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Abstract

In this research, we study a 1-D hyperbolic-type problem with free bound-
ary. We consider a physical model that is the motion of a piece of tape being
peeled off from a surface. The graph of the solution shows the shape of the
tape, which displays contact angle dynamics at the free boundary (the lo-
cation of peeling). Therefore, the second derivative of the solution becomes
a delta function which imparts a slight difficulty. Under some assumptions,
this problem can be solved numerically by the fixed domain method. Al-
though, this method has high accuracy, it cannot be applied in some cases
such as a problem where the free boundary point appears or disappears.
Hence, other numerical methods are chosen for solving regularized problem,
i.e., the delta function is approximated by a smoothing function. The numer-
ical methods are: two types of finite difference methods, the finite element
method, and discrete Morse flow. In this paper, the error of the regularized
problem compared to the original problem is calculated. Since the choice of
the parameter for smoothing function is important for the accuracy, we pro-
pose a formula to approximate the optimal parameter in order to minimize
the error. This formula is verified by some experiments and we find that it
can approximate the optimal parameter. In addition, based on comparisons
between the numerical methods, we find that finite difference methods have
better performance than the other methods.
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Chapter 1

Introduction

In this study, we treat a physical model which can be considered as peeling
tape attached to a surface. Imagine that there is a piece of tape pasted to
a surface and it is peeled off from its edge smoothly. This model can be
described as a stationary point of the following action integral in a suitable
function space:

J(u) =

∫ τ

0

∫
Ω

(
1

2
|∇u|2 −

1

2
(ut)

2χu>0 +
Q2

2
χu>0)dxdt, (1.1)

where u is a scalar function (0, τ)×Ω 7→ R which represents the shape of the
tape, Q is a given positive constant, Ω is a domain in Rd(d ≥ 1), and χu>0

is a characteristic function of the set {(x, t) : u(x, t) > 0}. The following
Euler-Lagrange equation can be derived from functional (1.1) under certain
assumptions [2]:{

utt = ∆u in (Ω× (0, τ)) ∩ {u > 0},
|∇u|2 − (ut)

2 = Q2 on (Ω× (0, τ)) ∩ ∂{u > 0}.
(1.2)

When d = 1, under certain conditions, [4] showed that the existence and the
uniqueness of its solutions are obtained locally.

On the other hand, the following equation is equivalent to (1.2) (see
Subsection 2.1):

χ{u>0}utt = ∆u−
Q2

|Du|
Hdb∂{u > 0} in Ω× (0, τ), (1.3)
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whereHd is d-dimensional Hausdroff measure and Du =

(
∂u

∂x1

, . . .
∂u

∂xd
,
∂u

∂t

)
.

On the other hand, we consider the following equation as the approximation
of problem (1.3)

χ{u>0}utt = ∆u−
Q2

2
(χε)′(u) in Ω× (0, τ), (1.4)

where χε(u) is an appropriate smoothing function. Equation (1.4) can be
used to model not only the simple case of peeling tape but also more advanced
free boundary problems such as water droplet attached to a plane, bubble
touched the water surface, and other phenomena [3] [5] [7] [8] with constraints
applied.

The motivation behind this research is to solve the original problem (1.3)
yet it is difficult. Fortunately, [2] introduced the fixed domain method which
solved problem (1.2) in 1D which is equivalent to the original problem (1.3)
if the solution is non-negative. Fixed domain method has high accuracy.
However, it is difficult to handle such model where the free boundary point
appears or disappears. Therefore, we investigate another numerical methods.

We choose a few numerical methods namely:

1. explicit method 1 (spatial central difference and time forward differ-
ence)

2. explicit method 2 (spatial and time central difference)

3. finite element method (FEM)

4. discrete Morse flow (DMF).

We choose explicit method 1 and 2 as they are standard methods. Here,
explicit method 2 is a standard finite difference method which can be used
to analyze the error of the solution of the regularized problem. We choose
FEM as it is widely used to approximate solution of hyperbolic-type prob-
lem. DMF is chosen since it is used in many hyperbolic-type problem with
constraints. These methods are used to solve the regularized problem (1.4),
i.e., the measure is approximated by using smoothed characteristic function.
Since our motivation is to solve the original problem, we need to calculate
the error of the regularized problem and this becomes the main purpose of
this study (see Section 5.2).
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The second purpose is to investigate how to obtain small error by the
selection of the parameter of smoothed characteristic function (ε). Here, we
proposed a formula to approximate the appropriate choice of ε (see Section
5.3). The third purpose is to investigate the different kinds of smoothed
characteristic function. We consider two types of smoothed characteristic
function and compare their influences to the accuracy of the solution in order
to get the suitable one (see Section 5.4). The fourth purpose is to compare
the numerical methods in order to get the suitable method (see Section 5.5).
The last purpose is to implement more general case such as a model in which
the free boundary points attached to a surface are more than one and they
appear or vanish during simulation time (see Section 5.6).

In this dissertation, we organize our chapters as: chapter 2 explains the
physical model of peeling tape, chapter 3 gives the details of fixed domain
method, chapter 4 presents the numerical methods in details, chapter 5 dis-
cusses the results of our experiments, and chapter 6 gives the conclusion.
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Chapter 2

Physical model of peeling tape
problem

This section explains the physical model of peeling tape on a plane. Suppose
there is a thin film adhered to a plane and consider this film as our tape. It
is peeled off from the plane and starts to expand along the sticked tape. The
region where the tape is peeled or adhered is considered as a domain Ω. We
assume that the tape has the same tension γ at any places. The shape of the
tape is represented by a function u : Ω → R. The value of u is obtained by
the stationary point of this model’s energy.

There are two potential energies in this model

E =

∫
{u>0}

γ(
√

1 + |∇u|2 − 1)dx+

∫
{u>0}

(γ −
√
γ2 + Q̃2)dx.

Using Taylor expansion we can get

Ẽ =

∫
{u>0}

γ

2
|∇u|2dx+

∫
{u>0}

Q2

2
dx,

where Q2 = Q̃2/γ. Another energy of this model is kinetic energy∫
{u>0}

ρ

2
u2
tdx,

where ρ is the density of the tape per unit area. Therefore the Lagrangian
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of the tape is

L(u, t) =

∫
Ω

(
γ

2
|∇u|2 −

ρ

2
u2
tχu>0 +

Q2

2
χu>0

)
dx. (2.1)

The equation of tape evolution within time interval [0, τ ] is

J(u) =

∫ τ

0

∫
Ω

(
γ

2
|∇u|2 −

ρ

2
u2
tχu>0 +

Q2

2
χu>0

)
dxdt. (2.2)

We choose γ = ρ = 1.
From this energy function, the problem can be derived into Euler-Lagrange

equation. Assume that the stationary point of equation (2.2) is sufficiently
smooth. Let u be the stationary point of (2.2) and u ∈ C0(Ω × (0, τ) ∩
W 1,2(Ω, τ)), then u satisfies

∆u− utt = 0 in {u > 0}. (2.3)

Moreover, if u ∈ C2(Ω× (0, τ)∩ {u > 0}) and ∂{u > 0} is in C−1, then u on
the boundary satisfies

|∇u|2 − u2
t = Q2 on ∂{u > 0}. (2.4)

The proofs of (2.3) and (2.4) can be seen in [2].
The proof of (2.3) is the first variation of (2.2) with test function ϕ ∈

C∞0 (Ω× (0, τ) ∩ {u > 0})∫ t

0

∫
Ω

(∇u∇ϕ− utϕt)dxdt = 0,

that is (2.3). By inner variation, we can obtain (2.4). Now, we consider
u ∈ C2(Ω × (0, τ) ∩ {u > 0} and it is assumed that the free boundary
∂{u > 0} belongs to C1. For any η ∈ C∞0 (Ω × (0, τ); Rn × R) and 0 <
ε < dist(spt η, ∂(Ω × (0, τ))) such that for small ε it follows the mapping
ψε : Ω × (0, τ) → Ω × (0, τ) and we define ψ(z) = z + εη(z). Here z is
a variable of Ω × R, ie. zj = xj(j = 1, . . . , n) and zn+1 = t. Now, let
uε(z) = u ◦ ψ−1(z). Since u is stationary point of J it is

d

dε
J(uε)|ε=0 = 0.
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On the other hand, we calculate J as

J(uε) = −
∫

Ω×(0,τ)∩{u>0}

{
〈∇hu(Dψε)

−1,∇hu(Dψε)
−1〉|det

}
Dψε|dz.

Here, ∇zf = (fz1 , . . . , fzn , fzn−1) and ∇hf = (fz1 , . . . , fzn ,−fzn−1). 〈., .〉 is
inner product of Rn+1 and Dψε is Jaccobian matrix of ψε. Therefore,

J(uε)− J(u) =ε

∫
Ω×(0,τ)∩{u>0}

{
〈∇hu,∇zu〉+Q2

}
∇z.ηdz

− ε
∫

Ω× (0, τ) ∩ {u > 0}2∇huDη∇zudz + o(ε).

By the following equation

∇z. (η〈∇hu,∇zu〉 − 2〈η,∇zu〉∇hu)

= ∇z.η〈∇hu,∇zu〉 − 2∇huDη∇zu− 2η〈η,∇zu〉(∆u− utt),

we get

d

dε
J(uε)|ε=0 =

∫
Ω×(0,τ)∩{u>0}

∇z.
(
η〈∇hu,∇zu〉 − 2〈η,∇zu〉∇hu+Q2η

)
dz

=

∫
Ω×(0,τ)∩∂{u>0}

{(〈∇hu,∇zu〉η − 2〈η,∇zu〉∇hu).ν

+Q2〈η, ν〉}dHn.

Here, Hn is n-dimensional Hausdroff measure. In addition, ν is outward unit
normal vector with respect to Ω× (0× τ)∩ {u > 0}. Since, ∇zu = −ν|∇zu|
then,

d

dε
J(uε)|ε=0 = −

∫
Ω×(0,τ)∩∂{u>0}

(〈∇hu,∇zu〉 −Q2)〈η, ν〉dHn.

The left hand side is zero hence the free boundary condition (2.4) is obtained.
Now we consider an approximation of (2.2) where the characteristic func-

tion is approximated using a smoothed characteristic function. Firstly, we
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define a smooth function called βε(s). βε(s) ∈ C2(R), βε(s) ≥ 0, and
satisfies

βε(s)


= 0 s ≤ 0,

≤ 2/ε 0 < s < ε and |β′ε(s)| ≤
C

ε2
,

= 0 ε ≤ s.

It is also that
∫ ε

0
βεds = 1 and we define Bε

Bε(u) =

∫ u

0

βε(s)ds−→
ε→0

{
1 in {u > 0},
0 in Ω× (0, τ)\{u > 0},

which is the smoothing characteristic function of χu>0.
We represent energy equation (2.2)

Jε(u) =

∫ τ

0

∫
Ω

(
1

2
|∇u|2 − χu>0

1

2
u2
t +

Q2

2
Bε(u)

)
dxdt. (2.5)

By taking the first variation of (2.5), our problem becomes
∆u− χu>0utt = −

Q2

2
βε(u) in Ω× (0, τ),

u(x, 0) = u0(≥ 0)

ut = v0

u(x, t)|∂Ω = f(x, t) with f(x, 0) = u0 on ∂Ω.

(2.6)

We call this as the regularized problem.

2.1 Derivation of the original problem

In this subsection we show the derivation of (1.3) based on [6]. Let QT :=
Ω × (0, τ). We assume u ∈ H2({u > 0}) ∩ C(QT ) is solution of (1.2) and
satisfies u ≥ 0 and {u > 0} ⊂ C0,1. By definition,

(utt −∆u)(ϕ) = −
∫
QT

{utϕt −∇u · ∇ϕ}dxdt, (2.7)

here utt −∆u is a measure. Since u ≥ 0,
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(
χ{u>0}utt

)
(E) =

∫
E∩{u>0}

utt

= utt

(
E ∩ {u > 0}

)
= utt(E),

(2.8)

where E ⊂ QT . Thus χ{u>0}utt = utt is in the measure sense. Then, by using
above assumptions, we can calculate

(
χ{u>0}utt −∆u

)
(ϕ) = −

∫
QT

{utϕt −∇u · ∇ϕ}dxdt

=

∫
{u>0}

(utt −∆u)ϕdxdt−
∫
∂{u>0}

|∇u|2 − (ut)
2

|Du|
ϕdHm

= −
∫
∂{u>0}

Q2

|Du|
ϕdHm

,

(2.9)

directly we obtain (1.3).
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Chapter 3

Fixed domain method

In this section we explain fixed domain method for peeling tape model. Con-
sider problem (1.2){

uxx − utt = 0 in (Ω× (0, T )) ∩ {u > 0},
(ux)

2 − (ut)
2 = Q2 on (Ω× (0, T )) ∩ ∂{u > 0}.

(3.1)

with initial conditions

u(x, 0) =

{
g(x) in [0, l0],

0 otherwise,

ut(x, 0) =

{
h(x) in [0, l0],

0 otherwise,

and boundary condition

u(0, t) = f(t) t ∈ (0, T ),

where g(x) ∈ C2([0, l0]), h(x) ∈ C1([0, l0]), and f(t) ∈ C2(R),
f(t) > 0 and f ′(t) ≥ 0 t ∈ (0, T ),

g(x) > 0 on [0, l0),

g(0) = f(0), g(l0) = 0, and h(0) = f ′(0).

9



3.1 Variable change

Now, we use fixed domain method to develop the solution during t = [0, T ].
Let y be

y =
2x

l(t)
− 1 x ∈ (0, l(t)),

where l(t) = sup{x, u(x, t) > 0} is the position of the free boundary point.
We define function ũ = ũ(y, t) by

ũ(y, t) = u(x, t) (y, t) ∈ (−1, 1)× (0, T ) and (x, t) ∈ (0, l0)× (0, T ).

By changing the variable, the first equation becomes

0 = uxx(x, t)− utt(x, t)
= ũxx(y, t)− ũtt(y, t)

= ũyt(y, t)2(y + 1)
l′(t)

l(t)
− ũyy(y, t)

(y + 1)2l′(t)2

l(t)2
− utt

+ ũy(y, t)(y + 1)
l(t)l′′(t)− 2l′(t)2

l(t)2
+ ũyy(y, t)

4

l(t)2
.

(3.2)

The second equation turns to

Q2 = ux(l(t), t)
2 − ut(l(t), t)2

= ũx(1, t)
2 − ũt(1, t)2

= ũy(y, t)
2

4

l(t)2
− ũy(y, t)2

(
−

4l′(t)2

l(t)2

)
− ũt(y, t)

l′(t) =

√√√√1−

(
Ql(t)

2ũy(1, t)

)2

.

(3.3)
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From (3.2) and (3.3) we have

ũyy(y, t)

l(t)2
(4− (y + 1)2l′(t)2) + ũyt(y, t)2(y + 1)

l′(t)

l(t)

+ũy(y, t)(y + 1)
l(t)l′′(t)− 2l′(t)2

l(t)2
− utt = 0

l′(t) =

√√√√1−

(
Ql(t)

2ũy(1, t)

)2

.

(3.4)

The initial conditions become

ũ(y, 0) = u(x, 0) = u

(
l0

2
(y + 1), 0

)
= g

(
l0

2
(y + 1)

)
y ∈ [−1, 1],

ũt(y, 0) = ũs(y, 0)− ũy(y, 0)
(y + 1)l′(0)

l0
,

ũs(y, 0) =
l′(0)

2
(y + 1)g′

(
l0

2
(y + 1)

)
+ e

(
l0

2
(y + 1)

)
.

(3.5)
Boundary conditions turn to{

ũ(−1, t) = f(t), ũ(1, t) = 0, ũt(−1, t) = f ′(t), ũt(1, t) = 0. (3.6)

Second derivative of l can be represented by l and l′

l′(t)2 = 1−

(
Ql(t)

2ũy(1, t)

)2

t ∈ (0, T ),

d

dt
l′(t)2 = 2l′(t)l′′(t) = −

Q2l(t)(l′(t)ũy(1, t)− l(t)ũyt(1, t))
2ũy(1, t)3

,

l′′(t) =
Q2l(t)

4ũy(1, t)3

(
l(t)

l′(t)
ũyt(1, t)− ũy(1, t)

) (3.7)

3.2 Discretization and algorithm

Now, we divide [-1,1] into N equal intervals. The length of each partition is
∆y = 2/N . Then we approximate equation (3.4) as follows

11





d

dt
ui(t) = vi(t) i = 1, 2, . . . , N − 1,

d

dt
vi(t) =

(4− (yi + 1)2l′(t)2)ui+1(t)− 2ui(t) + ui(t)

l(t)2∆y2

+ 2(yi + 1)
l′(t)(vi+1(t)− vi−1(t))

2l(t)∆y

− (yi + 1)
(l(t)l′′(t)− 2l′(t)2)ui+1(t)− ui−1(t)

2l(t)2∆y

i = 1, 2, . . . , N − 1,

l′(t) =

√√√√1−

(
Ql(t)

2uNy (t)

)2

(3.8)

with initial conditions



ui(0) = g

(
l0

2
(yi + 1)

)
i = 1, 2, . . . , N − 1,

vi(0) =
l′(0)

2
(yi + 1)g′

(
l0

2
(yi + 1)

)
+ e

(
l0

2
(yi + 1)

)
i = 1, 2, . . . , N − 1,

l′(0) = l0,

(3.9)
and boundary conditions 

u0(t) = f(t),

uN(t) = 0,

v0(t) = f ′(t),

vN(t) = 0,

(3.10)

where
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l′′(t) =
Q2l(t)

4(uNy (t))3

(
l(t)

l′(t)
vNy (t)− uNy (t)

)
,

uNy (t) =
3uN(t)− 4uN−1(t) + uN−2(t)

2∆y
,

vNy (t) =
3vN(t)− 4vN−1(t) + vN−2(t)

2∆y
.

(3.11)

We solve equation (3.8) using 4th order Runge Kutta. The algorithm is
presented below:

1. given initial conditions ui(0), vi(0), and l(0).

2. for time t = 0,∆t, . . . , τ do

(a) set temporary variable ũi = ui(t), ṽi = vi(t), and l̃ = l(t)

(b) for n = 1, 2, 3, 4

i. h = ∆t, if n = (1, 4) or h = ∆t/2, if n = (2, 3)

ii. for i = 1, . . . , N

A. Ki
n = vi(t)h

B. ui(t) = ũi +Ki
n

C. H i
n =

d

dt
vi(t)h

D. vi(t) = ṽi +H i
n

iii. Ln = l′(t)h

iv. l(t) = (l̃)i + Ln

v. u0(t) = f(t+ h)

vi. v0(t) = f ′(t+ h)

(c) for i = 1, . . . , N

i. ui(t+ ∆t) = ũi + 1/6(Ki
1 + 2Ki

2 + 2Ki
3 +Ki

4)

ii. vi(t+ ∆t) = ṽi + 1/6(H i
1 + 2H i

2 + 2H i
3 +H i

4)

(d) l(t+ ∆t) = l̃i + 1/6(Li1 + 2Li2 + 2Li3 + Li4)

(e) u0(t+ ∆t) = f(t+ ∆t)

(f) v0(t+ ∆t) = f ′(t+ ∆t)

13



Chapter 4

Numerical methods

4.1 Explicit method 1 (spatial central differ-

ence + time forward difference)

We represent equation (1.4) using explicit method with uxx approximated by
central differencing. Suppose ut = v then

d

dt
ui(t) = vi(t), (4.1)
d

dt
vi(t) =

ui−1(t)− 2ui(t) + ui+1(t)

(∆x)2
−
Q2

2
(χε)′(ui(t)), if χ{u>0}(xi, t) = 1,

vi(t) = 0, if χ{u>0}(xi, t) = 0,

(4.2)

where i = 1, . . . , N − 1 and

χ{u>0}(xi, t) =

{
1 if max(ui−1ui, ui+1) > 0,

0 otherwise.

The initial and boundary conditions are u(0, t) = f(t), u(x, 0) = g(x), ut(0, t) =
f ′(t), and ut(x, 0) = h(x). We solve (4.1)-(4.2) using the 4th order Runge-
Kutta. The algorithm is presented below

1. given initial condition ui(0) and vi(0).

2. for time t = 0,∆t, . . . , τ do
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(a) set temporary variable ũi = ui(t) and ṽi = vi(t)

(b) for n = 1, 2, 3, 4

i. h = ∆t, if n = (1, 4) or h = ∆t/2, if n = (2, 3)

ii. for i = 1, . . . , N − 1

A. Ki
n = vi(t)h

B. ui(t) = ũi +Ki
n

C. H i
n =

d

dt
vi(t)h

D. if (max(ui−1, ui, ui+1) > 0) then vi(t) = ṽi +H i
n

E. else vi(t) = 0

iii. u0(t) = f(t+ h)

iv. v0(t) = f ′(t+ h)

(c) for i = 1, . . . , N − 1

i. ui(t+ ∆t) = ũi + 1/6(Ki
1 + 2Ki

2 + 2Ki
3 +Ki

4)

ii. vi(t+ ∆t) = ṽi + 1/6(H i
1 + 2H i

2 + 2H i
3 +H i

4)

(d) u0(t+ ∆t) = f(t+ ∆t)

(e) v0(t+ ∆t) = f ′(t+ ∆t)

4.2 Explicit method 2 (spatial and time cen-

tral difference)

This method utilizes a standard finite difference discretization. We approxi-
mate uxx and utt from equation (1.4) using centered differencing. Here, [0, τ ]
is divided by M equal intervals, 0 = t0 < t1 < . . . < tM = τ .

χ{u>0}(xi, tk)
uk+1
i − 2uki + uk−1

i

(∆t)2
=
uki+1 − 2uki + uki−1

(∆x)2
−
Q2

2
(χε)′(uki ),

i = 1, . . . , N − 1, and k = 1, . . . ,M − 1,

(4.3)

where uki = u(xi, tk). Then we calculate the solutions using the following
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uk+1
i = 2uki − uk−1

i + (∆t)2

(
uki+1 − 2uki + uki−1

(∆x)2
−
Q2

2
(χε)′(uki )

)
,

if χ{u>0}(xi, tk) = 1,

uk+1
i = 0,

if χ{u>0}(xi, tk) = 0.

(4.4)

The boundary conditions are u(0, t) = f(t), u(x, 0) = g(x), and ut(x, 0) =
h(x).

4.3 Finite Element Method

To implement finite element method, we multiply equation (1.4) by any test
function ξ ∈ C∞0 (Ω) and integrate over the space domain∫

Ω

(χ{u>0}utt − uxx +
Q2

2
(χε)′(u))ξdx = 0.

By integration by parts we obtain∫
Ω

(χ{u>0}uttξ + uxξx +
Q2

2
(χε)′(u)ξ)dx = 0, ∀ξ ∈ C∞0 (Ω). (4.5)

We divide Ω into N intervals and find the approximate solution of (4.5) in
the set

Vt = {u ∈ C0(Ω̄) : u|∂Ω = f(·, t), u is linear on every [xk−1, xk], k = 1, . . . , N}

for each time t ∈ (0, τ), where f : Ω̄ × [0, τ ] is a given function. Then the
approximate solution can be described by u(x, t) =

∑N
i=0 ai(t)ϕi(x) , where

ϕi(x) =

(
1− |x− xi|

∆x

)
+

, i = 0, . . . , N.

Here the symbol ( )+ implies ( f(x) )+ = max(f(x), 0). We substitute the
approximate solution u to (4.5)∫

Ω

(
χ{u>0}

N∑
i=0

a′′iϕiξ +
N∑
i=0

aiϕ
′
iξ
′ +

Q2

2
(χε)′

N∑
i=0

aiϕiξ

)
dx = r, ∀ξ ∈ C∞0 (Ω),

(4.6)
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where r is the residual which comes from the approximated representation of
function u. We choose ϕj, j = 1, . . . , N − 1, as our test function and rewrite
(4.6) as follows:

N∑
i=0

[
a′′i

∫
Ω

χ{u>0}ϕiϕjdx

]
+

N∑
i=0

[
ai

∫
Ω

ϕ′iϕ
′
jdx

]
+
Q2

2

∫
Ω

(χε)′
N∑
i=0

aiϕiϕjdx = 0,

j = 1,2,. . . , N-1.

This can be written in vector form

Ba′′ + Aa+
Q2

2
C(a) = p,

where a is the column vector with entries a1, . . . , aN−1,

A =
1

∆x


2 −1 0 0 0 · · · 0 0
−1 2 −1 0 0 · · · 0 0
0 −1 2 −1 0 · · · 0 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · −1 2


and

B =
∆x

6


4χ̃(a1) χ̃(a1) 0 0 0 · · · 0 0
χ̃(a2) 4χ̃(a2) χ̃(a2) 0 0 · · · 0 0

0 χ̃(a3) 4χ̃(a3) χ̃(a3) 0 · · · 0 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · χ̃(aN−1) 4χ̃(aN−1)

 .
Here, χ̃(ai) = 1, whenever max(ai−1, ai, ai+1) is greater than zero and χ̃(ai) =
0 otherwise. Here, C is a column vector whose elements are determined by
a and p is determined by boundary values.

We approximate a′′ using central difference with aki = ai(tk) and ak =
(ak1, . . . , a

k
n−1):

B
ak+1 − 2ak + ak−1

(∆t)2
+ Aak +

Q2

2
C(ak) = p.

The final form is

Bak+1 = 2Bak −Bak−1 − (∆t)2

(
Aak +

Q2

2
C(ak)− p

)
. (4.7)
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We define ak+1
i = 0, if bii = 0 where bii is the diagonal element of matrix B at

ith row. In general, matrix B is non-symmetric. We can change the position
of the known value of ak+1

i to the right hand side and adjust the matrix B
to be a symmetric matrix. Now, we approximate the solution ak+1 of (4.7)
by conjugate gradient method. The algorithm is written below

1. Given initial conditions a0
0, a

1
0, and a2

0 which are column matrix. We
also choose ω as a small number.

2. For time [n∆t, τ ], n = 2, . . . ,M do the following

(a) Set flag = 0 and k = 0

(b) while flag = 0

i. calculate column matrix b = 2Ban−1
k −Ban−2

k − (∆t)2(
Aan−1

k +
Q2

2
C(an−1

k ) + p

)
ii. calculate column matrix o = Bank

iii. calculate decent gradient ∇fk(ank) = b − o, if k = 0, or
∇f(ank) = ∇f(ank) + βk−1∇f(ank−1), if k > 0,

where βk−1 =
−∇f(ank)TB∇f(ank−1)

∇f(ank−1)TB∇f(ank−1)

iv. if |∇f(ank)| < ω set flag = 1

v. calculate the stepsize α =
∇f(ank).∇f(ank)

∇f(ank)B∇f(ank)

vi. ank+1 = an + α∇f(ank) and set k = k + 1;

(c) an+1
0 = ank+1. an+1

0 is the solution at t = (n+ 1)∆t

4.4 Discrete Morse Flow

Let us consider problem (1.4) with u0 as the initial value, v0 as the initial
velocity and u1 = u0 + ∆tv0. Now, we determine the time step ∆t = τ/M ,
where M > 0 is a natural number. Then, the approximate solution for the
next time t = k∆t, k = 2, 3, . . . , M is defined by the minimizer uk ∈ K of

Jk(u) =

∫
Ω

|u− 2uk−1 + uk−2|2

2(∆t)2
χ{u>0}dx+

1

2

∫
Ω

|∇u|2dx+
Q2

2

∫
Ω

χε(u)dx,
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where uj(x) = u(x, tj), tj = j∆t (j = k−2, k−1) andK = {u ∈W1,2(Ω);u =
g on ∂Ω}.

We approximate uk as a piecewise linear function, so that the functional’s
values are approximated:

Jk(u) ≈
N∑
i=1

∫ xi

xi−1

(
|u− 2uk−1 + uk−2|2

2(∆t)2
χ{u>0} +

1

2
|∇u|2 +

Q2

2
χε(u)

)
dx.

(4.8)
We calculate the first term as follows:∫ xi

xi−1

|u− 2uk−1 + uk−2|2

2(∆t)2
χ{u>0}dx

=



(v2 + w2 + vw)
∆x

6(∆t)2
ui−1 > 0, ui > 0,

(w2 + (v2)2 + wv2)
xc − xi
6(∆t)2

ui−1 ≤ 0, ui > 0,

((w2)2 + v2 + w2v)
xc − xi−1

6(∆t)2
ui−1 > 0, ui ≤ 0,

0 otherwise,

where v = |ui−1 − 2uk−1
i−1 + uk−2

i−1 |, w = |ui − 2uk−1
i + uk−2

i |, ui−1 = u(xi−1, t),

ui = u(xi, t), v2 = v− w − v
ui − ui−1

ui−1, w2 = v2 and xc = xi−1−
∆x

ui − ui−1

ui−1.

The second term is

1

2

∫ xi

xi−1

|∇ui|2dx =
(ui+1 − ui)2

2∆x
,
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and for the third term we have∫ xi

xi−1

χε(u)dx

=



∆x umax ≥ ε, umin ≥ ε,

1− ∆x

umin − umax

(
−umin(umin − ε)

2ε
− (ε− umax)

)
umax ≥ ε, 0 ≤ umin < ε,

umax∆x

2(umax − umin)
umax ≥ ε, umin ≤ 0,

∆x

2ε
(umax + umin) 0 ≤ umax < ε, 0 ≤ umin < ε,

u2
max∆x

2ε(umax − umin)
0 ≤ umax < ε, umin ≤ 0,

0 otherwise,

where umax = max(ui−1, ui) and umin = min(ui−1, ui). We find the minimizer
of (4.8) using a non-linear conjugate gradient method. The algorithm is as
below

1. Given initial condition u0, u1, and u2 as our initial guess. We choose
ω as a small number.

2. For time [n∆t, τ ], n = 2, . . . ,M do the following

(a) a0 = un

(b) Set flag = 0 and k = 0

(c) while flag = 0

i. If k = 0 compute gradient gk = ∇Jn(ak)

ii. Find αk = arg min
α

Jn(ak − αgk).

iii. ak+1 = ak − αkgk
iv. set k = k + 1

v. apply Polak-Ribiere formula to compute βk

βk =
∇Jn(ak).(∇Jn(ak)−∇Jn(ak−1))

|∇Jn(ak−1)|2

vi. Compute conjugate direction gk = βk∇Jn(ak−1)−∇Jn(ak)

vii. if |∇Jn(ak)| < ω then flag = 1

(d) un = ak
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Chapter 5

Numerical results

In this chapter, we explain our experiments and results. There are two
problems in our experiments which we need to compare. The first problem
is 

utt = uxx, in (Ω× (0, τ)) ∩ {u > 0}
(ux)

2 − (ut)
2 = Q2, on (Ω× (0, τ)) ∩ ∂{u > 0}

u(0, t) = f(t),

u(x, 0) = g(x),

ut(x, 0) = h(x),

(5.1)

approximated by fixed domain method. The second is
χ{u>0}utt = uxx −

Q2

2
(χε)′(u), in (Ω× (0, τ))

u(0, t) = f(t),

u(x, 0) = g(x),

ut(x, 0) = h(x),

(5.2)
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approximated by two types of finite different method, FEM, and DMF. The
initial conditions of our experiments are

l0 =
1√

Q2 + f ′(0)2

g(x) = max(1−
1

l0
x, 0),

h(x) =

{
f ′(0) 0 < x ≤ l0,

0 l0 < x,

and f(t) are

Case 1 Peeling speed is constant f(t) = at + 1. The exact solution of this

case is u(x, t) = max(1 + t−
1

l0
x, 0).

Case 2 Peeling speed is increasing f(t) = (at+ 1)2.

Case 3 Peeling speed is decreasing f(t) =
√
at+ 1.

Case 4 Peeling speed is stopping at some times f(t) = 1 + at+ sin t

Case 5 Peeling direction is downward (pasting the tape).

g(x) = max(10−
1

l0
x, 0),

f(t) =10− at,

h(x) =

{
f ′(0) 0 < x ≤ l0,

0 l0 < x,

Case 6 Peeling directions are upward and downward (oscillating tape) f(t) =
1 + 0.3 sin t.

Let us introduce some notation. The space domain Ω is divided into N
intervals, x0 < x1 < . . . < xN , then the characteristic function is smoothed
as follows

(χε)′(u) =

{
1/ε 0 < u < ε,

0 otherwise.
(5.3)
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Next, the characteristic function is

χ{u>0}(xi, t) =

{
1 if max (u(xi−1, t), u(xi, t), u(xi+1, t)) > 0,

0 otherwise,
(5.4)

At last, since we are interested in observing the biggest error of the solutions
during time t, we define the error of numerical solutions

Eu = max
i=0,...,N
k=0,...,M

|u∗(xi, tk)− uki |, (5.5)

where u∗ is the exact solution or fixed domain method solution and uki is
numerical solution at xi in time tk.

5.1 Exact solution of the approximated prob-

lem

We construct the exact solution of (1.4) for a special case. Let Ω = R, then
we describe problem (1.4) as

χ{u>0}utt = ∆u−
Q2

2
(χ)′(u) in R× (0, τ). (5.6)

Here uε : (0, τ) ×R 7→ R is the exact solution of (5.6) and we assume that
uε is

uε(x, t) = F (z) z = x− vt,
where v is a constant and 0 < v < 1, F : R→ R; F (0) = 0, F ′(0) = 0, F ∈
C1(R). This solution can be considered as peeling tape with a constant
peeling speed where the solution is increasing but keeps its shape as shown
in 5.1. Therefore we get

χ{F>0}v
2F ′′(z) = F ′′(z)−

Q2

2
(χε)′(F ). (5.7)

Then, we separate F into three intervals: {F > ε} where the solution F is a
linear function, {0 < F ≤ ε} where the solution F is quadratic function, and
{F = 0}. We assume that the free boundary point position is at z0(F (z0) =
0) and F (zε) = ε as shown in figure 5.1. Then we can construct the exact
solution as follows
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• if z ∈ {F = 0} therefore F (z) = 0.

• if z ∈ {0 < F ≤ ε} then

v2F ′′(z) = F ′′(z)−
Q2

2ε
,

(1− v2)F ′′(z) =
Q2

2ε
,

F ′′(z) =
Q2

2ε(1− v2)
,

F ′(z) =
Q2

2ε(1− v2)
z,

F (z) =
Q2

4ε(1− v2)
z2,

(5.8)

• if z ∈ {F > ε}, using

ε =
Q2

4ε(1− v2)
z2
ε ,

zε = −
2ε
√

1− v2

Q
.

F (z) in this interval is

F (z) = F ′(zε)(z − zε) + ε,

= −
Q2

2ε(1− v2)

2ε
√

1− v2

Q
(z − zε) + ε,

= −
Q√

1− v2)
(z − zε) + ε.

(5.9)
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We summarize as follow

F (z) =


−

Q
√

1− v2
(z − zε) + ε z < zε,

Q2

4ε(1− v2)
z2 zε ≤ z < z0,

0, z0 ≤ z.

(5.10)

Figure 5.1: Exact solution (5.7)

5.2 Error in the peeling tape model using

smoothed characteristic functions

We solve cases 1-6 using explicit method 2 and compare with the exact
solution for case 1 and fixed domain method solutions for cases 2-6. The
parameters are shown in table 5.1

Q2 Ω a ∆t ∆x
explicit method 2 1 [0,15] 1 0.9∆x varied

fixed domain method 1 [-1,1] 1 0.0005625 0.002

Table 5.1: Parameters for explicit method 2 and fixed domain method

The comparisons are shown in figure 5.3. From the figures, we can see that
the errors of solutions from all cases tend to be small when ∆x is decreasing
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with ε. They show that small and big ε give large error and so we analyze this
error pattern. Since the precise error is difficult to find, we only approximate
it. Here, the error of the explicit method 2 satisfies the inequality

max
i=0,...,N
k=0,...,M

|u∗(xi, tk)− uki | ≤ E1 + E2 (5.11)

where

E1 = max
i=0,...,N
k=0,...,M

|u∗(xi, tk)− uε(xi, tk)|, E2 = max
i=0,...,N
k=0,...,M

|uε(xi, tk)− uki |,

and u∗ is the exact solution of problem (1.2), uε is the exact solution of (1.4),
and u is the solution of (4.4). From this inequality we expect to obtain the
error pattern.

We calculate the error of finite difference (explicit method 2). We define

eki =
uε(xi, tk−1)− 2uε(xi, tk) + uε(xi, tk+1)

∆t2

−
uε(xi−1, tk)− 2uε(xi, tk) + uε(xi+1, tk)

∆x2
+
Q2

2
(χε)′(uε(xi, tk))

(5.12)

and subtract (5.12) from (5.6)

uεtt − uεxx +
Q2

2
(χε)′(uε) =

uε(xi, tk−1)− 2uε(xi, tk) + uε(xi, tk+1)

∆t2

−
uε(xi−1, tk)− 2uε(xi, tk) + uε(xi+1, tk)

∆x2

+
Q2

2
(χε)′(uε(xi, tk))− eki .

Since the error occurs near to z0 and zε at first we calculate for z0 (xi−vtk =
0)

eki =
{F (v∆t)− 2F (0) + F (−v∆t)}

∆t2
− utt

−
{F (−∆x)− 2F (0) + F (∆x)}

∆x2
+ uxx.
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We want to find the upper bound of the error

∣∣eki ∣∣ ≤
∣∣∣∣∣ {F (v∆t)− 2F (0) + F (−v∆t)}

∆t2
− utt

∣∣∣∣∣
+

∣∣∣∣∣− {F (−∆x)− 2F (0) + F (∆x)}
∆x2

+ uxx

∣∣∣∣∣
≤

∣∣∣∣∣ −Q2v2

4ε(1− v2)

∣∣∣∣∣+

∣∣∣∣∣ Q2

4ε(1− v2)

∣∣∣∣∣ .
Since 0 < v < 1 then we have∣∣eki ∣∣ ≤ Q2

2ε(1− v2)
. (5.13)

In the same way, we can get
∣∣eki ∣∣ for zε which is also

Q2

2ε(1− v2)
. Since |eki | is

the error of finite differencing, we expect

E2 ∼
g2
u∆x

2ε
, (5.14)

where gu is the gradient of the solution and g2
u =

Q2

1− v2
. In this experiment

we can consider gu is a constant C.
Next, we assume the error E1 = C̃ε. Therefore the total error is

max
i=0,...,N

|u∗(xi, tk)− uki | ≤ C̃ε+
C∆x

ε
. (5.15)

The graph of this total error can be seen in figure 5.2. In this figure, there
are two ∆x: 0.01 and 0.005. When ∆x decreases, the error also decreases for
particular ε. It also shows that when ε is big or small, the error increases.
This is approximately similar to the error pattern in figure 5.3a and serves
to justify our results.
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Figure 5.2: Estimation from above of the total error for explicit method 2

5.3 Comparisons of solution having different

gradient

We are also interested in investigating the choice of ε to get optimal error
related to the gradient of the solution near the free boundary point (gu).
The relation between gu and the error is shown in (5.14). The gradient of
the solution is approximated by calculating the linear regression of five ui
whose values are nearest to the value 0.1. This value is chosen since, based
on figure 5.3a-5.3d, when ε = 0.1, they display similar errors for different
∆x.

To see the relation between the error of the solutions and gu, we conduct
a few experiments using cases 1-4 with different gu. We choose only cases 1-4
since they are enough to represent different kinds of solutions. We set the
gradient of the solution at time τ = 7 to be 1 to 40. The results are shown
in figures 5.5 and 5.6. Figure 5.5 shows that the range of optimal ε becomes
larger when gu increases. In addition, the figure 5.6 shows that there are two
surfaces. The lower surfaces describe the lower bound of the range for the
optimal ε. While the upper surfaces describe the upper bound of the range
for the optimal ε. From the figure, the range of the optimal ε becomes large
if the gradient of the solution increases.
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(a) Eu case 1 at time level τ=9 (b) Eu case 2 at time level τ=9

(c) Eu case 3 at time level τ=9 (d) Eu case 4 at time level τ=9

(e) Eu case 5 at time level τ=9 (f) Eu case 6 at time level τ=7

Figure 5.3: The errors of explicit method 2 for cases 1-6
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(a) El case 1 at time level τ=9 (b) El case 2 at time level τ=9

(c) El case 3 at time level τ=9 (d) El case 4 at time level τ=9

(e) El case 5 at time level τ=9 (f) El case 6 at time level τ=7

Figure 5.4: The errors of free boundary point of cases 1-6

The optimal ε can be derived from (5.15)

ε = Cgu
√

∆x. (5.16)

From the experiments above, the range of constant C in (5.16) is shown in
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figure 5.7. In this figure, each vertical line indicates the range of constant C
which applies for the gradient 1 to 40 using specific ∆x. It shows when the
constant C is between 0.15-0.16, it satisfies for all cases and ∆x. Therefore,
we conclude that the constant C is approximately 0.15-0.16.

(a) the error of solution for case 1 (b) the error of solution for case 2

(c) the error of solution for case 3 (d) the error of solution for case 4

Figure 5.5: The errors of solution for case 1-4 with different gradient with
∆x = 0.000625
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Figure 5.6: the lower and upper bound of optimal ε for cases 1-4
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Figure 5.7: The range of constant C for cases 1-4 with different ∆x

5.4 Comparisons of smoothing characteristic

functions

In this experiment, we compare two smoothed characteristic functions. In
particular, (5.3) and

(χε)′(u) =



hu

a
0 < u < a,

h a ≤ u ≤ ε− a,
h(ε− u)

a
ε− a ≤ u ≤ ε,

0 otherwise,

(5.17)

where

a =
ε

b
, h =

1

ε− a
,

b is a positive number. Function (5.17) has a smoother transition than (5.3).
We want to know whether smooth transitions influence the accuracy. The
goal of this experiment is to get the appropriate smoothed characteristic
function.

We apply these two functions in equation (1.4) with parameters Q2 =
1, Ω = [0, 15], a = 1, ∆x = 0.005, and ∆t = 0.9∆x and solve using explicit
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method 2. The errors of each cases at time level τ = 9 (case 6 uses τ = 7)
are shown in figure 5.8. The errors are calculated by

Ẽu = max
i=0,...,N
k=0,...,M

|u∗i (xi, tk)− (u(5.3))ki | or Ẽu = max
i=0,...,N
k=0,...,M

|u∗i (xi, tk)− (u(5.17))ki |,

(5.18)
where u(5.3) and u(5.17) are solutions with smoothed characteristic function
(5.3) and (5.17) respectively. In this figure, we can see that the errors of
solutions using smoothed characteristic function (5.3) and (5.17) for cases
1-6 are relatively same with an order of 10−3 − 10−4. Therefore, (5.3) is an
adequate smoothed characteristic function.

Figure 5.8: Comparison of smoothed characteristic functions

5.5 Comparisons of numerical methods

To compare numerical methods, we conduct two experiments. The first ex-
periment is to numerically solve (5.7) and compare the results with the exact
solution (5.10). In order to do this, we consider a case similar to case 1 with
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initial conditions

uε(x, 0) =


− 1

l0
x+ 1 0 ≤ x ≤ l0 − εl0,

(x− l0 − εl0)2

4ε(l0)2
l0 − εl0 ≤ x ≤ l0 + εl0,

0 l0 + εl0 ≤ x,

uε(0, t) =

√
1

(l0)2
−Q2 t+ 1,

uεt(x, 0) =



√
1

(l0)2
−Q2 0 ≤ x ≤ l0 − εl0,√

1

(l0)2
−Q2

2εl0
(x− l0 − εl0) l0 − εl0 ≤ x ≤ l0 + εl0,

0 l0 + εl0 ≤ x.

The exact solution is uε(x, t) = F (x − l0 − (ε/a) −
√

1− (Q/a)2 t). We
choose the parameters Q2 = 1, Ω = [0, 15], ∆x = 0.005 and ∆t as in Table
5.2 below.

explicit method 1 explicit method 2 FEM DMF
0.0045 0.0045 0.0025 0.0005

Table 5.2: ∆t for numerical methods

The error is calculated by

Cu = max
i=0,..., N
k=0,...,M

|uε(xi, tk)− uki |,

and figure 5.9 shows the errors. In this figure, The errors Cu of all methods
decrease when ε is bigger. It means that the numerical solutions become
similar to the exact solution of approximated problem when ε is big. In
addition, explicit method 2 has the smallest error
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Figure 5.9: Error of numerical methods and exact solution of equation (5.7)

The second experiment applies numerical methods to above cases 1-6
and compares the errors of each methods. We choose the parameters Q2 =
1, Ω = [0, 15], ∆x = 0.005, ε = 0.04 and ∆t as in table 5.2. The errors of
the methods are shown in table 5.3. From this table, the error differences of
each method are in the order 10−3 − 10−4.

Now, we conduct comparisons using several ε for cases 1-4. Figure 5.10
shows the results. In this figure, the errors of each method are relatively
similar in the order 10−4. Therefore, we conclude that all methods have
similar accuracy. In addition, the computation time of each method can be
seen in table 5.4. Based on the computation time, DMF is slow due to its
algorithm and the requirement of small ∆t. We try several ∆t and find that
when ∆t ≤ 0.1∆x the errors of DMF solution approach the errors of other
methods. On the other hand, DMF has advantage that it can include addi-
tional constraints such as volume constraint to support advanced models like
droplet motion. Hence, this method is appropriate to be used further. Re-
garding the FEM approach, we find that ∆t ≤ 1/2∆x gives stable solutions.
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case explicit method 1 explicit method 2 FEM DMF
1 0.008 0.011 0.01 0.0097
2 0.02 0.02 0.023 0.012
3 0.0079 0.006 0.0075 0.0074
4 0.013 0.013 0.014 0.0097
5 0.005 0.003 0.005 0.006
6 0.007 0.008 0.007 0.009

Table 5.3: Eu at time τ = 9 (cases 1-5) and τ = 7 (case 6)

method time
fixed domain method 2s

explicit method 1 3s
explicit method 2 3s

FEM 6s
DMF >15mins

Table 5.4: Time complexity

∆t Eu
1×∆x 0.09

0.75×∆x 0.05
0.5×∆x 0.03
0.25×∆x 0.009
0.1×∆x 0.007

Table 5.5: Comparison of ∆t for DMF method on case 1 with ε = 0.02
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(a) Eu case 1 (b) Eu case 2

(c) Eu case 3 (d) Eu case 4

Figure 5.10: Eu at τ = 9 of cases 1-4

5.6 Advanced cases

Now, we implement more advanced cases where the free boundary points
are more than one and they emerge or vanish during time t. We choose
Ω = [0, 2] (except case 7) , Q2 = 1, ∆x = 0.005, ∆t as shown in table 5.2
and initial conditions are listed below

case 7 peeling tape from two sides
We modify case 1 above by peeling off from the beginning and end of
the tape. Our domain is Ω = [0, 5]. The peeling velocities at both sides
are the same as case 1. The tape is peeled off until the free boundaries
vanish and from here it becomes a wave equation. Since case 1 has an
exact solution, it can be used to obtain the exact solution of the wave
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equation using d’Alembert’s formula. In this case, we only consider the
exact solution in the middle point of Ω.

To get the exact solution of the wave equation at x = 2.5, we first
consider the exact solution of case 1,

g(x, t) = max(1 + t−
1

l0
x, 0)

and its velocity h(x, t). The time that the free boundary disappears
is t = 2.535. From this time on, the solution evolves by the wave
equation: we define twave = t− 2.535 and the exact solution is

u(2.5, twave) =0.5(g(2.5 + twave, 2.535) + g(2.5− twave, 2.535)+∫ 2.5+twave

2.5−twave

h(2.5, 2.535)dx).

We only use the exact solution in the mid point x = 2.5.

case 8 pulling down a string from the middle

u(x, 0) = 0.5, ut(x, 0) = −20x(2− x), u(0, t) = u(2, t) = 0.5

case 9 an unstable curve

u(x, 0) = max(−0.8(2x− 2)6 + 2(2x− 2)4 − 2.2(2x− 2)2 + 1, 0)

ut(x, 0) = 0, u(0, t) = u(2, t) = 0

case 10 collision of four waves

u(x, t) =
4∑
i=1

max(−6(x− ai − t)2 + 0.16, 0),

where ai = ai−1 + 0.37 and a0 = 6.
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The solutions of above cases are shown in figure 5.11-5.14.

(a) t = 0 (b) t = 2.825 (c) t = 3

(d) t = 3.75 (e) t = 4.75 (f) t = 5

Figure 5.11: The numerical solutions of case 7

(a) t = 0 (b) t = 0.016 (c) t = 0.032

(d) t = 0.16 (e) t = 1.17 (f) t = 1.4

Figure 5.12: The numerical solutions of case 8
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(a) t = 0 (b) t = 0.093 (c) t = 0.018

(d) t = 0.28 (e) t = 0.375 (f) t = 0.65

Figure 5.13: The numerical solutions of case 9

(a) t = 0 (b) t = 0.093 (c) t = 0.22 (d) t = 0.25

(e) t = 0.31 (f) t = 0.34 (g) t = 0.43 (h) t = 0.5

(i) t = 0.56 (j) t = 0.625 (k) t = 0.65 (l) t = 0.69

Figure 5.14: The numerical solutions of case 10
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For case 7, we compare the solution of the mid point when the free bound-
aries vanish with the exact solution by E = |u∗(2.5, t)−u(2.5, t)|. We choose
ε = 0.04. The result can be seen in figure 5.15. The error is of the same order
as the error of case 1 (see 5.3a). Therefore, we conclude that our numerical
methods can handle the case where the free boundary appears or vanishes
with relatively small error (10−2)

For cases 8-10, as we do not have the exact solutions, we calculate the
differences between explicit method 1, FEM, and DMF with explicit method
2. We calculate the differences by

Du = max
i=0,...,N
k=0,...,M

|(uex2)ki − uki |

where uex2 is solution of explicit method 2 and ui is the solution of explicit
method 1, FEM, or, DMF at x = i. The comparison is shown in table 5.6.
From table 5.6 we see that the differences of the solutions are of order 10−3.
Hence we can say that all methods are relatively similar.

Figure 5.15: Error in case 7 at u(2.5, 5)
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case t explicit method 1 FEM DMF
7 0.2 0.0023 0.0008 0.0038
8 0.6 0.0061 0.0014 0.0017
9 0.5 0.0032 0.0016 0.0025

Table 5.6: Du of numerical methods

We summarize the features of the numerical methods in table 5.8 below

Fixed
do-
main
method

Explicit
method
1

Explicit
method
2

FEM DMF

accuracy 10−11 10−3 10−3 10−3 10−3

stability ∆t ≤
0.1∆x

∆t =
0.9∆x

∆t =
0.9∆x

∆t ≤ 0.5∆x ∆t ≤
0.1∆x

easy to imple-
ment

medium medium easy medium hard

computation
time

fast fast fast fast slow

free boundary
appear and
disappear

no yes yes yes yes

Table 5.8: The features of numerical methods

From the table we conclude: first, the accuracy of fixed domain method
is the highest compared to the other methods. Second, DMF requires small
∆t (at least ≤ 0.1∆x) to be stable which makes this method becoming slow.
Third, the computation time of DMF is long since the minimization process
needs many iterations. Fourth, only fixed domain method which can not
handle the appearance and disappearance of the free boundary point.
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Chapter 6

Conclusion

We solved a one dimensional hyperbolic-type problem with free boundary
and a smoothed characteristic function by finite difference method (explicit
method 2) and compared with exact or fixed domain method solutions. From
experiments 1 and 2, we obtained the error pattern of explicit method 2 and
confirmed using approximation that this error pattern holds. From this pat-
tern, it shows that there are optimal ε which minimize the error. Therefore
we proposed a formula to calculate the optimal ε with respect to the gradi-
ent of the solution and ∆x. This formula includes a constant which, based
on experiment, we found to be within 0.15 to 0.16 for gradients with val-
ues in 1 to 40. In experiment 3, we conclude that the smooth transitions
in the smoothed characteristic function does not impart a large influence in
accuracy and that (5.3) is an adequate smoothed characteristic function. In
experiments 4 and 5, we compared four numerical methods solving the peel-
ing tape problem and more advanced cases and found that explicit method
1 and 2 have good performance.
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Appendix A

Finite element method

We will change this equation into matrix form

N∑
i=0

[
(ai)tt

∫
Ω

χ{u>0}ϕiϕjdx

]
+

N∑
i=0

[
(ai)

∫
Ω

(ϕx)i(ϕx)jdx

]

+
Q2

2

∫
Ω

(χε)′(
N∑
i=0

aiϕi)ϕjdx = 0

j = 1, 2, . . . , N − 1

We change the first term if i = j

∫ xi+1

xi−1

χ{u>0}ϕiϕjdx = 2

∫ xi+1

xi−1

χ{u>0}(u(x))
1

∆x2
(x− xi−1)2dx

=
2

∆x2

∫ xi+1

xi−1

χ̃(ai)(x− (i− 1)∆x)2dx

=
2

∆x2

[
χ̃(ai)

1

3
(x− xi−1)3

]∆x

0

= χ̃(ai)
2

3
∆x.

(A.1)

For i = j + 1
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∫ xi+1

xi−1

χ{u>0}ϕiϕjdx =

∫ xi

xi−1

χ{u>0}(u(x))
1

∆x
(x− xi−1)

− 1

∆x
(x− xi−1) + 1dx

=

∫ xi

xi−1

χ̃(ai)

(
−

1

∆x2
(x− xi−1)2

)
+

1

∆x
(x− xi−1)dx

=

[
χ̃(ai)

(
−

1

3∆x2
(x− xi−1)3

)
+

1

2∆x
(x− xi−1)2

]∆x

0

= χ̃(ai)
1

6
∆x.

(A.2)

Then the first term is

∫ xi+1

xi−1

χ{u>0}ϕiϕjdx =


χ̃(ai)

4

6
∆x if i = j,

χ̃(ai)
1

6
∆x if |i− j| = 1,

0 otherwise.

(A.3)

Now, the second term if i=j is

∫ xi+1

xi−1

(ϕx)i(ϕx)jdx =

∫ xi

xi−1

(
1

∆x

1

∆x

)
dx+

∫ xi+1

xi

(
− 1

∆x

)(
− 1

∆x

)
dx

=

[
1

∆x2
x

]∆x

0

+

[
1

∆x2
x

]∆x

0

=
2

∆x
.

(A.4)

For i = j + 1
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∫ xi+1

xi−1

(ϕx)i(ϕx)jdx =

∫ xi

xi−1

1

∆x

(
− 1

∆x

)
dx

=

[
− 1

∆x2
x

]∆x

0

=
− 1

∆x
.

(A.5)

Then the second term is

∫ xi+1

xi−1

(ϕx)i(ϕx)jdx =


2

∆x
if i = j,

− 1

∆x
if |i− j| = 1,

0 otherwise.

(A.6)

Before we go to the third term we rewrite our basis function

ϕi(x) =


1

∆x
x− i+ 1 xi−1 ≤ x ≤ xi,

− 1

∆x
x+ j + 1 xi ≤ x ≤ xi+1,

0, otherwise.

We change the third term into column matrix if i = j

∫
Ω

(χε)′(
N∑
i=0

aiϕi)ϕjdx =

∫ xi

xi−1

(χε)′(Ai(x))

(
1

∆x
x− i+ 1

)
dx+

∫ xi+1

xi

(χε)′(Ai(x))

(
− 1

∆x
x+ i+ 1

)
dx,

(A.7)

where Ai(x) =
ai − ai−1

∆x
(x − xi−1) + ai or Ai(x) =

ai+1 − ai
∆x

(x − xi) + ai

according to the interval. We define x0
i and xεi where Ai(x

0
i ) = 0 and Ai(x

ε
i ) =

ε. We use linear interpolation to obtain x0
i and xεi . For example we choose

the interval between [xi, xi+1]
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x0
i = xi −

ui+1 + ui

∆x
ui,

xεi = xi −
ui+1 − ui

∆x
(ui − ε),

(A.8)

Next, we define new space variables p and q and few cases as

pi = xi, qi = xi+1 if xεi ≤ xi and xi+1 ≤ x0
i ,

pi = xi, qi = x0
i if xεi ≤ xi and x0

i ≤ xi+1,

pi = xεi , qi = x0
i if xi ≤ xεi and x0

i ≤ xi+1,

pi = xεi , qi = xi+1 if xi ≤ xεi and xi+1 ≤ x0
i .

pi = qi otherwise

(A.9)

Rewrite (A.7)

∫ xi

xi−1

(χε)′(Ai(x))

(
1

∆x
x− i+ 1

)
dx+

∫ xi+1

xi

(χε)′(Ai(x))

(
− 1

∆x
x+ i+ 1

)
dx

=

∫ qi−1

pi−1

1

ε

(
1

∆x
x− i+ 1

)
dx+

∫ qi

pi

1

ε

(
− 1

∆x
x+ i+ 1

)
dx

=
1

ε

[
x2

2∆x
− (i− 1)x

]qi−1

pi−1

+
1

ε

[
− x2

2∆x
+ (i+ 1)x

]qi
pi

=
1

ε

(
1

2∆x
(q2
i−1 − p2

i−1 − q2
i + p2

i ) + (i− 1)(qi−1 − pi−1) + (i+ 1)(qi − pi)

)
(A.10)
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