Mass transportation monitored by trace level radioactivity

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-05
	キーワード (Ja):
	キーワード (En):
	作成者: 小村, 和久, 井上, 睦夫
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00034990

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Mass Transportation monitored by trace level radioactivity

K. Komura, M. Inoue, Y. Murata, M. Manikandan N, T. Abe, Y. Yamaguchi, K. Tanaka

Low Level Radioactivity Laboratory, Institute of. Nature and Environmental Technology, Kanazawa University

Abstract

In the environment, there are many kinds of natural and artificial radionuclides as well as cosmic ray produced (CP) nuclides. Concentration levels of these nuclides are in general extremely low, therefore, not easy to measure without special efforts in the sampling and measurement. These nuclides are very attractive because they have potential to be utilized as geochemical tracers to investigate mass transportation occurring in the environment. Time scale of analyses applicable to natural environmental depends on the half-life and geochemical properties of radionuclides. Recently, it became possible to detect extremely low levels of radionuclides using ultra low background counting system equipped in Ogoya Underground Laboratory (OUL).⁽¹⁾

In the COE program, we decided to start new project, namely, high-resolution measurements of airborne radionuclides at $1\sim3$ hours of intervals simultaneously at 3 points as shown in Fig. 1. This kind of measurements could never been performed because dozens of low background counting system are needed to measure great number of samples within short time after sampling. The second project performed in the COE program is the measurements of short-lived CP nuclides in rain sample to open new application field in hydrology. The third one is to measure seasonal and spatial variation of 228 Ra/ 226 Ra ratio in coastal water of the Sea of Japan. Radionuclides measured in these projects are summarized in Table. 1.

• Hegura
5-5
RL ● ● Shishiku
OUL 50 km

Fig. 1. Sampling points of airborne radionuclides.

Radionucldies	Half-life	Origin [*]	Sample**	Typical activity
²²⁶ Ra	1600 y	Ν	S	1 mBq L ⁻¹
²²⁸ Ra	5.75 y	Ν	S	1-3 mBq L ⁻¹
²¹⁰ Po	138 d	Ν	А	0.1mBq m ⁻³
²¹⁰ Po	10.64 h	Ν	А	100 mBq m ⁻³
²¹⁰ Pb	22.2 у	Ν	А	1 mBq m ⁻³
¹³⁷ Cs	30 y	А	A,S	0.5 mBq m ⁻³

C

С

С

С

Table 1. Environmental radionuclides measured in this study.

2.602 y

53.3 d

14.96 h

20.9 h

56 m C R 1000 atom L ⁻¹

A,L

A, R

R

R

0.5 mBq m⁻³

100-1000 atom L

100-600 atom L $^{\mbox{--}1}$

3 mBq L⁻¹

* N: Natural, A: Artificial, C: Cosmic ray produced

** S: Sea water, A: Air, L: Lak water, R: Rain

²²Na

⁷Be

²⁴Na

 ^{28}Mg

³⁹Cl

1. High resolution analyses of airborne radionuclides

Airborne radionuclides were collected on a silica fiber filter at 700-900 L min⁻¹ of flow rate by using Sibata 1000F high volume air sampler at three points, LLRL, Hegura Island located 50 km from Noto Peninsula and Shishiku Plateau at 640 m point above sea level (Fig. 1). Two kinds of sampling were conducted in this study. The first one was aimed to investigate diurnal variations of ²¹⁰Pb, ⁷Be and ²¹²Pb (from 2005). The second one aimed for the analysis of seasonal variations of ²¹⁰Pb and ⁷Be by 1-2 days of sampling at LLRL and Shishiku and 1 week sampling at Hegura Island. All of the measurements except some of ²¹²Pb samples were made at OUL.

Results of measurements are summarized as follows:

- Concentrations of ²¹⁰Pb, ⁷Be and ²¹²Pb activities varied rapidly comparable to that of ²²²Rn, however, variation patterns are quite different from that of radon and closely related to meteorological circumstances.
- (2) Activity levels of both ²¹⁰Pb and ⁷Be showed drastic decrease before and during the approach of typhoon or cold front.
- (3) Activity level of ²¹²Pb became order of magnitude lower at high altitude (Shishiku Plateau) when ground surface was covered by snow.
- (4) Phase shift of variation pattern was observed for ²¹²Pb activity measured at LLRL and Shishiku Plateau.

Details of the results are published together with seasonal variations of cosmogenic ²²Na and artificial ¹³⁷Cs.⁽²⁾

2. Short-lived cosmic ray produced nuclides in rain samples

Short-lived CP nuclides in freshly precipitated rain were measured using large volume (40-50L) of rain samples collected through a downpipe from the rooftop of LLRL building. Immediately after the sampling the rain sample was subjected to chemical treatments to enrich CP nuclides by ion exchange technique. Within 90 min after the sampling, gamma ray measurement was performed at OUL located some 20 km from LLRL. The CP nuclides detected were ³⁸Cl, ³⁹Cl, ¹⁸F, ²⁴Na, ²⁸Mg and ²²Na. More than 50 measurements have been made since June of 2004. Part of the results is reported in science journal.⁽³⁾

3. Spatial and temporal variations of ²²⁸Ra/²²⁶Ra ratio in coastal water of the Sea of Japan

Studies were made for spatial distribution of ²²⁸Ra/²²⁶Ra activity ratio of 28 coastal water samples of the Sea of Japan collected in May-June 2004 and temporal variation of ²²⁸Ra/²²⁶Ra activity ratio for 64 coastal water samples of the Noto Peninsula from April 2003 to December 2004. During the migration of coastal water along the Sea of Japan coast, activities of ²²⁶Ra and ²²⁸Ra and ²²⁸Ra/²²⁶Ra ratio monotonously increased from 0.9

to 1.4 mBq L⁻¹, 0.5-1.4 mBq L⁻¹ and 0.6-1, respectively. On the other hand, the 228 Ra/ 226 Ra ratio of all coastal water in the Noto Peninsula exhibited seasonal variation with minimum values in summer (228 Ra/ 226 Ra = 0.7) and maximum values in winter, which was mainly governed by the change in the 228 Ra activity (0.7-3 mBq L⁻¹).

References

- 1). Y. Hamajima, K. Komura: Background components of Ge detectors in Ogoya underground laboratory. Applied Radiation and Isotopes, 61, 179-183 (2004).
- K. Komura et al.: Levels of airborne radionuclides at Hegura Island, Japan. In Radionuclides in the Environment", Intern. Conf. on Isotopes in Environmental Studies, 2004. 25-29 Oct. Monaco. 554-561 (2006).
- 3) K. Komura et al.: Measurements of short-lived cosmogenic nuclides in rain samples. J. Radioanal. Nucl. Chem. 269 (3), 311-316 (2006).
- 4) M. Inoue et al.: Seasonal and spatial variations of ²²⁸Ra/²²⁶Ra ratio in coastal water of the Sea of Japan: implications for water circulation p;attern in coastal areas. J. Environ. Radioactivity, 89, 138-149 (2006).