Variation of environmental neutron flux with the depth of water and soil

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-05
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00029427

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Variation of environmental neutron flux with the depth of

water and soil

K. Komura^a, N.K. Ahmed^b, A.H. El-Kamel^c and A.M.M.

Yousef^b

^{*a}Low Level Radioactivity Laboratory, Kanazawa University, Wake,* Nomi, Ishikawa 923-1224, Japan ^{*b*}Physics Department, Faculty of Science, South Valley University, Kena, Egypt</sup>

^c Physics Department, Faculty of Science, Assiut University, Assiut, Egypt

corresponding author: <u>komura@yu.incl.ne.jp</u>. Fax; 050-1382-8549

Abstract

As a part of interest in the study of the neutron flux in biological environments, variations of slow neutrons with depth of water and soil were measured through the radioactivity induced in gold by ¹⁹⁷Au(n, γ)¹⁹⁸Au interaction.

The measurements made for 0-100 cm in fresh water and 20-400 cm in sea water showed that the thermal neutron flux showed peak at around 10 cm depth and then gradually decreased with depth in water. The depth profiles in seawater were almost the same profile as freshwater. In the case of soil made for 0-60 cm, thermal neutron flux showed a peak at 5 cm then through a shoulder-like decrease during 10~30 cm range and decreased with depth gradually rapidly to 60 cm. *Key wards: neutron; water; soil; environmental neutron; gold-198; depth profile*

1. Introduction

Background neutrons are present throughout the earth's atmosphere from the interaction of primary and secondary cosmic rays with nitrogen and oxygen nuclei in the air. From a few hundred meters above the ground to the top of the atmosphere an equilibrium condition exists in which the intensity of the neutron background remains proportional to the local neutron production. Throughout this region the shape of the neutron energy spectrum remains essentially unchanged. However, near the air/soil or air/water boundary a discontinuity in both neutron production and scattering properties leads to a non-equilibrium situation.¹⁻³ In particular, neutrons produced in seawater or in the air, which diffuse in seawater, are so rapidly thermalised that near the air/seawater boundary, the thermal flux is considerably higher than would be expected in free air. As cosmic rays interact with any material to produce neutrons, the background flux measured over seawater or over soil is made up of neutrons produced in both air and seawater or air and soil. Any massive object serves as a medium for the production of neutrons by secondary cosmic rays and therefore represents an additional source of background neutrons. For this reason, background measurements taken at the soil or at sea level may be higher near a large mass of material, such as iron or aluminium.¹

As a matter of fact, because of the considerable variety of soil compositions, particularly its water content, the thermal neutron energy distribution and the thermal neutron flux in soil should be variable.^{1,2} In soil, near the air/soil boundary, the production rates of nuclides derived from low-energy neutrons increase to the maximum and subsequently decrease exponentially with increase in depth.³ In this paper depth profiles of environmental neutrons in water and soil were measured by gold activation method coupled with extremely low background gamma spectrometry. Gold is very stable material and this technique can be applied to estimate thermal neutron flux even in the environment 100 % of humidity or 1000 degree of high temperature.

2. Experimental method

The ¹⁹⁷Au (n, γ) ¹⁹⁸Au interaction was used in the present work to estimate the thermal neutron flux at different depths of water and soil. The 411.8 keV γ -ray from ¹⁹⁸Au (2.695 d) was measured using extremely low background Ge-detectors installed in Ogoya Underground Laboratory (OUL)⁴ to calculate the number of ¹⁹⁸Au atoms produced per unit weight of gold and then converted to the neutron flux using Monte Carlo Code Program.⁵

Two experiments have been made to know the dependence of the thermal neutron flux in the depth of water. The first one was in fresh water at Wake pond, Nomi city. The second one was in seawater at Marine Research Laboratory of Kanazawa University at Ogi, Uchi-ura-Machi in Noto Peninsula of Japan seaside. In the freshwater experiment targets were distributed from the surface of water to 100 cm depth. Gold grain targets of 50 g set were exposed to the neutron flux. On the other hand, in the sea water experiment, the 20 g targets were affirmed at 20, 100, 200, and 400 cm depth. The targets were exposed during May and June 1999.

To estimate the variance of thermal neutron flux with the depth of soil, experimental data were taken at different soil depths. One sample at 50 cm over the soil and seven samples inside two holes were used. The first hole was 30 cm depth that contained three samples at 10, 20 and 30 cm depth. Other four samples were placed at 5, 15, 45 and 60cm depth in the second hole. All samples were 20g gold grains targets packed in 3 x 2.5 cm polyethylene bags. The targets were exposed to the environmental neutrons during December 1999. At the start of the experiment, water content in soil was 22 %. However this value increased to about 27.5 % by rain fall and 34 % by snow fall.

After more than three weeks of exposure for every group, the targets were collected carefully, every target was wrapped with cadmium sheet and transferred to the extremely low background Ge-detectors to measure more than 4000 min.

3. Results and discussion

3.1 Variation of thermal neutrons with the depth of fresh and seawater

Measured thermal neutron values in fresh water and seawater are summarized in Tables 1 and 2 and are plotted in Figure 1 together. As seen from Figure 1, the depth profile of slow neutron in the seawater is almost the same as that in fresh water.

Thermal neutron flux at about 10 cm depth increase 1.5 time higher than that in free air. Then it decreases rapidly with increasing of water depth until 400 cm.

The present results at the seawater is higher than that calculated pnes.^{1,2} However, they showed that the flux reaches its maximum value at 8 cm in the water and decreases slowly with the increase of the water depth until about 40 cm, which is in well agreement with the present results.

Below 30 cm, the thermal neutron intensity decreases exponentially with depth. $Edge^{6}$ found a rapid decrease of slow neutron intensity with the depth in the first 20 cm layer and a slower decrease at greater depth.

These results show that the thermal neutron flux at 100 cm in water decreased to 28 % of its surface value in both water and to 23% at 400 cm depth. No fundamental difference of depth file was observed between fresh water and seawater. This may be due to the contribution of dissolved material in seawater (~3.7 %) affects only small for absorption of neutron. However, the rapid decreasing of flux within the first 100 cm was a point of interest for in future study.

3.2 Variation of thermal neutrons with the depth of soil

Table 3 and Figure 2 show the neutron measurement in soil. The thermal neutron flux at 50 cm above soil surface was $(6.7 \pm 1.1) \times 10^{-3} \text{ n cm}^{-2}\text{s}^{-1}$, this value increased to a maximum value (8.6 ± 1.2) x $10^{-3} \text{ n cm}^{-2}\text{s}^{-1}$ at 5 cm depth. This increase is explained by the thermalization of fast neutrons mainly by the soil water (22%) in humid surface soil. The thermal neutron flux showed a maximum and begins to decrease at 10cm depth and shoulder like decease until about ~30 cm. The 1st peak is formed by soil water and shoulder like variation is caused by thermalization of neurons by soil components. The stability of neutron flux between 10 and 30 cm depth was not in agreement with the calculated curves.^{1,2} This discrepancies may be caused by of sow fall during exposure (water content of increased to 34%)

Wet earth tends to slow down fast neutrons from the air rapidly. A part of these slow neutrons then diffuse back into the air and subsequently absorbed by the ${}^{14}N(n,p){}^{14}C$ reaction. Thus the energy spectrum of cosmic neutron changes in re soil, resulting in more thermal neutrons.

Both the absorption of thermal neutrons by the components of soil and the moderation by the large amount of water content are competed each other. After 30 cm depth, the thermal flux intensity decreased rapidly again to reaches about 27 % of its surface value at 60 cm depth.

The present results showed that the thermal neutron flux at the surface of the soil is $(6.7 \pm 1.1) \times 10^{-3} \text{ n cm}^{-2}\text{s}^{-1}$. This value is in good agreement with the calculated values $(6.6 \times 10^{3} \text{ n cm}^{-2}\text{s}^{-1})^{2}$ and $(6.4 \times 10^{-3} \text{ n/cm}^{2}/\text{s})^{.3}$ A decreases with the depth of soil. O'Brien et

al (1978) calculated the equilibrium value at about 23-30 cm depth. As mentioned before, the disagreement of the present results with the calculated data is due to the effect of snow cover.

4. Conclusion

Depth profiles of environmental neutron at air/water and air/soil boundary were measured by ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction using gold grain and/or gold sheet. The depth profiles for freshwater (0-100 cm) and seawater (20-400 cm) showed similar variation with a small peak at around 10 cm. In the soil experiment a small peak was observed at 5 cm and then shoulder-like region in 10-30 cm and then decreased rapidly.

Acknowledgement

We wish to express our thanks to all members of LLRL (Kanazawa Univ.) for their grateful help, also to Dr. T. Imanaka, Associate Prof. at Kyoto Univ. for his kind help to calculate by Monte Carlo code programs.

References

- K. O'Brien,H. A. Sandmeier, H.A, G. E. Hansen and J. E. Campbell. J. Geophys. Res., 83, 114 (1978).
- (2) M. Yamashita, L. D. Stephenson and H. W. Patterson. J. Geophys. Res., 71, 3817 (1966).
- (3) L. Dep, D. Elmore, M. Lipschutz, S. Vogt, F. M. Phillips, M and

Zreda,, Nucl. Instrum. Meth. Phys. Res., B92. 301.(1994)

- (3) K. Komura. Proc. 9th Symp. on environmental radiation, Tsuruga, Fului, Oct. 1977 (Eds.T.Tsujimoto, Y. Ogawa). p. 56 (1998).
- (4) M. B. Emmett. *Monte Carlo Radiation Transort MORSE*, ORNL4922 (1975).

Table and figure captions

Table 1. Thermal neutron flux in freshwater..

Table 2. Thermal netron flux in sea water..

Table 3. Thermal neutron flux in soil.

Figure 1, Depth profiles of thermal neutron flux in the freshwater and seawater.

Figure 2. Depth profiles of thermal neutron flux in soil.

Water depth	¹⁹⁸ Au atoms	flux	Relative to
(cm)	(atom/g)	$(10^{-3}/\text{cm}^{2}/\text{s})$	free air
Free air 50	45.2 ± 6.5	8.48 ± 1.17	1.00
0	$44.9 \hspace{0.2cm} \pm \hspace{0.2cm} 10.7$	$8.35 \hspace{0.1in} \pm \hspace{0.1in} 0.99$	0.99
10	71.4 ± 9.6	$13.20 \hspace{0.2cm} \pm \hspace{0.2cm} 1.58$	1.48
20	37.4 ± 1.5	6.91 ± 1.30	0.84
37	37.4 ± 3.9	$3.07 \hspace{0.1in} \pm \hspace{0.1in} 0.73$	0.37
50	15.5 ± 5.1	$2.86 \hspace{0.1in} \pm \hspace{0.1in} 0.95$	0.34
60	11.5 ± 3.6	2.12 ± 0.86	0.25
75	10.4 ± 2.5	1.91 ± 0.48	0.23
85	13.3 ± 6.0	2.46 ± 1.11	0.29
100	9.2 ± 3.1	1.70 ± 0.57	0.20

Table 1. Thermal neutron flux in fresh water.

Table 2. Thermal neutron flux in seawater

Water depth	¹⁹⁸ Au atoms	flux	Relative to
(cm)	(atom/g)	$(10^{-3}/\text{cm}^2/\text{s})$	20cm
20	28.5 ± 9.0	5.26 ± 1.66	1.00
100	8.0 ± 5.5	1.48 ± 1.02	0.38
200	7.6 ± 3.7	1.40 ± 0.69	0.27
400	6.7 ± 3.3	1.23 ± 0.61	0.23

Table 3. Thermal neutron flux in soil.

Soil depth	¹⁹⁸ Au atoms	flux	Relative to
(cm)	(atom/g)	$(10^{-3}/\text{cm}^2/\text{s})$	20cm
free air	45.2 ± 7.2	6.72 ± 1.10	1.00
5	57.7 ± 8.3	8.58 ± 1.23	1.28
10	44.4 ± 7.1	$6.60 \hspace{0.2cm} \pm \hspace{0.2cm} 1.05$	0.98
15	45.2 ± 9.3	6.72 ± 1.30	1.00
20	43.8 ± 12.1	$6.51 \hspace{0.2cm} \pm \hspace{0.2cm} 1.80$	0.97

		0.77
$45 18.0 \pm 6.5$	2.68 ± 0.97	0.40
$60 12.4 \pm 12.4$	1.84 ± 0.54	0.27