumegawa (2007) 

       
Kumaki River ** 

 
310/410 360/480 240-245/410-480 This study 

       
Teshio River FA 

 
310/430 n.d. n.d. This study 

Tokachi River FA 
     

 
Head water 

 
310/430 n.d. n.d. 

 
 

Upstream  
 

310/435 n.d. n.d. 
 

 
Downstream 

 
310/435 n.d. n.d. 
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* n.d. = not detected 
     

** This Kumaki River data is peak position by PARAFAC analysis. 
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Figure Captions 

Fig. 1 Location maps of sampling sites (○), precipitation observatory station (△), and 

water level observatory station (□) in the Kumaki River system. The bold and thin 

black lines indicate the Kumaki River and its tributaries, respectively. The vegetation 

map of 2006 was produced by Asia Air Survey Co. Ltd. 

 

Fig. 2 Hydrograph of the downstream area of the Kumaki River. Arrows indicate 

sampling dates. Precipitation and water level data were provided by the Integrated 

River Information System of Ishikawa Prefecture.  

 

Fig. 3 DOC concentrations of river water in the upstream (●), midstream (▲), and 

downstream (□) areas of the Kumaki River 

 

Fig. 4 3-D EEM spectra of river water from the (a) upstream, (b) midstream, and (c) 

downstream areas of the Kumaki River and from (d) drainage water from a paddy field 

in the midstream area in August 2009. Two spectra for fulvic acids of the (e) Teshio 

River and (f) Tokachi River are also shown in this figure. Arrows indicate peak 

positions of fulvic acid-like components. Contour intervals of all spectra are 1.0 QSU. 
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Fig. 5 3-D EEM spectra of the fluorescent components (a) 1, (b) 2, and (c) 3 of the 

Kumaki River samples, identified with the PARAFAC model 

 

Fig. 6 RFI of fulvic acid-like components detected at peak M in 3-D EEM spectra of 

river water in the upstream (●), midstream (▲), and downstream (□) areas of the 

Kumaki River 

 

Fig. 7 Size-exclusion chromatograms of river water from the (a) upstream, (b) 

midstream, and (c) downstream areas of the Kumaki River and (d) drainage water from 

a paddy field in the midstream area in August 2009. Two chromatograms for fulvic 

acids of the (e) Teshio River and (f) Tokachi River are also presented in this figure. The 

monitoring wavelength was Ex./Em.: 320/430 nm, corresponding to the fluorescent 

peak of riverine fulvic acid (Nagao et al. 2003; Asakawa et al. 2007). 

 

Fig. 8 (a) Peak height of peak 1 and (b) peak height ratio of peaks 1 and 2 in the 

HPSEC chromatograms for fulvic acid-like components in the upstream (●), 

midstream (▲) and downstream (□) areas of the Kumaki River 
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Fig. 9 RFI values of fulvic acid-like components versus DOC concentrations in the (a) 

upstream, (b) midstream, and (c) downstream areas of the Kumaki River 

 

Fig. 10 RFI values of fulvic acid-like components versus DOC concentrations in 

Kumaki River water in (a) spring, (b) summer, (c) autumn, and (d) winter during 

2009–2010 

 

Fig. 11 Plots of (a) DOC concentration versus maximum precipitation intensity and (b) 

RFI values of fulvic acid-like components versus maximum precipitation intensity 

within 24 h before sampling 

 

Fig. 12 Average (a) RFI values and (b) peak height ratio of peaks 1 and 2 in the 

size-exclusion chromatograms for fulvic acid-like components in the Kumaki River. 

Error bars represent standard deviation (n = 2–3). 
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Fig. 1 Location maps of sampling sites (○), precipitation observatory station (△), and 

water level observatory station (□) in the Kumaki River system. The bold and thin 

black lines indicate the Kumaki River and its tributaries, respectively. The vegetation 

map of 2006 was produced by Asia Air Survey Co. Ltd. 
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Fig. 2 Hydrograph of the downstream area of the Kumaki River. Arrows indicate 

sampling dates. Precipitation and water level data were provided by the Integrated 

River Information System of Ishikawa Prefecture. 

  



50 
 

 

Fig. 3 DOC concentrations of river water in the upstream (●), midstream (▲), and 

downstream (□) areas of the Kumaki River   
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Fig. 4 3-D EEM spectra of river water from the (a) upstream, (b) midstream, and (c) 

downstream areas of the Kumaki River and from (d) drainage water from a paddy field 

in the midstream area in August 2009. Two spectra for fulvic acids of the (e) Teshio 

River and (f) Tokachi River are also shown in this figure. Arrows indicate peak 

positions of fulvic acid-like components. Contour intervals of all spectra are 1.0 QSU. 
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Fig. 5 3-D EEM spectra of the fluorescent components (a) 1, (b) 2, and (c) 3 of the 

Kumaki River samples, identified with the PARAFAC model 
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Fig. 6 RFI of fulvic acid-like components detected at peak M in 3-D EEM spectra of 

river water in the upstream (●), midstream (▲), and downstream (□) areas of the 

Kumaki River   
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Fig. 7 Size-exclusion chromatograms of river water from the (a) upstream, (b) 

midstream, and (c) downstream areas of the Kumaki River and (d) drainage water from 

a paddy field in the midstream area in August 2009. Two chromatograms for fulvic 

acids of the (e) Teshio River and (f) Tokachi River are also presented in this figure. The 
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monitoring wavelength was Ex./Em.: 320/430 nm, corresponding to the fluorescent 

peak of riverine fulvic acid (Nagao et al. 2003; Asakawa et al. 2007). 
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Fig. 8 (a) Peak height of peak 1 and (b) peak height ratio of peaks 1 and 2 in the 

HPSEC chromatograms for fulvic acid-like components in the upstream (●), 

midstream (▲) and downstream (□) areas of the Kumaki River  
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Fig. 9 RFI values of fulvic acid-like components versus DOC concentrations in the (a) 

upstream, (b) midstream, and (c) downstream areas of the Kumaki River 



58 
 

 

Fig. 10 RFI values of fulvic acid-like components versus DOC concentrations in 

Kumaki River water in (a) spring, (b) summer, (c) autumn, and (d) winter during 

2009–2010 
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Fig. 11 Plots of (a) DOC concentration versus maximum precipitation intensity and (b) 

RFI values of fulvic acid-like components versus maximum precipitation intensity 

within 24 h before sampling 
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Fig. 12 Average (a) RFI values and (b) peak height ratio of peaks 1 and 2 in the 

size-exclusion chromatograms for fulvic acid-like components in the Kumaki River. 

Error bars represent standard deviation (n = 2–3). 

 


