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1. Introduction

In the last few decades, multiobjective optimization problems have
been studied by many authors, and necessary and/or sufficient condi-
tions for weak efficiency and/or efficiency have been developed. In
most of these results, it seems that convexity mostly played an impor-
tant part in sufficient conditions for optimality.

Recently, Hanson [2] introduced the concept of invexity in non-
linear programming, and proved that the Kuhn-Tucker necessary con-
ditions for optimality are sufficient conditions and weak duality result
holds under the assumption of invexity.

In this paper, we shall consider vector minimization problems, and
give necessary and sufficient conditions for weak efficiency under the
assumption of invexity. Moreover, we shall consider the Wolfe type
dual problems and show that some duality relations hold.

To this aim, in section 2, we shall introduce some notations and
definitions. In section 3, we shall consider unconstrained vector
minimization problems. First, we shall extend the concept of invexity
to vector-valued functions, and examine some properties of invexity,
and then, we shall give necessary and sufficient conditions for weak

efficiency under the assumption of invexity. In section 4, we shall con-
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sider inequality constrained vector minimization problems and give nec-
essary and sufficient conditions for weak efficiency, by using results
obtained in section 3. In section 5, we shall consider the Wolfe type
dual problems to the problems given in section 4, and show that weak

duality and strong duality results hold.
2. Preliminaries

In this section, we shall introduce some notations and definitions,
which are used throughout the paper.

Let R" be the n-dimensional Euclidean space. For any two
n
vectors x=(x, %2, -, x»)" and y=(n, ¥z, -+, yn) in R”, <x, y)sigx,-y,-

denotes the inner product, and x” denotes the transpose of the vector x.
For any vectors x and y in R”", we shall use the following notation:

x=2y if and only if x;2y: for all i=1, 2, -.., #n,

x=y if and only if x;2y:; for all i=1, 2, .-, n, and x=+y,

x>y if and only if x:>y:; for all i=1, 2, ..., n.

Let X be a non-empty subset of " and f . R*— R’ be a vector-
valued function from R" to R‘ given by f(x)=(fi(x), f(x), ---, filx)),
where f; . R"R, i=1, 2, .-, [ are real-valued functions. Consider the
following vector minimization problem :

®) {min.imize f(x),

subject to x¢€ X.

Definition 2.1. A point x°€ X is called weak efficient solution to
the problem (P) if there exists no x € X such that f(x)<f(x°).

In the case where we consider vector maximization problems, the
“maximize f(x)” should be understood as “minimize —f(x)".

In the following, we assume f is differentiable on R” and denote
the gradient of f at x°¢ R" by Vf(x°), where V/(x°)=(VA(x"),VLA(x"),
«r, Vf(x°) denotes the /xn matrix whose the jth row is
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vector V£ {x°).
3. Unconstrained Case and Invexity

In this section, we shall consider unconstrained vector minimiza-
tion problems, and give necessary and sufficient conditions for weak
efficiency under the assumption of invexity.

Consider the following unconstrained vector minimization problem :

®1) [minimize f(x),

subject to x€ R".

Lemma 3.1. If a point x°€ R" is a weak efficient solution to the

problem (Pl), then there exist a vector A€ R' such that

ZAT(20)=0, 3.

A=Ay, A, -, A) 20, (3.2)

Proof. Let x°¢ R" be a weak efficient solution to the problem

(P1). Then the system
Vfx9), d><0, i=1, 2, ., I,

has no solution 4 € R*. Hence, by Gordon’s theorem ([4], P.31), there
exists a vector A€ R* such that (3.1) and (3.2) hold. Q.E.D.

In order to derive sufficient conditions for weak efficiency, we
introduce the concept of invexity for vector-valued functions.

Definition 3.1. A differentiable vector-valued function f . R" —
R' is said to be invex at x°€ R™ if there exists a vector-valued
Sfunction 5 . R*X R*>R" such that

)= () 2V () n(x, x°) for all x€ R

It is said to be invex om R" if f is invex at any x°€ R"

Remark 3.1. In case /=1, the above definition reduces to Hanson’
s one. In case /=2, however, even if fi, i=1, ..., /, are invex at x°¢€
R", f is not invex at x°¢ R

Remark 3.2. If £, i=1, ..., I, are differentiable convex functions

-113-



SRKFRFLERRE BL2BF1LE 1991, 12

on R” then f is invex on R" In fact, it suffices to take 7(x, x%)=
x—x° but the converse does not hold in general.

Before giving sufficient conditions for weak efficiency, we shall
give the following lemma.

Lemma 3.2. Suppose that f is invex at x°€ R™.

(i) If there exists a vector A€ R' such that (3.1) and (3.2) hold,
then x°€ R™ is a global minimum point to the real-valued function
<A, f(x)> over R"

(i) If x°¢ R™ is a global minimum point to a real-valued function
(A, f(x)> over R™ for some A€ R* with A=0, then conditions (3.1)
and (3.2) hold.

Proof. (i). Suppose that there exists a vector A€ R’ such that
(3.1) and (3.2) hold. Since f is invex at x°€ R”", there exists a vector
-valued function 7 : R*X R"—=R" such that

Flx)—F(x) =V A n(x, x° for all xe€ R"
From (3.1) and (3.2), it follows that
A, FaP =<4, (=0 for all x< R",
which shows that x°¢ R” is a global minimum point to <A, f(x)> over
R

(i) It will be proved easily. QE.D.

Now, we shall give necessary and sufficient conditions for weak
efficiency.

Theorem 3.1. Suppose that f is invex at x°€ R". Then x°€ R"
is a weak efficient solution to the problem (Pl) if and only if there
exists a vector A€ R’ such that conditions (3.1) and (3.2) hold.

Proof. It suffices to prove “if” part. Because “only if” part has
been proved in Lemma 3.1. From Lemma 3.2(i), we have

A, =<4, F(x»=0 for all xe€ R™ (3.3)
Suppose that there exists an ¥ € R” such that f(%)<f(x").
Since A=0, we have {1, f(F)> <A, F(2°),
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which contradicts (3.3). Q.ED.

Theorem 3.2. Suppose that f is invex at x°€ R*. Then x°¢ R”
s a weak efficient solution to the problem (Pl) if and ondy if there
exists a vector A€ R' with A=0 such that x°€ R" is a global minimum
point to <A, f(x)> over R™

Proof. Necessity. Let x°¢ R” be a weak efficient solution to the
problem (P1). Then, by Lemma 3.1, there exists a vector A€ R! such
that (3.1) and (3.2) hold. Hence, from Lemma 3.2, it follows that x°
€ R” is a global minimum point to <A, f(x)) over R".

Sufficiency. Suppose to the contrary that there exists an ¥ € R”
such that f(¥)<f(x°. Since 1=0, we have

A, A(ZP<LA, A2,
which contradicts that x°€ R" is a global minimum point to <4, f(x))
over R". Q.ED.

Theorem 3.2 shows that unconstrained vector minimization prob-
lem (P1) is equivalent to a family of scalar minimization problems, and
this equivalency is a well-known result in the convex case.

Remark 3.4. In the above theorem, note that we don’t need invex-
ity of f to prove the sufficiency.

In the rest of this section, we shall characterize invexity of vector
-valued functions.

Theorem 3.3. In order that f be invex at x°€ R*, it is necessary
and sufficient that for all A€ R' satisfying (3.1) and (3.2) at
x"€R" x"€ R"” is a global minimum point to the real-valued
Sfunction {A, f(x)> over R™.

Proof. It suffices to prove sufficiency. Necessity was proved in
Lemma 3.2.(i). Let A€ R' be any vector satisfying conditions (3.1)
and (3.2), and x°¢ R™ be a global minimum point to the real-valued
function <4, f(x)> over R". Then, for each x € R”", the system
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SAVA()=0,

A=A, Ay -, A)' 20,

4

S~ £ <0,
has no solution A€ R'. Hence, by Gale’s theorem ([4], P.33), there
exists a vector 7(x, x°) € R”, possibly depending upon x° and x, such
that

Fx)—F(x)2VFA(x")9(x, x°

holds.

Next, we consider the case that there exists no A€ R’ such that
(3.1) and (3.2) hold, that is, the system
AV =0,
A=(A, A, -, )20,
has no solution A€ R. Then by Gordon's theorem, there exists a
vector 7(x°) € R”, possibly depending upon x°, such that
VA(x")n(x9) <0,
Hence, for each x € R", there exists {(x) >0, possibly depending upon x,
such that
F(x)— F(x?) 2V (x)t(x)n(x°),
which shows that f is invex at x°¢ R™. QED.
From Theorem 3.3, we have the following corollaries.
Corollary 3.1. If therve exists no A€ R' such that (3.1) and (3.2)
hold at x°€ R", then f is invex on x°€ R™.
Corollary 3.2 f is invex at x"€ R" if and only if for all A€ R'
satisfying (3.1) and (3.2), <A, f(x)> is invex at x°€ R"

4. Constrained Case

In this section, we shall consider inequality constrained vector

minimization problems, and give necessary and sufficient coditions for
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weak efficiency, by using the results obtained in the preceding section.

Let g, &, -+, gn, be real-valued functions defined on R", and define
g:R"R™ by g(x)=(g(x), -+, ga(x))’. Consider the following in-
equality constrained vector minimization problem :

P2) {minimize F(x),

subject to x¢€ X,

where X ={x € R"|g(x)<0}.

Let x°¢ R" be a feasible solution to the problem (P2). We set
Hx)={(ie(l, -, m}g(x)=0} and gr(x")=(gdx")), i€ I(x").

First, we shall give the Fritz-John type necessary conditions for
weak efficiency to the problem (P2).

Lemma 4.1. If x°€ R™ is a weak efficient solution to the problem
(P2), then there exist vectors A€ R* and p€ R™ such that

SAVAGD+ B Ve(x)=0, (4.1)
<u, g(x°)>=0, (4.2)
(4, )20, (4.3)

wheve A=(A, A, -, A, and p=(wm, s, -, tn).
Proof. Let x°¢ R" be a weak efficient solution to the problem
(P2). Then the system
Vix%), d><0, i=1, 2, «, |,
Vglx"), d><0, jelI (x°)
has no solution 4 € R". Hence, by Gordon’s theorem, there exist A;€
R, i=1, ..., 1, and g€ R, j€ I(x%, not all zero such that

1

E}l/l.-fo(x")+j5%0)u,-Vg;(xo)=0,

Aiz0, i=1, -, 1, u;20, j€ I(x°.
Since gi(x°)=0 for j€ I(x°), we have pg(x°)=0. By setting u;=0 for
7€ I(x%, we have (4.1), (4.2) and (4.3). QE.D.

In order to derive the Kuhn-Tucker type necessary conditions, we
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need a constraint qualification. Now, we assume that Slater type con-
straint qualification holds, that is, there exists a vector ¥ € R" such
that g #)<0, j€ I(x°) in the problem (P2).

Lemma 4.2. Let x°€ R* be a feasible solution to the problem
(P2). Suppose that there exists a vector X € R" such that g{(%)<O0,
j€I(x%, and g is invex at x°€ R". If x"€ R" is a weak efficient
solution to the problem (P2), then there exist vectors A€ R' and p€
R™ such that

AV + E Va9 =0, (4.1)
<, g(x"»=0, (4.2)
A=0, and #=0, (4.4)

Proof. By Lemma 4.1, it suffices to prove A=0. Suppose, to the
contrary, that A=0. Then from (4.1), we have
X g x0) =
Jegmﬂ’vg’(x )=0.
Since g is invex at x°€ R”, there exists a vector-valued function 7: R"
X R"—= R" such that

g(x)—g(x?) 2V g (x")n(x, x° for all x€ R™
Since ;20, j€ I(x°) and u,;=0, j ¢ I(x°), in view of (4.2), we have
<, glx)=0 for all x¢ R™ (4.5)

On other hand, since g{¥)<0 and w;=0, je I(x"), and ;>0 for at
least one j€ I(x"), we have <g, g(%¥)><0, which contradicts (4.5).
Therefore, we have A=0. Q.ED.
Remark 4.1. In Lemma 4.2, we may assume that Cottle’s con-
straint qualification holds; that is, the system
etV 8(x) =0,

#;20, j€ I(x°), and y;>0 for at least one j,
has no solution u;€ R, j€ I(x%. In this case, from Corollary 3.1, it
follows that g is invex at x°€ R”®, and Cottle’s constraint qualification
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is equivalent to Slater’s.

Let 2. R">R'X R™ define by h=(#, .-, fi, &, -, gn.). Now, we
shall give necessary and sufficient conditions for weak efficiency.

Theorem 4.1. Let x°€ R" be a feasible solution io the problem
(P2). Suppose that there exists a vector ¥ € R" such that g(%)<0,
j€ I(x°), and that h is invex at x°¢ R”. Then x°€ R" is a weak
efficient solution to the problem (P2) if and only if there exist
vectors A€ R' and pe R™ such that (4.1), (4.2), and (4.4) hold.

Proof. Necessity was proved in Lemma 4.2. Hence, we shall
prove sufficiency. Suppose that (4.1), (4.2), and (4.4) hold. Since %
is invex at x"¢ R”, from Lemma 3.2.(i), we have

A, Fx+<u, glx) 244, f(x")D+<p, g(x°)» for all xe R"™
Since #=20 and g(x)<0 for all x € X, in view of (4.2), we have
A, Flx =<4, fF(x*» for all x€ X,

which implies that x°€ R” is a weak efficient solution to the problem
(P2). QED.

5. Duality

In this section, we shall consider the Wolfe type dual problem to
the problem (P2), and show that weak duality and strong duality
results hold between them. Consider the following vector maximiza-

tion problem :

) {rr;ﬁc'ilrlnize F(x)+<p, gx)e

subject to
[ m
E&;st(x) +§lng,~(x)=0, (5.1)
20, Rdi=1, 20, (5.2)

where e=(1, 1, .-, 1), e€ R".

First, we shall prove weak duality result holds between the prob-
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lem (P2) and the problem (D).
Theorem 5.1. Let x€ R" be any feasible solution to the problem
(P2), and (y, A, 1) be any feasible solution to the problem (D).

Suppose that h=(fQi, -, fi, &, -, &n,) is invex on R". Then,
Jollowing inequality cannot hold :
Fx)<F(3)+<p, glyPe. (5.3)

Proof. Since £ is invex on R*, in view of (5.1), from Lemma
3.2, we have

A, faxD+<u, gxd=4, N+, g(y) for all xe€ R"
From (5.2), we have

<A, f(x)>+£_z_l!l/h<y, g(x)> =44, f(y)>+i=211/1f<u, gly».

Hence, by using <u, g(x)><0, it follows that
A, fx)2<4, f(9)+<u, gly)ed. (5.4)
Since A>0, the following inequality cannot hold :
)< f(»)+<p, gly)e. QED.

Theorem 5.2. Let x°€ R" be a weak efficient solution to the
problem (P2). Suppose that the assumptions of Theorem 4.1 hold.
Then there exist vectors A€ R' and p€ R™ such that (x° A, p) is a
weak efficient solution to the problem (D).

Proof. Let x°¢ R™ be a weak efficient solution to the problem
(P2). Then, from Theorem 4.1, there exist vectors A€ R' and z€ R™
such that (5.1), (5.2), and (5.4) hold. Without any loss of generality,
we may assume <4, e>=1. Therefore, (x° A, x) is a feasible solution
to the problem (D). It follows from Theorem 5.1 that for any other
feasible solution (y, A, ) to the problem (D),

F&x)<f(n)+<a, gly)e
does not hold. Since <y, g(x%>=0, it follows that
Fx)+<p, g(xe<f(¥)+<n, gly)e
cannot hold. This implies that (x? A, u) is a weak efficient solution to
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the problem (D). QED.
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