Thermal expansion and magnetostriction measurements of heavy fermion CeRu2Si2 at ultralow temperatures and high magnetic fields

メタデータ	言語: jpn
	出版者:
	公開日: 2017-10-05
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/45391

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

博士論文

重い電子系化合物 CeRu₂Si₂ の

超低温高磁場における熱膨張・磁歪に関する研究

金沢大学大学院自然科学研究科 数物科学専攻

学籍番号 1323102001

氏名: 井上 大貴 主任指導教員名 阿部 聡 提出年月 2016年4月

目次

1	Ir	ntroduction	1
	1.1 重	言い電子系の概論	1
	1.1.1	Ce イオンの f 電子状態	1
	1.1.2	Anderson モデルと近藤格子モデル	2
	1.1.3	RKKY 相互作用と近藤効果	3
	1.1.4	重い電子系の形成	5
	1.2 重	記い電子系物質の量子臨界現象	7
	1.2.1	スピン密度波型量子相転移.............................	8
	1.2.2	局在モーメント型量子相転移	12
	1.3 C	'eRu ₂ Si ₂ の物性	17
	1.3.1	CeRu ₂ Si ₂ の基本物性	17
	1.3.2	高圧下における物性	24
	1.3.3	化学圧力効果	24
	1.3.4	超低温領域での磁気的性質・・・・・・・・・・・・・・・・・・・・・・・・	30
	1.3.5	超低温における c 軸方向の熱膨張・磁歪測定	30
	1.4 砖	Ŧ究目的	32
с С	-	vacrimental precedure	22
2	E	xperimental procedure	33
2	E 2.1 省 2.1 1	xperimental procedure 却装置....................................	33 33
2	E 2.1 Å 2.1.1 2.2 VE	xperimental procedure 3 动装置	33 33 33 33
2	E 2.1 省 2.1.1 2.2 语 2.2 1	xperimental procedure 3 动装置	33 33 33 34 35
2	E 2.1 消 2.1.1 2.2 涯 2.2.1 2.2.2	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He 融解圧温度計 2 ³ He 融解压温度計 2	 33 33 33 34 35 36
2	E 2.1 消 2.1.1 2.2 温 2.2.1 2.2.2 2.2.3	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He- ⁴ He 希釈冷凍機 2 ³ He 融解圧温度計 2 MCT の校正と温度測定 2 炭素抵抗温度計 2	 33 33 33 34 35 36 38
2	E 2.1 省 2.1.1 2.2 湛 2.2.1 2.2.2 2.2.3 2 3 柄	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He 融解圧温度計 2 ³ He 融解圧温度計 2 MCT の校正と温度測定 2 炭素抵抗温度計 2 飯根測定装置 2	 33 33 33 33 34 35 36 38 38
2	E 2.1 消 2.1.1 2.2 涯 2.2.1 2.2.2 2.2.3 2.3 種 2.3 1	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He after 2 ³ He 融解圧温度計 2 MCT の校正と温度測定 2 炭素抵抗温度計 2 飯低温高磁場測定装置 2	 33 33 33 34 35 36 38 38 40
2	E 2.1 省 2.1.1 2.2 進 2.2.1 2.2.2 2.2.3 2.3 権 2.3.1 2.3.2	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He- ⁴ He 希釈冷凍機 2 ³ He 融解圧温度計 2 ³ He 融解圧温度計 2 MCT の校正と温度測定 2 炭素抵抗温度計 2 返低温高磁場測定装置 2 実験空間の熱伝導と温度差 2 過雪流に上るヒートリーク 2	 33 33 33 34 35 36 38 38 40 41
2	E 2.1 省 2.1.1 2.2 湛 2.2.1 2.2.2 2.2.3 2.3 植 2.3.1 2.3.2 2.3.3	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He. ⁴ He 希釈冷凍機 2 ³ He 融解圧温度計 2 ³ He 融解圧温度計 2 MCT の校正と温度測定 2 炭素抵抗温度計 2 炭素抵抗温度計 2 減電試の磁場依存性 2	 33 33 33 34 35 36 38 40 41 43
2	E 2.1 消 2.1.1 2.2 湛 2.2.1 2.2.2 2.2.3 2.3 権 2.3.1 2.3.2 2.3.3 2.4 奉	xperimental procedure 3 a却装置 3 ³ He- ⁴ He 希釈冷凍機 2 a度測定 2 ³ He 融解圧温度計 2 b展報任温度計 2 b展報任温度計 2 juct 2 juct	 33 33 33 34 35 36 38 40 41 43 44
2	E 2.1 省 2.1.1 2.2 湛 2.2.1 2.2.2 2.2.3 2.3 植 2.3.1 2.3.2 2.3.3 2.4 素 2.4 素 2.4 1	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 3 ³ He 熱解圧温度計 3 ³ He 融解圧温度計 3 MCT の校正と温度測定 3 炭素抵抗温度計 3 減低温高磁場測定装置 3 実験空間の熱伝導と温度差 4 濃度計の磁場依存性 4 熱膨張く磁歪 4	 33 33 34 35 36 38 40 41 43 44 44
2	E 2.1 省 2.1.1 2.2 温 2.2.1 2.2.2 2.2.3 2.3 権 2.3.1 2.3.2 2.3.3 2.4 素 2.4.1 2.4.1 2.4.2	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 2 ³ He- ⁴ He 希釈冷凍機 2 ³ He 融解圧温度計 2 ³ He 融解圧温度計 2 MCT の校正と温度測定 2 炭素抵抗温度計 2 炭素抵抗温度計 2 減電流によるヒートリーク 2 温度計の磁場依存性 2 熱膨張・磁至 2 磁至係数 4	 33 33 33 34 35 36 38 40 41 43 44 44 44 44
2	E 2.1 消 2.1.1 2.2 湛 2.2.1 2.2.2 2.2.3 2.3 相 2.3.1 2.3.2 2.3.3 2.4 素 2.4.1 2.4.2 2.4.3	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 3 ³ He 融解圧温度計 3 ³ He 融解圧温度計 2 成工の校正と温度測定 2 炭素抵抗温度計 2 返股温高磁場測定装置 2 実験空間の熱伝導と温度差 2 渦電流によるヒートリーク 2 熱膨張・磁至 2 熱膨張係数 2 熱膨張係数 2 キャパシタンス式膨張計 2	 33 33 33 34 35 36 38 40 41 43 44 44 44 45
2	E 2.1 消 2.1.1 2.2 湛 2.2.1 2.2.2 2.2.3 2.3 植 2.3.1 2.3.2 2.3.3 2.4 素 2.4.1 2.4.2 2.4.3 2.5 C	xperimental procedure 3 ³ He- ⁴ He 希釈冷凍機 3 ³ He. ⁴ He 希釈冷凍機 3 ³ He. ⁴ He 希釈冷凍機 3 ³ He 融解圧温度計 3 MCT の校正と温度測定 3 炭素抵抗温度計 3 飯低温高磁場測定装置 3 転低温高磁場測定装置 3 海電流によるヒートリーク 4 温度計の磁場依存性 4 軟膨張・磁至 4 軟膨張係数 4 体置係数 4 tell effect 4	 33 33 33 34 35 36 38 40 41 43 44 44 44 45 47

	2.5.	1 キャパシタンスブリッジ回路	51
	2.6	熱膨張・磁歪係数の導出方法	53
	2.7	試料	55
3		Results & Discussion	56
	3.1	熱膨張測定	56
	3.1.	1 熱膨張測定における Back Ground の温度依存性	56
	3.1.	2 熱膨張の温度依存性	58
	3.2	磁歪測定	63
	3.2.	1 磁歪測定における Back Ground の磁場依存性	63
	3.2.	2 磁歪の磁場依存性	66
	3.3	熱膨張・磁歪の非 Fermi 液体的振舞いについての考察	69
	3.3.	1 熱膨張係数の非 Fermi 液体的振舞いについての考察	69
	3.3.	2 磁歪係数の非 Fermi 液体的振舞いについての考察	77
	3.3.	3 磁歪係数のスケーリング則	78
4		Conclusion	80
5		謝辞	82
6		Reference	83

図目次

1	Ce 原子の動径方向の波動関数	1
2	典型的重い電子系物質の帯磁率、Wilson 比、Kadowaki-Woods 比	6
3	重い電子系物質の量子相転移の概念図...................	7
4	スピン密度波型量子相転移の磁気相図の概念図	8
5	主な重い電子系物質の比熱と三次元反強磁性相関に対する SCR 理論との	
	比較	10
6	CeNi ₂ Ge ₂ の電気抵抗、熱膨張係数、比熱の温度依存性	11
7	局在モーメント型量子相転移の磁気相図の概念図.........	12
8	CeCu ₆ の超低温における帯磁率と熱膨張係数の温度依存性	13
9	CeCu _{6-x} Ag _x の比熱と相図	14
10	CeCu _{6-x} Au _x の磁気相関と動的帯磁率のスケーリング	14
11	YbRh ₂ (Si _{1-x} Ge _x) ₂ の電気抵抗の温度依存性を用いた T-B 相図、交流帯磁	
	率、比熱	15
12	YbRh ₂ Si ₂ の磁歪、Hall係数	16
13	CeRu ₂ Si ₂ の結晶構造と重い電子状態における Fermi 面	18
14	CeRu ₂ Si ₂ のメタ磁性的転移における磁化と磁歪	19
15	CeRu ₂ Si ₂ の比熱係数	19
16	CeRu ₂ Si ₂ の熱膨張	21
17	CeRu ₂ Si ₂ の非弾性中性子散乱実験	22
18	CeRu ₂ Si ₂ の非弾性中性子散乱実験	23
19	圧力下 CeRu ₂ Si ₂ の帯磁率、電気抵抗、de Haas-van Alphen 効果	25
20	非弾性中性子散乱実験による $x > x_c$ での $Ce_{1-x}La_xRu_2Si_2$ の磁気モーメ	
	ントの温度依存性と磁気相図	26
21	$Ce_{1-x}La_xRu_2Si_2$ の $x \le x_c$ における $x = 0$ 、0.05、0.075での比熱測定の	
	SCR 理論による解析	26
22	Ce(Ru _{1-x} Rh _x) ₂ Si ₂ の格子定数と磁気相図	27
23	$Ce(Ru_{1-x}Rh_x)_2Si_2$ の比熱、帯磁率、動的帯磁率の SCR 理論による解析	28
24	CeRu ₂ (Si _{1-x} Ge _x) ₂ の格子定数と磁気相図	29
25	超低温領域における $CeRu_2Si_2$ の c 軸方向の交流帯磁率と静磁化の温度	
	依存性	31
26	³ He- ⁴ He 混合液の相図	34
27	³ He の <i>T-p</i> 相図	35
28	MCT の内部構造	36

29	三端子キャパシタンスブリッジの回路図	37
30	実験装置の全体図	39
31	超伝導マグネットの磁場分布図	42
32	渦電流によるヒートリーク	42
33	熱膨張・磁歪測定用サンプルセル	45
34	CeRu ₂ Si ₂ のa軸、c軸、Stycast2850FT、Cuの線熱膨張	46
35	サンプルセルの伸縮に関する図	50
36	キャパシタンスブリッジの回路図	51
37	試料 CeRu ₂ Si ₂ の写真	55
38	試料キャパシタンス、標準キャパシタンスの温度依存性(1K以下)	56
39	CeRu ₂ Si ₂ の熱膨張 (1 K 以下)	58
40	CeRu ₂ Si ₂ の熱膨張 (100 mK 以下)	59
41	CeRu ₂ Si ₂ の熱膨張係数 (100 mK 以下)	60
42	CeRu ₂ Si ₂ の <i>a</i> 軸の磁場中における熱膨張係数	61
43	CeRu ₂ Si ₂ の a 軸方向の臨界寄与	62
44	各温度における CeRu ₂ Si ₂ サンプルセルの試料キャパシタンス、標準キャ	
	パシタンスの変化率	63
45	磁歪係数と Back ground の関係	65
46	CeRu ₂ Si ₂ の磁歪 $\Delta L(B)/L$	66
47	CeRu ₂ Si ₂ の a 軸方向の磁歪係数 (B<9 T)	67
48	CeRu ₂ Si ₂ の a 軸方向の磁歪係数 (1 T まで)	68
49	重い電子系化合物の典型的な <i>p-T</i> 相図	69
50	CeRu ₂ Si ₂ の比熱の温度依存性	71
51	$CeRu_2Si_2$ の Grüneisen パラメータ Γ_T の温度依存性	72
52	SDW 型量子相転移における QCP 近傍の α/T の温度依存性	74
53	$CeRu_2Si_2 \mathcal{O} \alpha/T \mathcal{O}$ 振舞い	75
54	CeRu ₂ Si ₂ の予想される新しい <i>p-T</i> 相図	76
55	CeRu ₂ Si ₂ の磁歪測定から求まる帯磁率の圧力微分係数	77
56	CeRu ₂ Si ₂ の <i>a</i> 軸の磁歪係数に対する <i>c</i> 軸の静磁化のスケーリング	79

1 Introduction

希土類やアクチノイドを含む金属間化合物には、電子の有効質量が自由電子の数百倍~ 数千倍に達するような物質群の存在が知られている。そのような物質群を総称して重い電 子系と呼ぶ。重い電子系の本質は非常に局在性の強い f 電子間に働くクーロン相互作用 と f 電子-伝導電子間の混成効果にある。2つの相互作用が低温で競合する結果、絶対零 度で量子相転移と呼ばれる量子揺らぎに起因する相転移が観測される。このような系は混 成の強さを温度以外の物理パラメータを変えることによって制御できるため、量子相転移 に伴う磁気転移や超伝導転移に関して精力的な研究がされている。この章では重い電子系 の概要と本研究の対象物質である CeRu₂Si₂ に関する研究について述べる。

1.1 重い電子系の概論

1.1.1 Ce イオンの f 電子状態

希土類元素である ⁵⁸Ce (電子状態: $4f^1 5d^1 6s^2$) が自由イオンとして、原子核のつくる 球対称ポテンシャルの中に f 電子が存在しているような場合を考える。希土類元素の様 な原子番号の大きな元素では、原子核近傍のクーロンポテンシャルが非常に大きいため、 原子核近傍の電子速度は光速に近く、相対論的効果によって波動関数に収縮が生じる。 Fig. 1 左図に Ce 原子のそれぞれの軌道における動径方向の波動関数を示す。希土類金属 間化合物中における希土類イオンは通常 3 価であり、Ce においては 5d、6s 軌道が Xe 閉 殻を形成する 5s、5p 軌道より十分外側にあり、5d、6s 電子が伝導電子帯を形成する。 方で、4f 電子は軌道角運動量に比例した大きな遠心力ポテンシャルによって、5s、5p 閉

Fig.1 左図: Ce 原子の動径方向の波動関数 [1]。右図: Ce³⁺ イオン中の f 電子のエネ ルギー準位 [2]。

設よりも内側に鋭いピークを持つ波動関数をしており、原子核の周りに非常に良く局在している。

 Ce^{3+} イオンにおける f 電子のエネルギー準位に関する図を Fig. 1 右図に占めす。f 電 子系では結晶場効果よりもスピン-軌道相互作用の方が強いのでまず Hunt 則が成り立ち、 Ce の場合は f 電子が一つ存在するから全軌道角運動量 L = 3、全スピン角運動量 S = 1/2 より、基底状態は (2L + 1)(2S + 1) = 14 重に縮退している。最初に相対論的効果を起源に もつスピン-軌道相互作用によって、全角運動量 J = L + S の大きさに応じて J = 7/2 と J = 5/2 へと分裂する。このエネルギー差は温度に換算すると 3000 K ほどに達するから、 室温以下の温度領域では J = 5/2 の場合のみを考えれば十分である。J = 5/2 は 6 重に縮 退しており、結晶場 (周りのイオンによる静電場) によってさらに分裂する。分裂の仕方 は f 電子の置かれた結晶場の対称性と f 電子の数で決まる。Ce³⁺ のように f 電子数が奇 数であるイオンでは常に磁気双極子の自由度を持っているため、低対称な結晶場中でも必 ず 2 重縮退が残る。これを Kramers の定理と呼び、磁場をかけない限り縮退は解けない。

1.1.2 Anderson モデルと近藤格子モデル

電子同士の相互作用をあらわに取り入れ、自由電子近似が出来る伝導電子中に局在的な 電子をもつ不純物がある状況で、*f*電子間の Coulomb 斥力および伝導電子間との相互作 用などを考慮したモデルに不純物 Anderson モデルがある。ここでは不純物 Anderson モ デルが格子を組んで、磁性不純物が周期的に配列した拡張モデルとして周期的 Anderson モデルを考える。周期的 Anderson モデルではハミルトニアンは以下のように表される。

$$\mathcal{H} = \sum_{k,\sigma} \varepsilon_k c^{\dagger}{}_{k\sigma} c_{k\sigma} + \sum_{k,\sigma} E_f f^{\dagger}{}_{k\sigma} f_{k\sigma} + \sum_{k,\sigma} \left(V_{fk} f^{\dagger}{}_{k\sigma} c_{k\sigma} + V^*_{kf} c^{\dagger}{}_{k\sigma} f_{k\sigma} \right) + \frac{U}{N} \sum_{\substack{q\neq 0\\k,k'}} f^{\dagger}{}_{k+q\uparrow} f^{\dagger}{}_{k'-q\downarrow} f_{k'\downarrow} f_{k\uparrow}$$
(1.1)

ここで ε_k 、 E_f は伝導電子 (以下 c 電子とする)、 f 電子のエネルギーであり、 V_{fk} (= V_{kf}^*) は c 電子と f 電子の混成における行列要素、U は f 軌道内のクーロンポテンシャルで ある。また、 $c^{\dagger}_{k\sigma}$ ($c_{k\sigma}$) および $f^{\dagger}_{k\sigma}$ ($f_{k\sigma}$) は各々、波数 k、スピン量子数 σ を持つ c 電子 と f 電子の生成 (消滅) 演算子である。第一項、第二項はそれぞれ c 電子、f 電子のハミ ルトニアン、第三項目は cf 混成を表し、第四項目はクーロン相互作用を指している。こ こで、クーロンポテンシャル U が混成を表す項 V に比べて非常に大きな場合 ($U \gg V$) を考える。f 電子のエネルギーが Fermi エネルギー ε_F よりも十分に深いところにあって ($\varepsilon_F - E_f \gg \Delta$)、同一軌道に 2 個目の f 電子を入れるために必要なエネルギーが Fermi エ ネルギーよりも十分大きいとき ($E_f + U - \varepsilon_F \gg \Delta$)、f 軌道の電子はほとんど 1 個に限ら れ局在スピンが形成される。

上記の場合は f 軌道に電子が一つだけ存在し、かつ局在していると考えることが出来

る。そこで、(1.1) 式の *cf* 混成に関わる第三項を摂動として取り扱う。1.1.1 で述べたように Kramers の定理から局在 *f* 電子にはスピン自由度が残っているから、*c* 電子との混成でスピンの向きを変える過程を二次摂動まで考慮するとハミルトニアンは以下の式で表される。

$$\mathscr{H}_{\mathrm{KL}} = \sum_{k,\sigma} \varepsilon_k c^{\dagger}{}_{k\sigma} c_{k\sigma} + J_{cf} \sum_i S_i \cdot s_i$$
(1.2)

添字*i*は磁性原子が占める格子点を示し、 S_i はサイト*i*における*f*電子のスピン、 s_i は 伝導電子のスピン密度、 J_{cf} は*c*電子と*f*電子の交換相互作用である。第二項は局在*f*電 子スピンと*c*電子スピンとの相互作用により $U \gg V$ の条件下で起こる低エネルギー励起 に関する有効ハミルトニアンであり、これに伝導電子のエネルギーに関する項を付け足し た(1.2)式を近藤格子モデルと呼ぶ。また上記のように低エネルギー現象であるから*k*、 *k'* $\simeq k_F$ とおき、混成の行列要素 V_{fk} (= V_{kf}^*)を平均値 $|V|^2$ で置き換えると J_{cf} は以下の 式で与えられる。

$$J_{cf} = 2|V_{k_{\rm F}f}|^2 \left(\frac{1}{E_f + U - \varepsilon_{\rm F}} + \frac{1}{\varepsilon_{\rm F} - E_f}\right)$$
(1.3)

 $\varepsilon_{\rm F} - E_f \gg \Delta$ 、 $E_f + U - \varepsilon_{\rm F} \gg \Delta$ である場合、 $J_{cf} > 0$ であり cf 交換相互作用は反強磁性的であることが分かる。

1.1.3 RKKY 相互作用と近藤効果

(1.1.2) で示した近藤格子モデルは二つの効果を与える。一つ目は c 電子による f 電子のスピンの遮蔽効果である。この効果は近藤効果と呼び、スピンが見かけ上消失するため磁気秩序を持たない。c 電子と f 電子は一重項基底状態を作り、これに対応するエネルギーが近藤温度 T_K である。一重項束縛状態は周期性を持ち、c 電子と f 電子により混成バンドが形成されることで、重い電子状態が現れる。二つ目は隣接する二つの f 電子スピン間に働く、c 電子を媒介とした間接的な結合である。これは、RKKY 相互作用と呼び、磁気秩序を形成する働きがある。f 電子のスピンを感じた c 電子のスピン分極密度が π/k_F 程度の周期で振動しており、他の f 電子による分極密度と異なると、c 電子を媒介にしてf 電子間に間接的に相互作用が働き、エネルギー利得のある方に分極密度がそろう長距離相互作用である。それぞれの効果に対して相互作用の強さを表す特性温度 T_K 、 T_{RKKY} が以下の関係で成立する。

$$k_{\rm B}T_{\rm K} = W \exp\left(-\frac{1}{J_{cf}D(\varepsilon_{\rm F})}\right) \tag{1.4}$$

$$k_{\rm B}T_{\rm RKKY} = AJ_{cf}^{2}D(\varepsilon_{\rm F})$$
(1.5)

 $D(\varepsilon_{\rm F})$ は Fermi 準位の状態密度、A はバンド構造に依存する定数、W は c 電子のバンド幅 である。近藤効果と RKKY 相互作用はどちらも cf 交換相互作用 J_{cf} によって生じている

にも関わらず、全く異なった基底状態を導く。上二式からわかるように T_K の方が T_{RKKY} よりも $|J_{cf}|$ に対して変化が大きいから、あるところで T_K と T_{RKKY} の大小関係が入れかわる。 $T_K < T_{RKKY}$ のときは RKKY相互作用が強く磁気秩序状態が現れ、 $|J_{cf}|$ の大きさが $T_K < T_{RKKY}$ を越えると近藤効果が優勢になり、無秩序状態になる。

1.1.4 重い電子系の形成

近藤温度以下における物理量の温度変化は Fermi 液体論によって理解される。また Fermi 液体状態は $T_{\rm K}$ とは異なるもう一つの特性温度 $T_{\rm coh}$ (コヒーレンスな重い準粒子の 形成に対応するエネルギースケール) 以下で形成され、c 電子と f 電子の両方を含んだ Fermi 面(「大きな Fermi 面」と呼ばれる)を持つ。実際に実験においても多くのランタ ノイド (特に Ce) 化合物において準粒子質量の大きい Fermi 液体状態が観測されている。

Fermi 液体論は自由電子モデル (Fermi 気体) の1 粒子状態に対し、相互作用による電子のエネルギーの増加分を摂動として取り込むことで、比熱 C、電気抵抗率 ρ 、帯磁率 χ に対し次の式を与える。

$$C = \frac{2(\pi k_{\rm B})^2}{3} \frac{m^*}{m_e} D(\varepsilon_{\rm F})T = \gamma T$$
(1.6a)

$$\rho = \rho_0 + AT^2 \tag{1.6b}$$

$$\chi = 2\mu_{\rm B}^2 \frac{m^*}{m_e} \frac{D(\varepsilon_{\rm F})}{1 + F_0^a}$$
(1.6c)

 m_e は自由電子の静止質量、 $D(\varepsilon_{\rm F}) \propto m_e$ は単位体積当たりの自由電子の状態密度、 γ は電子比熱係数、また F_0^a は Landau パラメーターである。式 (1.6) 中の m^* が f 電子 と c 電子間の電子相関を取り込んだ準粒子質量である。自由電子の電子比熱係数は $\gamma_e \sim 1 \text{ mJ/K}^2$ mol となるのに対して、Fig. 2(b)、(c) で示すように、重い電子系を形成する 物質では $\gamma = 10 \sim 1000\gamma_e$ となっている。この大きな γ は cf 混成バンドの状態密度が増 大していることを示しており、バンド幅が自由電子の状態に比べて非常に狭いことを意味 する。

Wilson による数値的繰り込み群の結果から、強相関電子系では Pauli 常磁性帯磁率と γ の比 (Wilson 比) は以下の式に従う [3]。

$$R_{\rm W} = \frac{3\pi^2 k_{\rm B}^2}{\mu_{\rm B}^2} \frac{\chi}{\gamma} = 2$$
(1.7)

また電気抵抗の T^2 係数である A は m^{*2} に比例するので A と γ^2 の比 (Kadowaki-Woods 比: $R_{KW} \equiv A/\gamma^2$) は物質に依存しない定数となる [4,5]。しかし、近年の様々な重い電子 系物質の発見と研究からすべての物質において必ずしも単一の比例係数で表せないことが わかっており、現在は f 電子状態の縮退度 N を考慮した Kadowaki-Woods 比で説明され ている。

Fig. 2(b)、(c) に主な物質の Wilson 比、Kadowaki-Woods 比を示す。

Fig.2 (a) 典型的重い電子系物質の帯磁率の温度依存性 [6]。(I) は常磁性、(II) は反強磁 性物質の変化。(b) 主な重い電子系物質の Wilson 比 [2]。(b) 主な重い電子系物質と単 純金属の Kadowaki-Woods 比 [7]。図中の N は全角運動量から各物質を分類している。

1.2 重い電子系物質の量子臨界現象

近藤効果とRKKY 相互作用が拮抗した結果、絶対零度で物理パラメータが変化すると 生じる相転移を量子相転移 (Quantum Phase Transition: QPT) と呼び、磁気秩序の二次相 転移が絶対零度で消失する点は量子臨界点 (Quantum Critical Point: QCP) と呼ばれ、非 Fermi 液体的振る舞いや異方的超伝導などの興味深い現象が観測される。古典的な相転移 の転移点近傍では秩序変数の熱揺らぎが臨界現象を支配しているのに対し、量子相転移は 温度以外のパラメータを変化させたとき、絶対零度において起こる秩序-無秩序相転移で ある。従って、T = 0 K であるから熱揺らぎはなく、臨界現象は Heisenberg の不確定性原 理に起因する量子揺らぎのみが支配的である。

f 電子系の Kramers 二重項が持つスピン自由度の解放には (1) RKKY 相互作用による 磁気相転移、(2) 近藤効果による重い Fermi 液体状態の形成の 2 通りあり、どちらの方法 で自由度の解放を行うかは近藤効果と RKKY 相互作用の優劣で決定される。この優劣の バランスは元素置換、圧力および磁場などで制御可能である。この 2 つの相互作用の競合 による磁気相図は Doniach によって提案されており、Fig. 3 にその模式図を示す。

丁度量子臨界点に制御された系では、Quantum Critical と呼ばれる広い温度範囲で臨界 現象を示すことが知られているため、量子臨界点近傍の量子揺らぎが支配的な領域におけ る物性の観測が期待できる。また重い電子系における量子臨界状態は、式 (1.6)の Fermi 液体状態とは異なる温度依存性を示すため、非 Fermi 液体状態と呼ばれる。

重い電子系の量子相転移の機構はスピン密度波型と局在モーメント型の2種類が提唱されている。

Fig.3 重い電子系物質の量子相転移の概念図 [?]。

1.2.1 スピン密度波型量子相転移

スピン密度波 (Spin Density Wave : SDW) 型と呼ばれる量子相転移の概念図を Fig. 4 で示す。この場合の反強磁性秩序状態は、Fermi 面の状態が重要でありネスティングに よって、RKKY 相互作用による反強磁性ベクトル Q が結晶内でネスティングベクトル として正弦波的に安定化される SDW(Spin Density Wave) 状態である。SDW 型における 量子相転移は反強磁性秩序の秩序変数の長波長揺らぎに起因するものであり、揺らぎは Gauss 関数的なスペクトルを示す。重い電子系における SDW 型の量子臨界点近傍にお ける非 Fermi 液体的振舞いは、守谷らの Self Consistent Renormalization (SCR) 理論を用 いて理解される [8]^{*1}。磁性が発現、またはそれに近い状況では基底状態近傍の低エネル ギー領域において磁気的な集団励起が存在し、スピンの揺らぎとして現れる。SCR 理論 は、Hartree-Fock 近似した熱平衡状態に対するスピン揺らぎの補正を考える立場である。 Hartree-Fock 近似の熱平衡状態における自由エネルギーを $F_{\rm HF}$ 、熱的に励起されたスピン 揺らぎによる補正項 ΔF を加えて自由エネルギー F は以下の様に表記される。

$$F(M,T) = F_{\rm HF}(M,T) + \Delta F(M,T)$$
(1.8)

ΔF はスピン揺らぎの相関関数を用いて表される。熱力学的関係式から一様帯磁率は以下 のように表現される。

Fig.4 スピン密度波型量子相転移の磁気相図の概念図。W は cf 混成の強さ、 T_N は反 強磁性転移温度、 T_N は Fermi 液体的描像が成立するコヒーレント温度である。図中の 緑色の領域 (LFL) は Fermi 液体状態を示し f 電子はほとんど遍歴しているが、SDW 磁 気秩序相でも QCP 近傍では cf 混成が残っている。2 つの領域に挟まれた赤色の領域 は非 Fermi 液体的領域である。

^{*1} SCR 理論は QCP 近傍のみならず、広い温度範囲で物理量を定性的、定量的に評価できる理論である。

$$\frac{1}{\chi_0} = \frac{\partial^2 F_{\rm HF}}{\partial M^2} + \frac{\partial^2 \Delta F}{\partial M^2} = \frac{1}{\chi_0^{\rm HF}} + \Delta \frac{1}{\chi}$$
(1.9)

式 (1.9) から、 ΔF を考慮すると一様帯磁率に $\Delta(1/\chi)$ の項が現れ、この揺らぎによる補正 項 $\Delta(1/\chi)$ は相関関数を通してそのまま ΔF にも影響する。従って補正項 ΔF を求める際 に用いた帯磁率と、この ΔF を用いた式 (1.9) から求められる値と一致しなければならな い。このように自己矛盾のないように ΔF 、 $\Delta(1/\chi)$ を自己無撞着に決定して帯磁率が求め られる。

SCR 理論で記述される反強磁性転移における動的帯磁率 $\chi(q, \omega)$ 、逆帯磁率yと磁気比 熱 C_m の温度依存性は以下のように表される [8,9]。

$$\frac{1}{\chi(\boldsymbol{Q}+\boldsymbol{q},\omega)} = \frac{1}{\chi(\boldsymbol{Q},0)} + Aq^2 - \frac{i\omega}{\Gamma_L\chi_L} = 2T_A \left(y + x^2 - \frac{i\omega}{2\pi T_0} \right)$$
(1.10a)
$$y = \frac{1}{2T_A\chi(\boldsymbol{Q},0)}$$
$$T_A = \frac{Aq_B^2}{2}, \quad T_0 = \frac{T_A\Gamma_L\chi_L0}{\pi}$$
$$3 = C^1 \quad [\qquad 1 \qquad]$$

$$y - y_0 = \frac{5}{2} y_1 \int_0^{\infty} dx x^2 \left[\ln u - \frac{1}{2u} - \psi(u) \right]$$
(1.10b)

$$C_m = 9N_0 \int_0^{x_c} dx x^2 \left(\left[u^2 - 2u \frac{dy}{dt} + \left(\frac{dy}{dt} \right)^2 \right] \left[-\frac{1}{u} - \frac{1}{2u^2} + \psi'(u) \right]$$
(1.10c)

$$-t \frac{d^2 y}{dt^2} \left[\ln u - \frac{1}{2u} - \psi(u) \right] \right)$$
(1.10c)

$$u = \frac{y + x^2}{t}, \quad t = \frac{T}{T_0}, \quad x = \frac{q}{q_B}$$

 T_0 、 T_A は周波数 ω 、波数 q 空間におけるスピン揺らぎエネルギーに相当する特性 温度である。その定義から T_0 は局所帯磁率 $\chi_L(\omega)$ の局所揺らぎエネルギー Γ_L と、 $\chi_L \equiv \chi_L(\omega = 0)$ に関係し、 T_A は RKKY 相互作用の交換積分 J_Q で表される交換エネ ルギーの分散 $J_Q - J_{Q+q} = Aq^2$ に関連する。(無次元) 逆帯磁率 y は、y = 0 が磁気転 移点を意味する。 y_0 は絶対零度における値 ($y_0 \equiv y(T=0 \text{ K})$) を表し、量子臨界点から のずれを意味する磁気不安定性に対する近接的な尺度である。 y_1 は分散の強度を反映 し、 $y_1 = 4J_Q/\pi^2 \Delta J_Q(\Delta J_Q = J_Q - J_{Q+q_B})$ である。 $\psi(u)$ はディガンマ関数である。 q_B は Brillouin ゾーン境界を球体近似したときの有効半径である。SCR 理論は y_0 、 y_1 、 T_A 、 T_0 の各種パラメータは実験から決定できるため、定量的な解析ができる利点がある。

表1に SDW 型の非 Fermi 液体状態における種々の物理量の臨界指数を示し、Fig. 5 に主な重い電子系物質の比熱の温度依存性と SCR 理論との比較を示す。SDW 型の描像

は $CeNi_2Ge_2$ や $CeRu_2Si_2$ などの多くの物性の記述に一定の成功を収めてきた。例として QCP に位置する $CeNi_2Ge_2$ の物性と SDW 型における臨界指数との比較について述べる。

	強磁性		反強磁性		Fermi Liquid
	d = 2	<i>d</i> = 3	d = 2	<i>d</i> = 3	
C/T	$T^{-1/3}$	$-\log T$	$-\log T$	$-T^{1/2}$	constant
ho	$T^{4/3}$	$T^{5/3}$	Т	$T^{3/2}$	T^2
$\chi(\boldsymbol{Q})^{-1}$	$-T\log T \to CW$	$T^{4/3} \rightarrow \mathrm{CW}$	$-\frac{\ln \ln T }{\ln T} \to CW$	$T^{3/2} \rightarrow \mathrm{CW}$	constant
α	$-\log T$	$T^{1/3}$	$\log \log \frac{1}{T}$	$T^{1/2}$	Т
Г	$-\frac{\log T}{T^{2/3}}$	$-\frac{1}{T^{2/3}\log T}$	$-\frac{\log\log\frac{1}{T}}{T\log T}$	$-\frac{1}{T}$	constant

表1 SDW 型非 Fermi 液体状態における種々の物理量の温度依存性 [8,10,11]。dは 系の次元、 α は熱膨張係数、 Γ は Grüneisen パラメータ $\Gamma \propto \alpha/C$ である。 $\chi(Q)^{-1}$ は QCP に近い低温の振舞いから高温では Curie-Weiss 則を示す。 比較のために右端の列 に Fermi 液体状態での温度依存性を示す。

Fig.5 主な重い電子系物質の比熱と三次元反強磁性相関に関する **SCR** 理論との比較 [9]。横軸は T_0 によって規格化された温度 t の対数スケールである。

■CeNi₂Ge₂ CeNi₂Ge₂ は、CeRu₂Si₂ などと同じ、空間群 *I*4/*mmm* に属する結晶構造 を持ち、ほぼ QCP 上に位置するため低温で非 Fermi 液体的振舞いを示す。Ce(Ni₁ – *x*Rh_x)₂Ge₂($T_N \sim 2$ K)、Ce(Pd₁ – *x*Ni_x)₂Ge₂($T_N \sim 5$ K)の元素置換系において反強磁性秩 序を示す [12]。Fig. 6 に主な物理量の温度依存性を示す。絶対零度での残留電気抵抗を ρ_0 と定義すると、電気抵抗の温度変化 $\Delta \rho = \rho - \rho_0$ の臨界指数 ε は4 K 以下では 1.2 から 1.5 の間の値をとり、 ρ_0 に依存する [13]。比熱係数と熱膨張係数より算出された Grüneisen パラメータは測定値から Fermi 液体成分を差し引いた臨界成分を示している。図 (c)中の 実線は C_{cr} が $T^{3/2}$ 、 Γ_{cr} が T^{-1} スケールでフィッティングを行った結果であり、得られた 臨界指数は表 1 の三次元反強磁性相関の場合の臨界指数と一致する。熱膨張係数は \sqrt{T} 依存性を示し、これも比熱係数と同じく三次元反強磁性相関の場合の臨界指数と一致す る [14]。従って CeNi₂Ge₂ は、非常に良く SDW 型の描像と一致する物質である。

Fig.6 CeNi₂Ge₂の各種物理量の測定結果 (a) 電気抵抗の温度依存性 [13]。図中 ε は 異なる 3 つの臨界指数を示す。(b) c 軸方向の線熱膨張係数の温度依存性 [14]。実線は $\alpha = a\sqrt{T} + bT$ によるフィッティング。Inset 図は $\alpha_V/T(\alpha_V)$: 体積熱膨張係数)の温度依 存性。(c) 電子比熱係数 C/T と Grüneisen パラメータの温度依存性 [15]。各データは測 定データから Fermi 液体成分 (表 1 を参照) を差し引いて算出された臨界成分。実線は 図中の臨界指数でフィッティングしたもの。

1.2.2 局在モーメント型量子相転移

局在モーメント型量子相転移は反強磁性秩序と T_{coh} が量子臨界点で同時に消失する場合に生じる。この場合、反強磁性秩序状態では局在f電子スピンの遮蔽が不完全で、コヒーレントな準粒子が崩壊しているため、局在スピンが秩序変数になっていると考えられている。局在モーメント型の場合の非Fermi液体状態は、「大きなFermi面」からf電子が殆ど寄与していない「小さなFermi面」へのFermi面のトポロジカル転移が磁気転移と同時に起こっており、空間的に広がっている反強磁性秩序の秩序パラメーターに加えて局所的な揺らぎの両方が重要になる[16]。一般的には殆どの量子相転移にはSDW型の描像が有効であると考えられており、 T_N と T_{coh} がほぼ同時に消失するという特殊な状況を生み出すようなシナリオは現在、2つ存在する。1つは二次元的臨界揺らぎに起因するという説[16,17]、もう一つは、主要な転移はFermi面のトポロジカル転移の方であり、磁気秩序への相転移は不安定なスピン液体が起こす二次的なものであるとする説[18,19]である。先述したように局在モーメント型に分類される物質で特に注目を集めているのが、CeCu_{6-x}M_x(M = Au、Ag、Pd、Pt)とYbRh(Si_{1-x}Ge_x)₂である。以下にその物性を紹介する。

Fig.7 局在モーメント型量子相転移の磁気相図の概念図 [16]。Wは cf 混成の強さ、 T_N は反強磁性転移温度、 T_N はコヒーレント温度であるである。

■CeCu_{6-x}M_x 非置換系の CeCu₆ は低温では単斜晶構造を持ち、Fig. 8 に示されるよう に $T_{\rm N} = 2$ mK において小さな磁気モーメント ($10^{-2}\mu_{\rm B}$ /Ce 程度) による反強磁性転移を 起こす [20]。 $T_{\rm N}$ より高温では、C/T は温度低下に従い緩やかに上昇し、T = 5 mK では 1700 mJ/K²mol に達する [21]。この Fermi 液体とはやや異なる振る舞いは磁気転移の前 兆であると考えられる(但し電気抵抗では 40 mK < T < 200 mK で T^2 依存性が観測され ている [22])。

Fig.8 CeCu₆の超低温における (a) 交流帯磁率および (b) 熱膨張係数の温度依存性 [20]。

CeCu₆のCuをよりイオン半径の大きいAu、Ag、Pd、Pt に置換することで、格子間隔 が広がり (負の化学圧力効果と呼ばれる) cf 混成を弱めることができ、臨界濃度 x_c (Au : = 0.1 [21]、Ag := 0.2 [23,24]、Pd := 0.05、Pt := 0.1 [25])において反強磁性相が現れ る。量子臨界点に制御された系では帯磁率 [26]、比熱、電気抵抗 [27] などで非 Fermi 液 体的振る舞いを示す。さらに、非 Fermi 液体状態は印加磁場を大きくすることで Fermi 状 態へクロスオーバーすることも示された。例として Fig. 9 に CeCu_{6-x}Ag_x の比熱と相図を 示す。

この系の代表的物質である CeCu_{5.8}Au_{0.2} で特異なのは、Fig. 10(a) に示すように、結晶 中の *ac* 面内に二次元臨界揺らぎが存在することである [29]。また、Fig. 10(b) に示すよう に、動的帯磁率 χ ["] が

$$\chi(E,T) = T^{-\alpha}g(E/k_{\rm B}T) \tag{1.11}$$

に従い、E/T (E は中性子の散乱過程におけるエネルギー変化) でスケールされ、臨界指数 が SDW 型のそれとは異なる $\alpha = 0.74$ である [26,30]。 χ " が E/T でスケールされること は二次元臨界揺らぎに対する拡張された動的平均場理論でしか導かれておらず、更にその 理論における臨界指数は $\alpha = 0.72$ であり、非常に実験値と近い [31]。特にこれら 3 つの 特徴が、CeCu_{6-x}M_x が局在モーメント型量子相転移に分類されていることの由縁である。

Fig.9 (a) CeCu_{6-x}Ag_x の電子比熱係数 *C*/*T* の温度依存性 [28]。(b) CeCu_{5.8}Ag_{0.2} の磁 場中における電子比熱係数 *C*/*T* の温度依存性 [28]。(c) CeCu_{6-x}Ag_x の相図 [24]。図中 の x は Ag のドープ量である。

Fig.10 (a) CeCu_{6-x}Au_x の逆格子空間 a^*-c^* 平面における磁気相関 (白抜き) と磁気 Bragg ピーク (塗りつぶし) [29]。x = 0.2 における白三角のシンボルは短距離秩序ピー クを表す。縦横のバーはピークの線幅を表す。差し込み図は CeCu_{6-x}Au_x の結晶構造の 実空間 a-c 平面における Ce 原子の位置を表す。逆格子空間における磁気相関構造 (灰 色で示された 4 本の棒状構造) は実空間における挿入図中の実線、破線を b 軸方向 (紙 面に垂直な方向) に拡張した平面に対応する。(b) CeCu_{5.8}Au_{0.2} の q = (0.8, 0, 0) にお ける中性子散乱のデータのスケーリング [30]。E は中性子の散乱過程におけるエネル ギー変化、実線は式 (1.11) の $\alpha = 0.74$ を用いたスケーリングによるフィッティングを 表す。差し込み図は α を変化させたときのフィッティングの誤差の度合いを表してい る (詳細は [30] 参照)

■YbRh(Si_{1-x}Ge_x)₂ Yb を含む化合物の多くは、化合物中の Yb が (Yb)³⁺ および (Yb)²⁺ の状態をとり、価数揺動状態を示すものが多い。Yb が化合物中で (Yb)³⁺ の電子状態であるとき、Ce とは対照的に 1 つの正孔を持つ。YbRh₂Si₂ は後述する CeRu₂Si₂ と同じ正方晶構造を持ち、 $T_{\rm N} = 70$ mK で反強磁性に転移する。小さな磁場 (c 軸方向 $B_{\parallel c} = 0.66$ T : ab 面内 $B_{\perp c} = 0.06$ T) を印加することで反強磁性相は消失し、磁場増加に従い系は非Fermi 液体、Fermi 液体状態へと移行する [32–34]。また YbRh₂Si₂ の Si サイトの 5% をGe に置換し、負の化学圧力を与えることで零磁場における $T_{\rm N}$ を 20 mK まで抑制することができる [35]。Fig. 11 に YbRh₂Si₂ と YbRh₂(Si_{0.95}Ge_{0.05})₂ の相図、帯磁率、比熱を示す。

Fig.11 (a)(b)YbRh₂Si₂ と YbRh₂(Si_{0.95}Ge_{0.05})₂の電気抵抗の温度依存性を用いた *T-B* 相図 [35]。 ε は $\rho \propto T^{\varepsilon}$ で定義される。(c)YbRh₂Si₂ と YbRh₂(Si_{0.95}Ge_{0.05})₂の交流帯磁 率の温度依存性 [36]。(d)YbRh₂(Si_{0.95}Ge_{0.05})₂の電子比熱係数 *C*_{el}/*T* の温度依存性 [35]。 (a)、(b)の磁場の方向は図中に示す。(c)、(d)では *c* 軸方向に垂直に磁場を印加している。

この系で特徴的なのは「大きな Fermi 面」から「小さな Fermi 面」への連続転移を示し、 そのエネルギースケールが量子臨界点近傍で消失する点である [37]。Fig. 12 に Fermi 面 の連続転移に起因する特徴的な物性の例を示す。Fig. 12(a)の磁歪係数は 70 mK 以下では 反強磁性相の臨界磁場で不連続なとびを示し、70 mK 以上では低磁場で B に比例し、あ る磁場 B_0 で異なる傾きを持つ高磁場領域へクロスオーバーする。Fig. 12(b) で示される ように B_0 での折れ曲がりは磁化 M、Hall 抵抗 $\rho_{\rm H}$ でも観測されている [38]。また Hall 係 数 $R_{\rm H}$ は B_0 で大きく変化しており、これは Fermi 面の体積が急激に変化していることを 表している。この Fermi 面の変化は降温に従い鋭くなっているが、 $dR_{\rm H}/dB$ の半値幅の絶 対零度での外挿値から、絶対零度でも二次転移であると考えられている [37]。更に B_0 を T-B 相図にプロットすると、 B_0 が量子臨界点 B_c で消失するような振る舞いを示してお り、局在モーメント型量子相転移の証拠ではないかと考えられている。

Fig.12 (a) YbRh₂Si₂ の磁歪係数 λ の磁場依存性 [38]。温度は図中に示す。矢印は低磁場領域から高磁場領域へのクロスオーバー磁場 B_0 を表す。(b) YbRh₂Si₂ の磁 歪係数 λ 、磁化 M、Hall 抵抗 $\rho_{\rm H}$ の磁場依存性 [38]。(c) YbRh₂Si₂ の微分 Hall 係数 $R_{\rm H} \equiv d\rho_{\rm H}(B)/dB$ の規格化磁場 B/B_0 依存性 [37]。図中に測定方法を示す。(d) B_0 を書 き加えた YbRh₂Si₂ の相図 [38]。 $T_{\rm N}$ 、 $T_{\rm FL}$ はそれぞれ反強磁性転移温度、Fermi 液体状態の特性温度である。(b)、(d) では ab 面内の磁場は異方性因子 11 で割って $B = B_{\perp c}/11$ としてプロットしてある。

1.3 CeRu₂Si₂の物性

1.3.1 CeRu₂Si₂の基本物性

CeRu₂Si₂ は ThCr₂Si₂ 型の立方晶構造 (空間群 *I*4/*mmm*) を持ち、格子定数は *a*=4.192Å、 *c*=9.78Å である。*f* 電子の結晶場基底状態は磁気モーメントの自由度のみを持つ Γ_7 二重 項で第一励起状態とは 220 K 離れている [39]。Fig. 2(a) に示されるように、~70 K 以上 では帯磁率は Curie-Weiss 則に従って変化し有効磁気モーメントは μ_{eff} = 2.38 μ_B /Ce であ る [40]。低温では T_K = 20 K で近藤効果による磁気モーメントの遮蔽が始まり、*T* < 1 K で電子比熱係数は γ = 350 mJ/K²mol まで増大する。

Fig. 13 に示すように de Haas-van Alphen (dHvA) 効果や光電子分光の実験より、 $T_{\rm K}$ 以下において 4 つの Fermi 面 (正孔面が 3 つ、電子面が 1 つ) が観測されており、それらの形状は 4f 電子を遍歴電子として扱ったバンド計算とよく一致している [41]。観測されている 4 つの Fermi 面の軌道の中で準粒子有効質量が最も重い FS 4 の Ψ 軌道の m^* は ~ 120 m_e 程度であり、これは cf 混成により形成した混成バンドによって有効質量が増大していることが明らかになっている。よって、CeRu₂Si₂ は典型的な Fermi 液体的振る舞いを示す。

Fig. 14 に示すように、CeRu₂Si₂ は 10 K 以下、磁場 $B_M = 7.8$ T において磁化 M が 階段状に変化するメタ磁性的振る舞いを示す [42–44]。また、磁化の急劇な増加に伴っ て磁歪も非常によく似た振舞いを示す。この B_M での微分帯磁率 $\partial M/\partial B$ と磁歪係数 $\lambda_V = V^{-1}\partial V/\partial B$ のピークは温度低下と共に鋭くなるが、ピークは絶対零度でも発散し ないため、このメタ磁性的振る舞いは 1 次転移ではなくクロスオーバーのメタ磁性であ る [44]。現在ではこのメタ磁性的振る舞いは、最も重い有効質量を持つホール面 (Fig. 13 図 (c) の FS 4) が Zeeman 分裂によって満たされることに起因するという考え方が有力で ある。しかしホール面が満たされることによって、Fermi 面の変形と f 電子の見かけ上の 局在化が起きているという説 [45] と、Fermi 面の変形なしでも Hall 効果や磁気抵抗など の物性は説明できるという説 [46] があり、この問題は未解決である。

Fig. 15 は比熱係数の温度依存性および磁場依存性である。比熱係数は低温で近藤一重 項の形成に伴って増加していき、1 K 付近で Fermi 液体的な一定値をとる。これは Fig. 5 に示すように、SCR 理論によるフィッティングとよく一致し、非 Fermi 液体状態から Fermi 液体状態へのクロスオーバーが起きてることを示している。更に、磁場印加によっ て比熱係数の増加が観測されており、これは de Haas-van Alphen (dHvA) 効果の実験から メタ磁性転移に伴う電子の有効質量の増加と定性的に一致する。図 (b) より 0.25 K で一 つのピークだった比熱係数が、昇温につれて B_M 近傍でダブルピークを形成する。この 2 重ピーク構造は準粒子の状態密度が異方的混成バンドに起因しているとされ、ゼーマン分 裂によるアップスピンとダウンスピンの状態密度が Fermi 準位を通過する際に起こるも のと説明されている [47]。

Fig.13 (a) CeRu₂Si₂の結晶構造。(b) 体心正方晶構造の Brillouin ゾーン。(c) CeRu₂Si₂ の Fermi 面 (FS) の形状 [41]。FS 1~4 はホール面で Brillouin ゾーンの中心は Z 点、 FS 5 は電子面で Brillouin ゾーンの中心は Γ 点である。FS 1 はバンド計算では予想さ れたが、実際に実験では観測されていない Fermi 面である。

Fig.14 (a) CeRu₂Si₂ の c 軸方向の磁化 M の磁場依存性 [44]。(b) CeRu₂Si₂ の c 軸方 向の磁歪 $\Delta L_{\parallel c}(B)/L_{\parallel c}$ の磁場依存性 [48]。(c) CeRu₂Si₂ の体積の磁場微分 $\partial V/\partial B$ の磁 場依存性 [48]。実線はスケーリング則より (a) の磁化でスケーリングした結果である。

Fig.15 (a) CeRu₂Si₂ の比熱係数の温度依存性 [47]。(b) 各温度における CeRu₂Si₂ の比熱係数の磁場依存性 [47]。

Fig. 16 は線熱膨張 $\Delta L(T)/L$ および線熱膨張係数の温度依存性を示している。図 (a) は CeRu₂Si₂ の *a*、*c* 軸と LaRu₂Si₂ の *a*、*c* 軸の熱膨張を示しており、*f* 電子を持たない LaRu₂Si₂ に比べて、CeRu₂Si₂ は *T*_K 付近でショットキー的なピークを示す。低温での *a* 軸と *c* 軸との磁気異方性は *c/a* ~ 3 程度である。図 (b) および図 (c) は *B*_M 付近までの *c* 軸の磁場中熱膨張および熱膨張係数の温度依存性を示している。磁場印加によりピーク は低温側にシフトし、*B*_M 近傍でピークが増大した後、*B*_M より高磁場では横軸反転した ような下凸のピークを持ち熱膨張係数は負の値を持つ。また、図 (d) の様に *B*_M 近傍では *B* < *B*_M と *B* > *B*_M で非常に対称的な温度依存性を示す。これらの対称的振舞いは Ising 対称性に起因していると解釈でき、ピークを通して高温側の臨界状態から低温側の Fermi 液体状態へのクロスオーバーが起きていると説明されている [49]。

Fig. 16 の熱膨張と Fig. 15 の比熱測定の結果から求められた H-T 相図を Fig. 16 の図 (e) に示す。低温低磁場領域では Pauli 常磁性状態、メタ磁性転移後の低温高磁場領域は分極した常磁性状態であり、両方とも十分低温で Fermi 液体的に振舞う。一方で 2 つの相に挟まれた領域は、これまで述べた物理量に示されているように非 Fermi 液体的な状態にある。

これまで述べてきたように CeRu₂Si₂ は低温まで非磁性物質であり、典型的な Fermi 液体 的振舞いを示す。一方、約70 K で $k_1 = (0.3, 0, 0), k_2 = (0.3, 0.3, 0), k_3 = (0, 0, 0.35)$ の 3 つの非整合反強磁性相関が観測されている [42,54]。これらの反強磁性相関は CeRu₂Si₂ の Fermi 面にネスティングが存在し、反強磁性転移寸前であることを意味する。Fig. 17 お よび Fig. 18 に非弾性中性子散乱実験の結果を示す。Fig. 17 図 (a) に示すように各 k ベク トルの散乱は Q に依存しない格子上の相関の上に見える。また近藤効果に起因した散乱 に対し、散乱のエネルギー幅 ~20 meV の値が得られ、近藤温度は 20 K と見積もられた。 Fig. 17 図 (b) より反強磁性相関は ~70 K より発生し、相関長は T < 6 K では 3 unit cell 程度になって温度に依存しなくなる。Fig. 17 図 (c) は c 軸方向へ磁場印加したときの Q =(0.7,0.7,0) の磁場依存性であるが、低磁場では 2 種類の散乱が観測されている。1 つは反 強磁性的な短距離相関 (correlations) によるものであり、2 つめは局所的な近藤スピン揺動 (localized) によるものである。メタ磁性転移後の 8.3 T の高磁場では反強磁性相関が消失 している。40 K 以下での動的帯磁率の振る舞いは SCR 理論による解析とよく一致してい る [55]。さらに μ SR の実験から ~ 2 K で 10⁻³ μ_B /Ce 程度の非常に小さな磁気モーメント による短距離磁気秩序の報告がされている [56]。

Fig.16 (a) CeRu₂Si₂ と LaRu₂Si₂ の零磁場における熱膨張係数の温度依存性 [50]。 (b) CeRu₂Si₂ の c 軸方向の各磁場における熱膨張 $\Delta L(T)/L$ の温度依存性 [51]。各磁場 は、B = 0 T, 2 T, 3 T, 4 T, 5 T, 6 T, 6.5 T, 7 T, 7.3 T, 7.5 T, 7.6 T, 7.65 T, 7.7 T, 7.8 T で ある。(c) 図 (b) の熱膨張から求められた各磁場における熱膨張係数の温度依存性 [51]。 (d) メタ磁性転移磁場近傍における c 軸方向の熱膨張係数の温度依存性 [49]。(e) 熱膨 張係数の温度依存性変曲点と比熱係数の磁場依存性におけるピーク (Fig. 15) から求め られた H-T 相図 [52]。

Fig.17 CeRu₂Si₂の非弾性中性子散乱実験の結果 [53]。(a) [110](上段) と [010](下段) 方向への散乱ベクトル **Q** = (1,1,0) による測定。(b) (1,1,0) 方向への **q** スキャンの温度 依存性。(c) *c* 軸方向へ磁場印加したときの **Q** = (0.7,0.7,0) の磁場依存性。

Fig.18 CeRu₂Si₂の非弾性中性子散乱実験 [55]。(a) E = 1 meV、T = 1.5 K での q ス キャンによる Brillouin ゾーン上における動的帯磁率の強度マップ。(b) Brillouin ゾーン上の様々な波数ベクトル q のスキャン。(c) 様々な温度における k_3 ベクトルの q ス キャン。。

1.3.2 高圧下における物性

圧力下における CeRu₂Si₂ の主な物性を Fig. 19 に示す。Fig. 19 図 (a) に示されるよう に、圧力増加に従い、低温における c 軸方向の帯磁率は大きく抑制される。一方、帯磁 率のピーク温度 T_{max} ($\propto T_{\text{K}}$) は p = 0 での 10 K から、p = 0.4 GPa では ~ 20 K まで 増加する [57]。この T_{max} の圧力変化は $\partial \ln T_{\text{max}}/\partial p = 1.69 \times 10^{-9} \text{ Pa}^{-1}$ に従う。Fig. 19 図 (c) に示されるように、これは $1/\chi_0$ (χ_0 は帯磁率の絶対零度での外挿値)、 $1/\sqrt{A}$ (A は $\rho \propto AT^2$ で定義)、 H_M (メタ磁性転移磁場)の圧力依存性においても同様である。体 積圧縮率 $\kappa = 9.38 \times 10^{-12} \text{ Pa}^{-1}$ を用いると、 $\partial \ln T_{\text{max}} / \partial \ln V \sim 180$ となり、これは熱 膨張測定から導出された Grüneisen パラメーターと一致する [50]。また Grüneisen パラ メーターは特性温度の圧力と体積に対する依存性を与える。また帯磁率の温度依存性は、 $\chi(T,P)/\chi_0(P) = \phi[T/T^*(p)] と T^*(p) \propto 1/\chi_0(p)$ による単純なスケーリング (ϕ はスケーリ ング関数) で記述できる。更に、Fig. 19 図 (b) の赤矢印で示されるように、電気抵抗が $ho -
ho_0 \propto T^2$ に従う温度領域は、圧力を加えることによって高温へ拡大している。これら は圧力によって近藤効果が増強され、Fermi 液体状態がより安定化していることを示して いる。dHvA 効果によって、p = 0 では軌道 β 、 κ の有効質量がそれぞれ 1.5 m_0 、11 m_0 で あるが、*p* = 0.6 GPa では 1.1*m*₀、7*m*₀ に減少する [58]。また、軌道 μ でも、*p* = 0 では大 きい m* のため dHvA 振動は観測できないが、0.6 GPa では m* が 34mo まで減少すること によって dHvA 振動が観測できるようになる。これら m*の減少は、圧力増加による帯磁 率、電気抵抗の T² 係数が減少が観測されていることと定性的に一致する。また、Fig. 19 図(d)に示されるように、dHvA 周波数は軌道 β 、 γ では圧力増加によって減少するが、 **FS**5の軌道 *κ*、μの場合は増加する。

1.3.3 化学圧力効果

前項では $CeRu_2Si_2$ は Fermi 液体的性質を示しながら、波数ベクトル k_1 、 k_2 、 k_3 で特 徴づけられる 3 つの非整合短距離反強磁性相関を持つ磁気秩序寸前の物質であることを述 べた。この項では $CeRu_2Si_2$ に少量の原子置換をした場合に起こる磁気秩序、量子臨界点 について述べる。

■Ce_{1-x}La_xRu₂Si₂ Ce を非磁性原子 La (電子状態: $4f^{0} 5d^{1} 6s^{2}$)に置換すると、x = 0.075において反強磁性相が現れる。この反強磁性相は、c軸方向に整列した、非置換 CeRu₂Si₂ で観測された非整合反強磁性相関の波数ベクトル k_1 が長距離化した秩序状態である [60]。 もしこの反強磁性相が局在モーメントの秩序ならば、正弦波構造の秩序状態はエントロ ピーが残っており、一般的には残りのエントロピーを解放するため更に低温で矩形波構造 に転移する。x = 0.13、0.20 では正弦波構造から矩形波構造への転移が観測されており、 この反強磁性相は局在モーメントによる秩序であると考えられる。これは μ SR の実験に

Fig.19 (a) 圧力下 CeRu₂Si₂ の帯磁率の温度依存性 [57]。実線は本文中のスケーリ ングによるもの。図中の矢印は帯磁率が極大値をとる温度 T_{max} を表す。(b) 圧力下 CeRu₂Si₂ の電気抵抗の温度依存性 [59]。低温部の実線は T^2 依存性を表す。図中の 矢印は $\rho - \rho_0 \propto T^2$ に従い始める温度を表す。(c) CeRu₂Si₂ の様々な物理量 (v とお く) の圧力依存性 [57]。縦軸は p = 0 での値によって規格化された各物理量 $v(p)/v_0$ であり、log スケールであることに注意されたい実線は $\partial \ln v/\partial p = 1.69 \times 10^{-9}$ Pa⁻¹ をプロットしたもの。詳しくは本文参照。(d) CeRu₂Si₂ の Fermi 面の各軌道におけ る de Haas-van Alphen 周波数の圧力依存性 [58]。各軌道の名前は Fig. 13(c) に準じて いる。

よっても支持されている [60,61]。Fig. 20 に Ce_{1-x}La_xRu₂Si₂ の相図と磁気モーメントの 大きさを示す。

Fig.20 (a) $x > x_c$ での Ce_{1-x}La_xRu₂Si₂ の秩序化した磁気モーメントの大きさの温度依存性 [60]。(b) 反強磁性転移温度 (青四角) の La 濃度 x 依存性 [62]。 T_N 、 T_L はそれぞれ反強磁性転移温度、正弦波から矩形波構造への転移温度を表している。

x > 0.1では、比熱、磁化は磁気転移点 T_N で極大を示す [63]。電気抵抗は a 軸方向にの み T_N 以下で僅かな増加が報告されており、異方的なギャップ構造によるものと考えられ る [64]。 $x \le x_c$ の非磁性領域において電子比熱係数 C/T は – \sqrt{T} で上昇する非 Fermi 液 体的振舞いを示した後、低温で一定の値をとる Fermi 液体的振舞いを示す。Kambe らに よって、SCR 理論を用いた解析が行われており、Fig. 21 に比熱の実験結果と解析結果を 示す。

Fig.21 Ce_{1-x}La_xRu₂Si₂ の $x \le x_c$ における x = 0、0.05、0.075 での比熱測定の SCR 理論による解析結果 [65]。図は比熱の測定結果と SCR 理論によるフィッティングを示している。表はフィッティングの結果得られたパラメータである。 F_s は異なるモード間の結合定数である。他のパラメータの物理的意味は 1.2.1 の本文を参照。

■Ce(Ru_{1-x}Rh_x)Si₂ Ru の Rh 置換は、Fig. 22 図 (a) に示されるように c 軸方向の格子 間隔は伸びるが a 軸方向は逆に縮むため、異方的な化学圧力効果を与える [66]。Fig. 22 図 (b) に示すように、0.03 < x < 0.4 の Rh 濃度において非置換 CeRu₂Si₂ の k_3 で特 徴付けられる縦波 sin 波構造の反強磁性相への転移が起きる。秩序波数ベクトルは、 Q(x = 0.15) = (0, 0, 0.42) から Q(x = 0.25) = (0, 0, 0.5) へ Rh 濃度の増加に従い連続的 に変化する [67]。また x = 0.5 近傍で一旦、反強磁性相が消失し非 Fermi 液体状態の観測 が報告されている [68]。

Fig.22 (a) Ce(Ru_{1-x}Rh_x)₂Si₂の格子定数のRh 濃度 x 依存性 [66]。 (b) Ce(Ru_{1-x}Rh_x)₂Si₂の磁気相図 [66,69]。(c) Ce(Ru_{0.85}Rh_{0.15})₂Si₂の各軸方向の電気抵抗の温度依存性 [70]。

Fig. 23 に示すように、Ce(Ru_{1-x}Rh_x)₂Si₂ において、La 置換系と同様に臨界濃度 $x_c = 0.03$ 近傍において比熱、帯磁率、非弾性中性子散乱の結果が SCR 理論を用いて解析されてい る [71,72]。Fig. 23(d) で示す、CeRu₂Si₂ と Ce(Ru_{0.97}Rh_{0.03})₂Si₂ において 1 K 以上での反 強磁性波数ベクトル k_3 に対する動的帯磁率の低エネルギー励起におけるスペクトルは、 SCR 理論による動的帯磁率の式でよく記述できる。さらに、動的帯磁率スペクトルの式 によるフィッティングから得られたスペクトル線幅 Γ の温度依存性は、Fig. 23(e) で示す ように、動的帯磁率スペクトルの式に表 1 の三次元反強磁性相関の場合の $\chi(Q)$ の臨界指 数を代入して得た $\Gamma \propto T^{3/2}$ に従う [72]。

Fig.23 (a) Ce(Ru_{1-x}Rh_x)₂Si₂の比熱の温度依存性 [71]。実線は SCR 理論によるフィッ ティング。(b) Ce(Ru_{1-x}Rh_x)₂Si₂の帯磁率の温度依存性 [71]。実線は SCR 理論による フィッティング。(c) 比熱、帯磁率の SCR 理論による解析 (a, b) から得られたパラ メータ。パラメータの物理的意味は 1.2.1 の本文を参照。(d) Ce(Ru_{0.97}Rh_{0.03})₂Si₂ の動 的帯磁率 [72]。実線は SCR 理論による式を用いたフィッティング。(e) CeRu₂Si₂ と Ce(Ru_{0.97}Rh_{0.03})₂Si₂ における動的帯磁率のスペクトル線幅 Γ の温度依存性 [72]。挿入 図は積 $\chi(k_3)\Gamma(k_3)$ の温度依存性を示す。

■CeRu₂(Si_{1-x}Ge_x)₂ CeRu₂Ge₂ は多くの Ce 化合物とは異なり、 $T_{C} = 8$ K で強磁性を示 す [73]。Fig. 24 の図 (b) に示す通り、CeRu₂Ge₂ に圧力を加えることによって急激に T_{C} は抑制され、代わりに反強磁性相が現れる。55 更に圧力を加えると反強磁性転移温度は抑 制され、 $p_{c} \sim 6.5$ GPa で転移温度はほぼゼロに達する。一方、CeRu₂Si₂ に Ge をドープし た系では反強磁性相が現れる [74]。Fig. 24 図 (a) に示すように、Ge のドープによって格 子間隔は拡張する。Ge ドープは La 置換と異なり磁性原子の数を変えないため、純粋に負 の圧力だけを与えることになる。CeRu₂(Si_{1-x}Ge_x)₂ の x-T 相図は、x = 1 のとき 6.75 GPa の負の圧力に相当すると仮定すると、CeRu₂Ge₂ の p-T 相図とよく一致する [75]。Fig. 24 図 (b) は CeRu₂(Si_{1-x}Ge_x)₂ の x-T 相図、CeRu₂Ge₂ の p-T 相図を合わせて示したもので あり、AFM1、AFM2 相は波数ベクトル k_1 の磁気構造を持つ反強磁性相である。このよ うな同一の秩序波数ベクトル k_1 で特徴付けられる 2 つの反強磁性相の存在は、同じく波 数ベクトル k_1 で特徴付けられる正弦波構造と矩形波構造の 2 つ反強磁性相を持つ La 置 換系の相図とよく似ている。従って、AFM1 相から AFM2 相への転移は、La 置換系と同 様、正弦波から矩形波への磁気構造の転移ではないかと考えられている [74]。

Fig.24 (a) CeRu₂(Si_{1-x}Ge_x)₂の格子定数 [76]。(b) CeRu₂(Si_{1-x}Ge_x)₂の*T*-x 相図と電 気抵抗測定による CeRu₂Ge₂の*p*-T 相図 [75]。上部横軸は Ge のドープ量、下部横軸 は CeRu₂Ge₂の *p*-T 相図の圧力を示している。中抜きのシンボルは圧力下 CeRu₂Ge₂の物性測定で得られた転移温度、それ以外のシンボルは CeRu₂(Si_{1-x}Ge_x)₂の物性測定 で得られた転移温度である。

1.3.4 超低温領域での磁気的性質

Fig. 25 に Takahashi らによる交流帯磁率および静磁化率の測定結果を示す [77]。 T≲50 mK、*B* < 0.94 mT の温度磁場領域で、交流帯磁率、静磁化ともに Curie 則 $\chi \propto T^{-1}$ に従った立ち上がりが観測された。*B* = 0.016 mT の帯磁率は低温を下げるとともに単調 に増加し、臨界指数は 6 mK 以上で Curie 則的だったのが、~ 2 mK 以下になると $T^{-2/3}$ になる。*B* = 0.20、0.39、0.94 mT では温度を下げると Curie 則から外れて、交流帯磁率 はピークをつくる。印加磁場を大きくするとピーク温度は高温側にシフトし、ピーク値は 抑制される。静磁化も同様に温度を下げると Curie 則から外れ、飽和する。この飽和磁化 の大きさは磁場に依存し、Curie 定数から見積もられた有効磁気モーメントとの比は 10⁻³ で非常に小さい。また、6.21 mT まで外部磁場を上げると帯磁率の立ち上がりは Pauli 常 磁性の値までほぼ抑制される。

Curie 則から外れた超低温領域での帯磁率の振る舞いはピーク値、ピーク温度で規格化 することでスケーリング則が成り立つ。ピーク値より低温側は SDW による反強磁性転移 の振舞いに似ており解析されたが、SDW 型の描像によって与えられる量子臨界状態での 帯磁率の温度依存性と、Fig. 25(c) に示した解析結果は一致しなかった。またネール温度 の見積もりも行われたが、 $T_N = 2.8$ mK であり、その温度付近で反強磁性的な転移が確認 されなかったことなどから、SDW による反強磁性転移の可能性は否定されている。一方 で、局在モーメント型で記述される非磁性状態での YbRh₂Si₂ の帯磁率のピークと非常に 良く似ており、CeRu₂Si₂ のピーク温度以下ではコヒーレントな準粒子が形成されている 可能性がある。また Fig. 25(d) に示されるように直流、交流帯磁率の絶対零度での外挿値 χ_0 の磁場依存性は $B^{-0.6\pm0.1}$ であり、YbRh₂Si₂ のそれと一致する。従って CeRu₂Si₂ の零 磁場における基底状態は何らかの量子臨界状態にあると考えられ、それは磁場によって抑 制されるが、その起源は不透明である。

1.3.5 超低温における c 軸方向の熱膨張・磁歪測定

上記の帯磁率の結果を受けて、先行研究にて超低温低磁場での c 軸方向の熱膨張・磁歪 測定が行われた。その結果、帯磁率の結果と同じ温度領域に量子臨界現象の観測が報告さ れた [78]。しかし、本研究期間中において近年開発した超低温高磁場環境にて当時と同じ 試料、同じサンプルセルで改めて c 軸方向の高磁場下の熱膨張・磁歪測定を行ったとこ ろ、本来観測されるはずのメタ磁性的な振舞いが観測されなかった。本研究期間中にて測 定されたデータは当時の測定データと再現するため、試料、サンプルセルの状態に明確な 経時的変化はなく、先行研究で測定した当時からメタ磁性が起こらない状態で測定されて いたと推測される。メタ磁性が起こらない原因は不明であるが、現在のところ先行研究に おける c 軸方向の熱膨張・磁歪データに関して信頼性は高くないものと考えられる。

本研究で使用した CeRu₂Si₂ 試料は先行研究で使用したものとは別の試料であり、磁歪
測定においてメタ磁性を確認している。また他研究グループのデータと比較してもほぼー 致しているため、本研究で測定された熱膨張・磁歪測定データは信頼できるものと考えて よい。

Fig.25 (a) 超低温領域での CeRu₂Si₂ の c 軸方向の交流帯磁率と直流帯磁率 (inset 図) の温度依存性 [77]。図中の矢印は交流帯磁率のピーク、数字は c 軸方向への印加磁場、 実線は Curie 則を示す。(b) 上図は交流帯磁率のピーク温度とピーク値で規格化した交 流交流帯磁率の温度依存性。下図は交流帯磁率のピーク温度と静磁化の飽和磁化で規 格化した直流帯磁率の温度依存性 [77]。(c) 帯磁率の T^{-2/3} 依存性。(d) 帯磁率の絶対零 度における外挿値の B^{-0.6} 依存性。

1.4 研究目的

以上に述べたように CeRu₂Si₂ の基底状態は Fermi 液体状態であると考えられている が、中性子散乱や μ SR の実験より T_K 以下でも反強磁性相関をもち、また非常に小さな磁 気モーメントの存在が観測されている。常磁性でありながらこの様な振舞いが観測されて いる物質には、さらに低温まで冷却するかわずかに元素置換するだけで SDW 型の量子相 転移する物質が度々報告されている。

また本研究グループの先行研究では CeRu₂Si₂ の c 軸について 150 μ K までの超低温で の帯磁率測定より、Pauli 常磁性からの立ち上がりが観測され、新しい量子臨界現象を発 見した [77]。さらに、超低温低磁場での c 軸方向の熱膨張・磁歪測定が行われたが、超低 温高磁場環境を備えた最近の再現実験ではメタ磁性が観測されなかったことから、測定結 果の信頼性に疑いが残っておりメタ磁性が確認できる試料で再度 c 軸の熱膨張・磁歪測定 が望まれる [78]。そもそも、超低温領域での実験を行える環境は限られており、CeRu₂Si₂ に関する実験の大部分が極低温以上の高温で行われているため、超低温領域の実験データ はほとんどない。よって、この新しい量子臨界現象に関しては未だ殆ど未解明の状態であ る。しかし重い電子系では f 電子と c 電子との混成の強さが基底状態を決定しており、混 成の強さを決める温度、磁場、圧力の外部パラメータに対して広い領域で実験を行うこと が求められる。すなわち、超低温・高磁場・高圧の多重極限環境での実験が、重い電子系 の本質に追る上で必要とされる。

本研究では、CeRu₂Si₂の超低温で観測された新しい量子臨界現象を解明するため、 10 mK までの超低温領域に高磁場環境 (9 T)を備えた超低温高磁場多重極限環境を開発 し、主に CeRu₂Si₂の磁化困難軸である *a* 軸方向の熱膨張・磁歪測定を行い、新しい量子 臨界現象の起源に関する研究を行った。

2 Experimental procedure

本研究では³He-⁴He 希釈冷凍機を用いて最低到達温度~10mK まで冷却した。超低温 とは一般に~50mK より低温の温度領域を指し、³He-⁴He 希釈冷凍機あるいはさらに核断 熱消磁冷却法を用いることで実現する。それより高い温度は極低温という。低温実験では 冷却温度の低下に伴い、また印加磁場を大きくするにしたがって、熱的な接触や平衡状態 の実現が難しくなるため、実験装置に様々な工夫が必要である。以下に本研究で用いた冷 却装置、温度計、キャパシタンス法を用いた熱膨張・磁歪測定装置、および測定試料につ いて説明する。

2.1 冷却装置

2.1.1 ³He-⁴He 希釈冷凍機

ヘリウムには同位体として³He と⁴He が存在するが、³He は Fermi 統計、⁴He は Bose 統計に従い、1 K 以下の低温ではこれらの量子統計性の違いが顕著になる。このため液体 ³He の比熱は、1K 以下において液体 ³He の比熱に比べて数桁大きくなる。エントロピー S は比熱 C と dS = (C/T)dT の関係にあり、液体 ³He のエントロピーも大きいため液体 ³He のエントロピーを制御できれば、冷却に応用できる。一方で、液体 ⁴He は 2.17 K に 超流動転移点を持ち、それ以下の温度では急激にエントロピーを失っていく。³He-⁴He 希 釈冷凍機は ³He と ⁴He の混合液を利用し、³He のエントロピーを制御することで冷却能 力を得ることができる。以下にその原理を述べる。

³He-⁴He 混合液の相図を Fig. 26 に示す。三重点 0.87 K 以下の温度で 2 本の共存線を 持ち、共存線で囲まれた条件にある状態では混合液体は 2 相に分離し、共存線に沿って各 相の ³He の濃度が変化する。この 2 相分離状態の ³He 濃度の薄い方を ³He 希釈相 (d 相)、 ³He 濃度の濃い方を ³He 濃厚相 (c 相) という。T→0 において c 相は純粋な ³He に近づく が、d 相の方は T=0 でも約 6.4% の ³He 濃度をもつ。³He は ⁴He に比べ軽いため、重力 下においては c 相が d 相に浮かんだ状態になる。c 相中では ³He 同士の相互作用が強く、 Fermi 液体状態だと考えられる。d 相では 0.5 K 以下の低温において ⁴He の常流動成分は 無視できるので、エントロピーゼロ、粘性ゼロの超流動 ⁴He 中を ³He が自由に運動する Fermi 気体状態だと考えられる。低温で Fermi 縮退した ³He のエントロピーは $S \propto T/T_F$ と温度に比例する。 T_F は Fermi 温度でありモル体積 v を用いて、 $T_F \propto v^{-2/3}$ で与えられ る。従って、³He 濃度の低い (モル体積の大きい)d 相は同じ温度では c 相に比べて大きな エントロピーをもつ。0.8 K まで下がると ⁴He の蒸気圧はほぼゼロであるが ³He の方は 有限の値をもつ。この蒸気圧の差を利用して、d 相中の ³He を選択的に取り除くと、c 相 から d 相へ ³He が溶け込み、c 相と d 相のエントロピー差に比例した吸熱が起こる。これ は液体 ³He の蒸発とみなすことが出来る。d 相から分留した ³He は液化された後に再び c 相へ送って ³He を循環させる。この過程を連続的に実現したものが ³He-⁴He 希釈冷凍機 であり数 mK までの低温を定常的に実現できる唯一の方法である。冷凍機の冷凍能力に ついて c 相、d 相共に ³He が Fermi 縮退した温度領域ならばエントロピーは温度に比例す るので、冷凍能力は T^2 に比例する。

本研究で使用した冷凍機は、Oxford 社製の Kelvinox300 で、100 mK で約 300 µW の冷 凍能力を持ち、希釈冷凍機単体での最低到達温度は 9 mK である。

Fig.26 ³He-⁴He 混合液の相図 [79]

2.2 温度測定

温度計は、測定物理量の温度依存性が既知であり、その関数形が簡単かつ温度変化が大 きく検出が容易なものが望ましい。しかし超低温ではわずかな熱流入が温度上昇の原因に なり、場合によっては温度の測定自体が系の温度上昇の原因になることがある。また超低 温では試料と温度計の間の界面熱抵抗による熱緩和時間や温度差の増大などの困難が生じ る。様々な種類の温度計があり、各々の測定原理によって測定に適した温度領域が違うた め、通常は複数種類の温度計を装置に搭載し各温度領域をオーバーラップして最終的に系 の温度を決定する。

本研究では³He 融解圧温度計 (1mK < T < 200 mK)、抵抗温度計 (RuO₂、炭素抵抗温度 計) (T > 100 mK) を各温度領域で使用した。

Fig.27 ³He の *T*-*p* 相図 [80]。

Fig. 27 に³He の *T*-*p* 相図を示す。³He は質量が非常に軽く、ゼロ点振動が大きいため に常圧では絶対零度においても液体状態を保ち、およそ 3.4MPa の圧力をかけると固化す る。*T*-*p* 相図において、融解圧曲線が 318 mK に極小点を持ち低温側では負の勾配を持っ て大きく変化する。これは液体 ³He は Fermi 液体状態でエントロピーが温度に比例して 減少するのに対し、固体 ³He は 1 mK 付近で反強磁性転移するまで核スピンの自由度によ る Rln2 のエントロピーが残っていることに起因する。定積過程において ³He の状態は融 解圧曲線に沿って変化するため、精度良く系の圧力測定ができれば高精度の温度測定が可 能となる。

³He 融解圧温度計 (MCT: Melting Curve Thermometer) は、セル内に高圧で封入した ³He の融解圧を容量型歪み圧力計を用いて測定し、その融解圧の温度依存性から温度を 求める。Fig. 28 に典型的な MCT の内部構造を示す。融解圧力の校正は、融解圧曲線上 の 4 つの温度定点、圧力極小点 (M 点: 2.931 MPa、318 mK)、超流動 A 相転移点 (A 点 : 3.4338 MPa、2.491 mK)、超流動 B 相転移点 (B 点: 3.4358 MPa、1.932 mK)、bcc 固体 ³He の反強磁性転移点 (S 点: 3.43905 MPa、0.931 mK)を用ることができる [81–83]。低 温部の 3 つの温度定点 (A 点、B 点、S 点)では、相転移に伴う潜熱や比熱のとびを反映 し、融解圧の時間変化に異常が観測されるため、温度変化の過程でこれらの点を発見する ことは容易である。

本研究では³He-⁴He 希釈冷凍機のみで冷却を行っているため、実験で確認できる温度 定点は M 点のみである。よって、温度校正は Ref. [82] 中で与えられた A 点を基準とする 融解圧温度スケールを M 点基準に換算したものを使用した。

Fig.28 MCT の内部構造 [81]。

2.2.2 MCT の校正と温度測定

MCT は最低温度にいたっても ³He が融解圧曲線上に位置 (液体と固体が共存)していなければ温度測定ができない。また、³He の固体は熱伝導度が T^3 に比例して小さくなり、比熱はその核スピンのため温度低下に伴い T^{-2} で大きくなるので、セル内の固体が多いと被測定系と温度計の間の熱緩和時間が長くなり、正確な温度測定が困難になる。MCT への ³He の仕込み圧は絶対零度での固体の体積比が最小 (≤ 0.5 %) となる 3.4 MPa 程度が良いとされている [81]。³He-⁴He 希釈冷凍機にある 1Kpot(循環する ³He を液化させる)は ~1.6 K の温度を保持しており、室温にある ³He ガスは MCT 本体に封入される道中で、1Kpot にアンカーされた部分で冷却され液化する。冷却した状態で MCT の使用圧力域である 2.9~3.5 MPa の圧力範囲において試料空間に圧力掃引してダイアフラムのトレーニングを行った後、MCT の校正、及び ³He 試料の仕込みを行った。本研究では MCT の圧力校正に水晶振動型圧力計を用い、を 3.4~3.43MPa の間で仕込んだ。

試料空間の圧力 $p \ge y < T$ アフラムの変位 d の間にはほぼ線形式が成り立ち、 $p \propto d \ge x$ すことができる。電極間のキャパシタンス $C \ge 融解圧力 p$ の関係は以下のように与えられる。

$$\frac{1}{C_{MCT}} = \frac{d_0 + \Delta d}{\varepsilon S} = \alpha p + \beta \tag{2.1}$$

 α はダイアフラムの厚みや面積などによって決まる比例係数であり、 d_0 は大気圧下にお ける電極間距離で圧力下では Δd 変化する。1.6 K において、ガスハンドリングシステム の ³He 圧力を変化させながら、MCT の静電容量を測定し、式 (2.1) でフィッティングを 行うことによって $\alpha \ge \beta$ の値が決定される。融解曲線上の M 点と他の温度との圧力差は Ref. [82] 中にある Greywall の式によって与えられ、式 (2.1) を用いて温度を求める。即 ち、M 点を基準にする場合

$$\frac{1}{C_{MCT}(p)} - \frac{1}{C_{MCT}(p = p_M)} = \alpha(p - p_M)$$
(2.2)

とすることで温度が一義的に決まる。

本研究では静電容量の測定に、エヌエフ回路設計ブロック社製の2相ロックインアンプ LI5640 もしくは5610B、サンジェム社製ディケード変成器 Type 6415-A、YOKOGAWA の可変抵抗器 2793 および標準キャパシタンス (dipped silvered mica: 1Kpot に設置) を組 み合わせた三端子キャパシタンスブリッジを使用した。ブリッジの概略図を以下に示す。 測定は入力信号 0.5 または 1.0 V_{pp}、交流周波数 1.19291 kHz の下で行った。

Fig.29 三端子キャパシタンスブリッジの理想的回路図。図中、破線で囲まれた部分が クライオスタット内に設置されている。 C_s および C_{MCT} はそれぞれ標準キャパシタン ス、MCTである。

Fig. 29 に示した理想的な回路の下で、入力信号を V_i 、レシオトランスの設定値を δ としたときのロックインアンプへの出力信号を V_o とすると

$$\frac{V_{\rm o}}{V_i} = \frac{C_{MCT}\delta + C_s(\delta - 1)}{C_{MCT} + C_s}$$
(2.3)

の関係が導かれる。これから三端子キャパシタンスとレシオトランスがバランスした時 ($V_0 = 0$ の時)、次式が成立する。

$$\frac{C_{MCT}}{C_s} = \frac{\delta}{1-\delta} \tag{2.4}$$

最終的に求めたい M 点との圧力差 $p - p_M$ [MPa] は式 (2.4) と式 (2.2) より以下の式から求まる。実際に行った校正では $\alpha \sim -0.3$ であった。

$$p - p_M = \frac{1}{\alpha} \left(\frac{1 - \delta}{\delta} - \frac{1 - \delta_M}{\delta_M} \right) \tag{2.5}$$

2.2.3 炭素抵抗温度計

電子回路に使用される炭素抵抗はグラファイトと黒鉛の粉を固めて作られており、抵抗の温度依存性は半導体のように $exp(\Delta E/T)$ に従い、温度低下により抵抗は増加する。炭素抵抗温度計は低温での感度が良い、安価で入手しやすい、小型であるなど利点も多い。よく使用されるものは、アランブラッドレー社製や松下電器製が多い。特に松下電器製のものは1K以下の極低温で数 k Ω を出しやすいためよく使用される。本研究では松下電器のの抵抗 50 Ω を使用し、測定には PICOWATT 社製の AC 抵抗ブリッジ AVS-47 を用いた。

2.3 極低温高磁場測定装置

超低温もしくは極低温実験において、ヒートリークや熱伝導に関する実験上の困難が あるが、高磁場を伴う実験の場合、特に極低温以下の温度領域では、さらに以下に述べ る問題が生じる。磁場 Sweep を行う実験では、渦電流発熱による系の温度上昇が懸念さ れ、それによる試料と温度計の間の温度差が無視できなくなる場合がある。また、一般的 に数 K、数 T の低温高磁場下では磁場による温度測定の誤差が数 % に達するため、精度 の高い測定が行えるよう幾つかの工夫が必要になる。本研究では、極低温以下の領域でも 9.5 T まで磁場印加可能で高精度な温度測定ができる装置を製作した [84]。冷凍機および 実験装置の全体図を Fig. 30 に示す。図は大まかに ³He-⁴He 希釈冷凍機本体部分、Thermal link. 温度計・超低温実験空間、高磁場実験空間の 3 つの部分に分かれている。Fig. 30 は サンプルセルを装置の先端に取り付け、最低到達温度 9 mK、最大印加磁場 9.5 T の多重 極限環境での物性測定に対応したセットアップである。装置の先端はサンプルセルを磁場 に平行方向と垂直方向に取り付け可能である。磁場印加には、クライオマグネティクス社 製の 9.5 T 超伝導マグネット (NbTi)、シグマ電子株式会社製の安定化定電流電源 SMR-80 と SMR-10 を使用した。マグネットの中心磁場 B(T) と電流値 I(A) は次の関係にある。

$$B(T) = \frac{9.5}{78.5} \times I(A)$$
(2.6)

Fig.30 実験装置の全体図。右図は全体図中の実験ステージを3倍スケールに拡大したもの。

2.3.1 実験空間の熱伝導と温度差

³He-⁴He 希釈冷凍機本体および実験空間は断熱真空中に設置されているが、冷媒である 液体 ⁴He 温度 4.2 K および輻射シールドなどからの輻射が存在する。従って、試料を冷却 するためには冷凍機の最低温度部である Mixer と実験空間との間には高い熱伝導性が必 要である。

そこで実験空間の材質のほとんどは無酸素同 (OFC) を使用し、さらに熱伝導率を上げる ため残留抵抗比 (RRR)=3000 程度までアニール処理を行った。金属の熱伝導はウィーデ マン・フランツ則 $k/\sigma = L_0T$ で与えられる。k は熱伝導率 [Wm⁻¹K⁻¹]、 σ は電気伝導率 Ω^{-1} [m⁻¹]、 $L_0 = 2.44 \times 10^{-8}$ はローレンツ数 [W Ω K⁻²]、T は温度 [K] である。アニール された OFC の電気抵抗測定から 20 mK における熱伝導率は k = 81.45 Wm⁻¹K⁻¹ と見積 もられる [85]。更に、各部品同士の接触部分は接触熱抵抗を抑えるために金メッキした。 温度勾配と熱流量の関係は以下の式で表される。

$$\dot{Q} = \frac{S}{L} \int_{T_2}^{T_1} k(T) dT$$
(2.7)

S は熱流の断面積 [mm²]、*L* は温度差間の長さ [m]、 T_1 、 T_2 は温度 [K] である。従って、 Thermal link における Δx 離れた試料と温度計の間の温度差 ΔT は以下の式で与えられる。

$$\Delta T = -\frac{\dot{q}}{kS}\Delta x \tag{2.8}$$

 \dot{q} は熱量 [W]、kは熱伝導率 [$Wm^{-1}K^{-1}$]、Sは熱が伝導する断面 [m^{2}] である。ただし、温度差が十分に小さいため、kの温度依存性は無視した。

ここで零磁場での 20 mK における試料と温度計の間の温度差を見積もる。試料と温度 計を繋ぐ Thermal link が約 2.13 mol、銅の電子比熱が C_e =1.39×10⁻⁵Jmol⁻¹K⁻¹ であるか ら Thermal link の熱容量は約 2.96×10⁻⁵ J/K である。なお温度計自身の熱容量は無視して いる。熱膨張測定より温度計の温度上昇の勾配が約 2.6 μ K/sec であるとき、温度計に流入 している熱量は \dot{q} =77 pW 程度である。従って、Thermal link の断面が 1.14×10⁻⁴m²、試 料と温度計の距離は 0.23 m であるから温度差は ΔT = 1.9 nK だと見積もられる。これは 20 mK の温度に対して十分に小さく、温度差は無視できる。

2.3.2 渦電流によるヒートリーク

超低温ではフォノンによる比熱はほぼ無視でき、伝導電子が寄与する小さな比熱しか 残っていないため、磁場変動による導体内で発生する渦電流は系の温度上昇をまねいてし まう。以下に実験に際して影響される渦電流による発熱とその対策を述べる。

一般的に円柱状の渦電流による発熱 $\dot{Q}[W]$ は $\dot{Q} = \pi r^4 l\dot{B}(t)^2/8\rho$ の式で与えられる。r は 円柱の半径 [m]、l は円柱の長さ [m]、 ρ は電気抵抗率 [Ω ·m]、B は磁束密度 [T]、t は時 間 [sec] である。従って渦電流発熱を抑えるには、磁束が貫く断面積と磁場が侵入する円 柱の長さを小さくし、磁場印加速度を遅くすればよい。

Fig. 31 は装置と磁場分布の関係を示しているが、磁場を強く受けるのはサンプルセル と、Thermal link である。Thermal link は熱伝導を上げるためアニール処理を行った結果、 電気伝導率も上がるため $\dot{Q}[W]$ も大きくなってしまう。そこで $\dot{Q}[W]$ をなるべく小さく するため、断面積を保ったまま r が小さくなるようスリット加工を施してある。Thermal link の断面はスリット加工によって 6 本の矩形状になっており、断面が矩形状の場合の渦 電流による $\dot{Q}[W]$ は以下の式で与えられる。

$$\dot{Q} = \frac{l}{16\rho} \frac{a^3 b^3}{a^2 + b^2} \dot{B}(t)^2$$
(2.9)

 $a \ge b$ は矩形状の縦と横の長さである。磁場分布から求まる Thermal link の有効長は左 右でそれぞれ 135 mm、121 mm であり、磁場印加速度を 2×10^{-5} [T/sec] としたとき、渦 電流発熱を見積もると \dot{Q} =1.4 nW 程度である [85]。また 2.4.3 でも述べるがサンプルセ ルは円柱状をしており、同じ磁場印加速度でのサンプルセルの発熱は \dot{Q} =52 pW 程度で ある。試料である CeRu₂Si₂ は 4 mm 角程度の大きさで、試料自身の発熱を見積もると \dot{Q} =0.026 pW 程度で無視できる大きさである。試料はサンプルセルに接着されており、試 料に対するヒートリークの大部分は Thermal link からの熱流入によるものと考えられる。

Fig. 32 は 100 mK における磁場印加速度と渦電流による試料と MCT の温度上昇 ΔT の 様子を時間プロットしたものである。試料の ΔT は温度上昇した磁歪データから、渦電流 の影響が無視できる 0.02 mT/sec の磁場印加速度の磁歪データを差し引き、試料の 100 mK における熱膨張係数を使って算出した。試料-MCT 間の温度差 ΔT は図中の Sample と MCT のプロットの差であり、100 mK において 0.2 mT/sec 以上の磁場印加速度では $\Delta T \sim$ 数 mK に達し、(2.3.1) 項で述べた温度差と比べて渦電流による影響が非常に大きいこと がわかる。Fig. 31 より MCT は十分に小さい磁場強度に位置しているが、試料は中心磁場 にあるため試料近傍に局所的に発生した \dot{Q} の影響をより強く受けていると考えられる。

³He-⁴He 希釈冷凍機の冷凍能力は T² に比例して小さくなるため、最低温付近では磁場 印加速度を非常に遅くしなければならない。本研究で行った磁歪測定では、測定温度にも よるが 9 mK から 200 mK の温度範囲で $0.2 \sim 8 \times 10^{-5}$ [T/sec] の間で磁場印加した。

Fig.31 中心磁場 9 T を印加した場合の装置の磁場分布図 [84]。補償コイルによって MCT が設置されている位置で磁場は十分に減衰し、温度計への影響は無視できる。図 中の番号は 1. Magnet コイル、2. 補償コイル、3. Thermal link(OFC)、4. MCT、5. Vespel SP22、6. サンプルセル、7. 実験ステージ、8. 炭素抵抗温度計、9. ヒーター、10. Thermal link(Ag)、11. Mixer、12. Indium ヒートスイッチ。

Fig.32 T=100 mK における磁場印加速度と渦電流による試料と MCT の温度上昇の時間 プロット。縦軸に温度上昇 ΔT 、横軸は時間を規格化してある。

2.3.3 温度計の磁場依存性

磁場印加によって、温度測定にも磁場の影響が現れる。mK 領域で使用できる温度計で は超伝導転移点をもつ1次温度計の場合は温度定点が磁場に依存するし、磁気相転移点を 持つ場合も同様である。また伝導電子は磁場でローレンツ力による磁気抵抗効果が生じる ため、磁場中測定では磁場の影響を考慮する必要がある。MCT は固体 ³He が磁気転移点 (S 点)を持つが、 10mK 以上であれば磁場依存性は小さく、25 mK でも磁場 5 T におい て $\delta T/T = 2\%$ 程度である [86]。

よく使用される各種温度計の磁場依存性について表2にまとめた。抵抗温度計は測定範囲が広く低温で感度も良いが、1 K 程度ですでに数%の誤差がでてしまう。一々各磁場中で校正を行っていけば使用できるが、ゲルマニウム抵抗温度計のように磁場依存性が大きいものは正確度が落ちる。一方、キャパシタンス温度計は磁場の影響をほとんど受けないのが利点である。しかし、キャパシタンス温度計は室温までの熱履歴によって温度応答特性に若干の変化が起こるため、低温まで冷却するたびに校正が必要である。またキャパシタンスの誘電特性としてキャパシタンスのドリフトが起こるため、長期間の測定に向かない。他にも磁場方向に依存したり再現性の低下など、基本的にmK 領域で温度計を磁場中において使用するべきでない。

本研究では Fig. 31 に示すように、使用した温度計はすべて中心磁場が 9 T の場合でも 10 mT 程度以下の磁場強度位置に設置してあり、基本的に磁場による影響は無視できる。

		Δ T/T(%)			
温度計	温度 (K)	2 T	5 T	8 T	18.7 T
МСТ	0.025		2		
RuO ₂	0.025		15-120		
	2	-0.13		-2.2	
炭素抵抗 (アランブラッドレー)	2	-0.13		-2.2	
Cernox(CX-1050)	2	1.3		3.1	
ゲルマニウム抵抗	2	-8		-60	
キャパシタンス温度計	4.2				-0.15
(CS-501R)					

表2 各種温度計の磁場による温度測定誤差 [79.86-88]

2.4 熱膨張·磁歪

2.4.1 熱膨張係数

熱力学において体積熱膨張係数 av は以下の式で定義される。

$$\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \tag{2.10}$$

ここでp、V、T はそれぞれ圧力、体積、温度である。 α_V の単位は [K^{-1}] である。自由エネルギー F と Maxwell の関係式を用いると式 (2.10) は以下のように表され、 α_V がエントロピーの圧力依存性に関係していることがわかる。

$$\alpha_V = \frac{1}{V} \left(\frac{\partial^2 F}{\partial T \partial p} \right) = -\frac{1}{V} \left(\frac{\partial S}{\partial p} \right)_T$$
(2.11)

2.4.2 磁歪係数

熱力学において体積磁歪係数 λ_V は以下の式で定義される。

$$\lambda_V = \frac{1}{V} \left(\frac{\partial V}{\partial B} \right)_p \tag{2.12}$$

ここで *B* は磁東密度 [T] である。 λ_V の単位は [T⁻¹] である。式 (2.12) を Maxwell の関係 式を用いて変形すると以下のようになり、 λ_V が磁化 M = m/V (m は磁気モーメント) の 圧力依存性に比例していることがわかる。

$$\lambda_V = \frac{1}{V} \left(\frac{\partial^2 F}{\partial B \partial p} \right) = -\frac{1}{V} \left(\frac{\partial m}{\partial p} \right)_B = -\left(\frac{\partial M}{\partial p} \right)_B$$
(2.13)

 $M = \chi H = \chi B / \mu_0$ を代入すると

$$\lambda_V = -\left(\frac{\partial\chi}{\partial p}\right)_B \frac{B}{\mu_0} \tag{2.14}$$

となり、 χ が **B** に依存しない場合、 λ_V は **B** に線形であることが導かれる。

2.4.3 キャパシタンス式膨張計

Fig.33 熱膨張・磁歪測定用サンプルセル [89]。

熱膨張・磁歪測定はキャパシタンス法を用いた。キャパシタンス法は試料の伸縮を静電 容量変化で検出する、膨張計の中でも極めて高感度・高分解能な測定方法である。測定原 理的に小型化しやすく、試料への測定による発熱は小さいため、実験空間が制限された低 温実験でよく用いられる。

熱膨張・磁歪測定に用いたサンプルセルの構造を Fig. 33 に示す。サンプルセルは試料 キャパシタと標準キャパシタからなる三端子キャパシタ構造をとり、上蓋と中蓋と下蓋 の3つのパーツで構成される。上蓋は固定極板 (Fixed Capacitor Plate) 及び固定極板が 接着された上蓋ホルダー (Upper Holder) からなる。中蓋は固定極板を接着する中蓋ホル ダー (Middle Holder) からなる円盤状である。下側は試料を接着する下蓋ホルダー (Lower Holder)、試料及び試料に接着した可動極板 (Movable Capacitor Plate) から構成される。 各極板は外径 5 mm、厚み 2 mm のサイズで、接地された各 Holder は極板とそれぞれ 0.5 mmの距離をとってガードリングとして働き、極板のエッジ効果を抑えた。サンプル セルの主要な部分は熱伝導を考慮して高純度無酸素銅 (OFHC) を材質としている。試料 と下蓋の接着も熱伝導の良い銀ペースト (Arzerite VL-10) を使用した。極板と上蓋・中蓋 ホルダー、試料と極板の接着には電気的に絶縁するため Stycast 2850FT を使用した (念の ため Stycast の間にシガレットペーパーを挟んだ)。Stycast の厚みは多少ばらつきがある が約 0.1 mm である (そのうちシガレットペーパーの厚みは 40 µm である)。また、極板同 士でショートしないようホルダー間にスペーサーを挟む必要がある。スペーサーの厚みは 試料の熱膨張係数・磁歪係数を考慮しなければならない。参考として Fig. 34 に CeRu₂Si₂ 試料のa軸、c軸の熱膨張と、サンプルセルの材質に使用したCu、Stycast FTの線熱膨張

 $\Delta L(T)/L$ を示す。本研究で製作したサンプルセルは極板間距離がおよそ 9 μ m より近づく と tan が急激に大きくなり測定できなくなるため、1 K 付近で極板間が 15 μ m 程度にな るようスペーサーとして 10~20 μ m の銅箔を使用した。スペーサーは対向する極板の片側 にワニス (GE7031)で接着した。そのため、各ホルダー・極板は同一平面になる ようあら かじめ紙ヤスリ (1500 番まで)で研磨した。静電容量を測定する同軸ケーブルは蓋の断面 に入れた溝から、極板の側面にあけた直径 1 mm の穴に通し、同軸ケーブルの接着には熱 伝導よりも強度を優先させ銀ペーストの Ecobond 56C を使用した。

本研究で使用するサンプルセルは試料と極板、ホルダーを接着するため、複数の試料を 一つのサンプルセルで使い回せず試料ごとに製作する必要がある。従って、サンプルセル には少なからず個体差がある。

Fig.34 CeRu₂Si₂の a 軸、c 軸、Stycast2850FT、Cuの 300 K から極低温までの線熱 膨張 [50,90]。 $\Delta L/L$ の基準は 293 K である。

2.5 Cell effect

キャパシタンス法による膨張測定では試料長変化 ΔL によって極板間が変化し、静電容量変化 ΔC を直接検出する。極板面積 S、極板間隔 d の理想的な平行平板コンデンサーが真空中にあるときの静電容量は、真空の誘電率を ε_0 として

$$C = \varepsilon_0 \frac{S}{d} \tag{2.15}$$

で表される。極板間隔が Δd 変化したときの静電容量 $C + \Delta C$ は

$$C + \Delta C = \varepsilon_0 \frac{S}{d + \Delta d} \tag{2.16}$$

となるから、 $\Delta d \ll d$ のとき、静電容量の変化率 $\Delta C/C$ と極板間隔 dの関係は以下の式で 近似される。

$$\frac{\Delta C}{C} = \frac{d}{d + \Delta d} - 1 \simeq -\frac{\Delta d}{d}$$
(2.17)

試料長変化は $\Delta L = -\Delta d$ であるから、膨張率と静電容量の関係は理想的には次式で表される。

$$\frac{\Delta L}{L} = -\frac{d}{L}\frac{\Delta d}{d} = \frac{d}{L}\left(\frac{\Delta C}{C}\right) \tag{2.18}$$

しかし、実際の測定では試料以外のサンプルセル自身の伸縮等が、Back ground として 寄与するためこれを評価する必要がある。Fig. 35 にサンプルセルの断面図を示す。図中 の A 軸と B 軸の伸縮の差が実際の静電容量の変化として測定される。まず、試料キャパ シタンス C_X について考える。図中に示した各部の長さが微小変化したときの試料キャパ シタンスの極板間距離の変化 Δd_X は、

$$\Delta d_X = (\Delta l_{sp} + \Delta l_{holder}) - (\Delta l_{sty} + \Delta l_p + \Delta L_{sample})$$

である。次に Stycast2850FT、Cu、試料それぞれの試料長変化を $\left(\frac{\Delta l}{l}\right)_{sty}$ 、 $\left(\frac{\Delta l}{l}\right)_{Cu}$ 、 $\left(\frac{\Delta L}{L}\right)_{sample}$ とすると、

$$\Delta d_X = \left(\left(\frac{\Delta l}{l}\right)_{Cu} l_{sp} + \left(\frac{\Delta l}{l}\right)_{Cu} l_{holder} \right) - \left(\left(\frac{\Delta l}{l}\right)_{sty} l_{sty} + \left(\frac{\Delta l}{l}\right)_{Cu} l_p + \left(\frac{\Delta L}{L}\right)_{sample} L_{sample} \right)$$
(2.19)

に変形できる。各極板とホルダーが同一平面にあるときは $l_{holder} - l_p = L_{sample} + l_{sty}$ であり、 $\Delta d_X << d_X$ の微小変化では $-\Delta d_X/d_X \simeq \Delta C_X/C_X$ と近似できるから、

$$\frac{\Delta C_X}{C_X} \simeq -\frac{\Delta d_X}{d_X} = \frac{L_{sample}}{d_X} \left(\left(\frac{\Delta L}{L}\right)_{sample} - \left(\frac{\Delta l}{l}\right)_{Cu} \right) - \frac{(l_{sty} + l_{sp})}{d_X} \left(\frac{\Delta l}{l}\right)_{Cu} + \frac{l_{sty}}{d_X} \left(\frac{\Delta l}{l}\right)_{sty}$$
(2.20)

となる。上式の第2項と第3項の和は試料以外の変化に寄るから Back ground あるいは Cell effect と呼ばれ、試料キャパシタンスの変化率 $\Delta C_X/C_X$ は以下のように表される。

$$\frac{\Delta C_X}{C_X} \simeq \frac{L_{sample}}{d_X} \left(\left(\frac{\Delta L}{L} \right)_{sample} - \left(\frac{\Delta l}{l} \right)_{Cu} \right) + \left(\frac{\Delta C}{C} \right)_{Cell}$$
(2.21)

Cell effect はサンプルセルと同材質を試料とすることで測定できる。すなわち試料が OFHC の場合は以下の式の通りである。

$$\frac{\Delta C_X}{C_X} \simeq \frac{L_{sample}}{d_X} \left(\left(\frac{\Delta L}{L} \right)_{Cu} - \left(\frac{\Delta l}{l} \right)_{Cu} \right) + \left(\frac{\Delta C}{C} \right)_{Cell} \\
= 0 + \left(\frac{\Delta C}{C} \right)_{Cell} \\
= \left(\frac{\Delta C}{C} \right)_{Cell}$$
(2.22)

標準キャパシタンス C_S についても、標準キャパシタンスの極板間距離の変化 Δd_S から、以下の式が導出される。

$$\frac{\Delta C_S}{C_S} \simeq -\frac{\Delta d_S}{d_S} = -\frac{(l_{sty} + l_{sp})}{d_S} \left(\frac{\Delta l}{l}\right)_{Cu} + \frac{l_{sty}}{d_S} \left(\frac{\Delta l}{l}\right)_{sty}$$
(2.23)

ここで $d_X = d_S$ の場合、Cell effect は標準キャパシタンスの変化と等しくなり、試料長変化は以下の様に表される。

$$\left(\frac{\Delta L}{L}\right)_{sample} - \left(\frac{\Delta l}{l}\right)_{Cu} = \frac{d_X}{L_{sample}} \left(\frac{\Delta C_X}{C_X} - \frac{\Delta C_S}{C_S}\right)$$
(2.24)

このとき、Cu の熱膨張 ($\Delta l/l$)_{Cu} は 1 K 以下で 10⁻¹⁰ 以下のオーダーで変化し、十分に小 さく無視できる。

しかし、実際には $d_X \ge d_S$ は一致しておらず Cell effect を完全に打ち消すことはできな い。実際の測定から得られる標準キャパシタンスを C'_S 、膨張の基準となる極板間距離が $d = d_S = d_X$ の理想的な場合を $C_S \ge U$ 、 $C'_S \ge C_S$ の極板間距離の差を $\delta_d = d'_S - d \ge t$ ると C'_S は $\Delta d_S << d_S$ のとき以下の様になる。

$$C'_{S} = \frac{\epsilon_{o}S}{d'_{S}} = \frac{\epsilon_{o}S}{(d+\delta_{d})}$$

$$\frac{\Delta C'_{S}}{C'_{S}} \simeq -\frac{\Delta d_{S}}{d+\delta_{d}}$$
(2.25)

$$= \frac{\Delta C_S}{C_S} \frac{1}{1 - \delta_d \Delta C_S / C_S \Delta d_S}$$
(2.26)

 $\Delta C'_S / C'_S を \delta_d の二次まで展開して$

$$\frac{\Delta C'_S}{C'_S} = \frac{\Delta C_S}{C_S} (1+\delta) \tag{2.27}$$

$$=\frac{\Delta C_S}{C_S} \left(1 - \frac{d'_S - d}{d} + \left(\frac{d'_S - d}{d}\right)^2\right)$$
(2.28)

従って、試料キャパシタンスと標準キャパシタンスの変化率の差は以下の式で表される。

$$\frac{\Delta C_X}{C_X} - \frac{\Delta C'_S}{C'_S} = \frac{L_{sample}}{d} \left(\left(\frac{\Delta L}{L} \right)_{sample} - \left(\frac{\Delta l}{l} \right)_{Cu} \right) - \frac{(l_{sty})_X - (l_{sty})_S}{d} \left(\left(\frac{\Delta l}{l} \right)_{sty} - \left(\frac{\Delta l}{l} \right)_{Cu} \right) + \frac{(l_{sp})_X - (l_{sp})_S}{d} \left(\frac{\Delta l}{l} \right)_{Cu} + \frac{\Delta C_S}{C_S} \left(\frac{d'_S - d}{d} - \left(\frac{d'_S - d}{d} \right)^2 \right)$$
(2.29)

第2項、第3項はそれぞれ試料キャパシタ側と標準キャパシタ側の Stycast とスペーサー の厚みの差からくる項で、第4項は試料キャパシタ側と標準キャパシタ側の極板間距離の 差から影響する項である。第2項、第3項は第4項に比べて一桁かそれより小さく無視で きると考えてよいので、試料の膨張率は

$$\frac{\Delta L}{L} - \left(\frac{\Delta l}{l}\right)_{Cu} = \frac{d}{L} \left(\frac{\Delta C_X}{C_X} - \frac{\Delta C'_S}{C'_S} + \delta \frac{\Delta C_S}{C_S}\right)$$
$$= \frac{d}{L} \left(\frac{\Delta C_X}{C_X} - \frac{\Delta C'_S}{C'_S}\right) - \frac{\Delta d_S}{L} \left(\frac{d'_S - d}{d} - \left(\frac{d'_S - d}{d}\right)^2\right)$$
(2.30)

から得られる。式 (2.29)の第4項に対する見積もりは (3.1.1)節にて述べる。

Fig.35 サンプルセルの伸縮に関する図。d:極板間距離、 l_p :極板の厚さ、 l_{sty} : Stycast2850FTの厚さ、 L_{Sample} :試料長、 l_{sp} :銅スペーサー厚み、 l_{holder} :下蓋の深さ、 l_{upper} : 上蓋の深さ。

Fig.36 キャパシタンスブリッジの回路図

静電容量変化を高精度に測定することができるキャパシタンス交流ブリッジ回路を Fig. 36 に示す。入力電圧 V_i に対する出力電圧 V_o の比は以下の式で与えられる [91]。

$$\frac{V_{\rm o}}{V_i} = \frac{(r-1)C_X + rC_S}{C_X + C_S + C_3} - j\omega R_r \frac{C_X + C_S}{C_X + C_S + C_3} ((r-1)C_1 + rC_2)$$
(2.31)

 V_{o} はロックインアンプにより殆ど実数成分だけが取り出されるから、ブリッジがバランスするとき ($V_{o} = 0$) 試料キャパシタンス C_{X} 、標準キャパシタンス C_{S} 、レシオの値 γ の間に、

$$\frac{C_X}{C_S} = \frac{\gamma}{1 - \gamma} \tag{2.32}$$

が成り立つ。静電容量が C_X から $C_X + \Delta C_X$ 、 C_S から $C_S + \Delta C_S$ に微小変化したときの γ の値を $\gamma + \Delta \gamma$ とおくと、

$$\frac{C_X + \Delta C_X}{C_S + \delta C_S} - \frac{C_X}{C_S} = \frac{\gamma + \Delta \gamma}{1 - (\gamma + \Delta r)} - \frac{\gamma}{1 - \gamma}$$

となる。従って、 $\Delta \gamma \ll 1 - \gamma \sim 0.5$ のとき

$$\frac{\Delta C_X}{C_X} - \frac{\Delta C_S}{C_S} = \frac{1 - \gamma}{\gamma} \left[\frac{\gamma + \Delta r}{1 - (\gamma + \Delta \gamma)} - \frac{\gamma}{1 - \gamma} \right]$$
$$\simeq \frac{\Delta r}{\gamma (1 - \gamma)}$$
(2.33)

を得る。これより実験的に求まる試料の膨張率 $\Delta L/L$ は以下の式より導出され、これは式 (2.30) の第1項に相当する。

$$\frac{\Delta L}{L} = \frac{d}{L} \frac{\Delta \gamma}{\gamma(1-\gamma)}$$
(2.34)

実際の実験ではレシオトランスフォーマーの設定値 γ は固定されているため、試料の伸縮 によるオフバランス電圧の変化を測定し、データ解析時にバランスレシオの変化に換算し て $\Delta L/L$ を導出する。

測定にはエヌエフ回路設計ブロック社製の 2 相ロックインアンプ LI5640、サンジェ ム社製ディケード変成器 Type 6415-A、YOKOGAWA の可変抵抗器 2793 を使用した。 Oscillator は LI5640 の内部発信機を利用し、入力信号は 2.0 V_{pp}、発信周波数および参照 周波数 1.6158 kHz の下で測定を行った。測定の際のオフバランス δ は 0.45~0.55 の間で 変化し、 R_b は約 2 Ω であった。

(2.4.3) 項のキャパシタンス式膨張計とキャパシタンスブリッジ法を用いた結果、試料の 伸縮率 $\Delta L/L$ を 1 K 以下において ~ 10⁻¹⁰ オーダーの高精度で測定が可能となった [84]。

2.6 熱膨張・磁歪係数の導出方法

熱膨張係数、磁歪係数は試料長変化 $\Delta L/L$ をそれぞれ温度 T、磁場 B で微分して導出する。しかし実験データ (x_i , y_i) に対して $dy/dx|_{x_i} = (y_{i+1} - y_i)/(x_{i+1} - x_i)$ のようにそのまま差分をとる数値微分は、 $x_{i+1} - x_i$ が微小であるとき、僅かなデータのばらつきが微分の結果に大きく影響する。そこで本研究では最小二乗法によるフィッティングを利用して数値微分を行った。一般的な N 次多項式をモデル関数とし、行列を用いて表すと以下の様になる。

$$f(x) = \sum_{k=1}^{M} a_k X_k(x)$$

= $(X_1(x), X_2(x), \dots, X_k(x), \dots, X_M(x))(a_1, a_2, \dots, a_k, \dots, a_M)^T$
= $(X_1(x), X_2(x), \dots, X_k(x), \dots, X_M(x)) a$ (2.35)

a は係数 a_k を要素とした行ベクトルの転置行列で、 $\mathbf{a} = (a_1, a_2, \cdots, a_k, \cdots, a_M)^T$ である。 測定で得られた x、y のデータ対 N 個を $(x_1, y_1), (x_2, y_2), \cdots, (x_i, y_i), \cdots, (x_N, y_N)$ とするとモ デル関数に対するデータの分散 χ^2 は

$$\chi^{2} = \sum_{i=1}^{N} (\sum_{k=1}^{M} a_{k} X_{k}(x_{i}) - y_{i})^{2}$$

= $(Xa - y)^{T} (Xa - y)$ (2.36)

となる。Xは $X_k(x_i)$ を要素とする $N \times M$ 行列である。またyは $y = (y_1, y_2, \dots, y_k, \dots, y_N)^T$ である。 χ^2 が最小値をとる条件は、 $\partial \chi^2 / \partial a_k = 0$ であるから、

$$\boldsymbol{X}^T \cdot \boldsymbol{X} \cdot \boldsymbol{a} = \boldsymbol{X}^T \cdot \boldsymbol{y} \tag{2.37}$$

を満たせば良い。この解を求めるのに特異値分解を利用して数値計算を行った。行列 **X** を特異値分解すると

$$\begin{aligned} \boldsymbol{X} &= \boldsymbol{U} \cdot \boldsymbol{W} \cdot \boldsymbol{V}^{T} \\ &= \boldsymbol{U} \cdot [\operatorname{diag}(\omega_{j})] \cdot \boldsymbol{V}^{T} \end{aligned} \tag{2.38}$$

と表すことができる。*U*は*N*次直行行列、*W*は*N*次対角行列、*ω_j*は対角要素、*V*は*M*次直行行列である。(2.37)式を特異値分解を用いて表すと

$$\boldsymbol{W}^{T} \cdot \boldsymbol{W} \cdot \boldsymbol{V}^{T} \cdot \boldsymbol{a} = \boldsymbol{W}^{T} \cdot \boldsymbol{U}^{T} \cdot \boldsymbol{y}$$
(2.39)

となる。結局、計算するべき a は

$$\boldsymbol{a} = \boldsymbol{V} \cdot [\operatorname{diag}(1/\omega_j)] \cdot \boldsymbol{U}^T \cdot \boldsymbol{y}$$
(2.40)

である。

熱膨張係数の計算は全測定データの内、 $(T_{i-n/2}, (\Delta L/L)_{i-n/2})$ から $(T_{i+n/2}, (\Delta L/L)_{i+n/2})$ までのn 個のデータ区間において $\Delta L/L$ をTの2次までの多項式としてフィッティングのモデル関数を

$$\frac{\Delta L(T)}{L} = a_1 + a_2 T + a_3 T^2 \tag{2.41}$$

とおいた。算出された a_1 、 a_2 、 a_3 から温度 T_i における熱膨張 $\Delta L/L$ のフィッティングと 熱膨張係数 α は以下のように求めた。

$$\frac{\Delta L(T_i)}{L} = a_{1i} + a_{2i}T_i + a_{3i}T_i^2$$
(2.42)

$$\alpha(T_i) = \frac{d}{dT} \frac{\Delta L}{L} \Big|_{T=T_i} = a_{2i} + 2a_{3i}T_i$$
(2.43)

この計算を全てのデータ点に対して区間フィッティングを行い、熱膨張 $\Delta L/L$ 、熱膨張係 数 α を計算した。

磁歪の場合も同様に、磁歪 $\Delta L/L$ を磁場 B の関数とし 2 次の項まで考えて以下の式を与えた。

$$\frac{\Delta L(B)}{L} = b_1 + b_2 B + b_3 B^2 \tag{2.44}$$

 b_1 、 b_2 、 b_3 から磁場 B_i における磁歪 $\Delta L/L$ 、磁歪係数 λ は以下の式のように求められる。

$$\frac{\Delta L(B_i)}{L} = b_{1i} + b_{2i}B_i + b_{3i}B_i^2$$
(2.45)

$$\lambda(B_i) = \frac{d}{dB} \frac{\Delta L}{L} \bigg|_{B=B_i} = b_{2i} + 2b_{3i}B_i$$
(2.46)

実際の測定では、生データを時間に対して一定間隔で測定しているため、横軸を温度、磁場にとって微分するとき、データの間隔が不均一になってしまう。微分するときのフィッティング範囲は測定温度磁場領域でデータ密度が均等になるように抽出し、微分を行った。っ抽出したデータ密度は熱膨張データが 20point/mK、磁歪データが 1point/mT である。また各熱膨張・磁歪データに対して行ったフィッティング範囲は温度磁場領域によって異なるが、熱膨張測定では 10 mK または 20 mK、磁歪測定では 1 T 以下で数百 mT、 1 T 以上で 1~2 T の範囲で微分を行った。

2.7 試料

熱膨張・磁歪測定に使用する単結晶 CeRu₂Si₂ 試料は室蘭工業大学の村山先生に製作 して頂いた。試料製作時の母材の純度は Ce (99.99%)、Ru (99.99%)、Si (99.999%) であ る。試料育成は Czochralski 法を用い、*c* 軸方向に引き上げを行った。測定セルに組み込 んだ試料の質量、モル数は 0.3598 g、9.029 × 10⁻⁴ mol、形状は長さ 4 mm 程度の立方体 である。

Fig.37 試料 CeRu₂Si₂ の写真。軸の向きを図に示す。

3 Results & Discussion

3.1 熱膨張測定

3.1.1 熱膨張測定における Back Ground の温度依存性

サンプルセルの Back ground は節 (2.5) で述べたように、試料キャパシタンスの変化 には試料以外のサンプルセル自身の伸縮の効果も含んでおり、Cell effect と呼んだ。Cell effect はサンプルセルと同材質の試料を用いて評価できるが、本研究で用いたサンプルセ ルは試料ごとに組み立てるため、Cell effect も試料ごとに異なる可能性がある。従って、 節 (2.5) で述べたように、Cell effect をサンプルセルの標準キャパシタンスで見積もる。

Fig. 38 に CeRu₂Si₂ 試料の *a* 軸測定用にセットアップしたサンプルセルの、1 K 以下 の試料キャパシタンスと標準キャパシタンスの変化率 $\Delta C/C$ の温度依存性を示す。キャ パシタンスの測定は Andeen Hagerling 社の自動キャパシタンスブリッジ (2700A) で行っ た [92]。左図の高温側の温度依存性は試料キャパシタンスと標準キャパシタンス共に T^2 スケールに線形に変化している。試料キャパシタンスに対する標準キャパシタンスの大 きさは、ほぼ 2% で Back ground としての影響は無視できる大きさである。右図は 0.3 K 以下の拡大図であり、Back ground としての影響は 2% 程度であるが、約 100 mK に標 準キャパシタンスの変化に極小が現れた。100 mK 以下では標準キャパシタンの変化が 2700A の測定精度と同程度になるため正確に求めるのは難しいが、およそ 50 mK より低 温では標準キャパシタンスの温度変化は試料キャパシタンスの温度変化の約 30 % まで増

Fig.38 左図: T < 1 K 以下の試料キャパシタンス、標準キャパシタンスの温度変化率。 横軸は T^2 スケールである。右図: T < 0.3 K 以下の試料キャパシタンス、標準キャパシ タンスの温度変化率。横軸は T スケールである。

大する可能性がある。

節 (2.5) で述べたように Cell effect と標準キャパシタンスの変化は伸縮の絶対値として は同じ程度だと考えられるが、両者で極板間距離が異なるために変化率の大きさが違う。 試料キャパシタンス C_X 、標準キャパシタンス C_S の測定を行ったところ、最低温度では $C_X = 16.76$ pF、 $C_S = 13.43$ pF で極板間距離に直すと $d_X = 10.37$ μ m、 $d_S = 12.94$ μ m で あった。最低温度を熱膨張の基準にとると Cell effect の基準は d_X であり、実際に測定し た標準キャパシタンスから求めた変化率 $\Delta C'_S/C'_S$ と d_X を基準にした場合の換算変化率 $\Delta C_S/C_S$ を計算すると、($\Delta C'_S/C'_S$)/($\Delta C_S/C_S$) ~ 0.81 であった。つまり式 (2.27) で与えた ように δ ~ -0.19 であり、 C_X と C_S をキャパシタンスブリッジで測定した場合、実際に測 定される標準キャパシタンスの変化率の 25% 程度が、キャンセルしきれずに残った Cell effect として熱膨張測定に影響を与えると考えられる。これを考慮すると、Back ground としての影響はおよそ 1 K より低温で 0.2% 以下、更に 50 mK 以下で数 % 程度と見積も られる。

キャパシタンスブリッジによる Cell effect の相殺が不十分である場合、試料の熱膨張に おいても約 100 mK において極小、または温度勾配に折れが出現するはずであるが、後述 する熱膨張測定の結果にはいずれも出現しておらず、Back ground の影響は無視できると 考えられる。

3.1.2 熱膨張の温度依存性

Fig. 39 に CeRu₂Si₂ の a 軸と c 軸の線熱膨張 $\Delta L(T)/L$ を示す。横軸は T^2 スケールで ある。Fig. 39 の結果は 2700A で試料キャパシタンスと標準キャパシタンスを別々に測定 してから式 (2.24) から Cell effect を除いた結果である。2 K 以下では T^2 に線形であり、 これは Fermi 液体論で伝導電子に関わる熱膨張係数 a が温度 T に比例することと同義で ある。つまり極低温領域では、この系は Fermi 液体状態であることを示しており、比熱や 電気抵抗など他の物性測定でも同様の結果が得られている。

Fig. 40 は 100 mK 以下をキャパシタンスブリッジを用いて精密に測定した線熱膨張 $\Delta L(T)/L$ と線熱膨張から計算した体積熱膨張 $\Delta V(T)/V$ である。図中に矢印で示す 60 mK より高温側では T^2 に線形である。70 mK から 170 mK の間で線形フィッティングを行う と a 軸が $\Delta L_a/L_a = 1.40 \times 10^{-6}T^2$ 、c 軸が $\Delta L_c/L_c = 4.01 \times 10^{-6}T^2$ であった。また a 軸、c 軸 の線熱膨張から体積熱膨張 $\Delta V/V = 2(\Delta L_a/L_a) + \Delta L_c/L_c$ を求めると、 $\Delta V/V = 6.8 \times 10^{-6}T^2$ であった。

一方、より低温側では各軸共におよそ 60 mK あたりで線形フィッティングラインから の逸脱が観測された。逸脱が始まる温度は帯磁率が Pauli 常磁性から立ち上がる温度にほ ぼ一致しており、これは非 Fermi 液体的な寄与と考えられる。また 21 mK 付近に *a* 軸と *c* 軸共に極小が観測された。これは 21 mK より低温で負の熱膨張係数を持つことを示し ている。*a* 軸と *c* 軸の熱膨張は高温側の Fermi 液体状態で異方性を持っているのは明らか だが、極小の大きさには両軸の間で差はなかった。

Fig.39 CeRu₂Si₂の a 軸と c 軸の線熱膨張。横軸は T^2 スケールである。

Fig.40 CeRu₂Si₂の *a* 軸と *c* 軸の 100 mK 以下の線熱膨張と線熱膨張から計算した体 積膨張。横軸は T^2 スケールである。図中の実線は体積熱膨張のフィッティングライ ン、 $\Delta V(T)/V = 6.86 \times 10^{-6}T^2$ 。矢印は熱膨張が Fermi 液体的振舞いからの逸脱を示す 温度である。

熱膨張係数の導出 Fig. 41 は 100 mK 以下の a 軸と c 軸の線熱膨張係数と体積熱膨張係数および熱膨張係数を温度 T で割ったものを示す。図 (a) の実線は 60m K 以上で Fermi 液体な領域に対する線形フィッティングを示している。Fermi 液体状態である 60 mK 以上は温度 T に比例するため、図 (b) のように $\alpha/T = constant$ である。各軸の比例係数 $\alpha/T(K^{-2})$ は以下の様に求まった。

 $\alpha_a/T = 2.81 \times 10^{-6}$ $\alpha_c/T = 8.00 \times 10^{-6}$ $\alpha_V/T = 1.36 \times 10^{-5}$

Matsuhira らのグループによる 1.5 K 以上の熱膨張測定によると、c 軸の熱膨張係数は 2 K で $\alpha_c = 1.4 \times 10^{-5}$ 程度であり、比例係数に直すと $\alpha_c/T = 7.0 \times 10^{-6}$ である [51]。本 研究で得られた c 軸の結果はそれによく一致している。

また *a* 軸と *c* 軸の間の軸異方性は Fermi 液体領域では $\alpha_c/\alpha_a \approx 2.9$ で 1 K 付近からほぼ 変化していない。 α は 21 mK で正から負の値に変わるが、これは式 (2.11) より熱膨張係 数が $\alpha \propto -(\partial S/\partial p)_T$ で与えられ、圧力印加によってエントロピーが増大することを意味 している。

Fig.41 (a) CeRu₂Si₂ の *a* 軸と *c* 軸の線熱膨張係数と体積熱膨張係数。横軸は T ス ケールである。各実線は $\alpha(T) = aT$ で線形フィッティングしたもの。(b) α/T のプ ロット。高温側の Fermi 液体的な領域では $\alpha_a/T = 2.81 \times 10^{-6}$ 、 $\alpha_c/T = 8.00 \times 10^{-6}$ 、 $\alpha_V/T = 1.36 \times 10^{-5}$ 。

磁場中の熱膨張係数 次に磁場中における熱膨張の温度依存性について述べる。c軸方向 へ磁場印加した場合、 $CeRu_2Si_2$ の熱膨張係数はメタ磁性により大きく変化し、転移磁場 $H_m \sim 7.8T$ 近傍でシンメトリックな振舞いをする [49]。つまり熱膨張係数は $H < H_m$ では 正、 $H > H_m$ では負の値をもつ。Fig. 42 は a 軸方向へ磁場印加したときの、a 軸方向の線熱 膨張係数である。a 軸方向へ磁場印加した場合、 H_m まで上げてもメタ磁性による特徴的 な振舞いは観測されず、a 軸の全体的な振舞いにはほとんど磁場依存性がない。磁場中で も高温側は Fermi 液体的であるがやはり 20 mK 付近で熱膨張係数は負の値を持つ。

Fig.42 CeRu₂Si₂の a 軸の磁場中における熱膨張係数

線熱膨張係数 α を Fermi 液体的寄与 α_{FL} と非 Fermi 液体的寄与 α_{cr} で

$$\alpha_V = \alpha_{FL} + \alpha_{cr}$$

= $aT + \alpha_{cr}$ (3.1)

の様に定義し、 α_{cr} を Fig. 43 に示す。 α_{cr} にはおおきな磁場依存性がみられず、 α_{cr} に対して磁場が有効な外部パラメータではないことを示している。

Fig.43 CeRu₂Si₂の a 軸方向に磁場印加した場合の a 軸方向の線熱膨張係数の臨界寄与 α_{cro}

3.2 磁歪測定

3.2.1 磁歪測定における Back Ground の磁場依存性

サンプルセルの Back ground の磁場依存性については 3.1.1 の温度依存性の時と同様の 考え方で Cell effect の影響を考える。Fig. 44 に CeRu₂Si₂ 試料の *a* 軸測定用にセットアッ プしたサンプルセルの、1.5 K から 0.3 K までの各温度における試料キャパシタンスと標 準キャパシタンスの変化率 $\Delta C/C$ の磁場依存性を示す。各温度で 9 T まで磁場印加し、横 軸は B^2 スケールである。本研究で測定された 9 T までの磁場範囲では $\Delta C_X/C_X$ に対する $\Delta C_S/C_S$ の大きさは高磁場であるほど小さく、9 T における ($\Delta C_S/C_S$)/($\Delta C_X/C_X$) は 5% 程度である。一方、低温低磁場であるほど $\Delta C_S/C_S$ の割合は大きくなり、1 T 以下では $\Delta C_X/C_X$ より $\Delta C_S/C_S$ の変化が大きい磁場範囲もある。

 $\Delta C_S/C_S$ には若干の温度依存性がある。1.5 K では B^2 に比例しているが、温度を下げる とともに低磁場側の磁場勾配が大きくなって B^2 則からのずれが大きくなり、およそ 0.5 K より低温では温度依存性を示さなくなる。本研究が測定する主な温度範囲は 0.3 K 以下で あるから Back ground の温度依存性はほぼ無視してよいと考えられる。

Fig.44 各温度における 9 T までの試料キャパシタンス、標準キャパシタンスの変化率の磁場依存性。横軸は B 2 スケールで示す。

■Cell effect の再現性について サンプルセルに低温から室温までの熱サイクルを与える と、熱履歴などによりキャパシタンスの絶対値が再現しなことがある。サンプルセルの 構造上、OFC のホルダー、スペーサーを真鍮のネジで固定しているため、材料のクリー プ、熱応力による変形などの可能性が考えられるが具体的な理由は不明である。試料キャ パシタンスに関しても同様の変化が確認されており、これは標準キャパシタ側と同じ理由 であると考えられる。しかし、1 K 以下での試料キャパシタと標準キャパシタで極板間距 離の温度磁場変化量は再現している。標準キャパシタンスの磁場依存性は定性的に再現す るが、室温への熱サイクルによってその絶対値は大きくて数十%の相違がある。従って、 Cell effect の温度依存性については (2.5) で述べたような補正で除去することができるか ら、磁場依存性については以下に述べる補正を行った。

磁歪係数の Back ground 補正 前述の通り、1 T 以下では Cell effect の寄与が大きく、か つ Cell effect の再現が悪くなることがあるため、Back ground 補正が必要になる。

本研究では磁歪係数の Back ground 補正に 2 K の磁歪係数の結果を Fermi 液体状態の 基準として補正した。これは、2 K における試料キャパシタンスに対する標準キャパシタ ンスの変化率の大きさは最大 10% 程度で、 $\delta \sim -0.19$ なら Back ground としての実質的な 影響は最大でも 2% 程度で十分に無視できると考えられるからである。また 2 K の磁歪係 数は 0-9 T まで *B* に比例した Fermi 液体的な振舞いである。磁歪係数は式 (2.14)の様に ほとんど温度依存性のない Pauli 常磁性帯磁率に関連している。従って、基本的に 2 K 以 下の磁歪は Fermi 液体状態が安定していて、磁歪係数の傾きは温度依存性を持たないと考 えてよい。

もし、磁歪係数の結果が *B*に比例した Fermi 液体的な振舞いであって、Fermi 液体的領 域の線形フィッティングラインを外挿しても原点を通らない場合、測定データには試料の 磁歪の他に Cell effect による変化も含まれていると考えられる。そこで、Cell effect と定 性的に同じ磁場依存性をもつ標準キャパシタンスの変化率 dC_S/C_S を Back ground 補正 に使用する。つまり、2 K の磁歪係数の結果に合うように dC_S/C_S に任意のファクターを 掛けた値を Back ground として磁歪データから差し引く。

Fig. 45 の Back ground 補正を説明する。実際に測定された 2 K の磁歪係数は 0-9 T ま での測定磁場範囲で Fermi 液体的な *B* に比例した振舞いである。一方、図中の赤は 20 mK における磁歪の測定結果であるが、高磁場側の Fermi 液体的領域を線形フィッティング し外挿しても原点を通らない。そこで、Fig. 44 の 0.3 K 以下で温度変化しなくなった dC_S/C_S を任意に拡大 (または縮小) した Back ground(緑色)を用意し、磁歪の測定結果か ら差し引くと、青色の高磁場側の *B* に比例して原点を通るようなデータが得られる。試 料が Fermi 液体状態であれば、Back ground(緑色)を差し引くと 2 K の磁歪係数に一致す るはずである。従って、一致しない領域は定性的に Back ground で説明できないため、非 Fermi 液体的な振舞いであることを示している。全データに対してこのような補正を行っ たところ、これまで整合していなかったデータに関してはほぼすべて整合した。

Fig.45 2 K の磁歪係数と 20 mK の磁歪係数、Back ground、Back ground を差し引い た後の 20 mK の磁歪係数。

3.2.2 磁歪の磁場依存性

Fig. 46 に測定された CeRu₂Si₂の線磁歪 $\Delta L(B)/L$ を示す。左図は 2 K における a 軸と c 軸の線磁歪であるが、磁場方向は a 軸の変化に対しては B//a、 c 軸の変化に対しては B//c である。

これまでに磁化容易軸である c 軸方向に磁場印加した場合、a 軸と c 軸共に $H_m \simeq 7.8T$ でクロスオーバーメタ磁性による 10^4 オーダーの急激な膨張を示し、a 軸と c 軸には $c/a \approx 3$ 程度の磁気異方性があることが Lacerda らによって示されている [50]。

本研究の左図における c 軸の振舞いも同様で、およそ 2 T 付近まで B^2 に比例した振舞 いをしているが、2 T を越えた辺りから磁歪の勾配が大きくなってゆき、 H_m で最大になる。一方、a 軸方向に 9 T まで磁場印加した場合には a 軸方向の磁歪にメタ磁性は現れなかった。

 B^2 の比例係数は *a* 軸が Δ*L_a*/*L_a* = $1.33 \times 10^{-8}B^2$ 、*c* 軸が Δ*L_c*/*L_c* = $8.8 \sim 9.5 \times 10^{-6}B^2$ であり、磁場印加方向が測定軸に平行の場合、*a* 軸と *c* 軸の磁気的異方性は

$$\frac{c (B//c)}{a (B//a)} = 660 \sim 710 \tag{3.2}$$

であった。この巨大な磁気的異方性は式 (2.14) から帯磁率の圧力感度の比を示しており、 c 軸方向へ磁場印加した場合の帯磁率の圧力依存性が a 軸方向へ磁場印加した場合に比べ て非常に大きいことを意味している。

Fig.46 CeRu₂Si₂の磁歪 $\Delta L(B)/L_{\circ}$ 左図:2Kにおける *a* 軸と *c* 軸の線磁歪 $\Delta L_a/L_a$ 、 $\Delta L_c/L_c$ 。磁場方向は測定した結晶軸に平行である。実線は *a* 軸の磁歪に対する B^2 ス ケールの線形フィッティングである。各軸の B^2 スケールの比例係数は $\Delta L_a(B)/L_a =$ 2.66×10⁻⁸ B^2 、 $\Delta L_c(B)/L_c = 1.76 \times 10^{-5}B^2$ で表される。右図:1.2T以下、200 mK 以 下の *a* 軸方向の磁歪。
Fig. 46 右図は、 mK 領域で測定した *a* 軸方向の磁歪の磁場依存性である。およそ 300 mK 以下で磁歪に極小が現れる振舞いを観測した。磁場を印加すると最初に減少し、 0.5 T 以下の範囲で極小をとったあと 9 T まで単調に増加する。極小は低温になるほど大 きくなり、これが非 Fermi 液体的振舞いであるのは明らかである。

磁歪係数の導出 Fig. 47 に mK 領域で 9 T まで磁場印加した磁歪測定から計算された a 軸方向の線磁歪係数の結果を示す。約 0.6 T 以上の高磁場領域ではすべての温度範囲で、 磁歪係数は B に比例しており、Fermi 液体状態であることを示している。このような関係 は式 (2.14) で与えられたように、 $\lambda \propto -B(\partial \chi/\partial p)_B$ の関係から磁歪係数が B に比例し、 χ が温度に依存しない Pauli の常磁性帯磁率であることから導かれる。低温で磁気秩序を持 たない場合、伝導電子系は Fermi 液体論に従うから、この場合は体積 (線) 磁歪は B に比 例する。

Fig.47 9T までの CeRu₂Si₂ の *a* 軸方向の磁歪係数。

一方、1 T 以下の磁場範囲を示した Fig. 48 には 0.6 T 以下で磁歪の極小に対応した、非 Fermi 液体的振舞いが明確に表れている。低温で大きくシャープな極小をつくり、温度を 上げていくと極小はブロードになっていく。極小の位置は 0 T 付近から 0.12 T までシフ トするが更に温度を上げると反対に低磁場へシフトしていき、300 mK あたりを越えると 極小もなくなり、Fermi 液体的振舞いに戻った。磁歪係数が負の値を持つことは、圧力印 加により磁化が増大していくことを意味している。

Fig.48 1 T までの CeRu₂Si₂ の a 軸方向の磁歪係数。

3.3 熱膨張・磁歪の非 Fermi 液体的振舞いについての考察

この節では、(3.1.2) 項の熱膨張、(3.2.2) 項の磁歪の結果から観測された非 Fermi 液体 的振舞いがどのような状態を意味しているのかを考察する。

3.3.1 熱膨張係数の非 Fermi 液体的振舞いについての考察

前述したように、極低温で行われた他グループの幾つかの物性測定は Fermi 液体的な振 舞いによく一致し、この系は近藤効果が支配的になっていることを示している。しかし、 本研究グループの帯磁率、熱膨張測定は超低温領域に非 Fermi 液体的な振舞いを観測し、 近藤温度とは別のエネルギースケールの現象が寄与していると考えられる。

QCP の存在が確認されている重い電子系物質の多くは SDW 型量子相転移に当てはま り、QCP 近傍の熱膨張係数の振舞いは SCR 理論によると温度のべき乗か対数で表された 臨界指数に従う。このような理論では QCP より低圧側に位置する系で、かつ有限温度で 磁気オーダーする熱的臨界領域における非 Fermi 液体的振舞いを扱っている [10]。

一方、非置換 CeRu₂Si₂ の場合はそのドープ系において確認されている AFMQCP より 少し高圧側に位置しており、QCP 近傍では有限温度で QCP の臨界的な性質を持った非 Fermi 液体状態から、十分低温で Fermi 液体状態へのクロスオーバーが起こるとされてい る。現に、CeRu₂Si₂ の比熱の振舞いなどは1K 付近まで SCR 理論によりよく説明されて おり、さらに mK 領域の低温でも本研究で測定された熱膨張のように Fermi 液体的振舞い を示している。故に、CeRu₂Si₂ の基底状態は Fermi 液体状態であると考えられてきた。

Fig.49 重い電子系化合物の典型的な *p-T* 相図 [93]。(a) Ce 系化合物にみられる *p-T* 相図。(b) Yb 系化合物にみられる *p-T* 相図。QCP の両領域はそれぞれ磁気秩序相、 Fermi 液体状態を表す。灰色の線は磁気転移点、赤色の線は等エントロピー線を表す。 Ginzburg regime と書かれた領域は熱揺らぎが支配的な熱的臨界領域で古典的相転移が 成立する。

磁気的量子相転移における典型的な *p-T* 相図を Fig. 49 に示す [93]。図 (a) は一般的に Ce 系化合物にみられる相図で、圧力をかけると *cf* 混成が増強され磁気秩序は抑制されて Fermi 液体状態がより安定的になる。従って QCP より高圧側では Fermi 液体状態が広が るような相図をとる。図 (b) は磁気秩序相と Fermi 液体状態が入れ替わった場合である。 このような相図は Yb 系化合物など価数揺動を示す物質でみられ、圧力をかけると Fermi 液体状態が抑制される。また磁気転移点ではエントロピーは極大をとるため、等エントロ ピー線を引くと図中の赤線の様に磁気転移点で極小をとる。このように対象とする系が QCP のどちら側に位置するか、また磁気秩序相が QCP より高圧側か低圧側にあるかに よって系の振る舞いが違う。

■熱的 Grüneisen パラメータ Γ_T の導出 *p*-*T* 相図におけるエントロピーの描像は熱膨張 係数を求めることで知ることが出来る。Fig. 41 に示すように、 α/T は高温側の *constant* な状態 (Fermi 液体状態) から 60 mK 付近で *a* 軸と *c* 軸共に減少し、20 mK 付近で熱膨張 係数の値が正から負に変わる。このような符号の反転は、Ce_{1-x}La_xRu₂Si₂ など低温で反 強磁性転移する物質で確認されている [94]。

ここで式 (2.11) を等温体積圧縮率 $\kappa_T = -V^{-1}(\partial V/\partial p)_T$ と定積比熱 $C_V = T(\partial S/\partial T)_V$ を 用いて表すと以下のようになる。

$$\alpha_{V} = \kappa_{T} \left(\frac{\partial S}{\partial V}\right)_{T}$$

$$= \kappa_{T} \frac{C_{V}}{T} \left(\frac{\partial T}{\partial S}\right)_{V} \left(\frac{\partial S}{\partial V}\right)_{T}$$

$$= -\kappa_{T} \frac{C_{V}}{T} \left(\frac{\partial T}{\partial V}\right)_{S}$$

$$= \frac{\kappa_{T}}{V} C_{V} \Gamma_{T}$$
(3.4)

体積熱膨張係数は定積比熱とこのようにして関連付けられる。 Γ_T は熱的 Grüneisen パ ラメーターと呼ばれる無次元数であり、以下のように定義される。

$$\Gamma_T = \frac{V}{\kappa_T} \frac{\alpha_V}{C_V}$$

$$= -\frac{V}{T} \left(\frac{\partial T}{\partial V}\right)_S$$

$$= -\left(\frac{\partial \ln T}{\partial \ln V}\right)_S$$
(3.6)

 $V > 0, \kappa > 0, C_V > 0$ であるから α の値が負であるとき、 Γ_T も負の値を持つ。 Γ_T や熱膨 張係数は QCP 近傍で特徴的な発散や、有限温度での磁気相転移に伴う符号反転が起こる ため QCP の検出、研究に有効な物理量である。

Fig.50 CeRu₂Si₂ の比熱の温度依存性。およそ 100 mK 以下で比熱係数に急激な立ち 上がりが現れているが、これは超微細構造による Ru 核 (I=5/2) の四極子分裂によるも のだと考えられる [95]。

超低温領域での比熱の見積もり Γ_T の導出には比熱の値が必要であるが、Flouquet らに よる測定では Fig. 50 にあるように 100 mK より低温側で比熱の立ち上がりが観測されて いる [95]。これは超微細構造による Ru 核の四極子分裂の寄与だと考えられている。この ような寄与が存在する場合、量子揺らぎによる電子系の比熱に変化があったとしても、四 極子分裂の寄与に隠れて観測できない可能性がある。

そこで、本研究の先行研究である c 軸の静磁化測定の結果を用いて、比熱の変化を見積 もった。Fig. 25 の静磁化測定の結果によると、磁化 M(T) は数百 mK あたりから上昇し、 交流帯磁率のピーク温度 (T_p) 以下で飽和する [77]。また先行研究で吉田氏は磁化 M を規 格化温度 $t = T/T_p$ でスケーリングして比熱係数の計算を行っている [78]。磁化の温度依 存性は t < 0.6 の範囲 (約数 mK より低温) で $M \propto \beta(B)(T/T_P)^2$ で近似でき、Maxwell の 関係式から

$$\frac{\partial (C_p/T)}{\partial B} = \left(\frac{\partial^2 M}{\partial T^2}\right)_{p,B} = \frac{2\beta}{T_P^2}$$
(3.7)

が成り立つ。磁場を 6.21 mT から 0.20 mT まで数値積分を行った結果、 C_p/T は 26 ± 14 mJ/K²mol だけ増加することがわかった。

しかし本研究で測定された熱膨張は 10 mK より高温側であり、上で述べたような規格 化温度でスケーリングできる温度領域を越えているため同様の計算はできない。そこで、 静帯磁率の 10 mK 以上での Curie 則的変化から比熱の変化分を見積もった。Curie 定数は すべての印加磁場で $C \sim 1.3 \times 10^{-2}$ mK である [77]。その場合、Maxwell の関係式から以 下の関係が成立する。

$$\frac{\partial (C_p/T)}{\partial B} = \left(\frac{\partial^2 M}{\partial T^2}\right)_{p,B} = \frac{2C}{\mu_0 T^3} B$$
(3.8)

本研究では、試料は磁場印加していない状態で地磁気程度の磁場中にいると仮定し、 60μ T から 6.21 mT まで積分した結果、10 mK までの Pauli 常磁性からの比熱係数の増加分は $\Delta C_p/T = 20.6 \text{mJ/K}^2 \text{mol}$ となる。

また Γ_T の計算には式 (3.5) にあるように C_p ではなく C_V が必要である。定圧比熱 と定積比熱の差は $(C_p - C_V)/T = V_m \alpha^2 / \kappa_T$ で表される。 $\kappa_T = 9.5 \times 10^{-12} \text{ Pa}^{-1}$ 、 $V_m = 5.175 \text{ m}^3/\text{mol}$ の値と Fig. 41 の α_V より 100 mK において $(C_p - C_V)/T \simeq 0.01 \text{ mJ/K}^2 \text{mol}$ の差であった。従って、定圧比熱と定積比熱の差は静磁化から見積もられた比熱係数の増 加より三桁小さく無視できるため、 C_V の代わりに C_p を用いてもよい。

比熱の増加は静磁化より見積もった定圧比熱を用いてよいことがわかった。しかし、 CeRu₂Si₂の極低温での比熱係数の大きさは 350 mJ/K²mol あり、比熱の増加分を考慮し ても Γ_T の値への影響は 1% 程度であるから C_p =350 mJ/K²mol として計算した。

Fig. 51 に Γ_T の計算結果を示す。100 mK において Γ_T はおよそ 200 程度で一定である。 通常金属において Γ_T は 1~2 程度だが、重い電子系におけるこの大きな Γ_T は近藤温度以 下での準粒子と音響フォノンの結合によるものである。しかし、およそ 60 mK まで下げ ると Γ_T は減少し、20 mK 付近で符号が正から負に転じる。10 mK までに Γ_T は -200 を 越え、絶対零度まで外挿した場合 -10³ のオーダーまで増大すると考えられる。

Fig.51 CeRu₂Si₂の Grüneisen パラメータ Γ_T の温度依存性。

■ α と Γ に関する考察 熱膨張係数 α は式 (2.11) より一定温度におけるエントロピーの 圧力微分係数で与えられた。また Γ_T は式 (3.5) で与えられるが、 C_V の代わりに C_p を代 入した場合、それぞれ以下のようなエントロピーに関する情報が得られる。

$$\alpha = -\frac{1}{V} \left(\frac{\partial S}{\partial p} \right)_T \tag{3.9}$$

$$\kappa_T T \Gamma_T = \left(\frac{\partial T}{\partial p}\right)_S \tag{3.10}$$

式 (3.9) は Fig. 49 の図 (a) において磁気秩序相に位置している場合は負の値、無秩序相に 位置している場合は正の値をとることがわかる。式 (3.10) は等エントロピー線の傾きを 示しており、 Γ_T の符号は等エントロピー線の勾配の符号を示す。

Fig. 41 や Fig. 51 で示したように高温側は Fermi 液体状態で α も Γ_T も正の符号であ り、元素置換による研究から、非置換 CeRu₂Si₂ は AFMQCP より高圧側に位置し、図 (a) に矛盾していない。一方、60 mK より低温に下げると α も Γ_T も Fermi 液体状態から減少 し、およそ 21 mK で正から負へ符号を変える非 Fermi 液体的な寄与を示した。すなわち これは 21 mK において等エントロピー線が極値を持ち、21 mK より低温では圧力を加え るとエントロピーが増大することを意味する。このような振舞いは、図 (a) に矛盾する。

図 (a) によると等エントロピー線が極値を持つ可能性の一つとして、21 mK 以下での磁気相転移が考えられる。非弾性中性子散乱実験により T_K 以下でも3 つの短距離反磁性相関が存在し、150 μ K までの静磁化測定と、 T_K 以下の μ SR の実験から2 K 以下で、それぞれ 10 $-3\mu_B$ /Ce 程度の小さな磁気モーメントが観測されており熱膨張測定の結果がこれに関連している可能性がある。

SDW 型量子相転移における QCP 近傍の熱膨張係数の振舞いを Fig. 52 に示す [93]。 Fig. 49 の図 (a) に対応する三次元系の反強磁性 (AFM)QCP に関する α/T の振る舞いを Fig. 52 の図 (a) に示す。 $p = p_c$ に位置する場合、 $\alpha/T \propto T^{-1/2}$ で発散し、 $p < p_c$ に位置す る場合は磁気転移温度で正から負の値へ鋭いピークを持ち、磁気秩序状態では $\propto -T^{-1/2}$ で変化する。符号は Γ_T も同様に反転することになる。 $p > p_c$ に位置する非磁性状態の場 合は高温領域で $T^{-1/2}$ の $p = p_c$ に従った振舞いをするが、最終的に Fermi 液体状態へク ロスオーバーし温度に *constant* な値をとる。

一方で、Fig. 49 の図 (b) の相図に対応するような場合、磁気秩序相と無秩序相の位置関係が入れ替わるから、Fig. 52 の図 (b) のように図 (a) の振舞いが y 軸反転した対称的な振舞いをする。

超低温での磁気相転移の可能性 α/T の正の値から負の値への変化(あるいはその逆)は、 磁気転移の際に見られる一般的な振舞いであり、重い電子系においても図(a)に示したよ うに Ginzburg regime と呼ばれる古典的相転移が成立する熱揺らぎが大きい領域で、 α/T の発散的な振舞いが見られる。

Fig.41 に示した α/T の急激な変化が見られた 60 mK から 10 mK の温度領域は c 軸の 交流帯磁率、静磁化率が Curie 則的に立ち上がる領域であるが、交流帯磁率、静磁化率の 結果には磁気転移と考えられる明確な振舞いは見られず、 α/T との対応関係もない。また 交流帯磁率は磁場印加によってピークを形成して抑制されるが、ピークよりも低温側の振 る舞いが SDW による反強磁性転移後の振舞いに酷似していることから、高橋氏によって ネール温度 T_N が 2.8 mK と見積もられている [77]。しかし帯磁率の結果は 2.8 mK 付近 において反強磁性転移による明確な変化が観測されておらず、むしろ 0.016 mT では最低 温まで発散するような振舞いをしているため、反強磁性転移の可能性は否定されている。 従って、 α/T においても反強磁性転移の可能性はないと考えられる。

非置換 CeRu₂Si₂の高圧側にもう一つの QCP が存在する可能性 Fig. 49 の図 (b) のよう に QCP の高圧側に磁気秩序相が存在する場合を考える。α/T の振舞いは QCP の低圧側 に位置する場合、α/T は負の値を持つ (つまり低温に下げると膨張する)。この場合も絶対 零度に到達する前に Fermi 液体状態へのクロスオーバーが起こり温度に constant になる と考えられる。このような低温で磁気転移しないが負の熱膨張係数を持つような振舞い は、本研究で測定された熱膨張係数の結果に当てはまる。

Fig 53 は α/T を横軸 $-T^{-1/2}$ にとったプロットで、横軸は Fig. 52 図 (b) における $p \leq p_c$ の Fermi 液体領域での振舞いに相当する。 α/T が負の値になる領域では $-T^{-1/2}$ に線形 で、3 次元系の反強磁性量子臨界点 (AFMQCP) が高圧側に存在することを示唆する。し かし、本研究で得られた $-T^{-1/2}$ の領域は約 15 mK~20 mK の限定された温度範囲であり、

Fig.52 SDW 型量子相転移における三次元反強磁性 QCP 近傍の α/T の振舞い [93]。
(a) は Fig. 49(a)、(b) は Fig. 49(b) の相図に対応する。P_c は臨界圧力を示している。

Fig.53 CeRu₂Si₂の α/T の振舞い。横軸は $-T^{-1/2}$ であり、Fig. 52の図 (b) における $p \leq p_c$ の場合に対応する。図中の破線 (緑) は $-T^{-1/2}$ スケールが成り立つ目安。破線は 体積熱膨張係数のみに描いたが、a 軸もc 軸も共に $-T^{-1/2}$ に線形である。

今後より低温での測定が必要である。

本研究では、新しい AFMQCP を観測することはできなかったが、約 21 mK で Γ_T が 正から負に反転し、高圧側でエントロピーの増加が起こっていることを示した。また CeRu₂Si₂ は負の化学圧力で磁気秩序相が誘起され、 $p_c = -0.3$ GPa に AFMQCP の存在 が知られていること、等エントロピー線は磁気転移点で極小を持つことを踏まえると、 CeRu₂Si₂ の *p*-*T* 相図には 2 つの量子臨界点が存在し、CeRu₂Si₂ は 2 つの量子臨界点に 挟まれた領域に位置している Fermi 液体状態である可能性が考えられる。21 mK で起き た Γ の符号の正から負への反転は等エントロピー線の傾きが正から負へ反転したことと 同義であり、等エントロピー線の極大を観測したものと考えられる。等エントロピー線の 傾きの符号の変化は、降温によって CeRu₂Si₂ が低圧側の AFMQCP より高圧側に存在す る未知の量子臨界点 (Hidden QCP) に近づき、Hidden QCP に起源をもつ量子臨界状態が 支配的になったことで起こったと解釈できる。また熱膨張係数の非 Fermi 液体的振舞い は 9 T まで磁場印加してもほとんど変わらず、圧力が有効なコントロールパラメータだと 考えられる。Fig. 54 に予想される CeRu₂Si₂ の新しい *p*-*T* 相図を示す。

Fig.54 熱膨張測定の結果から予想される CeRu₂Si₂の新しい *p-T*相図。低圧側の磁気 秩序相および $p_c = -0.3$ GPa に位置する AFM QCP は La、Rh、Ge 置換系で観測され ている。高圧側に示された Hidden QCP および磁気秩序相は本研究の熱膨張測定から 予測されているものである。灰色の線は等エントロピー線を表し、Hidden QCP より低 圧側に位置する CeRu₂Si₂の熱膨張係数の値は負の値をとる。

3.3.2 磁歪係数の非 Fermi 液体的振舞いについての考察

*a*軸に磁場印加したときの*a*軸の磁歪係数は Fig. 48 に示したように低温低磁場になる ほど鋭い負のピークを持った非 Fermi 液体的振舞いを示し、負のピークは磁場印加または 昇温によって抑制される。磁歪係数 *λ* は式 (2.14) で与えられ、磁歪係数が負の値を持つ とき、圧力印加によって磁化または帯磁率が増加することを意味する。

Fig.55 CeRu₂Si₂の磁歪測定から求まる帯磁率の圧力微分係数。

本研究で測定された線磁歪係数に対して非 Fermi 液体的寄与 $\lambda_{cr} \in \lambda = \lambda_{FL} + \lambda_{cr}$ の様に 定義し、 $(\partial \chi / \partial p)_B = -\mu_0 \lambda / B$ の温度依存性を Fig. 55 に示す。6 mT の低磁場では温度を下 げると $\partial \chi / \partial p$ が少しずつ増加し、約 60~70 mK 付近から急に増加した。磁場を強くする と $\partial \chi / \partial p$ の増加が抑制されるように振舞い、1 T にするとほぼ零になった。この振舞いは 先行研究の帯磁率の温度依存性 (Fig.25) に類似しており、両者の間にスケーリング則が成 立することを示唆している。

3.3.3 磁歪係数のスケーリング則

図 25(b) に示すように交流帯磁率・静磁化率は交流帯磁率のピーク値、ピーク温度と静磁化率の飽和磁化で規格化するとそれぞれスケーリング則が成立する。本研究で測定された磁歪係数にも (3.3) 項にて磁化とスケーリング則が成り立つ可能性が見い出された。この項では測定された磁歪と熱膨張にスケーリング則が成立するかを議論する。

超低温で現れる静磁化 *M* が特性的な磁場 $B_S(p)$ で $M = M(B/B_S(p))$ 、エントロピー *S* が特性的な温度 $T_S(p)$ で $S = S(T/T_S(p))$ で、スケーリングが成立するとき、以下の関係 で定義されたスケーリングパラメータを用いて各物理量の間に成立するスケーリング式を 導出する。

$$\Omega_B \equiv \frac{\partial \ln B_S}{\partial p} = \kappa_T \Gamma_B \tag{3.11}$$

$$\Omega_T \equiv \frac{\partial \ln T_S}{\partial p} = \kappa_T \Gamma_T \tag{3.12}$$

 κ_T は等温圧縮率、 Γ_B は磁気的 Grüneisen パラメータ、 Γ_T は熱的 Grüneisen パラメータで ある。ここで微小圧力変化を考えたとき、 $\Omega \approx const$ である。CeRu₂Si₂ の場合、メタ磁性 近傍では磁化測定や電気抵抗、帯磁率の加圧実験から Ω が $\Omega \approx \Omega_B \approx \Omega_T = 171$ Mbar⁻¹ との報告がある [96]。

(3.3.1) 項でも述べたように、Fig. 25 の静磁化率の温度依存性は本研究の測定温度領域 (T>10 mK) では Curie 則的に変化しているから、(3.11) 式より磁歪係数 λ と磁化 M の間 には

$$\lambda = -\frac{B}{\mu_0} \left(\frac{\partial \chi}{\partial p} \right)_{B,T} = \frac{B}{B_s^2} \frac{\partial B_s}{\partial p} \frac{\partial M}{\partial b}$$
$$= \Omega_B H \left(\frac{\partial M}{\partial H} \right)_{p,T} \simeq \Omega_B M$$
(3.13)

の線形性が成り立つ。ここで $b = B/B_S(p)$ である。

Fig. 56 は 6 mT における *a* 軸の λ_{cr} と Fig. 25 の *c* 軸の静磁化 M_{cr} の間のスケーリング の結果である。 $\Omega_B = -370 \text{ Mbar}^{-1}$ であるとき λ_{cr} と $\Omega_B M_{cr}$ はよく一致する。磁場印加方 向と測定軸方向がそれぞれ違うから $\Omega_B =$ に異方性が現れる可能性はある。しかし、この 結果は結晶軸方向に関係なくスケーリング則が成り立っていることを示している。

また式 (3.12) より、(3.3.1) 項で示すように熱膨張係数 α はエントロピー S から $t = T/T_S(p)$ を用いて、

$$\alpha = -\frac{1}{V} \left(\frac{\partial S}{\partial p} \right)_{T,B} = \frac{1}{V} \frac{T}{T_S^2} \frac{\partial T_S}{\partial p} \frac{\partial S}{\partial t} = \Omega_T \frac{C}{V} = \frac{C_V}{V} \kappa_T \Gamma_T$$
(3.14)

の関係が成り立つ。 Γ_T は Fig. 51 に示した、本研究で測定された体積熱膨張から $\kappa_T = 0.95 \text{ Mbar}^{-1}$ を用いて求められ、60 mK 以上の Fermi 液体状態では $\Gamma_T \sim 210$ である。また式 (3.12) より $\Omega_T \sim 200 \text{ Mbar}^{-1}$ である。一方、60 mK 以下は負の方へ減少し、絶対零度まで外挿した場合、 Ω_T は-10³ Mbar⁻¹オーダーまで増加する可能性がある。これは上述した CeRu₂Si₂の磁化や電気抵抗、帯磁率の振舞いが $\Omega = 171 \text{ Mbar}^{-1}$ という単一のパラメータで表されるのに対し、本研究で明らかになった Ω_T の負の符号はこれまで知られてきた高温側のものとは、全く別のエネルギースケールが寄与していることを示している。熱膨張係数と比熱にスケーリング則が成立するかについてはまだ明らかではない。

Fig.56 CeRu₂Si₂の a 軸の磁歪係数に対する c 軸の静磁化のスケーリング [式 (3.13)]。

4 Conclusion

重い電子系 CeRu₂Si₂の超低温領域における量子臨界現象の起源を解明するために熱膨 張・磁歪測定を行った。

10 mK まで零磁場で a 軸と c 軸方向の熱膨張 $\Delta L(T)/L$ を測定したところ 60 mK より高 温側では T^2 に比例した Fermi 液体的振舞いを示した。一方、60 mK より低温では T^2 依 存性から逸脱した非 Fermi 液体的振舞いを観測した。a 方向に磁場印加した場合の a 軸の 熱膨張は、9 T まで磁場を上げても零磁場のときとほとんど振舞いは変わらず、60 mK 以 下の非 Fermi 液体的振舞いも観測された。熱膨張係数 a を導出し解析した結果、非 Fermi 液体的振舞いは 21 mK より低温で負の a を持つことがわかった。これは圧力印加によっ て CeRu₂Si₂ の常圧より高圧の状態では、エントロピーが増大していることを示している。 また Grüneisen パラメーター Γ_T から約 21 mK で、等エントロピー線の勾配が正から負に 反転することがわかった。

CeRu₂Si₂ は負の化学圧力で磁気秩序相が誘起され、 $p_c = -0.3$ GPa に AFMQCP が 存在することが知られており、等エントロピー線は磁気転移点で極小を持つことから、 AFMQCP の高圧側にある CeRu₂Si₂ の基底状態が Fermi 液体状態であるなら α と Γ_T は 正の値をとる。しかし、本研究から等エントロピー線の勾配は超低温領域で負に転じてお り、これは等エントロピー線の極大があることを意味する。これらの結果を考慮すると、 CeRu₂Si₂ の高圧側には未知の量子臨界点 (Hidden QCP) が存在しており、CeRu₂Si₂ は低 圧側の AFMQCP と Hidden QCP に挟まれた領域に位置している可能性が考えられる。 α と Γ_T の符号の反転は 21 mK 以下まで低温に下げることで、系が AFMQCP より Hidden QCP に近くなり等エントロピー線の勾配が反転して起こったものと解釈できる。

次に1K付近の c 軸、a 軸方向の磁歪測定および、300 mK 以下で a 軸方向の磁歪測定 を行った。1K 付近では c 軸方向に磁場印加し、c 軸方向の磁歪測定で 8T 付近にメタ磁 性を確認した。一方、a 軸方向に磁場印加した場合、a 軸方向の磁歪にはメタ磁性が現れ ず、9T まで Fermi 液体的振舞いを示した。測定軸方向に磁場印加した場合、a 軸、c 軸 方向の各磁歪の磁気異方性は c/a = 660 ~ 710 の巨大な磁気異方性を持つことを明らかに した。

300 mK 以下、1 T 以下の低温低磁場での a 軸方向への磁歪測定では、0.5 T 以下に磁歪 係数 λ が極小をとる非 Fermi 液体的振舞いを明らかにした。極小の大きさは最低温低磁 場で最も大きくシャープで、昇温・磁場印加によって極小はブロードに小さくなり高磁場 側にシフトしていく。約 100 mK より高温では、 λ は極小が反対に低磁場側にシフトし、 およそ 300 mK を越えると極小が消えて Fermi 液体状態に戻ることがわかった。 λ に関す る非 Fermi 液体的振舞いは圧力印加によって磁化または帯磁率が増大することを示し、 α と Γ_T の結果を支持する。一般に QCP 近傍では磁化率の増大が観測されるため、 λ の結果 は Hidden QCP の存在を示唆するものと考えられる。

次に a 軸の λ と先行研究の c 軸の静磁化 M にスケーリング則が成立することを指摘した。エントロピーや磁化などが特性的な温度、磁場を持つ場合、異なる物理量の間にスケーリング則が成立する。本研究における熱膨張・磁歪の結果は特性温度・磁場が圧力依存性を持つスケーリングパラメータを導入することで、非 Fermi 液体状態について λ を静磁化でスケーリングできることを明らかにした。又、 Γ_T の温度依存性は高温側の Fermi 液体領域で $\Omega_T \sim 200 \text{ Mbar}^{-1}$ から 60 mK で減少に転じ、絶対零度まで外挿すると-10⁻³ Mbar⁻¹ オーダーの負の値をとる可能性があり、高温側とは全く別のエネルギースケールが寄与していることが示唆される。スケーリング則が成立することで、これまでの先行研究も含めた本研究における非 Fermi 液体的振舞いが、同じ起源による量子臨界現象として理解できる。今後は同じ測定軸、磁場印加方向、測定温度磁場領域での追加測定や、他の物理量の測定、また元素置換系の超低温での実験など更なる追加実験が望まれる。

5 謝辞

超低温研究室に所属してから現在までの6年間、あっという間の充実した研究生活でし た。指導教官である阿部聡准教授には要領が良いとは言えない私に実験の基礎から根気よ くご指導して頂き、またたくさんの助言をいただいたことに感謝しております。松本宏一 教授には、私の拙い実験や学会発表・論文・ミーティング資料等への添削・指摘など、呆 れる様なこともあったでしょうが的確なアドバイスをして頂きまた最後までお付き合い頂 き感謝しております。お二人の助力がなければ、乗り切れなかったこともあったかと思い ます。本当にありがとうございます。

辻井宏之准教とは部屋が離れているため、たまの飲み会や BQ などの行事ごとで会う機 会が多かったと思いますが、楽しい時間を過ごさせていただきました。また辻井氏の研究 業績は私の研究内容とも関連があるため参考にさせていただきました。ありがとうござま す。布村晃一技官には液体ヘリウム関連の管理をして頂き感謝しております。おかげさま で実験をスムーズに進行させることができました。本当にありがとうございます。また事 務の森廣美さんには TA や学会などや細かな雑務に関してまでお世話していただいて大変 感謝しております。

低温研究室の学生の皆さんと一緒に過ごさせて頂いた期間は、たいへん有意義なもので した。ここで出会った先輩・同僚・後輩の皆様と助け合い励みあったおかげで研究生活に 勤しむことができました。Oxford グループの人たちには特に感謝しております。実験は 時には厳しく辛いこともあったかと思いますが、それ以上に楽しいこともありましたし、 やりがいがありました。皆さんと共に時間を共有し、研究生活が送れたことに感謝して おります。佐々木さん、大西さん、高間君、海道君、峯岸君、上野君のみなさんの協力が あってこそ、ここまで乗り切ることが出来ました。本当にありがとうございます。また修 士まで一緒でした山田君にはゲーム制作のイロハを教えていただきました。今後の新作に 期待しております。また、6年間一緒に過ごしてきた岩上君の存在は私にとって、とても 大きかったです。私の研究生活においてどれほど励みになったか計り知れません。本当に ありがとう。これからの新しい環境での成功を祈っています。そして最後に、今まで心配 ばかりさせながらも最これまで暖かく見守ってくれた家族に心から感謝します。

6 Reference

- [1] 芳田奎ほか. 日本物理学会誌, Vol. 41, p. 721, 1987.
- [2] 上田和夫, 大貫惇睦. 重い電子系の物理. 裳華房, 東京, 1998.
- [3] K. Wilson. Rev. Mod. Phys, Vol. 47, p. 773, 1975.
- [4] K. Kadowaki and S. B. Woods. Solid State Commun., Vol. 58, p. 507, 1986.
- [5] K. Miyake and T. Matsuura. Solid State Commun., Vol. 71, p. 1149, 1989.
- [6] D. Aoki, W. Knafo, and I. Sheikin. *Comptes Rendus Physique*, Vol. 14, No. 1, pp. 53–77, 2013.
- [7] N. Tsujii, H. Kontani, and K. Yoshimura. *Phys. Rev. Lett.*, Vol. 94, No. 5, p. 057201, 2005.
- [8] T. Moriya and T. Takimoto. J. Phys. Soc. Jpn., Vol. 64, p. 960, 1995.
- [9] S. Kambe, J. Flouquet, and T. E. Hargreaves. J. Low Temp. Phys., Vol. 108, p. 383, 1997.
- [10] L. Zhu, M. Garst, A. Rosch, and Q. Si. Phys. Rev. Lett., Vol. 91, p. 066404, 2003.
- [11] 青木晴善, 小野寺秀也. 強相関電子物理学. 朝倉書店, 2013.
- [12] G. Knebel, M. Brando, J. Hemberger, M. Nicklas, W. Trinkl, and A. Loidl. *Phys. Rev. B*, Vol. 59, No. 19, p. 12390, 1999.
- [13] P. Gegenwart, F. Kromer, M. Lang, G. Sparn, C. Geibel, and F. Steglich. *Phys. Rev. Lett.*, Vol. 82, p. 1293, 1999.
- [14] R. Küchler, N. Oeschler, P. Gegenwart, T. Cichorek, K. Neumaier, O. Tegus, C. Geibel, J. A. Mydosh, F. Steglich, L. Zhu, and Q. Si. *Phys. Rev. Lett.*, Vol. 91, p. 066405, 2003.
- [15] P. Gegenwart, Y. Tokiwa, J. G. Donath, R. Küchler, C. Bergmann, H. S. Jeevan, E.D. Bauer, J. L. Sarrao, C. Geibel, and F. Steglich. *J. Low Temp. Rhys.*, Vol. 161, No. 1-2, pp. 117–133, 2010.
- [16] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith. *Nature (London)*, Vol. 413, p. 804, 2001.
- [17] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith. Phys. Rev. B, Vol. 68, p. 115103, 2003.
- [18] T. Senthil, S. Sachdev, and M. Vojta. Phys. Rev. Lett., Vol. 90, p. 21603, 2003.
- [19] T. Senthil, M. Vojta, and S. Sachdev. Phys. Rev. B, Vol. 69, p. 035111, 2004.
- [20] H. Tsujii, E. Tanaka, Y. Ode, T. Katoh, T. Mamiya, S. Araki, R. Settai, and Y. Ōnuki. *Phys. Rev. Lett.*, Vol. 84, p. 5407, 2000.
- [21] H. v. Löhneysen, M. Sieck, O. Stockert, and M. Waffenschmidt. Physica B, Vol.

223&224, p. 471, 1996.

- [22] A. Amato, D. Jaccard, J. Flouquet, F. Lapierre, J. L. Tholence, R. A. Fisher, S. E. Lacy, J. A. Olsen, and N. E. Phillips. *J. Low Temp. Phys.*, Vol. 68, p. 371, 1987.
- [23] G. Fraunberger, B. Andraka, J. S. Kim, U. Ahlheim, and G. R. Stewart. *Phys. Rev. B*, Vol. 40, p. 4735, 1989.
- [24] K. Heuser, E. W. Scheidt, T. Schreiner, and G. R. Stewart. *Phys. Rev. B*, Vol. 57, p. R4198, 1998.
- [25] M. Sieck, C. Speck, M. Waffenschmidt, S. Mock, and H. v. Löhneysen. *Physica B*, Vol. 223-224, p. 325, 1996.
- [26] A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. v. Löhneysen, E. Bucher, R. Ramazashvili, and P. Coleman. *Nature (London)*, Vol. 407, p. 351, 2000.
- [27] H. v. Löhneysen, T. Pietrus, G. Portisch, H. G. Schröder, M. Sieck, and T. Trappmann. *Phys. Rev. Lett.*, Vol. 72, p. 3262, 1994.
- [28] R. Küchler, P. Gegenwart, K. Heuser, E. W. Scheidt, G. R. Stewart, and F. Steglich. *Phys. Rev. Lett.*, Vol. 93, p. 096402, 2004.
- [29] O. Stockert, H. v. Löhneysen, A. Rosch, N. Pyka, and M. Loewenhaupt. Phys. Rev. Lett., Vol. 80, p. 5627, 1998.
- [30] A. Schröder, G. Aeppli, E. Bucher, R. Ramazashvili, and P. Coleman. *Phys. Rev. Lett.*, Vol. 80, p. 5623, 1998.
- [31] D. R. Grempel and Q. Si. Phys. Rev. Lett., Vol. 91, p. 026401, 2003.
- [32] O. Trovarelli, C. Gebel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang, and F. Steglich. *Phys. Rev. Lett.*, Vol. 85, p. 626, 2000.
- [33] P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich. *Phys. Rev. Lett.*, Vol. 89, p. 056402, 2002.
- [34] K. Ishida, K. Okamoto, Y. Kawasaki, Y. Kitaoka, O. Trovarelli, C. Geibel, and F. Steglich. *Phys. Rev. Lett.*, Vol. 89, p. 107202, 2002.
- [35] J. Casters, P. Gegenwart, H. Wilhelm, K. Neumaler, Y. Tokiwa, O. Trovarelli, C. Geibel,F. Steglich, C. Pépin, and P. Coleman. *Nature (London)*, Vol. 424, p. 524, 2003.
- [36] P. Gegenwart, Y. Tokiwa, J. Custers, C. Geibel, and F. Steglich. J. Phys. Soc. Jpn., Vol. 75, p. 155, 2006.
- [37] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Colemann, and Q. Si. *Nature (London)*, Vol. 432, p. 881, 2004.
- [38] P. Gegenwart, T. Weterkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Adrahams, and Q. Si. *Science*, Vol. 315, p. 969, 2007.
- [39] V. Vildosola, A. M. Llois, and M. Alouani. Phys. Rev. B, Vol. 71, p. 184420, 2005.
- [40] L. C. Gupta, D. E. MacLaughlin, C. Tien, C. Godart, M. A. Edwards, and R. D. Parks.

Phys. Rev. B, Vol. 28, p. 3673, 1983.

- [41] H. Yamagami and A. Hasegawa. J. Phys. Soc. Jpn., Vol. 62, p. 592, 1993.
- [42] M. Sato, S. Kawarazaki, Y. Miyako, and H. Kadowaki. J. Phys. Chem. Solids, Vol. 60, p. 1203, 1999.
- [43] P. Haen, H. Bioud, S. Zherlitsyn, S. Holtmeier, P. Lejay, and J. Flouquet. *Czechoslovak Journal of Physics*, Vol. 46, p. 2073, 1996.
- [44] T. Sakakibara, T. Tayama, H. Mitamura, H. Amitsuka, K. Maezawa, and Y. Onuki. *Phys. Rev. B*, Vol. 51, p. 12030, 1995.
- [45] M. Sugi, Y. Matsumoto, N. Kimura, T. Komatsubara, H. Aoki, T. Terashima, and S. Uji. *Phys. Rev. Lett.*, Vol. 101, p. 056401, 2008.
- [46] R. Daou, C. Bergemann, and S. R. Julian. Phys. Rev. Lett., Vol. 96, p. 026401, 2006.
- [47] Y. Aoki, T. D. Matsuda, H. Sugawara, H. Sato, H. Ohkuni, R. Settai, E. Yamamoto, Y. Haga, A. V. Andreev, V. Sechovsky, et al. *J. Magn. Magn. Mat.*, Vol. 177, pp. 271–276, 1998.
- [48] K. Matsuhira, T. Sakakibara, A. Komachi, T. Tayama, K. Tenya, H. Amitsuka, K. Maezawa, and Y. Ōnuki. J. Phys. Soc. Jpn., Vol. 68, p. 3402, 1999.
- [49] F. Weickert, M. Brando, F. Steglich, P. Gegenwart, and M. Garst. *Phys. Rev. B*, Vol. 81, No. 13, p. 134438, 2010.
- [50] A. Lacerda, A. de Visser, P. Haen, P. Lejay, and J. Flouquet. *Phys. Rev. B*, Vol. 40, p. 8759, 1989.
- [51] K. Matsuhira, T. Sakakibara, K. Maezawa, and Y. Onuki. J. Phys. Soc. Jpn., Vol. 68, No. 7, pp. 2420–2425, 1999.
- [52] J. Flouquet, P. Haen, S. Raymond, D. Aoki, and G. Knebel. *Physica B: Condensed Matter*, Vol. 319, No. 1, pp. 251–261, 2002.
- [53] J. Rossat-Mignod, L. P. Regnault, J. L. Jacoud, C. Vettier, P. Lejay, J. Flouquet, E. Walker, D. Jaccard, and A. Amato. J. Magn. Magn. Mat., Vol. 76, pp. 376–384, 1988.
- [54] J. Rossat-Mignod, L. P. Regnault, J. L. Jacoud, C. Vettier, P. Lejay, J. Flouquet, E. Walker, D. Jaccard, and A. Amato. J. Magn. Magn. Mat., Vol. 76&77, p. 376, 1988.
- [55] H. Kadowaki, M. Sato, and S. Kawarazaki. Phys. Rev. Lett., Vol. 92, p. 097204, 2004.
- [56] A. Amato, R. Feyerherm, A. Schenck, J. Flouquet, and P. Lajay. *Phys. Rev. B*, Vol. 50, p. 619, 1999.
- [57] J. M. Mignot, J. Floquet, P. Haen, F. Lapierre, L. Puech, and J. Voiron. J. Magn. Magn. Mat., Vol. 76&77, p. 97, 1988.
- [58] H. Aoki, M. Takashita, N. Kimura, T. Terashima, S. Uji, T. Matsumoto, and Y. Onuki. J. Phys. Soc. Jpn., Vol. 70, p. 774, 2001.

- [59] J. M. Mignot, A. Ponchet, P. Haen, F. Lapierre, and J. Flouquet. *Phys. Rev. B*, Vol. 40, p. 10917, 1989.
- [60] S. Quezel, P. Burlet, J. L. Jacoud, L. P. Regnault, J. Rossat-Mignod, C. Vettier, P. Lejay, and J. Flouquet. J. Magn. Magn. Mat., Vol. 76&77, p. 403, 1988.
- [61] Y. Yamamoto, K. Marumoto, Y. Miyako, K. Nishiyama, and K. Nagamine. *Hyperfine Interactions*, Vol. 104, p. 227, 1997.
- [62] S. Raymond, D. Raoelison, S. Kambe, L. P. Regnault, B. Fak, R. Calemczuk, J. Flouquet, P. Haen, and P. Lejay. *Physica B*, Vol. 259-261, p. 48, 1999.
- [63] R. A. Fisher, C. Marcenat, N. E. Phillips, P. Haen, F. Lapierre, P. Lejay, J. Flouquet, and J. Voiron. J. Low Temp. Rhys., Vol. 84, p. 49, 1991.
- [64] R. Djerbi, P. Haen, F. Lapierre, P. Lehmann, and J. P. Kappler. J. Magn. Magn. Mat., Vol. 76&77, p. 260, 1988.
- [65] S. Kambe, S. Raymond, L. Regnault, J. Flouquet, P. Lejay, and P. Haen. J. Phys. Soc. Jpn., Vol. 65, p. 3294, 1996.
- [66] C. Sekine, T. Sakakibara, H. Amitsuka, Y. Miyako, and T. Goto. J. Phys. Soc. Jpn., Vol. 61, p. 4536, 1992.
- [67] Y. Miyako, T. Takeuchi, T. Taniguchi, S. Kawarazaki, K. Marumoto, R. Hamada, Y. Yamamoto, M. Ocio, P. Pari, and J. Hammann. J. Phys. Soc. Jpn., Vol. 65, p. 12, 1996.
- [68] Y. Tabata, D. R. Grempel, M. Ocio, T. Taniguchi, and Y. Miyako. Phys. Rev. Lett., Vol. 86, p. 524, 2001.
- [69] B. Lloret, B. Chevalier, B. Buffat, J. Etourneau, S. Quezel, A. Lamharrar, J. Rossat-Mignod, R. Calemaczuk, and E. Bonjour. J. Magn. Magn. Mat., Vol. 63&64, p. 85, 1987.
- [70] S. Murayama, C. Sekine, A. Yokoyanagi, K. Hoshi, and Y. Onuki. *Phys. Rev. B*, Vol. 56, p. 092, 1997.
- [71] Y. Tabata, T. Taniguchi, M. Sato, S. Kawarazaki, and Y. Miyako. J. Phys. Soc. Jpn., Vol. 67, p. 2484, 1998.
- [72] H. Kadowaki, Y. Tabata, M. Sato, N. Aso, S. Raymond, and S. Kawarazaki. *Phys. Rev. Lett.*, Vol. 96, p. 016401, 2006.
- [73] M. B. Fontes, M. A. Comtinentino, S. L. Bud'ko, M. El-Massalami, L. C. Sampaio,
 A. P. Guimaraes, E. Baggio-Saitovitch, M. F. Hundley, and A. Lacerda. *Phys. Rev. B*,
 Vol. 53, p. 678, 1996.
- [74] P. Haen, F. Lapierre, J. Voiron, and J. Flouquet. J. Phys. Soc. Jpn. Suppl. B, Vol. 65, p. 16, 1996.
- [75] S. Süllow, M. C. Aronson, B. D. Rainford, and P. Haen. *Phys. Rev. Lett.*, Vol. 82, p. 2963, 1999.

- [76] C. Godart, A. M. Umarji, L. C. Gupta, and R. Vijayaraghavan. *Phys. Rev. B*, Vol. 34, p. 7733, 1986.
- [77] D. Takahashi, S. Abe, H. Mizuno, D. A. Tayurskii, K. Matsumoto, H. Suzuki, and Y. Ōnuki. *Phys. Rev. B*, Vol. 67, No. 18, p. 180407, 2003.
- [78] J. Yoshida, S. Abe, D. Takahashi, Y. Segawa, Y. Komai, H. Tsujii, K. Matsumoto, H. Suzuki, and Y. Ōnuki. *Phys. Rev. Lett.*, Vol. 101, No. 25, p. 256402, 2008.
- [79] 小林俊一, 大塚洋一. 低温技術 [第2版]. 東京大学出版会, 東京, 1987.
- [80] 田沼静一, 馬宮孝好. 超低温. 共立出版, 東京, 1998.
- [81] 福山寛. 固体物理, Vol. 30, p. 938, 1995.
- [82] D. S. Greywall. Phys. Rev. B, Vol. 33, No. 11, p. 7520, 1986.
- [83] D. S. Greywall. Phys. Rev. B, Vol. 31, No. 5, p. 2675, 1985.
- [84] D. Inoue, D. Kaido, Y. Yoshikawa, M. Minegishi, K. Matsumoto, and S. Abe. Vol. 568, p. 032001. IOP Publishing, 2014.
- [85] 井上大貴,修士論文,金沢大学,2013年度.
- [86] H. Fukuyama, K. Yawata, D. Ito, H. Ikegami, and H. Ishimoto. *Physica B: Condensed Matter*, Vol. 329, pp. 1560–1561, 2003.
- [87] Lake Shore Cryotronics Inc. http://www.toyo.co.jp/material/.
- [88] W. A. Bosch, F. Mathu, H. C. Meijer, and R. W. Willekers. *Cryogenics*, Vol. 26, No. 1, pp. 3–8, 1986.
- [89] S. Abe, F. Sasaki, T. Oonishi, D. Inoue, J. Yoshida, D. Takahashi, H. Tsujii, H. Suzuki, and K. Matsumoto. *Cryogenics*, Vol. 52, No. 10, pp. 452–456, 2012.
- [90] C. A. Swenson. Review of scientific instruments, Vol. 68, No. 2, 1997.
- [91] E. Dwight Adams. Review of scientific instruments, Vol. 64, No. 3, pp. 601-611, 1993.
- [92] AH2700A, Andeen-Hagerling, Inc., 31200 Bainbridge Road Cleveland, Ohio 44139-2231 U.S.A.
- [93] M. Garst and A. Rosch. Phys. Rev. B, Vol. 72, No. 20, p. 205129, 2005.
- [94] P. Haen, S. Kambe, H. Bioud, and A. De Visser. J. Magn. Magn. Mat., Vol. 226, pp. 252–253, 2001.
- [95] J. Flouquet, S. Kambe, L. P. Regnault, P. Haen, J. P. Brison, F. Lapierre, and P. Lejay. *Physica B: Condensed Matter*, Vol. 215, No. 1, pp. 77–87, 1995.
- [96] J. M. Mignot, J. Flouquet, P. Haen, F. Lapierre, L. Puech, and J. Voiron. J. Magn. Magn. Mat., Vol. 76, pp. 97–104, 1988.