Radioactivity in the air and human health effect

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-05
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/2418

Radioactivity in the air and human health effect

A.I. Cherednichenko

Far Eastern Branch of the Russian Academy of Sciences Institute of Chemistry

Abstract

Radioactivity is the natural process by which some atoms spontaneously disintegrate, emitting particles and energy and transform into different, more stable atoms. The particles or energy released during radioactive decay refers to radiation.

Natural radiation arising from the earth and from outside the earth. The radiation we receive from outer space is called cosmic radiation or cosmic rays. The radiation emitted may be in the form of particles, such as neutrons, alpha particles, and beta particles, or waves, such as gamma and X-rays.

Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity are the Becquerel (Bq), equal to 1 decay per second, and the Curie (Ci), equal to 37 billion decays per second.

The radionuclides decay at a characteristic rate that remains constant regardless of external influences, such as temperature or pressure. The time that it takes for half the radionuclide to disintegrate or decay is called half-life (table 1).

Table 1. Main radionuclides in nature

Nuclide	Half-life	Natural Activity		
Uranium 235	$7,04 \times 10^8 \text{ yr}$	0,72% of all natural uranium		
Uranium 238	4,47 x 10 ⁹ yr	99,2745% of all natural uranium; 0,5 to 4,7 ppm total		
		uranium in the common rock types		
Thorium 232	1,41 x 10 ¹⁰ yr	1,6 to 20 ppm in the common rock types with a crystal		
1110114111 232		average of 10,7 ppm		
Radium 226	1,60 x 10 ³ yr	0,42 pCi/g (16 Bq/kg) in limestone and 1,3 pCi/g (48		
Radiuiii 220		Bq/kg) in igneous rock		
		Noble Gas; annual average air concentrations range in		
Radon 222	3,82 days	the from $0.016 \text{ pCi/L} (0.6 \text{ Bg/m}^3) \text{ to } 0.75 \text{ pCi/L} (28)$		
		Bq/m^3)		
Hydrogen 3	12,3 yr	0,032 pCi/kg (1,2 x 10 ⁻³ Bq/kg)		
Beryllium 7	53,28 days	0,27 pCi/kg (0,01 Bq/kg)		
Carbon 14	5730 yr	6 pCi/g (0,22 Bq/g) in organic material		

Effects of radiation vary with the type and energy. Radiation can decrease the normal functioning of the cells. A measure of the risk of biological harm is the dose of radiation

that the tissues receive. The unit of absorbed radiation dose is the sievert (Sv). An average radiation exposure due to all natural sources is about 2,4 mSv a year (table 2).

During the 1950s the effects of atmospheric testing of atomic and hydrogen bombs became a source of major concern. The danger of radioactive pollution of the air and the fallout of radioactive particles to the surface of the Earth stimulated serious investigation, resulting in the discovery of potentially dangerous conditions. It was observed, that radioactive materials of many kinds, such as radioactive iodine and strontium, are concentrated in living tissue and can cause damage even when the general level of environmental contamination is low. Atmospheric testing of nuclear bombs was stopped in the United States and the Soviet Union, and radioactive fallout from this source has declined.

Table 2. Average annual background exposure, mSv

Source of Radiation	External exposure	Internal exposure	Total dose
Cosmogenic	0,355	0,015	0,37
Radioisotopes of Earth:			
Potassium-40	0,15	0,18	0,33
Uranium-238	0,1	1,24	1,34
Thorium-232	0,16	0,18	0,34
Natural background exposure	0,77	1,62	2,38

Another source of radioactive pollution is accidents at nuclear power plants. In 1978 the Three Mile Island nuclear power plant in the USA suffered a severe accident leading to partial meltdown of its radioactive core. Although most of the radiation was contained within the plant structure, the prospects of massive contamination of nearby cities and towns resulted in plans for the evacuation of hundreds of thousands of people. In 1986 the Chernobyl nuclear power plant near Kiev, in the Ukraine, suffered a fire and partial meltdown, resulting in a major release of radioactive particles (table 3).

Table 3. Individual and collective average effective dose equivalent

Source of Radiation	Individual dose, mSv/year	Collective dose, pers.*Sv/year	Collective expected dose, pers.*Sv
Natural radioactivity	2,4	12 000 000	
Flights		4 300	
Medical exposure (diagnostics, radiotherapy)	0,4	8 500 000	
Nuclear Power Station fuel cycle	0,025	10 730	3 400 (for 1 GWt*year)
Solid radioactive waste			6 500 000
Industry (organic fuel combustion, metal ore mining, construction building materials, fertilizer)	0,1	485 000	

Nuclear weapon testing	0,2	840 000	30 000 000
Accident in Windscale (Great Britain), 1957			1 300
Accident in Three Mile Island (USA), 1979			35
Accident in Chernobyl NPS, 1986	0,14 (average for Belarus 2,2)	400 000	1 200 000 (for 70 years)

The health effects of radiation are well studied. A large dose delivered to the body over a short time will result in the death of the exposed person within days. The health effects of exposure to radiation do not appear unless a certain quite large dose is absorbed. Many other effects, especially cancers are detectable and occur more often in those with moderate doses. At lower doses and dose rates, there is a degree of recovery in cells and in tissues.