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In teleosts, prolactin is involved in calcium regulation, but its role in scale/bone metabolism is 
unclear. Using the in-vitro system with goldfish scales developed recently, we explored the effects 
of teleost prolactin, growth hormone, and somatolactin on osteoclasts and osteoblasts. Addition 
of prolactin at concentrations of 0.01–100 ng/ml reduced osteoclastic activity, partly via osteoclast 
apoptosis, after 6–18 h incubation. Conversely, growth hormone and somatolactin at a concentra-
tion of 100 ng/ml increased osteoclastic activity after 18 h incubation, indicating the specificity of 
the inhibitory effect of prolactin on osteoclastic activity. On the other hand, these three hormones 
promoted osteoblastic activity at concentrations of 10–100 ng/ml. The results from this study are 
the first demonstration of direct effects of prolactin on scale/bone metabolism and osteoclastic 
activity in a teleost.
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INTRODUCTION

The importance of the anterior pituitary hormone prolactin
(PRL) in vertebrates is evident from its role in a wide spec-
trum of functions that include reproduction (or parental 
behavior), osmoregulation, and immunomodulation (see 
Bole-Feysot et al., 1998; Sakamoto et al., 2003; Harris et al., 
2004). In teleost fishes, PRL also has hypercalcemic effects, 
mainly by influencing the uptake of calcium from the external 
environment (Flik et al., 1994; Chakraborti and Mukherjee, 
1995; Seale et al., 2003). On the other hand, the role of PRL 
in calcium turnover in the teleost calcified tissues, bone and 
scale, remains largely unclear, although PRL influences 
bone metabolism in mammals by acting directly on 
osteoblasts (Clément-Lacroix et al., 1999; Coss et al., 2000; 
Seriwatanachai et al., 2008) and chondrocytes (Zermeño et 
al., 2006), and through the activation of synovial cell func-
tions (Nagafuchi et al., 1999). In tilapia, bone density was 

shown to be increased by in-vivo treament with ovine PRL 
(Flik et al., 1986), which binds equally to both growth 
hormone (GH) receptors and PRL receptors in this species 
(Prunet and Auperin, 1994).

Teleost scales also contain osteoclasts and osteoblasts 
(Yamada, 1971; Bereiter-Hahn and Zylberberg, 1993; 
Yoshikubo et al., 2005; Suzuki et al., 2007), and the scales, 
rather than the body skeleton, jaws, or otoliths, appear to be 
an internal calcium reservoir, judging from a 45Ca2+-labelling 
study of calcified tissues in goldfish and killifish (Mugiya and 
Watabe, 1977). In goldfish scales, the osteoclasts are of the 
multinucleated, active type that shows tartrate-resistant acid 
phosphatase (TRAP) staining (Suzuki et al., 2000) and in-situ 
hybridization with a cathepsin K probe (Azuma et al., 2007). In 
addition, components of the bone matrix, including type-I 
collagen (Zylberberg et al., 1992), bone γ-carboxyglutamic
acid protein (Nishimoto et al., 1992), osteonectin (Lehane et 
al., 1999), and hydroxyapatite (Onozato and Watabe, 1979), 
are present in the scales.

In this context, we explored the direct effects of PRL on 
osteoclasts and osteoblasts in the scales of mature female 
goldfish by using a recently developed in-vitro system 
(Suzuki et al., 2000; Suzuki and Hattori, 2002). In addition, 
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Fig. 1. Effects of PRL, GH, and SL (0.1 to 100 ng/ml) on TRAP activity in cultured goldfish scales after 6 h (A, C, E) and 18 h (B, D, F) of 
incubation. Values are mean±SEM (N=8). *, **, and *** indicate significant differences at P<0.05, 0.01, and 0.001, respectively, from the val-
ues in the control scales (ANOVA with Dunnett’s post-hoc test).



Direct Effects of PRL on Fish Scales 741

we compared the actions of PRL with those of GH and 
somatolactin (SL), other members of a hormone family 
sharing a common ancestral gene with PRL in teleosts 
(Rand-Weaver et al., 1993). Here we report that PRL acts 
specifically on goldfish scales to reduce osteoclastic activity 
and promote osteoblastic activity. These findings indicate for 
the first time that PRL plays a direct role in the regulation of 
scale/bone metabolism in teleosts.

MATERIALS AND METHODS

Animals
A previous study using goldfish (Suzuki et al., 2000; Suzuki and 

Hattori, 2002) indicated that the sensitivity for calcemic hormones 
was highest in mature females. Therefore, mature female goldfish 
(Carassius auratus, 30–50 g in weight) were purchased from 
Higashikawa Fish Farm (Yamatokoriyama, Japan) as previously 
described (Suzuki et al., 2000). As needed, goldfish were anesthe-
tized in tricaine methanesulfonate. All procedures were approved by 
the Okayama University Committee in accordance with national 
guidelines.

Primary scale culture
As previously described (Suzuki and Hattori, 2002), scales 

were removed from goldfish and incubated at 15°C in Eagle’s 
modified minimum essential medium (MEM; ICN Biomedicals Inc., 
OH, USA) containing a 1% penicillin-streptomycin mixture (ICN 
Biomedicals, Inc., OH, USA) with or without the addition of chum 
salmon PRL, GH, or SL. These salmonid hormones (Kawauchi et 
al., 1986; Yasuda et al., 1986; Rand-Weaver, 1993) exhibit approx-
imately 70% amino-acid identities to the goldfish counterparts 
(Chan et al., 1996; Law et al., 1996; Cheng et al., 1997) and high 
specificities to their respective receptors in fishes (Prunet and 
Auperin, 1994; Tse et al., 2000; Lee et al., 2001; Fukada et al., 
2005). For each comparison between treatment and control groups, 
scales were collected from a single fish. Scales were fixed for 2 h 
in cold 10% formalin in 0.05 M cacodylate buffer (pH 7.4), rinsed 
and kept in 0.05 M cacodylate buffer at 4°C until the analyses.

Assays of osteoclastic and osteoblastic activities
In our system, the activities of both osteoclasts and osteoblasts 

were detected with TRAP and alkaline phosphatase (ALP) as 
respective markers (Suzuki and Hattori, 2002), as similarly utilized 
for determination of the effects of particular hormones on osteo-
clasts and osteoblasts in mammals (Veas, 1988; Noda et al., 2005). 
We detected the respective enzyme activity from individual scales 
by transferring each scale into a well of a 96-well microplate for 
incubation.

For TRAP activity, scales were incubated at 20°C for 60 min in 
200 μl of 100 mM sodium acetate buffer, pH 5.3, containing 20 mM 
tartrate and 10 mM para-nitrophenyl-phosphate. For ALP activity, 
the buffer was 100 mM Tris-HCl, pH 9.5, containing 1 mM MgCl2
and 0.1 mM ZnCl2. Color development was quantified by absorption 
at 405 nm.

Analyses of apoptotic osteoclasts
To examine the possible involvement of apoptosis in the inhi-

bition of osteoclastic activity by PRL (see Figs. 1 and 2), osteoclasts 
were induced by the autotransplantation of scales in goldfish (our 
unpublished results). The collected scales were intramuscularly 
autotransplanted, and the fish were kept in fresh water containing 
antibiotic (Green F Gold, Sanei Co. Ltd., Tokyo, Japan) for 7 days. 
Thereafter, the transplanted scales were removed, cut into halves, 
and cultured as described above with or without salmon PRL (10 
ng/ml). After 6 h incubation, the scale halves were fixed as above, 
and TRAP staining was performed by the methods of Cole and 
Walters (1987). After TRAP staining, DNA fragmentation associated 

with apoptosis was detected by the TUNEL method of Gavrieli et al. 
(1992) using an In Situ Cell Death Detection Kit (Roche, Tokyo, 
Japan; Takahashi et al., 2006a, b, 2007). The TRAP-stained 
samples were washed twice in 100 mM Tris-HCl buffer, pH 7.6, 
containing 150 mM sodium chloride and 0.1% Tween 20 (TBST), 
and fixed in methanol at –20°C for≥24 h. To rehydrate the samples 
following methanol fixation, each scale was washed in TBST four 
times at room temperature for 15 min. After microwave irradiation, 
the samples were transferred to TUNEL buffer (25 mM Tris-HCl, pH 
7.6, containing 200 mM sodium cacodylate, 5 mM cobalt chloride 
and 0.25% bovine serum albumin), and incubated overnight at 4°C. 
After washing in TUNEL buffer for 30 min at room temperature, the 
scales were incubated at 37°C for 4 h with TdT and fluorescein-
labeled dUTP. The reaction was terminated by transferring the 
scales to TBST for 15 min and mounted on a glass slide with a 
coverslip. The specimens were examined with a fluorescence 
microscope (EFDA2 with a 100-W Hg light source; Nikon, Tokyo, 
Japan) equipped with a chilled CCD camera (600CL, Pixera Co., 
Los Gatos, CA, USA). The excitation, dichroic, and emission filters 
were the EX 420–490, DM 510, and BA 520, respectively. The 
omission of TdT gave completely negative results. The ratio of 
TUNEL-positive osteoclasts per total osteoclasts was quantified at 
200X magnification by image analysis (Studio 3.0, Pixera Co., Los 
Gatos, CA, USA). Five to seven osteoclasts were examined for 
each scale piece (N=11).

RESULTS

Effects of PRL, GH, and SL on osteoclastic activity in 
scales

Fig. 1 shows the effect of PRL, GH, and SL on scale 
TRAP activity as an osteoclastic marker in primary culture. 
PRL at concentrations of 0.1–100 ng/ml reduced TRAP 
activity by ~20% after 6 h and 18 h incubation. Even at 10 
pg/ml, PRL was effective in reducing osteoclastic activity 
after 6 h (Fig. 2). In contrast, GH and SL increased TRAP 
activity by ~10% only at a concentration of 100 ng/ml after 
18 h incubation; there was no significant effect after 6 h 
different from that by PRL. Increased concentrations of each 

Fig. 2. Effects of PRL (0.1 to 100 pg/ml) on TRAP activity in cul-
tured goldfish scales after 6 h of incubation. Values are mean±SEM 
(N=8). ** and *** indicate statistically significant differences at 
P<0.01 and 0.001, respectively, from the values in the control scales 
(ANOVA with Dunnett’s post-hoc test).
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hormone resulted in greater effects.
The multinuclei of some TRAP-stained osteoclasts in 

the scales were labeled with TUNEL to detect DNA breaks. 
No significant effect was seen on the proportion of these 
apoptotic osteoclasts by treatment with PRL (37±10%) com-
pared with that seen in controls (30±9%; P=0.9; N=11) 
(Fig. 3).

Effects of PRL, GH and SL on osteoblastic activity in the 
scales

Fig. 4 shows the effects of PRL, GH, and SL on ALP 
activity as an osteoblastic marker. All the hormones 
promoted the activity by ~30%; SL was potent also at a 
concentration of 10 ng/ml. Increased concentrations of each 
hormone resulted in greater effects.

DISCUSSION

In the present study, we demonstrated for the first time 
that PRL inhibits osteoclastic activities. Conversely, GH and 
SL increased TRAP activities, indicating the specificity of the 

suppressive action of PRL in the osteoclasts. Furthermore, 
this in-vitro effect of PRL on goldfish scales occurred at a 
very low concentration (10 pg/ml), which was within the range 
of plasma PRL concentrations (~0.1–10 ng/ml) in teleosts, 
including the goldfish (Wong et al., 2002). Such a direct and 
specific effect of PRL has not been demonstrated before in 
teleosts, although PRL has been recognized to act on various 
tissues (see Sakamoto et al., 2003). Recently, some effects 
of PRL on cultured gill epithelia were reported, but the 
specificities of these effects were unclear (Kelly and Wood, 
2003; Zhou et al., 2003, 2004). In-vivo sodium-retention
bioassays, involving hypophysectomies and hormonal injec-
tions of fishes, have been used to test the bioactivity of 
PRLs in teleosts (Grau et al., 1984; Hasegawa et al., 1986; 
Suzuki et al., 1991; Jackson et al., 2000); however, except 
for transfection studies on PRL receptor cDNAs, our scale 
TRAP assay is the only in-vitro bioassay specific for teleost 
PRLs, one that can be completed in several hours.

The inhibitory effect of PRL on osteoclastic activity 
seems to be mediated in part through osteoclast apoptosis, 

Fig. 3. Stained whole-mounted goldfish scales showing apoptosis labeled by TUNEL (fluorescence; B, D) of a TRAP-positive osteoclast 
(reddish-stained cell; A, C). TUNEL-positive multinuclei are evident in the osteoclast adjacent to the surface of a scale treated with PRL (C, D), 
whereas the osteoclast is not labeled by TUNEL in the control scale (A, B). Representative results are shown; no significant effect of PRL treat-
ment was detected in the proportion of apoptotic osteoclasts compared with that seen in controls. Asterisks indicate the multinuclei typical of 
osteoclasts. Scale bar=20 μm.
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Fig. 4. Effects of PRL, GH, and SL (0.1 to 100 ng/ml) on ALP activity in cultured goldfish scales after 6 h (A, C, E) and 18 h (B, D, F) of 
incubation. Values are mean±SEM (N=8). * and ** indicate statistically significant differences at P<0.05 and 0.01, respectively, from the values 
in the control scales (ANOVA with Dunnett’s post-hoc test).
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since we observed apoptotic nuclei in TRAP-stained 
osteoclasts after PRL treatment. However, no statistically 
significant induction was detected, possibly due to the loss 
of TRAP activity at advanced apoptotic stages. Although fur-
ther morphological characterization by transmission electron 
microscopy appears to be necessary, PRL was also shown 
to stimulate apoptosis in newt spermatogonia and rat luteal 
tissues (Kiya et al., 1998; Abe, 2004). Indeed, a large num-
ber of the effects of PRL reported throughout the vertebrates 
are directly associated with apoptosis and/or cell prolifera-
tion (Sakamoto and McCormick, 2006). The mechanisms by 
which PRL induces apoptosis are presently unclear and 
offer fertile ground for further investigation.

In the case of osteoblastic activities, significant stimulat-
ing effects of PRL, GH, and SL were observed at a concen-
tration of 100 ng/ml, whereas SL increased the activities 
also at 10 ng/ml. GH can bind the receptor for SL, which 
plays a role in calcium metabolism (Kaneko, 1996), albeit 
with an 8-fold lower affinity than SL (Fukada et al., 2005). 
The osteoblastic activities of GH (and PRL) might be medi-
ated through the SL receptors. Altogether, these inductions, 
as well as those of ALP, by GH and SL might be non-
specific/general actions of these cytokine hormones, 
whereas the inhibition of TRAP activity by PRL should be 
unique.

Our in-vitro study has demonstrated the first direct 
effects of PRL on scale/bone metabolism in a mature female 
fish. The contribution of these relatively modest changes in 
scale/bone metabolism to plasma calcium homeostasis 
appears to be counterintuitive and minor, since PRL is 
known to induce “hyper” calcemia in teleosts in vivo, mainly 
via the gill, even in fresh water, where calcium availability is 
limited (Wendelaar Bonga, 1997). On the other hand, as we 
observed for calcitonin (Suzuki et al., 2000), PRL may inhibit 
the excess degradation of bone tissue by osteoclasts in 
female goldfish, since plasma PRL levels usually increase 
during the reproductive period (see Sakamoto et al., 2003). 
During the reproductive period, estrogen stimulates bone 
degradation for the synthesis of vitellogenin, a Ca-binding 
protein (Suzuki and Hattori, 2002; Suzuki et al., 2004). Thus, 
PRL may act on calcium deposition into scales/bone inde-
pendently of calcium homeostasis in teleosts.
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