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by Moh. Adhib Ulil Absor

Recently, the field of spintronics attracted much attention because of their po-

tential application in future electronic devices. The new scheme of spintronics

utilizing the effect of spin-orbit interaction (SOI) on the spin textures has been

extensively studied. Here, two dimensional electron gas (2DEG) system is an ideal

platform because it can be controlled by applying an external electric field or by

introducing strain. Wurtzite ZnO is promising materials candidate for spintron-

ics since the high quality of the 2DEG system has been experimentally observed.

Therefore, it is crucially important to clarify the effect of SOI in this material,

which is expected to induce useful properties for spintronics applications.

In this dissertation, the effect of SOI is studied by using first-principles density-

functional theory (DFT). We calculate the spin textures to identify physical prop-

erties induced by the SOI. Here, we investigate two different systems, which are

(i) the bulk system, and (ii) the surface system oriented on the [1010] direction.

In the case of bulk system, we find that strain controls SOI, where the inversion

Rashba rotations are identified. We revealed that the spin-orbit strength can

be effectively controlled by tuning the strain. On the other hand, in the case

of the surface system oriented to the [1010] direction, we in the first time find

that the SOI leads to the novel system called as the persistent spin helix (PSH),

exhibiting a quasi-one dimensional orientation of the spin textures. We find that

the wavelength of this PSH is smaller than that observed on various zinc-blende

quantum well structures.

Finally, we conclude that both the strained bulk and the surface systems are

promising for spintronics applications.
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Chapter 1

Introduction

1.1 Motivation

Recently, the field of spintronics attracted much scientific interest because of their

potential applications in future electronic devices [1, 2]. The spintronics or spin

electronics refers to the study of the physical properties of electron spin in solid

state physics including generation, manipulation, and detection, and also related

to the possible devices by exploiting spin in addition to charge degree of freedom.

For example, spin relaxation and spin transport in various metals and semicon-

ductors, which recently attracted much attention in both fundamental research

and applications [1], are one of the important issues in the spintronics.

The spin, which is the central object in spintronics, was firstly proposed by Pauli in

1925 [3]. As an additional degree of freedom of elementary particles, its nature has

been firstly observed by using the Stern-Gerlach experiment [4, 5]. By using the

concepts of spin, Fermions with half integer spin can be distinguished from Bosons

with integer spin. Therefore, spin plays an important role in determining the basic

concepts of the statistics of the elementary particles. The properties of the electron

spin can be observed in the systems which rely on magnetism. Here, ferromagnetic

materials [6–8], which is recently used in the various electronic devices, is one of

the example system showing the appearence of spin in materials.

One of the most important discovery of spintronics is giant magnetoresistance

(GMR), which was observed in metallic multilayers by using a spin-dependent

electron transport measurement [9, 10]. Recently, the GMR effect has already

1



Chapter 1. Introduction 2

been used practically in the hard disk drive heads. The discovery of GMR was

preceded by the observation of the tunnelling magnetoresistance (TMR) [11–15],

which has been realized on the magnetoresistive random-access memory (MRAM)

devices. Furthermore, the next generation of the spintronics has been focused on

the semiconductor class, such as dilute magnetic semiconductors (DMS), which

has been extensively studied [16, 17]. Here, some of new physical properties which

is useful for spintronics such as carrier-induced ferromagnetism [18, 19] and pho-

toinduced ferromagnetism were found [20–23].

Thus far, recent development of spintronics relies on the new pathway for exploit-

ing carrier spins in semiconductors without any addition of magnetic materials or

external magnetic fields, which can be realized by utilizing the effect of spin orbit

interactions (SOI) on the spin textures[24–29]. This novel approach becomes an

alternative way since SOI enables the generation and manipulation of spin solely

by electric fields or strain effect. Especially, the Rashba effect [25] attracted much

attention because it plays an important role in the spintronics device operation

such as the spin-field effect transistor (SFET) [29]. On the other hand, current-

induced spin polarization [30] and spin Hall effect [31] are the important examples

in spintronics where the SOI has a crucial contribution.

Finally, a part from generation and manipulation of spin polarization, another

essential requirement for spintronics devices is a long spin lifetime. Here, a new

system known as a persistent spin helix (PSH) atracted much attention [32–39]. In

this system, the strongly enhanced spin lifetime is achieved on a certain spatially

inhomogeneous spin polarization states [32]. As a result, an efficient spintron-

ics devices is believed to be achieved, suggesting that this system is suitable for

energy-saving spintronics devices. However, the discovery of the PSH materials

has been widely studied only for the zinc-blende semiconductors [32–39]. There-

fore, finding another class of materials which is promising candidate for PSH is

crucially important in order to realize the PSH based spintronics.

1.2 Spin orbit interaction (SOI): A new perspec-

tive of spintronics

Recently, the new scheme of spintronics incorporating the effect of spin-orbit in-

teraction (SOI) has been proposed [24–29]. Here, the SOI plays an important role
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since it relies to coupling between spin dynamics of an electron and its orbital

motion in space. Intuitively, the SOI is a relativistic effect in which an electric

field that acts on a fast moving electron is viewed as an effective magnetic field in

the reference frame of the electron. Since the SOI induces an effective magnetic

field, this study is also known as spintronics without magnetism [24]. In chapter

2, we will present more detail and formal description about the SOI.

In solid state system, the SOI is induced by electric field originated from the

lack of space inversion symmetry. Two main cases responsible for lossing the

space inversion symmetry: (i) structural inversion asymmetry (SIA) and (ii) bulk

inversion asymmetry (BIA). The SIA is induced by the asymmetry of confinement

potential of the two dimensional electron gas system in the heterostructures or

interface or simply by the presence of surface in a semi-infinite crystal system.

The SOI which is induced by the SIA known as Rashba SOI [25]. On the other

hand, BIA which originates from the non-centrosymmetric structure of the crystal

induces so called Dresselhauss SOI [28].

In the case of system having both BIA and SIA, it is expected that both Rashba

and Dresselhauss types appears. For example, in the two dimensional electron

gas (2DEG) system realized on the heterostructure of zinc-blende quantum well

(QWs), both Rashba and Dresselhauss SOI are identified, which can be effectively

controlled by using an externally electric field via gate voltage [25–27, 29] or by

introducing strain effect [40]. Furthermore, it is possible to achieved the condition

that the contribution of Rashba and Dresselhauss SOI are equal, which induces

a well-known persistent spin helix (PSH), exhibiting the strongly enhanced spin

lifetime [32–39]. This situation is in fact observed experimentally in the various

zinc-blende QWs system [33–39].

1.3 An overview of spintronics devices based on

SOI

In the spintronics device applications, the ability to utilize and controll spin elec-

tron is required. Here, generating of spin-polarized currents is one of the central

issue [1, 2]. In semiconductors, the generation of spin polarized currents can be

realized by using current injection from ferromagnetic materials [16, 17]. Another
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Figure 1.1: Generation of spin polarization involving the effect of SOI. Elec-
trically injected electron becomes spin polarized through two mechanism: (i)
spin Hall effect (Black arrows) and (ii) currents-induced spin polarization (red

arrows).

methods is by using externally applied magnetic fields, which acts as a spin fil-

ters to change the unpolarized input currents to be spin-polarized output currents

[1, 2]. However, application of external magnetic field in the nonmagnetic system

induces stray magnetic field which negatively affects to the spins itself. To over-

come this problem, the non-magnetic system which utilize SOI has recently been

proposed. In this case, two important mechanism for generating of spin polarized

currents have been used such as current induced spin polarization [30] and spin

Hall effect [31].

Figure 1.1 shows schematic view of generation spin polarized currents involving

the SOI. In semiconductors, electrically-injected electrons become spin polarized

through two different mechanisms. First, electron experiences anisotropic scatter-

ing from impurity in the presence of SOI, inducing spin accumulation at opposite

edges channels with opposite spin direction (black arrows). This mechanism is

known as spin Hall effect. The second mechanism, on the other hand, is just

currents-induced spin polarization. Here, symmetry-related spin-orbit field pro-

duces a homogeneous electron spin polarization throughout the channel(red ar-

rows).
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Figure 1.2: (a) Prototype of spin field effect transistor proposed by Datta and
Das [29]. (b) Mechanism of the spin precession which is induced by SOI. This

spin precession can be controlled by applying gate voltage.

Another important issue in spintronics is the manipulation of spin in semiconduc-

tors. Here, the application of external magnetic field becomes one of the methods

often used [1, 2]. For a more scalable system, it would be desirable if the SOI

is used, which is realized by applying an externally electric field originated from

the gate electrode [26, 27, 29] or by introducing strain [40]. In this methods, the

tunability of spin manipulation can be realized, which gives an advantage for the

future device applications.

The realization of the generation and manipulation of spin by using SOI can be

found in the spin-field effect transistor (SFET) device, which is firstly proposed by

Datta and Das in 1990 [29]. The idea of this proposal is to inject spin-polarized

electrons from a ferromagnetic contact into a one dimensional semiconductor chan-

nel in which the electrons travel ballistically to the detection contact. As shown

in Fig. 1.2(a), the injected electron originates from feromagnetic source electrode

(FM1) starts to rotate because of an effective magnetic field induced by SOI in

the 2DEG channel. The electrons can flow when the spin orientation in the 2DEG
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is aligned to thos of ferromganetic drain electrode (FM2). On the other hand

when spin is flipped in the 2DEG, the electron cannot enters the drain electrode

since there is no spin flipped in this electrode [Figure 1.2(b)]. Since the SOI can

be effectively tuned by the gate voltage, this indicates that the spin precession is

controllable.

1.4 The purpose: ZnO as a promising material

for spintronics

Recently, finding new materials which is suitable as a platform for spintronics

applications attracted much scientific interest [1, 2]. One of the systems which can

be used as an ideal platform for spintronics is two dimensional electron gas (2DEG)

system since it can be controlled by an external electric field or by using strain

effect. The zinc-blende semiconductor heterostructures supporting 2DEG system

becomes one of the promising materials. For example, various 2DEG saterials

such as GaAs/AlGaAs [41, 42] and InGaAs/InAlAs [43] heterostructures has been

extensively studuied.

The other class of materials which demonstrating 2DEG system comes from ox-

ide interface system. This is including LaMnO3/SrMnO3 [44], GaTiO3/SrTiO3 [45],

LaAlO3/EuO [46], and LaAlO3/FeS2 [47] in which spin polarized 2DEG has been

studied. However, this system has low carrier mobility which is due to the high ef-

fective mass of the localized d bands. Therefore, it is not desirable to use this kind

of materials as a particular spintronics application such as high electron mobility

transistor (HEMT).

Recently, a different system supporting a 2DEG, wurtzite ZnO interface, has been

experimentally observed. Observations of the quantum Hall effect [49] and the

fractional quantum Hall effect [50] indicate that ZnO/Zn(Mg)O interface has high

quality of the two-dimensional electron gas (2DEG). The high carrier concentra-

tions (up to 1013 cm−2) and the high mobility (larger than 105 cm2·V−1·s−1) at

low temperature have been reported [50]. Furthermore, the fabrication of the two

dimensional electron gas system was also realized in samples grown with metal-

organic vapor deposition, which is suitable for mass production [51].
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Considering the fact that ZnO-based materials exhibiting the high quality of the

2DEG system, their application as a spintronics materials is plausible. This is

supported by the fact that the spin polarization of the 2DEG in ZnO/Zn(Mg)O has

been studied [52] and the long spin lifetime has been observed [53, 54]. However,

due to the large ionicity and cryatal symmetry, ZnO posses large internal electric

fields. This is in fact strongly different compared to the other materials such as

zinc-blende semiconductors. Therefore, for spintronics applications, clarification

of the SOI in this material is crucially important, which is expected to induce new

useful properties for spintronics.

1.5 Outline of Dissertation

This dissertation consists of five chapters. In chapter 1, we present the motivation

of this study which is related to the spintronics in general. The new scheme

of spintronics based on the spin-orbit interaction (SOI) is given including the

generation and manipulation of spin. Here a simple mechanism of the spintronics

devices is shown, which is realized on the spin-field effect transitor (SFET).

In chapter 2, we present the basic concepts of the SOI based on the two dimensional

electron gas (2DEG) system. The fundamental concepts of density functional

theory is also presented. Furthermore, We provide the computational scheme,

which is related to the practical calculation in this study.

In Chapter 3, we show the calculated results of the SOI on the strained bulk

ZnO. Here we show that strain controls SOI in ZnO, where the inversion Rashba

spin rotations are identified. We show that the Rashba spin-orbit strength can

be effectively controlled by applying the strain. Finally, we discussed the possible

application of the present system for spintronics devices.

In chapter 4, we show the calculated results of the SOI on the wurtzite ZnO (1010)

surface. We show that the spin textures show quasi-one dimensional orientation,

which is similiar to those of persistent spin helix (PSH). The mechanism which

explains the origin of the spin textures is proposed. Furthermore, Some of calcula-

tion results of important parameter such as the spin-orbit strength and wavelength

of PSH are presented and compare with those various zinc-blende semiconductors.
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Finally, in chapter 5, we give a summary and explain the future scope such as the

SOI on the metallic surface state of hydrogeneted ZnO(1010) surface.



Chapter 2

Background: Basic Theory and

Computational Methods

2.1 Introduction

In this chapter, we present the basic theory and methods used in the calculation

and analyses. Firstly, we present brief review of the theory of spin-orbit inter-

action (SOI) in solids, which is given in Sec. 2.2. Some of interesting physical

phemnomena such as the Rashba effect, Dresselhauss effect, and their interplay

inducing persistent spin helix (PSH) are presented. Next, in Sec. 2.3, we give a

brief review of the electronic structures calculation based on the density functional

theory (DFT). Finally, the computational scheme, which is related to the practical

calculation, are introduced in Sec. 2.4.

2.2 The spin-orbit interaction (SOI) in solids

Spin-orbit interaction (SOI) is a relativistic effect in which electrons move with a

velocity v⃗ in the influence of electric field E⃗ created by the nucleus [Figures 2.1].

In the rest frame of the electron, this electric field transforms into a magnetic field

B⃗ = −(v⃗ × E⃗)/c2, (2.1)

9
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Figure 2.1: Schematic view of the relativistic motion of electron in the two
difference of reference frame., nuclei (left side) and electron (right side).

where c is the speed of light, that interacts with the magnetic moment µ⃗ of the

electron. The energy of the electron in this field is given by

∆E = −µ⃗ · B⃗. (2.2)

Here, µ⃗ = −geµBS⃗/~ is the , where ge = 2.002 is the g-factor of the electron,

µB = e~/(2me) is the Bohr magneton, me is the electron a free electron, ~ is

Planck’s constant, and S⃗ is the electron spin vector. The SOI, then, can be

expressed by,

HSOI = − ~
4m2

ec
2
σ⃗ · (p⃗× E⃗) (2.3)

where σ⃗ = (σx, σy, σz) is the vector of Pauli spin matrices defined as,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(2.4)

In crystal systems, where the total Hamiltonian is invariant under the time reversal

symmetry, the energy solution of the Hamiltonian obeys the relation, E(↑, k⃗) =

E(↓,−k⃗), where ↑ and ↓ are the up and down spins, respectively. At the same

time, the present of the spatial inversion symmetry of crystal induces E(↑, k⃗) =
E(↑,−k⃗). Spin degeneracy is the consequence of the combination of the time

reversal and spatial inversion symmetry, which leads to the fact that the condition
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E(↑, k⃗) = E(↓, k⃗) is obtained. This condition is known as Kramers’ degeneracy,

where the states is non-spin polarized.

When the space inversion symmetry is broken, the spin degeneracy is lifted by the

SOI. The loss of space inversion symmetry can either originate from a structural

inversion asymmetry (SIA), which induces the Rashba effect [25–27], or from bulk

inversion asymmetry (BIA), which induces the Dresselhauss effect [28]. The SIA is

induced by the asymmetric confinement potential of the two dimensional electron

gas in a semiconductor heterostructure, or simply by the presence of the surface in

a semi-infinite crystal, while the BIA originates from the non-centrosymmetric of

the crystal structures. In the following section, we will discuss about the Rashba

and Dresselhauss types of SOI and their interplay which induces the well-known

persistent spin helix (PSH).

2.2.1 Rashba Effect

The Rashba effect has been extensively studied on semiconductor heterostructures

in which electrons are confined to the interface [25–27]. Another system exhibiting

the Rashba effect is the surface, which is extensively studied on the high quality

epitaxial metal layers [55–58]. In the two-dimensional electron gas (2DEG) system

under the influence of electric field Ez perpendicular to the growth plane (2DEG-

plane), the Rashba SOI can be expressed by the effective Hamiltonian

HR = − ~
4m2

ec
2
σ⃗ · (p⃗× E⃗) = αR(σxky − σykx) (2.5)

where αR = −~Ez/(4m
2
ec

2) is the Rashba spin-orbit strength, kx and ky are wave

vectors in the x and y directions, respectively, and σx and σy are Pauli matrixes.

2.2.2 Dresselhauss Effect

In some crystal system with lack a center of inversion, such as the zinc-blende

crystal, the Dresselhaus SOI is induced [28], which is expressed by

HD = βD[kx
(
k2y − k2z

)
σx + ky

(
k2z − k2x

)
σy + kz

(
k2x − k2y

)
σz]. (2.6)
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Here, βD is the Dresselhauss spin-orbit strength. In semiconductor heterostruc-

tures quantum well (QW), where electrons are confined in the z- direction to a

two dimensional (x− y) plane, the condition that ⟨kz⟩ = 0 and ⟨k2z⟩ ≈ (π/d)2 are

obtained, where d is the well width. As a result, the Hamiltonian in Eq. (2.7) can

be written in the first and third terms of k, which is expressed by

HD = β1(kxσx − kyσy) + β3[kxk
2
yσx − kyk

2
xσy]. (2.7)

where β1 = β,
D = βD(π/d)

2 and β3 = βD are the first and third terms of the

Dresselhauss spin-orbit strength, respectively.

2.2.3 Interplay between Rashba and Dresselhauss SOI: the

persistent spin helix (PSH)

The total Hamiltonian of the SOI incorporated the Rashba and Dresselhauss terms

is expressed by

HSOC = αR(σxky − σykx) + β1(kxσx − kyσy) + β3(kxk
2
yσx − kyk

2
xσy) (2.8)

In this Hamiltonian, the Schrödinger equation leads to the eigenvalues solution

in which two energy braches appears, known as apin-split bands E(k, ↑↓). This

spin-split bands obey the condition that E(k, ↑) ̸= E(k, ↓) for k ̸= 0, while it

requires E(k, ↑) = E(−k, ↓) for k = 0 due to the time reversability.

For each k, the spin splitting ∆Esplit(k) is defined as

∆Esplit(k) = E(k, ↑)− E(k, ↓). (2.9)

For the case of β3 = 0, the eigenvalues of Hamiltonian of Eq. (2.7) leads to the

band dispersion:

E(k, ↑↓) = ~2k2

2m∗
± kζ(αR, β1, θk), (2.10)

where ζ(αR, β1, θk) is defined as
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Figure 2.2: Schematic representation of the splitting band dispersion and the
k-surfaces of constant energy for pure Rashba SOI (a) and combination between
Rashba and Dresselhauss SOI (b) with the same spin-orbit strength (αR = β1).

ζ(αR, β1, θk) =
√
α2 + β2

1 + 2αRβ1 sin 2θk. (2.11)

In this expression, θk is defined in the kx−ky plane by the relation, k = (|k| cos θk, |k| sin θk.
For the case of pure Rashba SOI, the band dispersion in Eq. (2.10), leads to the

well-known Rashba dispersion:

E(k, ↑↓) = ~2k2

2m∗
± αRk. (2.12)

In this band dispersion, the spin splitting energy, ∆Esplit(k), is linear in k along

any direction. This splitting is isotropic where k-surfaces of constant energy are

concentric circles centered at k = 0 [Figure 2.2(a)]. When we introduce the Dres-

selhauss SOI, on the other hand, the Eq. (2.10) leads to anisotropic of the spin

splitting ∆Esplit(k) [Figure 2.2(b)].
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An interesting case is obtained when αR = β1. In this case, a novel system called

as persistent spin helix (PSH) is achieved [32]. Here, energy band dispersion in

Eq. (2.10) reduces to be

E(k, ↑↓) = ~2k2

2m∗
± 2αRk+, (2.13)

where k+ = (kx + ky)/
√
2. This PSH band dispersion has the shifting properties,

E(k, ↑) = E(k+Q, ↓). (2.14)

Here, Q = Q+ = 4mαR is the shifting wave vector. In this PSH band dispersion,

k-surfaces of constant energy consist of two circles shifted by the wave vector Q

[Figure 2.2(b)].

The eigen energies of E(k, ↑↓) in Eq. (2.10) corresponds to the eigenstate [59]

Ψ(k, ↑↓) = exp(i(k · r))√
2

(
i exp(−iφ(k))

±1

)
(2.15)

where the function φ(k) obeys the relation,

exp(−iφ(k)) = αR exp(−iθk)− iβ1 exp(−iθk)
ζ(αR, β1, θk)

(2.16)

Subsequently, by using Eq. (2.15) the spin polarization can be evaluated by cal-

culating the expected value of spin using the expression,

P ↑↓ = ⟨Ψ(k, ↑↓)|S|Ψ(k, ↑↓)⟩ =


∓ sinφ(k)

± cosφ(k)

0

 (2.17)

For the case of pure Rashba SOI, we have φ(k) = θk. In this case, the spin

polarization in Eq. (2.17) leads to the expression
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Figure 2.3: Schematic representation of the spin polarization for pure Rashba
SOI (a), Dresselhauss SOI (b), and persistent spin helix (c).

P ↑↓ =


∓ sin θk

± cos θk

0

 (2.18)

In the case of PSH (αR = β1), we find that φ(k) = π/4, then the spin polarization

in Eq. (2.17) leads to the form

P ↑↓ =


∓ 1√

2

± 1√
2

0

 (2.19)

Figure 2.3 shows the spin polarization for several cases. For the case of pure

Rashba or Dresselhauss SOI, the spin polarization is k-dependent [Figure 2.3 (a)

and (b)]. this leads to the fact that the spin polarization decays implying the

shorter spin relaxation time. On the other hand, in the case of PSH, the spin

polarizations show one dimensional orientation, which is independent to k [Figure

2.3 (c)]. This leads to the fact that spins do not precess, suppresing the decay of

spin polarization, which induces the strongly enhanced spin relaxation time [32].
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2.2.4 Spin relaxation time

One of the important consequences of SOI is the spin relaxation time. In the

classical picture of the electron, a single spin s⃗k⃗ propagates along certain direction

with the velocity ~k⃗
m

and precesses around magnetic field B⃗k⃗ induced by the spin-

orbit interaction (SOI), the precession of the ballistically propagating single spin

is expressed by

ds⃗k⃗
dt

= Ω⃗k⃗ × s⃗k⃗ (2.20)

where Ω⃗k⃗ is the precession frequency defined as Ω⃗k⃗ =
gµBB⃗

k⃗

~ . The term of B⃗k⃗ in

the precession frequency can be understood by expressing the SOI Hamiltonian in

term of Zeeman spin splitting,

HSOI =
gµBB⃗k⃗

~
· S⃗ (2.21)

Inserting Eq. (2.21) into Eq. (2.8) and setting that β3 = 0, the effective magnetic

field can be expressed by

B⃗k⃗ =
2k

gµB

(
αR sin θ + β1 cos θ

−αR cos θ − β1 sin θ

)
(2.22)

In the case of diffussion limit, where the effective momentum scattering time (τ ∗p )

is much smaller than the time for fully spin rotation, the spin travels random

walk on the Bloch sphere. In this situation, the spin polarization decays through

D’yakonov-Perel’ mechanism [60], where the decay rate is expressed as

1

τx
= τ ∗p

⟨
Ω2

x

⟩
(2.23)

1

τy
= τ ∗p

⟨
Ω2

y

⟩
(2.24)

1

τz
= τ ∗p

⟨
(Ω2

x + Ω2
y)
⟩

(2.25)
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Here, τx, τy, and τz denote the spin life time for a spin polarization along x-, y-,

and z-directions, respectively. For the case of pure Rashba SOI (β1 = 0), the

Rashba spin-orbit field induces the precession of the spin where the spin life time

decreses by increasing of the quadratic αR. This indicates that the large Rashba

spin-orbit strength αR significantly reduces the spin life time. On the contrary,

in the case of the persistent spin helix (αR = β1), the effective spin-orbit field is

unidirectional, which leads to the fact that the spin do not precess, inducing the

strongly enhanced spin life time [32].

2.3 Electronic structure based on the density func-

tional theory

In the real system, the simplified Hamiltonian mentioned before cannot describe

correctly the effect of SOI. This is due to the fact that the interaction between the

electrons and also nuclei plays an important role. Indeed, for the case of materials

that contains atoms of high Z (atomic number), SOI has significant contribution

of their electronic properties. Since in the complex system, understanding of the

SOI involves many body interactions, the study of the electronic properties of

the interacting systems is important. Here, the density functional theory (DFT)

based methods is the powerfull tool to describe the correct understanding of the

electronic properties incorporating the effect of SOI. The brief review of the DFT

scheme are given in the following sub-sections.

2.3.1 Manybody Problems in condensed Matter

In condensed matter physics, the origin of the various material properties can

be understood by identifiying the interaction of electrons. Here, a detailed un-

derstanding of electronic structure is the most importance knowledge. To reach

detailed knowledge about the electronic structure, a valid quantum-mechanical

description of the physical properties of materials is required. In the complex

system consisting of many electrons and nuclei, the Schrödinger equation can be

expressed as

HΨ(r1, r2, ...,R1,R2, ...) = EΨ(r1, r2, ...,R1,R2, ...) (2.26)
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where Ψ is the wave function of the system, ri and Ri are the positions of the

electrons and ions respectively, and H is the Hamiltonian of the system, which is

expressed in the form

H = −
∑
i

∇2
i

2
−
∑
i,I

ZI

|ri −RI |
+
1

2

∑
i̸=j

1

|ri − rj|
−
∑
I

∇2
I

2MI

+
1

2

∑
I ̸=J

ZIZJ

|Ri −Rj|
(2.27)

where MI and ZI are the nucleus mass and charge, respectively. Here, we use the

atomic units, where ~ = me = e = 4πϵ0 = 1. Furthermore, the Hamiltonian in

Eq. (2.27) can be decomposed into five terms

H = Tel + Vel−nuc + Vel−el + Tnuc + Vnuc−nuc (2.28)

where Tel and TN are the kinetic energy operator of electrons and nuclei respec-

tively, Vel−nuc is the potential energy of the electrons relative to the nuclei, Vel−el

represents the Coulomb interaction between the electrons, and similarly, Vnuc−nuc

is the Coulomb interaction between nuclei.

The Eq. (2.26) is defined in 3M + 3N -parameter space dimension, which is too

complex to be solved except for the simplest system such as the hydrogen atom.

For the larger systems such as molecules and solids, additional approximations

have to be used. Considering the fact that the mass of the nuclei is much larger

than those of the electron, the motion of nuclei is negligible compared to those

of the electrons. Therefore, from the electron point of view, the nuclei move

stationary and fix their positions. This approximation is known as the Born-

Oppenheimer approximation.

In this approximation, TN and Vnuc−nuc in Eqs. (2.28) can be ignored and the

Hamiltonian in Eq. (2.28) can be simplfied by

H = Tel + Vel−el + Vel−nuc (2.29)

The Schrödinger equation of this system now can be expressed as
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HΨ =

[
−
∑
i

∇2
i

2
+

1

2

∑
i̸=j

1

|ri − rj|
−
∑
i,I

ZI

|ri −RI |

]
Ψ = EΨ (2.30)

where Ψ = Ψ(r1, r2, ...) is many electron wave function. We can see that the

original problem is now reformulated as a quantum many-body problem for the

electrons in an Hamiltonian set by the nuclei positions.

2.3.2 The Hartree approximation

The simplest method to solve the many-electron equation is to rewrite Eq. (2.29)

as a one-particle equation for an electron moving in an average potential of all the

electrons. This method is well known as the Hartree approximation [61]. In this

methods, the wave function can be written as a product of n independent electron

wave functions ϕ(rn) as follows

Ψ(r1, r2, ..., rn) = ϕ(r1)ϕ(r2)...ϕ(rn) (2.31)

By employing the variational principle, if E0 is the ground state energy solution

of the the Schrödinger equation, the condition that

⟨ϕ |H|ϕ⟩
⟨ϕ|ϕ⟩

≥ E0 (2.32)

is obtained for any wave function ϕ. By inserting Eq. (2.31) to Eq. (2.30), we can

obtaine the Hartree equation:

[−
∑
i

∇2
i

2
−
∑
i,I

ZI

|ri −RI |
+
∑
i ̸=j

∫
ϕ∗j(rj)

1

|ri − rj|
ϕj(rj)]ϕi(ri) = ϵiϕ

∗
i ri. (2.33)

In Eq. (2.33), each electron i is treated independently but in an effective potential,

which is determined by an integration over the wave function of the other electron.

Since for the ith wave function, the effective potential depends on all of other wave

functions, we can solve Eq. (2.33) by using the self consistent method. In this
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methods, the wave function for the step k can be found by solving the Eq. (2.33)

with the effective potential is determined by the wave function in step of k − 1.

This procedure is repeated untill all of the wave functions converge to a solution.

2.3.3 The Hartree-Fock approximation

In the Hartree approximation, the exchange interaction is not included in the cal-

culation since only symmetric wave functions are used. Therefore, this calculation

does not satisfy Pauli exclusion principle. Hartree and Fock in 1926 [62] introduce

an approximation methods which deals with electron as a distinguishable parti-

cles. Therefore, the system with n-electron wave function is approximated by the

anti-symmetric wave function, which described by a Slater determinant [63]:

Ψ(r1, r2, ..., rn) =
1√
n!


ϕ1(r1) ϕ2(r2) · · · ϕn(rn)

ϕ1(r2) ϕ2(r2) · · · ϕn(r2)

...
...

. . .
...

ϕ1(rn) ϕ2(rn) · · · ϕn(rn)

 (2.34)

By applying variational principle with this Slater determinant, the solution can

be obtained by solving the Hartree-Fock equation:

[−
∑
i

∇2
i

2
−
∑
i,I

ZI

|ri −RI |
+
∑
i ̸=j

∫
ϕ∗j(rj)

1

|ri − rj|
ϕj(rj)]ϕi(ri)−

∑
j

[

∫
ϕ∗j(rj)

1

|ri − rj|
ϕi(rj)]ϕj(ri) = ϵiϕ

∗
i ri (2.35)

It is clearly seen that the new term appears in the Hartree-Fock equation, which is

called as a exchange potential. However, in this equation, the correlation energy

due to many body interaction is ignored, which produces incorrect description of

the electronic properties. Therefore, the methods which incorporates the effect of

both exchange and correlation is necessary.
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2.3.4 The Density Functional Theory Approximation

As mentioned before that the electronic structure of the many body system can

be described by incorporating the effect of both exchange and correlation. There-

fore, an efficient computational practicable scheme is necessary. Recently, DFT

is one of the most popular and successful quantum mechanical approaches to de-

scribe matter, which is recently applied for calculating, e.g., the binding energy

of molecules in chemistry and the electronic band structure of solids in physics.

The idea of DFT is to describe interacting electron system in the form of electron

density. This idea is based on the two theorems, which is proposed by Hohenberg

and Kohn[64]. The details of the Hohenberg-Kohn are given in the next section.

2.3.4.1 The Hohenberg-Kohn Theorems

There are two theorems porposed by Hohenberg and Kohn[64], which is used as a

basis of modern theory of DFT. The first theorem states that the many-body wave

functions, which is a central quantity in standar quantum theory, are replaced by

using the ground states electron density without any loss of information. This

theorem justified that the electron density is the central quantity to find any

information of electronic properties. The second theorem give a guidance for

the practical computational, which is equaivalent to the variational principles in

quantum mechanics.

For the system consists of n electrons, the electron density is defined by using the

wave function, which is expressed as

n(r) =
N∑
i=1

∫
· · ·
∫
dr1 · · · drNΨ∗(r1, · · · , rN)δ(ri − r)Ψ(r1, · · · , rN) (2.36)

This equation leads to the fact that the energy can be rewritten as a functional of

electron density but not explicitly the wave function.

The original Hohenberg-Kohn theorems are:



Chapter 2. Background: Basic Theory and Computational Methods 22

Theorem 1. For any system of interacting particles in an external potential

Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the

ground state density n0(r).

This first theorem implies that all of the electronic properties can thus be extracted

from the exact ground state electron density. The ground state electron density

can be found by applying the second theorem, which is based on the variational

principle.

Theorem 2. A universal functional for the energy E[n] in terms of the density

n(r) can be defined, valid for any external potential Vext(r). The exact ground

state energy of the system is the global minimum of this functional and the density

that minimizes the functional is the exact ground state density n0(r).

The second theorem reduces the complex problem to find all of ground state phys-

ical properties of a system by minimizing the energy with respect to the electron

density. The energy functional as expressed by

EHK [n] = T [n] + Eint[n] +

∫
Vext(r)n(r)dr+ EN (2.37)

where EHK [n] is the total energy functional, T [n] is kinetic energy part, and Eint[n]

is the electron interactions energy. In Eq. (2.37) EN is independent to the density,

which is due to the nuclei-nuclei interaction. It should also be noted that using

the Hohenberg-Kohn formulation of DFT implies that we are working at T = 0

K.

2.3.4.2 The Kohn-Sham Equations

Kohn-Sham reformulated the problem in a more familiar form, which opens way to

the practical applications of DFT. Kohn and Sham have shown that there is a way

to map the problem of solving Eq. (2.37) to those of a system with non-interacting

electrons under an effective potential contributed from all of the other electrons[65].

According to Theorem 2, the true electron density will minimize the total energy,

which could be guessed, or, as suggested by Kohn and Sham, calculated from a

reference system of non-interacting electrons moving in an effective potential.
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For a system with non-interaction electrons, the ground state charge density is

represented as a sum over one-electron orbitals,

n(r) = 2
N∑
i

|Ψ(r)|2 , (2.38)

where i runs from 1 to N/2 for the case of double occupancy of all states. The

electron density n(r) can be varied by changing the wave function Ψ(r) of the

system.

The Kohn-Sham methods is based on replacing electron interaction by using non-

interaction electrons, which is under influence of an effective potential[65]. The

effective potential consists of the external potential, the Coulomb interaction be-

tween electron, and the exchange and correlation interactions. Therefore, the

Kohn-Sham energy functional for the ground state can be expressed by

EKS[n(r)] = Ts[n(r)] + EH [n(r)] + EXC [n(r)] +

∫
Vextn(r)dr (2.39)

In Eq. (2.39), The first term is the kinetic energy of non-interaction electrons,

which is expressed by

Ts[n(r)] = −
∑
i

∫
Ψ∗

i (r)∇2Ψi(r)dr, (2.40)

the second term represented the Hartree energy, which is contains the electrostatic

interactio between cloud charge, which is defined as,

EH [n(r)] =
1

2

∫
n(r)n(r’)

r− r’
drdr’, (2.41)

and the third term is the exchange and correlation terms, which are groupped

into exchange-correlation energies EXC . When all of the functional EXC [n(r)] is

known, the exact ground state density and the energy of the many body system

can be found.

Considering the fact that the Khon-Sham energy problem is a minimization prob-

lem with respect to the density n(r), the solution can be obtained by performing

functional derivative as below
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δEKS

δΨ∗
i (r)

=
δT [n]

δΨ∗
i (r)

+ [
δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δEXC [n]

δn(r)
]
δn(r)

δΨ∗
i (r)

−

δ(λ(
∫
n(r)dr−N))

δn(r)
[
δn(r)

δΨ∗
i (r)

] = 0, (2.42)

where λ is the Lagrange multiplier. In Eq. (2.42), the last term is the Lagrang

multiplier for handling the constrain. Therefore, the non-trivial solution can be

obtained.

the second term of Eq. (2.32) indicates that all of potentials such as the exter-

nal, Hartree, and the exchange-correlation potentials are expressed in the form of

derivative functional so that

Vext =
δEext[n]

δn(r)
, VH =

δEH [n]

δn(r)
, VXC =

δEXC [n]

δn(r)
. (2.43)

By setting that

δn(r)

δΨ∗
i (r)

= 2Ψi(r), (2.44)

each term in the right side of Eq. (2.42) can be expressed as

δT [n]

δΨ∗
i (r)

= −∇2Ψi(r), (2.45)

[
δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δEXC [n]

δn(r)
] = 2(Vext + VH + VXC(r))Ψ

∗
i (r) (2.46)

δ(λ(
∫
n(r)dr−N))

δn(r)
[
δn(r)

δΨ∗
i (r)

] = 2ϵiΨ
∗
i (r). (2.47)

By inserting Eqs. (2.45), (2.46), and (2.47) to Eq. (2.42), we obtained the well-

known Kohn-Sham equation

[−1

2
∇2 + VKS(r)]Ψi(r) = Ψi(r) (2.48)
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Figure 2.4: Schematic representation of the self-consistent loop for solution
Kohn-Sham equations.

where

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.49)

Since both Vext(r) and VH(r) depend on n(r), it is indicate that they also depend on

Ψi(r). As a result, the problem solving of the Kohn-Sham equation can be obtained

by using the self-consistent methods. The self-consistent Kohn-Sham equation is

schematically given in Fig. 2.4. It is usually started from an initial guess of n(r),

then calculates the corresponding VH and VXC to obtain VKS. Subsequently, the

solution of Ψi can be obtained by solving the Kohn-Sham equation. From this

calculation, a new density, which is obtained by the results of Ψi, is used as an
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initial new guess for n(r), and used to calculate the new VKS. This procedure is

then repeated untill convergence is reached.

2.3.4.3 The exchange-correlation

In DFT, the mayor problem now is to find the exchange and correlation (XC)

energy since their exact functionals are not known except for the free electron gas.

Therefore, it is necessary to find an accurate XC energy functional EXC [n(r)] in

order to find a satisfactory description of a realistic condensed-matter system. For

the case of homogeneous electron system, the functional of EXC [n] depends only

on the density. However, in the case of non-homogeneous electron system, the

functional of EXC [n] at point r not only depends on the density at r, but it also

depends on the variation at near r.

There many approximation to find an accurate XC energy functionals. The well-

known approximations are including the local density approximation (LDA) and

the generalized gradient approximation. Next, a brief review of these approxima-

tion are given.

Local Density approximation (LDA):

The simplest methods to approximate the exchange correlation energy functional

is the local density approximation (LDA). In this approximation two assumptions

are made: i) the local exchange-correlation energy per particle only depends on

the local density, and ii) is equal to the exchange-correlation energy per particle

of a homogeneous electron gas, which has the same density in the neutralizing

positive background (jellium background). The total exchange-correlation energy

EXC is then given by the sum of the contributions of each point in space, where it

is assumed that the contribution of one point only depends on the density of that

particular point and it independent of the other points. Therefore, the exchange

correlation energy functional can be expressed by

EXC [n(r)] =

∫
n(r)ϵXC(n(r))dr (2.50)

where ϵXC(n(r)) is the exchange-correlation energy per particle of a uniform elec-

tron gas with density n(r). Furthermore, the quantity ϵXC(n(r)) can be split into

exchange and correlation contribution,
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ϵXC(n(r)) = ϵX(n(r)) + ϵC(n(r)) (2.51)

In Eq. (2.51), the exchange part, ϵX(n(r)), represents the exchange energy of an

electron in a homogeneous electron gas and is given by

ϵX(n(r)) = −3

4

3

√
3n(r)

π
(2.52)

On the other hand, the expression of the correlation contribution at a homogeneous

gas is expressed by

ϵC(n(r)) = Aln(rs) +B + rs(Cln(rs)) +D (2.53)

in the high density limit, and,

ϵC(n(r)) =
1

2

(
g0
rs

+
g1

r
3/2
s

+ . . .

)
(2.54)

in the low density limit, where gi=0ton is the constant parameters. In Eqs. (2.53)

and (2.55), rs =
3

√
3n(r)
π

is the Weigner-Seitz radius.

The LDA approximation is more accurate for systems with slowly varying densi-

ties, as it is assumed that the density is locally a constant. In general, LDA almost

always leads to a correct picture of binding energy trends across the periodic ta-

ble. Some of physical properties such as the structures, bond lengths, vibrational

energies, phonon spectra and other properties are predicted correctly, or with a

systematic deviation. However, some of binding energies of solids and molecules

are usually overestimated, which leads to an underestimation of the bond lengths.

The LDA is also systematically underestimate the band gap.

Generalized gradient approximation (GGA):

In real systems the density varies in the space. Therefore, the rate change of the

functional should be included, which can be obtained by adding gradient terms.

This approach is called as the gradient-expansion approximation. In this approxi-

mation, the gradient-corrections of the form |∇n(r)|, |∇n(r)|2, and |∇n2(r)| is sys-
tematically added to the LDA exchange-correlation energy functionals. Moreover



Chapter 2. Background: Basic Theory and Computational Methods 28

higher-order corrections are exceedingly difficult to calculate and little is known

about them. The general form of the exchange-correlation energy functionals in

GGA is expressed by

EXC [n(r)] =

∫
ϵXC(n(r), |∇n(r)| ,

∣∣∇n2(r)
∣∣)dr (2.55)

2.4 Computational Scheme

For the practical implementation of the DFT calculation, we used the OpenMX

code[67]. The OpenMX (Open source package for Material eXplorer) code is a

software package for nano-scale material simulations based on density functional

theories (DFT)[64]. The norm-conserving pseudopotentials[68] and pseudo-atomic

localized basis functions[69, 70] are used in our calculation. We carry-out the spin

textures calculation by using post-processing calculation after the self-consistent

field potential was obtained. We also perform the electric polarization calculation

by using Berry phase methods. In this section, a brief description of the meth-

ods used in our calculation are presented, which is implemented on the openMX

code[67].

2.4.1 Norm conserving pseudo-potential

The concept of a pseudo-potential is replacing the effects of the core electrons

with an effective potential. The pseudopotential generation procedure starts with

the solution of the atomic problem using the Kohn-Sham (KS) approach. When

the KS orbitals are obtained from the solution of the Khon-Sham equation, we

can classify the distinction between valence and core states. The core states are

assumed to change very small, which is due to changes of the environment. As

a result, their effect can be replaced by using a model potential derived from the

atomic configuration and it is assumed to be transferable. On the other hand, the

valence states are seen to oscillate rapidly close to the core regions. By introducing

the new potential, the valence states are expected to be smoother.

Let us assume that the core states and the core eigenvalues of Hamiltonian H are

represented by |χn⟩ and En, respectively. The valence state |Ψ⟩ can be replaced by
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using the smooter wave function |ϕ⟩ and expands the remaining portion in terms

of core states,

|Ψ⟩ = |ϕ⟩+
core∑
n

an |χn⟩ (2.56)

By taking the inner product of Eq. (2.56) with the core states |χn⟩, and by

considering the fact that the valence states |Ψ⟩ is orthogonal to the core states

|χn⟩, we have the relation

⟨χn|Ψ⟩ = ⟨χn|ϕ⟩+
core∑
n

an ⟨χm|χn⟩ = 0 (2.57)

Now, we can write the right-hand side of Eq. (2.57) in terms of the pseudo-

function, |ϕ⟩

|Ψ⟩ = |ϕ⟩ −
∑
n

⟨χn |ϕ|χn⟩ (2.58)

By applying the Hamiltonian onto the expression in Eq. (2.58), we get

H |Ψ⟩+
∑
n

(E − En) |χn⟩ ⟨χn|ϕ⟩ = E |ϕ⟩ (2.59)

It is seen that the smooth pseudo-wave function satisfies an effective equation with

the same eigen energy of the real valence wave function. Therefore, Eq. (2.59) can

be written in the new eigenvalues equation for the smooth pseudo wavefunction

|ϕ⟩ as

(H+ Vn,l) |ϕ⟩ = E |ϕ⟩ (2.60)

where Vn,l depends on the angular momentum quantum number l due to the

spherical symmetry and its effect is localized to the core. Since E > En, this

means that this is a repulsive potential, which partially cancels the effect of the

attractive Coulombic potential. The resulting potential is then a much weaker

than that of the original potential. This indicates that the eigenstates of this new

potential are smoother.
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In the OpenMX code[67], the non-conserving pseudo potential is used. In this

kind of pseudo potential, some requirements are used:

(i) All the electrons (AE) and pseudo (PS) valence eigenvalues are the same as the

selected atomic configuration:

ϵAE
i = ϵPS

i . (2.61)

(ii) All the electrons (AE) and pseudo (PS) valence eigenvalues are in agreement

in the external core region:

ΨAE
i (r) = ΨPS

i (r), r ≥ rc. (2.62)

(iii) The logaritmic derivatives and their first energy derivative of real and pseudo

wave functions agree for all R ≤ rc

[
d

dr
lnΨAE

i (r)

]
R

=

[
d

dr
lnΨPS

i (r)

]
R

(2.63)

(iv) The total charge inside the core radius R < rc for each wave function must

be same, which is due to the norm conservation.

∫ R

0

∣∣ΨAE
i (r)

∣∣2dr = ∫ R

0

∣∣ΨPS
i (r)

∣∣2dr (2.64)

In the OpenMX code[67], the procedure for the generation of the non-conserving

pseudo-potentials for the valence states follows the methods proposed by Troullier

and Martin [68]. In this methods, a parametrized analytical function for the core

region is choosen as ϕPS
n,l ≈ ep(r), where p(r) is a six-order polynomial matching

the true solution and its various derivatives at rc.

2.4.2 The pseudo-atomic basis orbitals

In the OpenMX code[67], the Kohn-Sham wave functions Ψµ are expanded by the

linear pseudo atomic orbitals (LPAO) ϕi,α[69], which is expressed as
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Ψµ(r) =
∑
i,α

cµ,i,αϕi,α(r− ri) (2.65)

where i is the site index, α ≡ (p, l,m) is the orbital index, and ϕiα ≡ Yl,m(θ, ϕ)Ri,p,l(r).

Here, the radial wave function Ri,p,l(r) depends on the angular quantum number

l, the site index i, and the multiplicity index p. Subsequently, this radial wave

functionis is called as a primitive orbitals.

The primitive orbitalsRi,p,l(r) can be generated by using the following conditions[69,

70]:

(i) The atomic orbitals must completely vanish within a cutoff radius. They should

be continuous up to the third derivatives around the cutoff radius so that matrix

elements for the kinetic operator are also continuous up to the first derivatives.

(ii) A few parameters can be used to generate as many as possible a set of atomic

orbitals.

Since the primitive orbitals are orbitals of eigenstates of an atomic Kohn-Sham

equation with a confinement pseudopotential, they can be vanished in the region

which is in the outside of the confinement radius rc. Here, the atomic core po-

tential Vcore(r) in the all electron calculation can be modified in the generation of

pseudopotential, which is mathematically expressed by [69, 70]

Vcore(r) =


−Z

r
for r ≤ r1;∑3

0 bnr
n for r1 < r ≤ rc;

h for rc < r,

(2.66)

where b0, b1, b2, and b3 are constants, which is determined in the condition that

the value and the first derivative are continues at both r1 and rc.

2.4.3 Non-collinear DFT

In our calculation, we use non-collinear DFT methods to investigate the effect

of spin-orbit interaction (SOI). In the non-collinear DFT, two components spinor

wave functions is expressed by
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|Ψv⟩ = |Ψα
vα⟩+

∣∣Ψβ
vβ
⟩

(2.67)

where |Ψα
vα⟩ ≡ |Ψα

v ⟩ |α⟩ with a spatial function |Ψα
v ⟩ and a spin function |α⟩. By

using this wave functions, the density operator is given by the relation

n̂ =
∑
v

fv |Ψv⟩ ⟨Ψv| =
∑
v

fv
(
|Ψα

vα⟩+
∣∣Ψβ

vβ
⟩) (

|Ψα
vα⟩+

∣∣Ψβ
vβ
⟩)

(2.68)

Here, fv is the step function, where in the OpenMX code [67], it is replaced by

the Fermi distribution function. By using Eq. (2.68), a non-collinear electron

densityin real space is given by

nσσ′ = ⟨rσ|n̂|rσ′⟩ =
∑
v

fvΨ
σ
vΨ

σ′,∗

v (2.69)

where (σ, σ′ = (α, β) and |r⟩ is a eigenfunction of position vector.

Next, we calculate the up- and down-spin densities n′
↑, n

′
↓ at each point by diago-

nalzing a matrix consisting of a non-collinear densities:

(
n′
↑ 0

0 n′
↑

)
= UnU † = U

(
nαα nαβ

nβα nββ

)
U †. (2.70)

Here, the U -matrix in Eq.(2.70) is expressed by a rotation operator D [71]:

D ≡ exp
(
−iσ̂i · ĥϕ/2

)
(2.71)

where σi is Pauli matrices defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(2.72)

In Eq. (2.70), ĥ is a unit vector along certain direction, and ϕ is a rotational angle

around ĥ. For the rotation along the z-axis with Euler angle (θ, ϕ), operator D

leads to the matrix:
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D(θ, ϕ) =

(
exp

(
−iϕ

2

)
cos
(
θ
2

)
− exp

(
−iϕ

2

)
sin
(
θ
2

)
exp

(
iϕ
2

)
sin
(
θ
2

)
exp

(
iϕ
2

)
cos
(
θ
2

) )
. (2.73)

The U -matrix can be found by the conjugate transposed matrix of D(θ, ϕ), which

explicitly has the form

U =

(
exp

(
iϕ
2

)
cos
(
θ
2

)
exp

(
−iϕ

2

)
sin
(
θ
2

)
− exp

(
iϕ
2

)
sin
(
θ
2

)
exp

(
−iϕ

2

)
cos
(
θ
2

) ) . (2.74)

By using Eq.(2.67), Eq.(2.69), and Eq.(2.70), the total energy non-collinear func-

tional can be written as [72, 73]

Etot =
∑
σ=α,β

∑
v

fv

⟨
Ψσ

v |T̂ |Ψσ
v

⟩
+
∑
σσ′

∫
wσσ′nσσ′+

1

2

∫ ∫
n′(r)n′(r’)

|r− r′|
dvdv′+EXC {nσσ′}

(2.75)

In this Equation, the first and the second terms are represented the kinetic energy

and the electron-core Coulomb energy, respectively. Meanwhile, the third and

the fourth terms define the electron-electron Coulomb energy and the exchange-

correlation energy, respectively. Here, n′ at each point is the sum of up- and

down-spin densities n′
↑, n

′
↓. Therefore, Eq. (2.75) can be simplified becomes

Etot = Eband −
1

2

∫
n′VHdv −

∫
Tr(VXCn)dv + EXC (2.76)

where VXC is a non-collinear exchange-correlation potential.

Now, we introduce a new functional F which relates to the orthoganility of the

spinor wave functions expressed by

F = ETot +
∑
σσ′

ϵσσ′(δσσ′ − ⟨Ψv|Ψv′⟩). (2.77)

The variation of F with respect to the spatial wave functions Ψσ
u can be written as

δF

δΨσ,∗
u

= T̂Ψσ
u +

∑
σ′

wσσ′Ψσ′

u + VHΨ
σ
u +

∑
σ′

V σσ′

XC Ψσ′

u −
∑
v

ϵuvΨ
σ
v (2.78)
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with

VH =

∫
dr

|r− r’|
dv (2.79)

and

V σσ′

XC =
δEXC

δnσσ′
(2.80)

Here, the functional of F becomes minimum if its variation with respect to the

spatial wave functions Ψσ
u vanishes. By using a unitary transfromation of spatial

wave functions Ψσ
v to diagonalize ϵuv, we obtaine the non-collinear Kohn-Sham

equation as follows:

(
T̂ + wαα + VH + V αα

XC wαβ + V αβ
XC

wβα + V βα
XC T̂ + wββ + VH + V ββ

XC

)(
Ψα

u

Ψβ
u

)
= ϵu

(
Ψα

u

Ψβ
u

)
(2.81)

It is clearly seen from above equation that a direct interaction between α and β

spin components couples in the off-diagonal part. Here, the off-diagonal consists

of the exchange-correlation potential VXC and the other new contributions w. For

example if the spin-orbit interaction (SOI) is included, this will contribute to the

new contribution of w.

2.4.4 The spin textures calculations

When we include the SOI in the self-consistent calculation of the non-collinear

Kohn-Sham equation Eq. (2.81), we can obtaine the final spin structures of our

system. These final spin structures are then called as spin textures. After self-

consistent field potential is obtained [74] from DFT calculations, we can evaluate

the spin textures by using the k-space spin density matrices of the spinor wave

functions, nαβ(k, µ), using the relation:

nαβ(k, µ) = ⟨Ψα(r,k, µ)|Ψβ(r,k, µ)⟩ (2.82)
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where r, k, and µ are the position vector, the wave vector, and the band index,

respectively. In this expression, Ψα and Ψβ are the spinor wave function for up ↑
and down ↓ spins, respectively, which is expanded by a linear combination of the

pseudo-atomic orbital (LCPAO),

Ψα(β)(r,k, µ) =
∑
i

cRn

i,µ,α(β)ϕi(r)e
iRn·k (2.83)

where Rn is the periodic vector of the crystal. By inserting Eq. (2.83) to Eq.

(2.82), the spin density matrix now can be written as

n(k, µ) =

(
nαα(k, µ) nαβ(k, µ)

nβα(k, µ) nββ(k, µ)

)
(2.84)

,

where

nαβ(k, µ) =
∑
i,j

[cRn∗
i,µ,αc

Rn
i,µ,βSi,j]e

i(Rn·k). (2.85)

In Eq. (2.85), Si,j is the overlaping matrix.

Finally, the up- and down-spin densities in the k-space can be deduced from the

2× 2 spin density matrix of Eq. (2.84) by unitary transformation using U matrix

of Eq. (2.74). After some algebra, we find that

n′
↑ =

1

2
(nαα + nββ) +

1

2
(nαα − nββ) cos θ + (Re nαβ cosϕ− Im nαβ sinϕ) sin θ

(2.86)

and

n′ =
1

2
(nαα − nββ)−

1

2
(nαα − nββ) cos θ + (Re nαβ cosϕ− Im nαβ sinϕ) sin θ

(2.87)



Chapter 2. Background: Basic Theory and Computational Methods 36

where

ϕ = − arctan

(
Im nαβ

Re nαβ

)
(2.88)

and

θ = arctan

(
2(Re nαβ cosϕ− Im nαβ sinϕ)

nαα − nββ

)
. (2.89)

Considering the fact that the wave function is given by a linear combination of

pseudo atomic orbitals, this spin density matrix can be decomposed into its atomic

components.

2.4.5 The Berry phase method for the electric polarization

calculation

In this study, the SOI is strongly affected by the electric field. Therefore, evaluation

of the electric polarization necessary to confirmed the realibility of the results in the

present calculations. Here, we apply the Berry phase method for the calculation

of electric polarization.

Traditionally, the electric polarization P can be evaluated by using approximate

models such as the Claussiuss-Mosotti models of solids[75]. This is due to the fact

that the ionic crystal are represented by the point charge model (PCM). However,

considering the fact that the electron density n(r) is a continous function of r,

there are no way of finding a unique values of P as a sum of a dipole units.

this problem can be solved by considering the change of polarization, where in

quantum mechanics is related to the geometric Berry phase involving integrals

over the phases of the electronic wave functions.

Mathematically, the electic polarization P can be expressed by a sum of dipole

units pi as

P =
3∑

i=1

PiRi (2.90)
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where Ri is ionic position vector. In Eq. (2.90), Pi can be evaluated by using the

following Berry phase formula[76, 77].

2πPi = Gi ·P = − e

(2π)3

∑
σ

∫
β

dk3Gi ·
(

∂

∂k’
ησ(k,k’)

)
k=k’

(2.91)

where
∫
β
means that the integral over first Brillouin zone of which volume is VB,

and ησ(k,k’) is the quantum phase expressed as

ησ(k,k’) = ℑ
[
ln
(
det
⟨
ukσ,µ|uk’σ,ν

⟩)]
(2.92)

where µ and ν run over the occupied states. In the OpenMX code, the overlap

integral is evaluated in the momentum space, and the expectation value of position

operator is evaluated by using the same real space mesh as for the solution of

Poisson equation.



Chapter 3

Rashba effect on strained ZnO

3.1 Introduction

Recently, the effect of spin orbit interaction (SOI) on the spin texrtures attracted

much scientific interest because it plays an important role in spintronics device op-

eration. Especially, the Rashba effect [25] attracts much attention since it enables

operation of the spin field effect transistor [29]. Here, two dimensional electron gas

(2DEG) system is an ideal platform for spintronics because it can be controlled

by an external electric field or by strain effect.

ZnO is one of the promising material candidate for spintronics, which is due to the

high quality of the two dimensional electron system [50]. Here, for the spintronics

applications, clarification of the SOI in ZnO is crucially important. However,

strain has significant effect on the electronic structure of ZnO [78]. Therefore, it

is is expected that strain induces the new physical properties, which is expected

to be useful for spintronics devices.

In this chapter, we present detailed first principle density-functional calculations

of strained ZnO. To clarify the effect of SOI, we investigate the spin textures. We

find that strain controls SOI in ZnO, where the inversion Rashba spin rotations are

observed. We clarifiy that this inversion of Rashba rotation is due to the fact that

the strain changes the direction of the electric polarization around the Zn atoms.

We also find that the Rashba spin-orbit strength can be effectively controlled by

tunning the strain. Finally, the possible applications for the spintronics devices

are discussed.

38
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This chapter is organized as follows: Details of the calculation methods are de-

scribed in Sec. 3.2. In Sec. 3.3 we show the calculated results of the electronics

properties of bulk ZnO including the effect of SOI. We also present the calculated

results of the electronic properties under influence of the strain effect. Further-

more, a discussion about the possible spintronics devices applications are also

presented in the same section. finally, we give conclusion of this chapter in Sec.

3.4.

3.2 Computational detailes

We carry out first principle electronic structure calculations based on the den-

sity functional theory (DFT) within the generalized gradien approximation [66]

by using the OpenMX code [67]. We use norm-conserving pseudo-potentials [68]

and the wave functions are expanded by the linear combination of multiple pseu-

doatomic orbitals (LCPAOs) generated by using a confinement scheme [69, 70].

The orbitals are specified by Zn6.0-s2p2d2 and O5.0-s2p2d1, which means that the

cutoff radii are 6.0 bohr and 5.0 bohr for the Zn and O atoms, respectively, in the

confinement scheme [69, 70]. Two primitive orbitals expand s, p, and d orbitals

of the Zn atom and in the case of the O atom, two and one primitive orbitals

expand s and p orbitals and d orbitals, respectively. The SOI is included in our

fully-relativistic calculation. The 12x12x12 k-point grid is used and geometries are

optimized untill the force acting on each atom is less than 0.001 eV/A. To evaluate

spin polarization in k-space, we calculate the k-space spin density matrix using

the spinor wave functions, which are calculated by using the OpenMX code[74].

3.3 Results and discussion

3.3.1 Electronic properties of ZnO

In the most stable structures, ZnO forms wurtzite crystal as shown in Fig. 3.1.

The unit vectors of the unit cell are given by

a⃗1 = (1/2,
√
3/2, 0)a (3.1)
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Figure 3.1: Crystal structure of wurtzite ZnO and its first Brillouin zone.

a⃗2 = (1/2,−
√
3/2, 0)a (3.2)

a⃗3 = (0, 0, c/a)a (3.3)

where a and c are the lattice constants in the a and c-directions, respectively.

The Zn atoms are located at (0, 0, 0) and (2/3, 1/3, 1/2) whereas the O atoms are

located at (0, 0, u) and (2/3, 1/3, u + 1/2). The length of Zn-O bond along the

c-axis is given by d1 = uc, where u is the internal parameter.

Table 3.1: The optimized lattice parameter, which is compared to those of
previous calculation and experimental results.

Methods a0 (Å) c0 (Å) c0/a0 u0

GGA (present work) 3.284 5.303 1.615 0.379
GGA (ref. [80]) 3.286 5.299 - -
GGA (ref. [84]) 3.287 5.307 - -
Exp. (ref. [82]) 3.253 5.204 1.602 0.382

Tabel 3.1 shows the calculated value of the optimized lattice parameters, which

is compared to those of previous calculation and experimental results. The calcu-

lated values of the optimized lattice constants are a0 = 3.284 Å, and c0 = 5.303

Å. These values are in a good agreement with those of previous GGA calcula-

tions (a0 = 3.286 − 3.287 Å and c0 = 5.299 − 5.307 Å) [80, 84]. The present

values are slightly larger than the experimental values: a0 = 3.253 Å and c0 =
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Figure 3.2: The electronic structures of ZnO. (a) the Band structures and (b)
the density of states projected onto the Zn and O atoms are shown.

5.204 Å[82]. Furthermore, the optimized parameters c0/a0 and u0 are 1.615 and

0.379, respectively, and slightly different than those of the ideal wurtzite geometry

(c0/a0 = 1.633 and u0 = 0.375) [86]. However, these calculated values are in a

good agreement with experimental values (c0/a0 = 1.602 and u0 = 0.382) [82].

Table 3.2: The calculated value of the band gap and energy position of the
Zn-d orbitals compared with those of previous calculation and experimental

results.

Methods Eg (eV) EZn−d (eV)

GGA (present work) 0.814 -6.05
GGA (ref. [84]) 0.814 -
Exp. (ref. [83]) 3.34 -
GGA (ref. [80]) - -5.09
Exp. (ref. [81]) - -7.5

Figure 3.2(a) shows the calculated results of the electronic band structures of

the bulk ZnO. We find that the band structures show a direct band gap, where

the conduction band bottom (CBB) and the valence band maximum (VBM) are

located on the same high symmetry point, the Γ point. The calculated value of

energy gap is found to be 0.814 eV [see table 3.2], which is smaller than those of

experimental value (3.34 eV)[83], but this value is consistent with those of past

GGA (0.81 eV)[84] calculation.
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To clarify the atomic contribution of the electronic band structures, we calculate

the partial density of states (PDOS) projected to the Zn and O atoms in the unit

cell. As shown in Fig. 3.2(b), we find that the CBB mainly consists of the Zn-s

orbitals, whereas the VBM is characterized by the strong hybridization between

the O-p and the Zn-s orbitals. The hybridization of p − d orbitals occures in

the energy range of 0 to -6.5 eV. The strongest character of the Zn-d orbitals is

observed around -6.05 eV [see table 3.2], which is slightly higher than those of the

experimental value (-7.5 eV)[81]. However, this value is in good agreement with

previous GGA (-5.9 eV) [80] calculation.

3.3.2 Rashba effect on ZnO

For the spintronics applications, it is very important to clarify the effect of SOI in

ZnO. Here, we performed fully relativistic DFT calculation by including the effect

of SOI. In this calculation, our considerations are focused on the CBB since n-type

ZnO is really achieved by introducing Mg doping [87]. This is supproted by the

fact that the high carrier concentration on the n-type ZnO has been experimentally

observed[54].

As shown in Fig. 3.3(a), we find that a very small Rashba spin split bands are

observed in the CBB. These splitting linearly depends on the wave vector k at

near the Γ point [Fig. 3.3(b)]. We also find that the spin-polarized two bands

are observed around the Γ point, and these two bands are degenerated at the Γ

point because of the time reversability. In these spin-split bands, we find that the

spin textures show the Rashba spin rotations, where their orientations are found

to be clockwise and anti-clockwise directions for the upper and the lower bands,

respectively [Fig. 3.3(c) and (d)].

To clarfy the origin of the Rashba spin rotations, we consider the SOI in the

case of two-dimensional free electron system defined on the (kx-ky) plane. The

Hamiltonian described SOI term is expressed by

HSOI = αR(kyσx − kxσy) (3.4)
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Figure 3.3: (a) Rashba band splitting of the conduction band bottom (CBB)
in around the Γ point and (b) The energy splitting (∆E) as a function of the
wave vector in the Γ-K direction (kΓ−K) are shown. The spin textures for (a)
the upper and (d) lower bands, which are calculated on 3.5 meV above the

degenerate states at CBB, are shown.

where kx and ky are wave vectors in the x and y directions, respectively, and σx and

σy are Pauli matrixes. In this expression, αR is the Rashba coupling parameter,

which is defined by the relation

αR = −e~Ez/4m
2c2 (3.5)

where Ez is the electric field which is perpendicular to the two-dimensional (kx-ky)

plane and m, c, and e are the effective mass, the light velocity, and the elementary

charge, respectively.

The Hamiltonian in Eq. (3.4) leads to the fact that the dispersion relation and

the spin polarization are expressed by

E± =
~2k2

2m∗ ± αRk (3.6)

and
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P± =
⟨
ψ± |S|ψ±⟩ = 1

|k|


∓ky
±kx
0

 , (3.7)

respectively, where m∗ is the effective electron mass and S is the spin operators

which consists of three components, Sx, Sy, and Sz. In Eq. (3.6), the spin-split

bands are labelled by the + and - signs for the upper and lower bands, respectively,

and their spins lie in the x− y plane and rotate in the opposite directions.

When Ez < 0, this leads to the fact that the condition of αR > 0 is obtained.

Consequently, due to the Eq. (3.7), the directions of the spin rotation are clockwise

and anti-clockwise for the upper and lower bands, respectively. On the other hand,

Rashba spin rotation becomes opposite in the case of Ez > 0, which is due to the

fact that the condition that αR < 0 is achieved. Therefore, we clarified that the

Rashba spin rotation are sensitively modified by the direction (sign) of the electric

field.

Since the Rashba spin rotations are strongly affected by the electric field, their

origin can be further clarified by studiying the electric polarization. To confirmed

this, we then study the electric polarization by using point charge model (PCM).

Here, the position of the Zn atom are set to be the original point (0,0,0) since the

CBB mainly originates from the Zn-s orbitals.

We consider the PCM including Zn2+ and O2− ions and evaluate the polarization

difference:

∆P = P(c/a, u)−P(c/a, uideal) (3.8)

where c/a and u are the optimized parameter and uideal = 0.375. We find that the

PCM results show the negative value of ∆P, which is -0.0271 C/m2. This value

leads to the fact that the condition that Ez > 0 is obtained. Therefore, clockwise

and anti-clockwise direction of the Rashba spin rotations for the upper and lower

bands, respectively, in Fig. 3.3 are well explained based on the PCM.

To confirm the reliability of the above-mentioned PCM, we calculate the electric

polarization by using Berry phase (BP) method [76, 77]. We find that the value

of ∆P calculated from the BP method is -0.031 C/m2, which is very close to the
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result obtained by using the PCM (-0.0271 C/m2). These values are also in a good

agreement with those of past calculations (-0.032 C/m2 to -0.057 C/m2) [88, 89].

This indicates that the calculated results of electric polarization obtained by using

the PCM are reliable.

3.3.3 The effect of strain

Now, we study the effect of strain on the electronic properties of ZnO. We consider

a wide range of biaxial strain (up to ±8%) which is perpendicular to the c axis.

We define the degree of biaxial strain as

ϵxx = (a− a0)/a0 (3.9)

where a0 is the unstrained lattice constant. In this case, we fix the lattice constant

a at certain strain condition, while the lattice constant c and internal parameter

u are allowed to relax. We study two different cases, i.e, the tensile biaxial strain

(TBS) which increases the lattice constant a and the compressive biaxial strain

(CBS) which decreases a [Fig. 3.4(a)]. This strain can be achieved by using impu-

rity doping [90] and/or introducing lattice mismatch between ZnO and substrate

[91]. In fact, several experimental studies confirmed that the CBS can be achieved

using ZnO epilayer grown on sapphire substrate [91]. Meanwhile, the TBS can be

achieved by applying impurity doping such as Mg and Co doping [87, 90].

Fig. 3.4(b) shows the calculated results of the optimized structural parameter of

the strained system. We find that under TBS, the value of c/a decreases, but the

value of u increases. These results indicate that the bondlength between the Zn

and O atoms in the c-direction (d1) enhances, while other bondlength in the other

orientations (d2 = d3 = d4) reduces [see the insert of Fig. 3.4]. However, opposite

trend of structural parameter is observed in the case of CBS. Here, increasing

and decreasing trends of c/a and u, respectively, are observed resulting that the

bondlength d1 and d2 = d3 = d4 reduces and enhances, respectively. Therefore,

we conclude that the structural parameter is sensitively affected by the strain.

Since the strain strongly influences the structural partameters of ZnO, we expect

that it also strongly modify the electronic properties. To confirmed this, we cal-

culate the band structures of the strained system, where the calculated result is
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Figure 3.4: (a) Schematic view of biaxial strain. The biaxial strain is defined
by the changing in-plane lattice constant a in the two different ways, i.e. tensile
biaxial strain (right side) and compressive biaxial strain (left side). (b) Opti-
mized structural parameter (c/a,u) as a function of biaxial strain. The insert
shows the thetrahedrally coordiated atoms in the unit cell. d1 represents the
bondlength between the Zn and O atoms in the c- direction, while d2 = d3 = d4

define the bondlength of the Zn and O atoms in the non-polar directions.

shown in Figure 3.5. We find that the band structures of strained system show a

direct band gap, which is similiar to those of the unstrained system. However, the

position of conduction band bottom (CBB) and valence band maximum (VBM)

shift under different strain condition. For the case of TBS, the CBB and VBM

shift to be lower and higher energy than those of unstrained system, respectively.

On the other hand, these shifting energy becomes opposite in the case of CBS,

indicating that strain sensitively changes the band gap. We find that the substan-

tial values of energy gap decreses for the case of TBS (Eg−ϵxx=4% = 0.731 eV),

wherease it enhances in the case of CBS (Eg−ϵxx=−4% = 0.86 eV) compared to

those of the unstrained system (Eg−ϵxx=0% = 0.814 eV). It is therefore concluded

that the electronic properties of ZnO is significantly modified by the strain.



Chapter 3. Rashba effect on strained ZnO 47

Figure 3.5: The band structures of ZnO under different strain condition. The
black, blue, and the pink lines represent the band structures of the unstrained,

TBS (4%), and CBS (-4%), respectively.

3.3.4 Tunable Rashba effect by strain

As mentioned before that the strain has significant effect to the electronic struc-

tures of ZnO. In this case, the new physical properties is expected to be observed

when the SOI is taken into account. Especially the Rashba effect, which is im-

portant for spintronics devices, is expected to be affected by introducing strain.

Therefore, clarification of the Rashba effect on the strained system is crussially

important.

Figure 3.6 shows the result of the strain effect on the spin-split bands at CBB and

the spin textures. We find that, the Rashba band splitting substantially enhances

under increasing of the strain. In the case of TBS, the spin textures show the
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Figure 3.6: The band splitting and the spin textures for different strain con-
dition. The spin textures are calculated on 3.5 meV above the degenerate states

of at the CBB.

Rashba spin rotation, which has the same direction as those for the unstrained

system. On the contary, the directions of the Rashba spin rotations becomes

opposite in the case of CBS, indicating that the Rashba spin rotations can be

inversed by applying biaxial strain.

Considering the fact that the Rashba spin rotation is strongly affected by the sign

(direction) of the electric field as mentioned before, we expect that the negative

and positive electric fields Ez are introduced under the CBS and TBS, respectively.

To clarify this, we performed the PCM to calculate the electric polarization in the

strained ZnO. Under substantial CBS, where u < uideal [Fig. 3.7(a)], the PCM

leads to the positive ∆P [Fig. 3.7(b)]. This positive value of ∆P is expected to
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Figure 3.7: (a) Schematic view of the strain and the Rashba parameter. (b)
Electric polarization difference ∆P, which is calculated by using the Berry phase

(BP) method and point charge model (PCM).

induce the fact that Ez < 0. On the contrary, substantial TBS leads to the fact

that u > uideal. As a result, the negative ∆P and positive Ez are induced. We

therefore conclude that the negative and positive Ez are introduced under CBS

and TBS, respectively, and that the directions of the Rashba spin rotations in Fig.

3.5 are consistent with the result of the PCM.

To confirm the reliability of the PCM results, we also calculate the electric polar-

ization by using Berry phase (BP) method [76, 77]. We find that, the PCM results

of ∆P in the strained system are close to those calculated from the BP method

[Fig. 3.7(b)]. This indicates that the PCM calculation for the strained system is

reasonable.
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Figure 3.8: Schematic view of the parabolic band dispersion and its properties
is shown.

3.3.5 Discussion

We have clarified that the Rashba spin rotation can be controlled by introducing

biaxial strain. This indicates that the Rashba spin-orbit strengths αR can be

effectively tuned by applying strain. Here, we estimated the absolut value of αR

by using the band dispersions in Fig. 3.6.

According to the Eq. (3.6), it is revealed that the band dispersion is characterized

by the parabolic profile. This indicate that the Rashba spin-orbit strength αR

can be evaluated directly from the properties of parabolic band dispersion, which

is schematically shown in Fig. 3.8. We can see that two spin polarized band

dispersions cross at k = 0, while they have energy extremum at k = ±k0, where k0
is the momentum off-set. At k = k0, this energy band extremum can be expressed

as

ER =
~2k20
2m∗ + αRk0 (3.10)

where ER is the Rashba energy which is defined as the energy of the band ex-

tremum with respect to the energy E0 for which the band cross at k = 0. At the

same time, the gradient energy band dispersion vanishes at k = k0, which leads to

the relation
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m∗ = −~2k0
αR

. (3.11)

By inserting Eq. 3.11 to Eq. 3.10, we obtain the equation for αR:

αR =
2ER

k0
. (3.12)

Now, we can evaluate the Rashba spin-orbit strength αR directly by using Eq.

(3.12).

Figure 3.9(a) shows the calculated results of the strain dependence of k0, ER, and

αR. We find that the absolute values of αR increases when strain is applied [Fig.

3.9 (c)]. We also find that introducing strain enhances the values of k0 and ER

[Fig. 3.9 (a) and (b)]. Considering the fact that strain induces the enhancement

of the magnitude of the electric polarization, the absolute value of αR increases,

which is consistent with the SOI on the two dimensional free electron model. Since

the opposite direction of electric fields is identified on both of TBS and CBS, it

is expected that their values of αR have the opposite signs. For example, the

calculated values of αR is 4.41 meVÅ in the case of ϵxx = −4%, whereas it is -2.19

meVÅ for the case of ϵxx = 4%. Therefore, we clarified that the substantial values

of αR can be effectively tuned by applying biaxial strain.

Next, we discuss the possible spintronics applications of ZnO. Recently, the quan-

tum well structure of ZnO has been extensively studied [92, 93]. Our calculations

indicate that two quantum wells consisting of n-type ZnO having opposite direc-

tions of the Rashba spin rotations can be realized. By using two quantum wells

separated by an energy barrier, an effective spin-filtering due to tunneling is ex-

pected to be achieved. In fact, for the spin-filtering device proposed by Koga

et.al, two quantum wells having the opposite directions of the Rashba spin rota-

tions were used [95]. Their proposal may give some hint for the device applications

of the reversible Rashba effect on ZnO.

Here we discuss another possible application of strained ZnO. We find that the

Rashba splitting for the unstrained system is small (the absolute values of αR= 1.15

meVÅ), which is consistent with the observed long spin relaxation time [53, 54].

In fact, a very small Rashba effect on MgZnO/ZnO interface (αR is 0.70 meVÅ)

has been experimentally observed [54]. It is expected that the zero (or very small)

Rashba splitting can be achieved when we introduce suitable small biaxial strain.
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Figure 3.9: (a) Momentum off-set k0, (b) Rashba eneregy (ER), and the
absolut value of the Rashba parameter (αR) as a function of strain are shown.

When the Rashba effect on ZnO is extremely small, we can achieve a very long

spin coherence. Then, ZnO can be used as an effecient spintronics devices.

3.4 Conclusion

The effect of SOI on the strained bulk ZnO has been sistematically studied by

using first-principles DFT calculations. We found that strain controls the SOI in

ZnO, where the inversion Rashba spin rotations are observed between tensile and

compressive biaxial strain. We also found that the Rashba spin-orbit strength can

be effectively controlled by tuning the strain. Our finding of the inversion Rashba

rotation may give some hint for the application of the future spintronisc devices.

According to our finding, the presently used calculation scheme is expected to

be useful tools to investigate the Rashba effect on the SOI system materials.

Here, a special attention is given to the system having large internal electric field

such as oxide interface system materials. Recently, the interface system such as
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MgZnO/ZnO were extensively studied [54]. Our study clarified that the effect of

strain on interfaces plays an important role in SOI.

Therefore, we conclude that the present system is suitable for spintronics applica-

tions.



Chapter 4

Persistent Spin helix on the

wurtzite ZnO (1010) surface

4.1 Introduction

Recently, semiconductor materials having the long spin life time attracted much

scientific interests because they achieve an efficient energy saving for spintronics

devices. The strongly enhanced spin relaxation time is predicted to be achieved by

using persistent spin helix (PSH) materials [32–39]. Theoretical studies predicted

that the PSH materials can be realized by using [001]-oriented quantum well (QW)

in which the Rashba and Dresselhauss terms are equal; or by using [110]-oriented

QW, which is affected by only the Dresselhauss effect[32]. In both cases, the spin-

orbit coupling depends linearly on the electron momentum in spesific directions

and quasi-one-dimensional orientation of the spin textures is generated[32]. The

PSH states has been observed recently for [001]-oriented GaAs/AlGaAs QW [33,

34, 38] and InAlAs/InGaAs QW [35, 37]. Furthermore, the PSH states were also

observed for [110]-oriented GaAs/AlGaAs QW, which showed a uni-directional

out-of-plane spin directions[39].

The PSH has been widely studied only for the zinc-blende semiconductors. Wurtzite

structure semiconductors are promising candidates since the high quality of the

two dimensional systems has been experimentally observed [97, 98] and their spin-

tronics application has been discussed [94]. Therefore, achievement of PSH for

these semiconductors is expected to be useful.

54
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In this chapter, through first-principles density-functional calculation, we show

that the PSH is realized by using the wurtzite ZnO (1010) surface, exhibiting a

quasi-one dimensional orientation of the spin textures. We clarify the origin of

the spin textures by using the simplified Hamiltonian based on the group theory.

Finally, we revealed that the wavelength of the PSH is small compared with those

observed for various zinc-blende quantum well structures, indicating that the ZnO

(1010) surface is suitable for spintronics applications.

This chapter is organized as follows: Details and calculation methods is given in

Sec. 4.2. In Sec 4.3, we present the calculation results including the structural

and electronic properties of ZnO (1010) surface and the effect of SOI. Here, the

band splitting and the spin textures are presented. We also give clarification about

the origin of the spin textures by evaluating the group theory and performing the

calculation of the electric polarization. Furthermore, in Sec. 4.4, we give a discus-

sion about our calculated results of the spin-orbit strength and the wavelength,

which is compared to the recent experimental results observed on the zinc-blende

quantum well structures. Finally, we give some conclussion, which is presented in

Sec. 4.5.

4.2 Computational detailes

As shown in Chapter 2 that the wurtzite ZnO forms a hexagonal close-packed

lattice where the in-plane and axial lattice parameters are represented by a and

c, respectively. To describe non-polar [1010] surfaces, we here introduce new unit

vectors [Fig. 4.1 (a)], which are

a⃗1 = (1, 0, 0)a (4.1)

a⃗2 = (0, c/a, 0)a (4.2)

a⃗3 = (0, 0,
√
3)a (4.3)
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Figure 4.1: (a) The unit cell of the bulk ZnO. The [1010] and [0001] directions
are indicated by the arrow. (b) Top and side views of the slab model of ZnO
1010 surface. The polar direction [0001] is set to be the y directions. The

number N = 1,2,...N indicates the number of bilayer.

In this new vectors, the unit cell consists of eight atoms. In the new unit vectors,

the polar [0001] and non-polar [1010] directions are set to be the y and the z

directions, respectively [Fig. 4.1 (b)]. Our calculations of the optimized lattice

constants show that a = 3.2845 Å, c = 5.3029 Å, c/a = 0.6151, and u = 0.3791.

These values are consistent with our previous results[94]. The surface calculations

are carried out by using the slab model, which consists of 20-bilayers, and is

terminated by hydrogen atoms on the backside [Fig. 4.1(b)]. The vacuum length

is over 15 Å to avoid the interactions between the neighboring slabs.

We carry out first-principles electronic-structure calculations based on the DFT

within the generalized gradient approximation (GGA)[66] by using the OpenMX

code [67]. Here, the 4×6 k-point grid is used and geometries are fully relaxed untill

the force acting on each atom is less than 0.001 eV/Å. In our calculation, norm-

conserving pseudo-potentials [68] are used. The wave functions are expanded by

the linear combination of multiple pseudo-atomic orbitals (LCPAOs) generated by

using a confinement scheme [69, 70]. The orbitals are specified by Zn6.0-s2p2d2,

O5.0-s2p2d1, and H5.0-s2p1: for example, in the case of Zn atom, Zn6.0-s2p2d2

means that the cutoff radius is 6.0 bohr in the confinement scheme [69, 70], and
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two primitive orbitals for each of s, p, and d components are used. The SOC is

included in our fully-relativistic calculations and the spin textures in k-space are

calculated by using the k-space spin density matrix of the spinor wave functions

[74].

4.3 Results

4.3.1 Structural and electronic properties of ZnO (1010)

surface

Table 4.1: The atomic relaxation at the uppermost surface in the out-of-plane
(y) and in-plane (z) direction.

Methods δz(Zn) (Å) δy(Zn) (Å) δz(O) (Å) δy(O) (Å)

GGA (present work) -0.28 0.19 -0.035 -0.03
LDA (ref. [100]) -0.36 - -0.04 -
LDA (ref. [101]) -0.32 - -0.04 -

B3LYP (ref. [102]) -0.21 0.116 0.002 -0.024
LEED Exp. (ref. [99]) -0.45 - -0.05 -

Firstly, we employ DFT calculations to investigate the structural properties of ZnO

(1010) surface. Tabel 4.1 shows the calculated result of the atomic relaxation for

the top most surface. Calculations for a ZnO (1010) surface identified that the out-

of-plane relaxation of Zn and O atoms are δz(Zn) = −0.28 Å and δz(O) = −0.035

Å, respectively [Fig. 4.1(c)]. These values are slightly smaller than previous

experimental values of δz(Zn) = −0.45 Å and δz(O) = −0.05 Å [99], but are

in a good agreement with past calculations [-0.36 to -0.21 Å (δz(Zn)) and -0.04 Å

(δz(O))] [100–102]. On the other hand, the in-plane relaxations of Zn and O atoms,

δy(Zn) = 0.19 Å and δy(O) = −0.03 Å, respectively, are close to prior calculations

[δy(Zn) = 0.116 Å and δy(O) = −0.024 Å] [102].

Next, we study the elctronic properties of ZnO (1010) surface. We investigate

the electronic band structures of ZnO (1010) surface in the several high symmetry

points of the entire surface Brillouin zone [Fig. 4.2(a)]. As shown in Figure 4.2 (b),

the band structures show the normal insulator, where the band gap is observed in

the Γ point. We find that the calculated value of energy gap is 0.902 eV, which is

slightly larger than that of bulk system (0.814 eV). Another interesting feature of
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Figure 4.2: (a) Brillouin zone of bulk (black lines) and surface systems (blue
lines). (b) The band structure of ZnO (1010) surface (blue lines) projected to
those of the bulk system (black lines) are shown. (b) The calculated result of

the partial density of states projected onto the surface atoms.

the band structures is the appearence of the surface states. Here, we find occupied

surface states, which is observed in the energy range of -1.3 to -0.65 eV. At Γ

point, occupied surface states are located in the band gap, whereas unoccupied

state is resonant with the bulk conduction band bottom (CBB).

To clarify the atomic contribution of the surface-states bands, we performed calcu-

lation of the partial density of states (PDOS) projected onto the surface atoms. As

shown in Figure 4.2(c), we find that the occupied surface states are characetrized

by O-2p orbitals, which is consistent with the results of past calculations using a

local density approximation (LDA) [101]. Therefore, we clarified that the O-2p

dangling bond states plays an important role in the surface.
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Since the surface states are occupied, it is expected that p-type system is achieved

by introducing doping effect. Interestingly, several studies confirmed that non-

polar wurtzite ZnO film is favorable to produce the p-type systems[103, 104]. The

weak p-type conductivity in undoped non-polar film grown on m-plane and r-plane

sapphires is observed[104]. Furthermore, p-type conductivity of Na-doped ZnM-

gO/ZnO nonpolar heterostructures with a carrier concentration of about 3.5×1016

Cm−3 is achieved [103]. Therefore, the realization of the p-type wurtzite ZnO (

1010 ) surface is plausible.

4.3.2 The effect of spin-orbit interaction (SOI)

4.3.2.1 Band splitting and the spin textures

Since the surface states appear in the band structures, we expect that they are

strongly affected by the SOI. To confirmed this we performed fully relativistic

DFT calculation by employing the effect of SOI. Here, the effect of SOI is focused

on the occupied surface states in the highest valence band maximum (VBM) along

Y -Γ-X symmetry lines. As shown in Figure 4.3, we find that the spin-split bands

are observed in the VBM. In the highest occupied surface states, we find that the

band splitting is small in the Γ-Y direction, whereas it is subtantially large in the

Γ-X direction, indicating that the band splitting is strongly anisotropic.

We then study the spin textures of the spin-split surface states bands of the highest

VBM. We calculate the spin textures projected to the kx-ky plane in the surface

brillouin zone [Fig. 4.4 (a)]. We find that the spin textures of the surface states

show quasi-one dimensional orientation in the in-plane y direction [Fig. 4.4(a)].

These spin textures also have the out-of-plane z components [Fig. 4.4(b)]. These

quasi-one dimensional spin textures are expected to generate the pointing currents

in the direction which is perpendicular to the spin orientation, and induce strongly

enhanced spin relaxation time through the PSH mechanism [32]. In fact, a similiar

PSH has been predicted on the [110]-oriented zinc-blende QW having the out-of-

plane spin orientations [39].

Since our calculation of the spin textures are performed in the surface state bands,

we expect that these spin textures are strongly localized. To confirmed this, we

study the spatial distribution of spin textures projected to the each atoms in the
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Figure 4.3: Band structures near the VBM in the Y -Γ-X symmetry lines.
The insert shows the spin-split surface-state bands.

each bilayer. We evaluate bilayer dependent of the spin textures by calculating

the expected value of spin by using the relation:

⟨S⟩i,⃗k =
√

(Sx)2i,⃗k + (Sy)2i,⃗k + (Sz)2i,⃗k (4.4)

where i is the bilayer index and k⃗ is the wave vector defined as k =
√
kx

2 + ky
2.

As shown in Figure 4.5, it is revealed that the spin states are strongly localized

on the surface region, which is more than 80 percent distributed on the first two

bilayers. We find that the localized-spin surface-states mainly originates from the

contribution of the O atoms, which is consistent with the previous analyses of the

PDOS, where the O-2p dangling bond states play an important role.

4.3.2.2 Group theoretical analyses

To clarify the origin of the spin-split surface states band and spin textures, we

consider the SOI based on the group theory [105–108]. Figure 4.6 shows the top

and side views of the mirror symmetry projected to the slab model of the ZnO

(1010) surface. Here, we observed only one mirror symmetry M , which is located
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Figure 4.4: (a) The brillouin zone of bulk (black lines) and surface (blue lines)
systems. (b) The spin textures of the surface state at VBM. The band energy
of the spin textures is 1 meV below the highest energy of the occupied surface
state. The arrows represent the spin directions projected to the kx-ky plane.

(b) Relationships between rotation angle (φk) and spin components.

on the y− z plane. Due this mirror symmetry M , the ZnO (1010) surface belongs

to the symmetry point group Cs. In this case, the mirror reflection operation M

transforms (x, y, z) to (−x, y, z). This leads to the fact that the polar (kx, ky, kz)

and axial (σx, σy, σz) vectors can be transformed into the new polar and axial

vectors, respectively, as given in Tabel 4.2.

The SOI Hamiltonian can be constructed by using all of the possible product

between axial and polar vectors. Considering the fact that the SOI Hamiltonian

is totally symmetric in the Cs symmetry and including the first-order terms over

the wave vectors, the SOI can be expressed by an effective Hamiltonian,
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Figure 4.5: Expected values of spin projected to the atoms in each bilayer.
The calculations are performed for the spin textures of surface states in Fig.

4.4. The top surface is represented by N=1.

Figure 4.6: Mirror symmetry of the surface, which is seen from the top and
side views. Only one mirror symmetry (y − z plane) is observed in The ZnO

(1010) surface.
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Table 4.2: Transformation of the polar (kx, ky, kz) and axial vector (σx, σy,
σz) in the symmetry point group Cs.

(x, y, z) (−x, y, z)
kx -kx
ky ky
kz kz
σx σx
σy -σy
σz -σz

HSOI = α1kxσz + α2kxσy + α3kyσx (4.5)

where kx and ky are the wave vectors in the x and y directions, respectively, σx, σy,

and σz are Pauli matrixes, and α1, α2, and α3 are coupling constants called as the

spin-orbit strength. In this expression, α1 is characterized by the in-plane electric

field Ey generated by the in-plane electric polarization ∆Py, which is induced by

the polarity of the present system. On the other hand, α2 and α3 are characterized

by the out-of-plane electric field Ez, which originates from the out-of-plane electric

polarization ∆Pz induced by the surface effect [see Figure 4.6].

In the case of a bulk system oriented on the [1010] direction, the out-of-plane

electric field Ez vanishes. Consequently, in the kx − ky plane, both α2 and α3

are zero. This leads to a case in which only the first term in the HSOI equation

remains. To confirmed this, we performed fully relativistic calculation of the bulk

system oriented on the [1010] direction [Figure 4.7 (a)]. Here, we calculate the

band structures along X − Γ − Y direction [Figure 4.7 (b)]. We find that that

the band splitting is observed in the Γ-X direction, but it is degenerated in the

Γ-Y direction [Fig. 4.7(c)]. We also performed the spin textures calculation of

the spin-split bands and find that the spin textures show fully out-of-plane spin

orientation in the z direction [Fig. 4.8]. These calculated results of the band

splitting and the spin textures are consistent with the simplified Hamiltonian.

In surface states, on the other hand, a band split is introduced in the Γ-Y direction

due to the third term in HSOI equation [Fig. 4.3]. Furthermore, as a result of

the second term in this equation, a tilting of the spin textures in the in-plane

y direction is induced [Fig. 4.4]. It can therefore be concluded that the above
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Figure 4.7: (a) Crystal structure (top and side views) of the bulk system
oriented on the [1010] direction. (b) Brillouin zone of the bulk system oriented
on the [1010] direction. (c) The spin-split band at the valence band maximum
(VBM) in the case of bulk system. The insert shows the band splitting of the

highest VBM.

spin-orbit Hamiltonian of the surface state also matches well with the calculated

results, i.e., the band split in the Γ-Y direction and the tilt of the spin textures.

4.3.2.3 Electric polarization analyses

Since HSOI is strongly affected by the electric field as mentioned above, the origin

of the spin textures can be further clarified by studying the electric polarization

[94]. On the basis that the spin-split surface state is strongly localized in the first

two-bilayers [Fig. 4.5], the strong electric polarization is expected to occure in

these bilayer. To clarify this, the layer-dependence of the electric polarization was

calculated using a point charge model (PCM) for Zn2+ and O2− ions in the bilayers

to evaluate the polarization difference:
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Figure 4.8: (a) Spin textures of the the spin-split band at the valence band
top in the case of bulk system. (b) Relationships between rotation angle (φk)

and spin components.

∆P = P(c/a, u)−P(c/a, uideal). (4.6)

Here, c/a and u are the lattice constant ratio and internal parameter for a given

optimized structure, respectively, and uideal = 0.375. As shown in Fig. 4.9(a), this

reveals that the strongest electric polarization is identified near the first bilayer.

Table 4.3: The calculated value of the band gap and energy position of the
Zn-d orbitals compared with those of previous calculation and experimental

results.

Parameter surface system bulk system

∆Py (C/m2) -0.081 -0.027
∆Pz (C/m2) 0.077 -

Electric polarization in the out-of-plane ∆Pz and in-plane ∆Py directions was cal-

culated to be 0.077 C/m2 and -0.081 C/m2, respectively [see table 4.3]. These

values indicate that the electric field in the out-of-plane Ez direction is compa-

rable to that in the in-plane Ey direction, which would induce a tilting of the

spin orientation [Fig. 4.9(b)]. However, only the in-plane electric polarization is

observed in the case of bulk system [∆Py−bulk = −0.0271 C/m2]. This leads to the

fact that the in-plane elctric field Ey is generated, but induces a spin orientation
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Figure 4.9: (a) Calculated data of the in-plane and out-of-plane electric polar-
izations ( ∆Py, ∆Pz ) in each bilayers. The electric polarizations are calculated
by using the PCM. Schematic view of the spin textures and electric fields for

the case of the surface (c) and bulk systems (d).

with a fully out-of-plane z-direction [Fig. 4.9(c)]. This would confirm that the

spin textures in Fig. 4.4 are consistent with the PCM results.

4.3.2.4 Discussion

Recently, PSH that induces a greatly enhanced spin relaxation time has been

extensively studied [32–39], with our calculations indicating that this is in fact

achieved using the ZnO (1010) surface. Since the spin textures in the calculated

results show a quasi-one-dimensional orientation, a magnetic field is induced in

a direction parallel to spin orientation. This inhibits the precession of the spins,

thereby increasing the spin relaxation time. A similar mechanism behind long
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spin relaxation times has been reported in [110]-oriented zinc-blende QWs [109–

111], suggesting that the ZnO (1010) surface could provide an efficient spintronics

device.

Table 4.4: Calculated result of the spin-orbit strenght (αPSH) and wave length
(λPSH) of PSH compared with various zinc-blende quantum well structures.

Parameters This work GaAs/AlGaAs QWs InAlAs/InGaAs QWs

αPSH (meVÅ) 34.78 (3.5 to 4.9) [34], 2.77 [38] 1.0 [36], 2.0 [37]
λPSH (µm) 0.19 (7.3 to 10) [34], 5.5 [38] -

For the spintronics devices applications, calculation of the spin-orbit strength αPSH

and wavelength λPSH of the PSH is cruscially important. Since our calculated re-

sult of the spin-split surfaces states bands and the spin textures shows the PSH

states in the Γ-X direction, calculation of αPSH and λPSH can be performed by

using the band dispersion in this direction. The schematic view of the parabolic

band splitting and the shifting Fermi surface is shown in Figure 4.10. The calcula-

tion of the spin-orbit strength αPSH can be carried out by evaluation the properties

of the band dispersion of the PSH [Fig. 4.10(a)], whereas the wavelength λPSH

can be calculated by using the shifting momentum Q of the two identical Fermi

surfaces [Fig. 4.10(b)].

From the properties of parabolic band dispersion [Fig. 4.10(a)], the values of αPSH

can be evaluated directly by using the relation

αPSH =
2ER

k0x
(4.7)

where k0x is the momentum off-set in the Γ-X direction and ER is the energy band

extremum with respect to the energy for which the band cross at kx = 0 in the

Γ-X direction.

Subsequently, the wavelength of the PSH λPSH can be calculated by using the

relation,

λPSH =
2π

Q
(4.8)

where Q is the magnitude values of the shifting wave vectorQ in the Fermi surfaces

[Fig. 4.10(b)].
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Figure 4.10: (a) Schematic view of the band dispersion along Γ-X direction.
The spin-orbit strength of the PSH can be evaluated directly from this band
dispersion. (b) Shifting of the two identical Fermi surfaces by the wave vector
Q. The wavelenght of the PSH is inversely proportional to the wave vector Q.

Tabel 4.4 shows the calculated result of the αPSH and λPSH . We found that

the value of αPSH is quite substantial (34.78 meVÅ) and much larger than what

has been observed in the PSH of various zinc-blende n-type QW structures of

GaAs/AlGaAs [(3.5 to 4.9 meVÅ) [34], (2.77 meVÅ) [38]] and InAlAs/InGaAs

[(1.0 meVÅ) [36], (2.0 meVÅ) [37]]. This large value of αPSH should ensure a

small wavelength of PSH (λPSH), which is important to the miniaturization of

spintronics devices. As it happens, the calculated value λPSH (0.19 µm) was in

fact one-order less than that observed in the direct mapping of PSH (7.3 to 10

µm) [34] and the resonant inelastic light-scattering measurement (5.5 µm) [38] of

GaAs/AlGaAs QWs.

4.4 Conclussion

We have systematically studied the effect of SOI on a ZnO (1010) surface through

first-principles DFT calculations. Here, we in the first time found that the SOI

leads to the novel system called as persisten spin helix (PSH), exhibiting a quasi-

one-dimensional orientation of the spin textures. Our finding of the PSH is ex-

pected to induce the strongly enhanced the spin relaxation time, which is impor-

tant to realize energy-saving spintronics devices. Furthermore, we revealed that
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the wavelength of this PSH is smaller than that observed on various zinc-blende

quantum well structures, suggesting that the present system enables for the minia-

turization of the spintronics devices.

In our study, we found that that PSH can be achieved by using a wurtzite ZnO

(1010) surface with in-plane electric polarization and mirror symmetry. We em-

phasized that the approach used the present calculations is not limited only for

ZnO wurtzite surfaces, but also can be generalized to a variety of SOI system with

in-plane electric polarization and mirror symmetry. Here, a special attention was

given to the other wurtzite system materials such as GaN and InN, where it is

expected that a similar PSH should be observed.

Finally, we concluded that the present system is suitable for future spintronics

devices applications.



Chapter 5

Summary

5.1 Conclussion

In this dissertation, the effect of SOI on the wurtzite ZnO has been studied by using

fully-relativistic DFT calculations. We investigate the spin textures to identify the

new physical properties induced by the SOI. Here, two different systems has been

studied, (i) the strained bulk system, and (ii) the surface system oriented on the

[1010] direction. In the following sections, we present the conclusion for these two

topics.

5.1.1 Rashba effect on strained ZnO

In the first study, we have investigated the effect of SOI on the strained bulk ZnO

by using first-principles DFT calculations. We found that strain controls the SOI

in ZnO, where the inversion Rashba spin rotations are observed between tensile

and compressive biaxial strain. We also found that the Rashba spin-orbit strength

can be effectively controlled by tuning the strain. Our finding of the inversion

Rashba rotation may give some hint for the application of the future spintronisc

devices.

According to our finding, the presently used calculation scheme is expected to

be useful tools to investigate the Rashba effect on the SOI system materials.

Here, a special attention is given to the system having large internal electric field

such as oxide interface system materials. Recently, the interface system such as

70
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MgZnO/ZnO were extensively studied [54]. Our study clarified that the effect of

strain on interfaces plays an important role in SOI.

5.1.2 Persistent spin helix on ZnO (1010) surface

In the second study, we have investigated the effect of SOI on ZnO (1010) surface.

Here, we in the first time found that the SOI leads to the novel system called as

persisten spin helix (PSH), exhibiting a quasi-one-dimensional orientation of the

spin textures. Our finding of the PSH is expected to induce the strongly enhanced

the spin relaxation time, which is important to realize energy-saving spintronics

devices. Furthermore, we revealed that the wavelength of this PSH is smaller than

that observed on various zinc-blende quantum well structures, suggesting that the

peresent system enables for the miniaturization of the spintronics devices.

In the present study, we found that that PSH can be induced by using a surface

system with in-plane electric polarization and mirror symmetry. We emphasized

that this approach is not only limited for ZnO wurtzite surfaces, but also can be

generalized to a variety of SOI system materials with in-plane electric polarization

and mirror symmetry. Here, a special attention is given to the other wurtzite

system materials such as GaN and InN, where it is expected that a similar PSH

should be observed.

Finally, we concluded that the present system is suitable for future spintronics

devices applications.

5.2 Future direction

The new physical properties induced by the SOI have been found in the strained

bulk and surface systems of wurtzite ZnO. However, it should be noted that both

systems have insulating phase. Recently, the new phases of ZnO (1010) surface has

been reported exhibiting the metallic phase, which is achieved at room temperature

by using hydrogen adsorption [112, 113]. Experimental observation of metallicity

on the hydrogeneted ZnO (1010) surface opens the new possibility to explore the

SOI on the metallic surface state, which is expected to induce new useful properties

for spintronics.
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Figure 5.1: (a) Crystal structure of hydrogeneted ZnO (1010 surface. (b) band
structure of hydrogeneted ZnO (1010) surface. (c) Density of states projected

to the surface atoms.

We have performed preliminary calculations on the hydrogeneted ZnO (1010) sur-

face [Figure 5.1(a)] using first-principles DFT calculations. As shown in Figure

5.1 (b), we revealed that the metallicity appear in the band structures, which

is consistent with the past experiment[112, 113]. By using the same calculation

scheme used in the present study, it is expected that the new physical properties

induced by SOI can be observed on the metallic surface states.
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