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Abstract - In this paper, we examine the conditions that the

mode II crack extensions occur under the compressive loads.

It is important to elucidate the fracture criterions under
compressive loads such as the creation and the extension of

the active faults or the landslide in slope ground. We first

obtain the energy release rate at the onset of crack kinking
under the compressive loads by the finite element method
using the path independent E-integral of the complementary
strain energy type. We then find, by using the maximum
energy release rate criterion, that the mode II crack

extension occurs by the shear stress when the minimum

principal compressive stresses is relatively large. We also

find that the mode II crack extensions never occur when we

use the well-known maximum hoop stress criterion.
I . Introduction

The fracture surface in rock, soil, and concrete under

the uniaxial compression loads or even under the
multi-axial compression loads extends often straightly or
curve smoothly by mode II type; that is, the crack extends
as the same direction with the original crack as shown in
Fig.1. In order to explain this phenomenon, most classical
and important Criterion was introduced by Coulomb [1].
He suggested in connection with shear failure of rocks
that the shear stress t tending to cause failure across a
plane is resisted by the cohesion of the material (or the
inherent shear stress ) t gand the coefficient of internal
friction 4 times the normal stress ¢ across the plane.
That is, that the criterion for shear failure in a plane is
To =|t|—u o. Then he assumed that the fracture
surface happens in the direction of the maximum
u o . As aresult, the direction of shear fracture is always
inclined at an angle to the direction of the maximum
compressive stress o 1 ( See Fig.1. ) asz /4— ¢ /2, where
¢ is the angle of internal friction defined by u=tan¢ .

Although the above angle gives a good approximation
in the real material, the criterion does not consider any

lel—

fracture process at all. In fact, if an initial inclined crack

is inserted in the material such as rock, mortar, and
acrylic board, the crack surface begins to kink to the
direction of maximum principal compressive stress o
since the tension stresses occur near the crack tips
because of the slip of the crack surface. Then the crack
extends smoothly to the direction of ¢, so that the

-crack becomes the wing type crack as shown in Fig.2.

Thus, from the fracture mechanics of view, it is very
basic and important problem under what condition that
the crack keeps extending as mode II type under the
compressive loads.
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Fig.1. Mode II type crack extension
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Fig. 2. Wing type crack extension



Scholz and others [2] reported the experimental paper
with intention of elucidating the mechanism of generating
a linear long fault. Since the existence of a long shear
fault is inconsistent with the existence of the wing type
crack predicted by the fracture mechanics as is stated
above, they regard the macroscopic long shear fault as an
incorporation by the micro-cracks consisting of the wing
crack.

In this paper, we examine the conditions when the
mode II crack extension occurs under the biaxial
compressive loads. We first obtain the energy release rate
at the onset of crack kinking under the biaxial
compressive loads by the finite element method using the
path independent E-integral of the complementary strain
energy type, in which the contact conditions with the
friction along the crack surface are introduced. By using
the maximum energy release rate criterion, we find that

although the crack becomes the wing type crack as shown

in Fig2 when the minimum principal compressive
stresses o 3 is relatively small, the mode II crack
extension occurs when the minimum principal
compressive stresses are relatively large as shown in
Fig.1. We finally examine the well-known maximum
hoop stress criterion and find that the mode II crack

extensions never occur.

IL. Finite Element Analysis of Energy Release Rate at
the Onset of Crack Kinking under the Compressive
Loads

We obtain ERR (Energy Release Rate) at the right
crack tip in 2-dimensional infinite plate under the plane
stress with the compressive loads as shown in Fig.1 and
Fig.2. For the analysis of the ERR of the extending
crack under the compressive loads, we use the finite
element method and the E-integral of the complementary
strain energy type developed by our previous paper [3], in
which the contact condition on the crack surface is
introduced. When there exist the surface tractions such as
the friction along the crack surfaces, it is proved that the
path independent E-integral of the complementary strain
energy type gives the higher accurate ERR at the onset of
crack kinking than the original path independent
E-integral [3]. The path independent E-integral of the
complementary strain energy type is defined by

(1) E@)= %[ jmct (s- u)ds] = (Z—;.u)ds ,

where £ is a crack length, T is the boundary ofan

‘rack extension model

Fig. 3. Basic crack model and crack extension model

arbitrary region in a body including a crack tip, C*is the
upper and lower surfaces of the crack in the region.
sand u are the traction and the displacement on T
and C*. When we obtain ERR in Eq. (1) by the finite
element method, we need to analyze for the “basic crack
model” with a crack length ¢ and for the “crack
extension model”; that is, the crack extends the length for
length A/ in Fig3. The partial
differentiation terms with respect to the crack length ¢

small shown

~in Eq. (1) are evaluated by two points difference

approximation. By using the equivalent nodal traction s,
and the nodal displacement &, for the discretized tractions
and displacements, we calculate ERR by accumulating
the sum at all the nodes along an integral path, i.e., a
numerical formula of Eq. (1) is as follows; o

. i{w +AD)-u,(0+AL) ~5,(0)- u,(f)
° - 200
s,(£+A0)—s,(0)
B A

u,-(f)},

where #1 is the total number of the nodes along an
integral path, (£) and (£ + A¢) mean the quantities of
the basic crack model and the crack extension model,
respectively.

The model used for the finite element analysis is
shown in Fig. 4. The elements are 8-nodes rectangular
and 6-nodes triangular isoparametric elements. We use a
singular element [4][5] at the crack tip which can express
the singularity of the stresses with high accuracy: We
find that the singularity of the stresses cannot be
expressed with high accuracy particularly for the mixed
mode crack. The nodal number of the basic crack model



Fig. 4. Finite elements mesh
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Fig. 5. Integral paths

and the extension model is 920 and 922, respectively,
because of releasing nodes at the crack tip for the crack
extension model. The crack exists in the center of the
model; an infinite plate is approximated by a square plate
with the side length 80.0 cm and the crack length £=4.0
cm. We assume that the Young’s modulus E is 68.6 GPa
and the Poisson ratio v is 0.3. The ratio A4/¢ of the
crack length to the extended crack length is assumed
0.0078 after doing some trial analyses by comparing with
an exact solution. We consider the kinking angle &
between the angle of the load and the crack direction with
nineteen directions; see Fig. 3. Here the kinking angle 8
is counterclockwise positive. We consider the three kinds
of integral paths which surround a right crack tip as
shown in Fig.5. As a result, we found that the ERR for all
analysis was almost the same value; therefore, the path
independency of the E-integral in Eq. (1) holds with very
high accuracy. Thus, hereafter, we use the numerical
results of path3. '

Here we note that the well-known J-integral is not path
independent when a closed path includes more than one
crack tip where the stress is singular; therefore, the values
of the J-integral of path2 and path3 are the same but the
value of pathl is different from the value of the other
paths: Only the value of pathl gives the ERR for the case
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Fig. 6. Variations of energy release rate for a frictionless
kinking crack under a biaxial compression; ¥ =0.27 ;
#=00.

the right tip of crack extending straight. It is also very
much difficult to get the ERR at the onset of the kinking
crack by the J-integral. :

III. Energy Release Rate at the Onset of Crack Kinking
under the Biaxial Uniform Compressive Stresses

In this paper, we discuss the crack behavior by
assuming the maximum ERR criterion: The crack begins
to extend when the ERR reaches a critical ERR, which is
a material property, and then the crack extends in the
direction of the maximum ERR.

Fig. 6 depicts the dimensionless ERR at the onset of

- crack kinking under a biaxial uniform compressive

stresses ¢ | and o 3. We note here that o and 6 ; are the
maximum and the minimum principal compressive
stresses, respectively; thatis, 1 >03/ 0,20, ¢,<03<
0, and o, is the intermediate principal compressive
stress in the case of the plane strain and vanishes in the
case of the plane stress. ‘
The proportional loading angle y =0.2 7 ( =36°) as
shown in Fig.3 with changing the principal stress ratio
03/0, from 0.0 to 0.9 by 0.1 in the case of no friction
on the crack surface; that is, the coefficient of friction u
=0. Here the dimensionless ERR is defined as the ERR in
the case of the plane stress divided by the exact solution
of the ERR in the case of the plane stress with an uniaxial
uniform stress in the form ’
_ olnt

® 6=,

so that the dimensionless ERR in the case of the plane
stress and of the plane strain are the same.
In Fig. 6, we find that the dimensionless ERR become

smaller for any kinking angle with the principal stress

—82—
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Fig. 7. Variations of energy release rate for a frictional kinking
crack under the biaxial compressions; ¥ =0.27; ©#=03.
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Fig. 8. Variations of energy release rate for a frictional kinking
crack under the biaxial compressions; y =0.27; u=0.6.

ratio ¢ 3/ 0 | becoming bigger, that is, approaching to an
isotropic stress state, o3 =0 ;: This is supposed to the
shear stress near the crack tips becoming smaller with the

~ applied stress state approaching to an isotropic stress state.

We also find that for the principal stress ratioo s /o
from 0 to about 0.3, the maximum dimensionless ERR
happens at the kinking angle § ~0.4 7 ( = 72°) , so that
the crack kinks and becomes the wing crack type as

- shown in Fig.2: However, for the principal stress ratio o 3’

/o, from 0.4 to about 0.9 , the maximum dimensionless
ERR happens at the kinking angle @ =0°, so that the
crack extends as the same direction with the original
crack as shown in Fig.1 ’

Fig. 7 and Fig. 8 depict the dimensionless ERR at the
onset of crack kinking under a biaxial uniform
compressive stresses o ; and o 3 for the same proportional
loading angle y =0.2 7 (=36°) as before when there exists
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Fig. 9. Relations between the principal stress rate and the
kinking angle which maximizes the energy release rate;
y=027; ©=0.0,0306.

the friction along the crack surface. In Fig.7, the principal
stress ratioo 3/ 0 ; change from 0.0 to 0.9 by 0.1 with
the coefficient of friction u =0.3: Here we note that
when the principal stress ratioo 3/ 0 ; becomes bigger
than 0.6, we omit the lines in the figure since the
dimensionless ERR vanishes for all kinking angle.

In Fig.8, the principal stress ratio 0 3/ 0 ; changes.
from 0.0 to 0.3 by 0.05 with the coefficient of friction u
=0.6. By the same reason as above , when the principal
stressratio 0 3/ 0 ; becomes bigger than 0.3 , we omit
the lines in the figure .

Fig. 9 depicts the relation between the principal stress
ratio 0 3 / 0 ; and the fracture angle ,, which is the
maximum ERR at the onset of crack kinking under a
biaxial uniform compressive stresses o ; and o 3 for the
proportional loading angle 7y =027 (=36°).

In Fig.9 , solid lines with B, ® and A show the
fracture angel in the case of 1 =0.0,4=0.3,and 1 =0.6,
respectively. '

In the case of 1 =0.0, for the principal stress ratio ¢ 3/
o, bigger than 0.3, the maximum dimensionless ERR
happens at the kinking angle & =0°, so that the crack
extends as the same direction with the original crack as
shown in Fig.1. In the cases of 1 =0.3 and p =0.6 , for
the principal stress ratio ¢ 3/ o  bigger than about 0.25,
the maximum dimensionless ERR happens at the kinking
angle = 0°. In the case of p =0.0, fracture angle
decreases at the principal stress ratioo 3/ 0 ; about 0.3
suddenly. We may recognize this by Fig.6 in which the
curve between the kinking angle 0.0 7 and 0.4 7.is
convex downward, the kinking angle of the maximum
of the fracture angle jumps from 0.4 7to 0.0 7 at the
principal stress ratio ¢ 3/ ¢ ; about 03



Finally, instead of the maximum ERR criterion, we
examine the maximum hoop stress criterion in which we
use the exact asymptotic expansion terms of the hoop
stress in the vicinity of the crack tip: Here we obtain the
first singularity term and the constant term, which is
called the T stress, for a biaxial uniform compressive
stress when there exists the friction along the crack
surface. We then find that the maximum hoop (tension)
stress happens at the kinking angle about 8 ~ 0.4 7 (=72°)
~ for any principal stress ratioo 3 /0, so that the crack
always kinks and becomes the wing type crack as shown
in Fig.2. no matter how large the principal stress ratio ¢ 3/
01 ( <1 )becomes . In other words, the maximum hoop
stress criterion never extends a crack as the same
direction with the original crack as shown in Fig.1.

The maximum hoop stress criterion use the stress at the
crack model before the kinking, so that however large the
minimum principal compressive stresses o 3 becomes, the
hoop tension stress is created and becomes its maximum
at around @ ~ 0.4 & ( =72°) because of the slip of the crack
surface counterclockwise as in Fig.2. On the other hand,
in the maximum ERR criterion, we consider the state
after the crack kinking. Then the minimum principal
compressive stresses o 3 suppresses the opening the
kinked part of the crack with the direction of about
0 ~0.4 7 ( =72°) and make the ERR of the crack in its
direction smaller. When the minimum principal
compressive 'stress ¢ 3 becomes larger, the ERR finally
takes its maximum in the direction with the original crack.
The friction makes the above effect bigger.
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