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Ⅰ．Introduction 
 
    Liquefaction-induced ground deformations are 
generally observed close to open faces, or in gently 
sloping ground. Liquefaction-induced ground 
deformation is a potential source of major damage to 
buried pipelines during earthquakes.  During the 1994 
Northridge earthquake, several pipelines were broken 
due to large permanent ground deformation caused by 
soil liquefaction. They were numerous during the 1995 
Hyogoken-Nanbu earthquake (Hamada et al., 1996a and 
1996b) and caused substantial damage to lifelines and 
other facilities along the Kobe shoreline (Hamada et al., 
1996a; Karube and Kimura, 1996; Matsui and Oda, 
1996; and Tokimatsu et al., 1996). 
    For buried pipelines, seismic damages can be 
classified into wave propagation damages and permanent 
ground deformation damages. There have been some 
events where pipe damage has been due only to wave 
propagation. More typically, pipeline damage is due to a 

combination of hazards. However large ground 
deformation caused damage typically occurs in isolated 
areas of ground failure, with high damage rates, while 
wave propagation damage occurs over much larger areas, 
but with lower damage rates. 
    The laboratory shaking table experiments and 
numerical analysis for buried pipeline under the slope 
were carried out.   
 

Ⅱ．Shaking Table Experiments 
 
    Shake-Table experiments used a model of slope 
ground and a pipe buried under the crest of the slope in a 
box 1,800mm long by 600mm wide by 800mm high. The 
model ground consisted of 400mm thick fully-saturated 
liquefiable No.5 silicon sand made by water-pouring 
method, overlaid by free-falling 200mm thick dry No.5 
silicon sand with a 2H:1V slope with its crest at the 
center of the box. Model pipe was a 25mm diameter and 
was buried crossing the full box width and 100mm 
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Abstract 
   Soil liquefaction does major damage to buried pipelines during earthquakes. The laboratory shaking 
table experiments and numerical analysis for buried pipeline under the slope were carried out.  The 
pore water pressure buildup, sloping ground deformation, and deformation of pipe were studied. It is 
available to use the nonlinear method to simulate the soil-structure interaction. It is necessary to find a 
simplified analysis method for predicting pipe damage. 
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below the crest with two ends fixed, shown in Fig.1. A 
horizontal accelerometer was fastened on the pipe at the 
central location. Fig.2 presents a side view of the model. 
The model ground was applied by different amplitudes 
of horizontal input sine waves varying from 100 gal to 
250gal with a frequency of 5Hz. The shaking time during 
each case was 20seconds.  
 

Ⅲ．Test Results and Observations 
 
    Sand at the crest of slope slipped and the slope had 
large deformation, shown in Fig.3. The maximum 
displacement at the crest was 10cm in horizontal 
direction, 7.7cm in vertical direction. Liquefaction 
phenomena, such as sand boiling, were observed during 
shaking, and significant amount of water appeared above 
the toe of the slope right after the shaking, shown in 
Fig.4. 

    Time histories of the excess pore water pressures of 
250gal at different depth shown in Fig.5. Hydrostatic 
pressures were zeroed before shaking. Sand boiling at 
the toe areas was extensive. Hence, the excess pore 
pressure during sand boiling after about 2 to 4 seconds of 
shaking reached the effective overburden pressure 
indicating the occurrence of the complete liquefaction. 
Some portion of the dry sand close to the original water 
level became wet. This rise of moisture might be due to 
dissipation of pore water pressure upward and capillary 
phenomena. 
    The model pipe was embedded 10cm below the 
crest of the slope, and a horizontal accelerometer was 
used. Oscillatory displacement due to shaking can be 
estimated by double integration of the recorded 
acceleration of the model pipe. 
    The displacement time history, corresponding to 
250gal input motions after baseline correction, is shown 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Configuration of model pipe. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  A photo showing the test model before shaking.
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Presence of water above the toe due to 
liquefaction (dark portion is wet.). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3  Post-shaking deformation at the crest due to 
liquefaction. 
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in Fig.6. The maximum oscillatory displacement of the 
model pipe was 0.45cm during the 250gal input motion. 
The maximum permanent deflection of the model pipe 
should be more than the estimated oscillatory 
displacement, due to permanent ground deformation. 
 

Ⅳ．Three -dimensional Dynamic Analysis 
 
    In order to analyze the damage to pipe due to 
liquefaction, three-dimensional analysis was carried out 
using FLAC finite difference meshes. Considering that 
the dimension of mesh and boundary conditions have a 
strong influence on the numerical results, the scale of 
numerical model was chosen to be 100 times of the 
model of shaking table experiment.  
    The saturated sand was modeled using a 
Mohr-Coulomb soil model coupled with Finn model 
which is the pore water pressure generation model. The 
foundation of dry sand was also modeled as 
Mohr-Coulomb model, without the pore water pressure 
generation model. The input parameters for the saturated 
and dry sands are summarized in Table1.  
    The iron pipe was modeled using structural 
beam-type elements interacting with surrounding soil via 
shear and normal coupling springs. Elastic modulus of 
the pipe was 1.2 x1011 Pa, Poisson’s ratio was 0.25 and 
density was 7,000kg/m3, the diameter was 300mm. 

Soil-pipe interaction is bilinear elastic, and elastic 
modulus before liquefaction is 3 x107 Pa, 3 x104 Pa after 
liquefaction. A small (0.5%) Rayleigh damping was also 
assigned.   
    Base boundary was rigid boundary. In the initial 
static analysis, in order to compute gravity stresses, the 
base boundary was fixed both horizontally and vertically, 
and the side boundaries were only fixed horizontally. In 
the dynamic analysis, free-field boundaries were used. 
The numerical mesh for the problem is presented in 
Fig.7. 
 

 
 
 
 
 
 
 
 
 

Fig.5  Excess pore water pressures at 250 gal sine 
wave. 
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Fig.6  Time history of displacement of the model 
pipe (250 gal input). 

 

 
Table 1  Soil properties used in numerical modeling. 

Soil layer Soil type Total density 
(kg/m3) 

Friction angle
(deg) 

Shear modulus 
(Pa) 

Bulk modulus 
(Pa) 

Coefficient of 
permeability 

(m/s) 

1 Dry sand 1600 36 1.5 x107 2.40 x107 - 

2 Saturated sand 1900 35 2.00 x107 3.00 x107 1 x10-10 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7  Numerical mesh and boundary of model. 
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Ⅴ．Dynamic Analysis Results 
 
    After computing static stress conditions, time 
history of dynamic analysis was carried out for sine 
wave velocities with different frequency and amplitude. 
 
1) Displacement and pore pressure 
    The deformed grid and displacement vector from 
the numerical modeling are respectively presented in 
Fig.8 and Fig.9. The upper slope and foundation settled. 
The down slope and the area between the toe and the left 
side moved upward.  
    Fig.10 and Fig.11 are respectively displacements of 
different depth below the toe and the crest of slope.  It 
was shown that the displacement increased with time.  
The displacement below the toe of slope was bigger than 
that below the crest of slope.  
    Fig.12 and 13 showed the pore pressure increased 
with time initially, finally reached to maximum and 
becomes constant. That was to say, liquefaction occurred. 
At the same depth, the maximum pore pressure below 
the crest of slope was larger than that below the toe of 

slope, because the overburden weight below the crest of 
slope was larger. 
 
2) Pipe Dynamic Response 
    The permanent pipe displacement, caused by 
permanent ground deformation, increased with shaking 
time, and changed with amplitude and frequency of 
velocity.  
    Fig.14 and Fig.15 are the horizontal and vertical 
displacement of nodes of pipe. The displacement 
increased with the time. The displacement of pipe 
increased linearly at first stage, and then increased 
nonlinearly with the increase in damage. 
    Fig.16 is relationship between displacement and 
velocity amplitude of sine wave of f=0.5Hz. It was 
shown that displacement increased with amplitude, 
nonlinearly.  
    Fig.17 is relationship between displacement and 
velocity frequency of sine wave of A=1m/s. It was shown 
that displacement changed with frequency nonlinearly. 
 

 
 
 
 
 
 

Fig.8   Deformed grid with sine wave velocity of 
amplitude=0.5m/s, frequency=5 Hz at 10 seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10  Displacement of different depth below the 
toe of slope with velocity of sine wave of 
amplitude=0.5m/s, f=5 Hz 

 
 
 
 
 
 

Fig.9  Displacement vectors with sine wave velocity 
amplitude=0.5m/s, frequency=5 Hz at 10 seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11  Displacement of different depth below the 
crest of slope (Surface of foundation  is at 0m) with 
velocity of sine wave of amplitude=0.5m/s, f=5 Hz 
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Fig.12  Pore pressure versus time below the toe of 
slope with velocity of sine wave of amplitude=0.5m/s, 
f=5 Hz. 

Fig.16  Displacement versus velocity amplitude with 
sine wave of f=0.5Hz. 

Fig.14  X-displacement of pipe nodes versus time with 
velocity of sine wave of amplitude=0.5m/s, f=5 Hz. 

Fig.13  Pore pressure versus time at foundation below 
the crest of slope with velocity of sine wave of 
amplitude=0.5m/s, f=5 Hz. 

Fig.17  Displacement versus velocity frequency with 
sine wave of A=1.0m/s 

Fig.15  Z-displacement of pipe nodes versus time with 
velocity of sine wave of amplitude=0.5m/s, f=5 Hz. 
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Ⅵ．Concluding Remarks 
 
    The laboratory shaking table experiments and 
numerical analysis for buried pipeline under the slope 
were carried out. Damage of buried pipeline is caused by 
soil liquefaction. It is available to use the nonlinear 
method to simulate the soil-structure interaction. It is 
necessary to find a simplified analysis method for 
predicting pipe damage. 
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斜面に埋設された管路の地盤液状化による被害 
 
 

孫 紅1・宮島昌克2・喬 磊3 
 

要 旨 

 地盤の液状化は地中埋設管に大きな被害を及ぼす。本論文では，液状化に伴う斜面の変形が

地中埋設管に及ぼす影響を，室内振動実験と3次元動的解析を通して検討した。特に，飽和砂地

盤内の過剰間隙水圧の蓄積，液状化に伴う斜面の変形状況，それに伴う埋設管の変形に注目し

た。振動実験では，模型地盤内の液状化に伴い，斜面の表層が大きく変形することが再現でき，

このときの埋設管模型の変形を把握することができた。また，3次元個別要素法解析プログラム

FLACを用いて動的解析を行ったところ，過剰間隙水圧の上昇過程や斜面の変形など，振動実

験と対応する結果を表現することができた。さらに，埋設管の挙動も定量的に評価することが

でき，本解析プログラムによる地盤―構造物間の相互作用を表現する非線形手法の妥当性が確

認できた。 
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