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Abstract

In this work experimental observations of step-widening (-narrowing) intrinsic

localized mode (ILM) have been achieved in the nonlinear electric lattice by us-

ing MOS-capacitors with saturable nonlinearity. These follow the theoretical work

of Hadžievski and coworkers who have demonstrated that in the discrete nonlinear

Schrödinger (DNLS) lattices with saturable nonlinearity ILM alternates between site-

centered and bond-centered locations when Peierls-Nabarro (PN) barrier changes its

sign.

It has been observed experimentally that the ILM switches above two shapes al-

ternatively at the step-widening transitions. Linear response spectrum measurement

provides a way to explore mechanisms of transitions, through peak shifts of natural

frequency (NF) of the ILM as well as the linear local mode (LLM) produced by the

ILM. It indicates that step transitions are attributed to the softening of the 1st-LLM

frequency difference which corresponds to the decreasing of the PN barrier height.

In addition, by the linear response spectra the lower fundamental transition ob-

served at the lower edge of the stable ILM region is similar to the saddle-node bifurca-

tion in the Duffing resonator and it is due to the softening of NF. The linear response

spectra also reveal creation of new LLM at each step of the ILM width increment.

These findings are supported by numerical simulations. A model we used is based

on the nonlinear lattice as the same as in experiments. The simulation results show

a good agreement with experimental works.

Different from the theoretical work, we observed a hysteresis at step transitions.

This hysteresis prevents a free traveling. However, we have succeeded decreasing the
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hysteresis by tuning the lattice. If the hysteresis becomes negligibly small, the ILM

runs freely.
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Chapter 1

Introduction

1.1 Background information

In a perfect lattice system consisting of discrete elements with nonlinear interaction,

time-periodic, spatially localized vibration modes can be excited. Such localized

excitations are called intrinsic localized modes (ILMs) [1] that they can occur in a

lattice of any dimensions. They are also referred to discrete breathers (DBs) [2] or

lattice solitons [3] with considering as the discrete analogues of solitions in continuous

matter. As the localized modes of defects in a harmonic lattice, for a system with

hard nonlinearity, ILMs jump up from the dispersion curve maximum, whereas for

soft nonlinearity they fall out of the dispersion minimum.

Since the first report by Sievers and Takeno [1] in the late 1980s, ILMs have been

studied extensively in various fields in physics. The prediction that ILMs may occur

in ideal anharmonic lattices [1,4] had been verified with computer simulation in one-

dimensional and two-dimensional lattices [5]. Because of the discreteness of atomic
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arrangement and the nonlinearity of interatomic interaction, the atomic system was

used widely to investigate ILMs. [6–9] Some of the efforts also devoted to study-

ing magnetic ILMs in ferromagnetic chains. Differing from solitons, ILMs collided

inelastically and transferred their energy. [10]

There is a large amount of experimental and related theoretical work on applying

the ILMs concept to many different branches in physics. Experiments have demon-

strated ILMs in systems as diverse as Josephson junction arrays [11, 12], antiferro-

magnetic structures [13], driven micromechanical cantilever arrays [14], and optical

waveguide arrays [15]. Recently, ILMs also had been observed in three-dimensional

crystals in thermal equilibrium; in a simple ionic crystal, NaI, above 555 K. [16] A

good review of many applications of ILMs is found in Ref. [17].

As a cousin of ILMs, a nonlinear localized excitation called a soliton has a longer

history. The first documented observation of the soliton phenomanon was made in

August 1834 by John Scott Russell who saw a solitary water wave in the Union

Canal linking Edinburgh with Glasgow in Scotland. Soltions are localized within a

region and they can travel in a lattice with permanent form and velocity. Moreover,

solitons can cross each other without change except for a phase shift. With these

important properties, solitons have been investigated intensively in various fields:

optical fibers [18, 19], biology [20–22], magnets [23] and so on. In mathematics, the

difference between soliton and ILM is that the former is integrable while the latter

is nonintegrable in nonlinear partial differential equations. In physics, the lattice

discreteness, ignoring in soliton theory, must be taken account because ILMs are

localized to small regions comparable to the lattice spacing.

The effects of discreteness on nonlinear localized modes have been analyzed by
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Kivshar et al. in a lattice discrete nonlinear Schrödinger (DNLS) models. [24] They

have demonstrated that the discreteness effects on nonlinear localized modes give

rise to an effective periodic potential similar to the Pieierls-Nabarro (PN) potential

for kink in the Frenkel-Kontorova (FK) model [25]. They also have shown that the

PN potential vanishes in the intergrable Ablowitz-Ladik variant of the NLS equation

while arises from the nonintegrability of the discrete models. [24] The PN potential

is the barrier between the site-centered and bond-centered lattice positions of the

nonlinear localized excitation that inhibits translation.

Because of the PN barrier, usually, ILMs cannot move freely in a nonlinear lattice

with discreteness. Such stationary ILMs have been studied in detail in micro-electro-

mechanical systems (MEMS). [26–30] The stable ILM is generated by compensating

a damping by an energy feeding driver, at where the ILM is phase locked to the

driver as an auto-resonant (AR) state. [31–34] Bifurcations happen at edges of stable

ILM frequency region are studied by utilizing a linear response spectroscopy. [35]

Sato et al. have demonstrated that both two bifurcation points are attributed to the

natural frequency (NF) of the ILM, while with different mechanisms. The NF is a

free oscillation that it is a linear combination of the solutions of the homogeneous

equation. [36]

The topic of free traveling versus the PN barrier is of central interest, since ILMs

are not restricted to motion in 1D so the control of the PN potential for an ILM would

open a new avenue. In this direction a saturable nonlinearity in a DNLS equation has

been proposed by Hadžievski et al. [37]. They showed that the magnitude of the PN

potential as a function of energy oscillates between positive and negative values and

that this alternating sign changes the stability of an ILM between the two neighboring
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site centered and bond centered locations. Where the PN barrier is zero transition

points exist and the ILM can move freely. (Note that DNLS is nonintegrable and

therefore it supports ILMs but not lattice solitons. These localized excitations can

move through the lattice with a small, but non-zero deceleration [38,39]) Interesting

properties for such a saturable nonlinearity were proposed and many theoretical follow

on publications have appeared. [40–42]

Nonlinear transmission lines have been considered as one of the convenient exper-

imental tools with which to study excitations in 1-D nonlinear lattices. [43,44] Recent

experimental work has focused on ILMs [4,17] where lattice discreteness plays an im-

portant role. Such studies have ranged from manipulation of a stationary ILM [45]; to

spatial control of slowly traveling ILMs [46]; to generation of ILMs by sub-harmonic

driving [47]. However, there was no experimental study about the saturable nonlin-

earity till we demonstrated in electric lattice.

1.2 Organization of Thesis

Chapter 3 describes the experimental setups, designs and results. By employing a

MOS-capacitor with saturable nonlinearity instead of a diode in the nonlinear electri-

cal lattice, step changing of the width of the ILM have been observed. The location

of the ILM alternates between site-centered and bond-centered. However an unex-

pected hysteresis occurs at step transitions. The mechanisms of the NF and linear

localized modes (LLMs) [48] associated with the ILM have been investigated by the

linear response measurement.

Chapter 4 presents numerical simulation models and the results of simulations.
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The model we used in the simulation is built on the experimental nonlinear electrical

lattice. [43] The results of the simulations are in agreed with the experimental results

besides hysteresis that it is much smaller than in experiments.

In chapter 5, we discuss behaviors of the variable width ILM, linear modes, and

hysteresis. By comparing the theoretical work [37] and measuring the vibration shapes

of linear modes, we demonstrate that 1st-LLM plays an important role in step tran-

sitions. Explanations on the mechanisms of the NF and other LLMs have also been

made. Finally, we describe hysteresis and show that it might be the key of the gen-

eration of moving ILMs. Chapter 6 is a summary of the main results and gives some

suggestions for future work.
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Chapter 2

Reviews

2.1 The stability of nonlinear localized mode in

lattices with saturable nonlinearity [1]

The model of this theoretical work on discrete nonlinear Schrödinger (DNLS) lattices

with saturable nonlinearity has the form

i∂un
∂t

+K (un+1 + un−1 − 2un)− β un
1+|un|2

= 0. (2.1)

where K is the coupling constant, and β is the nonlinearity parameter.

Figure 2.1 shows the Peierls-Nabarro (PN) potential as a function of power P .

The PN potential is defined by the energy difference between site-centered localized

mode (A) and bond-centered mode (B). As the power increases, the PN potential

changes its sign at the zero line. It indicates the interchange of stability between

site-centered mode (A) and bond-centered mode (B) at the zero PN barrier height.

Power dependence of the amplitude for site-centered mode (A) and bond-centered

10



Figure 2.1: PN potential versus localized mode power P for discrete lattices. [1].
Darker is larger amplitude.

Figure 2.2: Amplitude of site-centered mode (A) and bond-centered mode (B) as a
function of power P
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mode (B) is presented in Fig. 2.2. Because of amplitude saturation, the site-centered

mode (A) extends from n = 0 to n = ±1, n = ±2 as power increases. The bond

centered mode (B) also has the same process. However, considering the interchange of

stability between these two modes, it is clear that the stable localized mode alternates

between site-centered mode (A) and bond-centered mode (B) as increasing power P .

2.2 The natural frequency (NF) of the ILM [2]

The single Duffing oscillator with weak probe is given by

ẍ+ 1
τ
ẋ+ ω2

0x+ εx3 = αd cos (Ωt) + αp cos (ωt) (2.2)

where τ is the relaxation time, ω2
0 is square of the linear resonance frequency, ε > 0

is a hard nonlinear constant, ad and ap are the acceleration amplitudes for the driver

and probe. The amplitude response can be assumed by

x = 1
2
Ãe−iΩt + 1

2
ãe−iωt + 1

2
b̃e−iω

′t + c.c. (2.3)

Here ω′ is the four-wave mixing frequency, Ã is the large oscillation driver response,

ã is the probe response, and b̃ is the four-component response.

Inserting Eq. 2.2 into Eq. 2.1 and retaining terms that oscillate near the driver

frequency, one finds

(
ω2

0 + 3
4
ε
∣∣∣Ã∣∣∣2 − Ω2 − iγΩ

)
Ãe−iΩt

+
(
ω2

0 + 3
2
ε
∣∣∣Ã∣∣∣2 − ω2 − iγω

)
ãe−iωt + 3

4
εÃ2b̃∗e−iωt

+
(
ω2

0 + 3
2
ε
∣∣∣Ã∣∣∣2 − ω′2 − iγω′) b̃e−iω′t + 3

4
εÃ2ã∗e−iω

′t

= αde
−iΩt + αpe

−iωt

(2.4)
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where γ = 1/τ . By equating each oscillating terms, the three resulting equations are

(
ω2

0 + 3
4
ε
∣∣∣Ã∣∣∣2 − Ω2 − iγΩ

)
Ã = αd. (2.5)

(
ω2

0 + 3
2
ε
∣∣∣Ã∣∣∣2 − ω2 − iγω

)
ã+ 3

4
εÃ2b̃∗ = αp. (2.6)

(
ω2

0 + 3
2
ε
∣∣∣Ã∣∣∣2 − ω′2 − iγω′) b̃ = 3

4
εÃ2ã∗. (2.7)

Equation 2.5 is for the driver response. From Eqs. 2.6 and 2.7, the probe response

function can be calculated as

χ̃a = ã
α2

= 1

(ω2
nl
−ω2−iγω)− 9

16
ε2|Ã|4 1

(ω2nl−ω′2+iγω′)

= χ̃0(ω)

1− 9
16
ε2|Ã|4χ̃0(ω)χ̃∗0(ω′)

.

(2.8)

where χ̃0(ω) = 1
ω2
nl
−ω2+iγω

and the NF is ω2
nl = ω2

0 + 3
2
ε
∣∣∣Ã∣∣∣2.

Figure 2.3 shows the AR ILM amplitude as a function of the driver frequency F in

a driven micromechanical cantilever array with hard nonlinearity. Two bifurcations

have been observed at the edges of the stable ILM region as presented in the top

trace.

Figure 2.4 shows the linear response spectra for the AR state at different driver

frequencies. From bottom to top, the probe spectra are aligned by the driver frequency

varying from 140.50 Hz to 144.85 kHz in 50 Hz intervals. The higher frequency

(right) sideband is the NF while the lower frequency (left) one is its four-wave mixing

13



Figure 2.3: Experimentally observed AR amplitude as a function of the driver fre-
quency F . The stable AR ILM region indicated in the top trace is 140.46 to 144.85
kHz.
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partner. The NF frequency comes close to the driver frequency as the bifurcations

approach. Sato et al. have demonstrated that the NF plays important but different

roles in these two bifurcations. The softening of the NF beat frequency leads to

the upper bifurcation similar to the saddle-node bifurcation of a single driven Duffing

oscillator. While the lower transition is due to the coalescence of the four-wave mixing

partner of the NF and topmost extended band mode.
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Figure 2.4: Experimental response spectra for the AR state as a function of the
normalized different frequency.
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Chapter 3

Experimental measurements

3.1 The nonlinear electrical lattice containing MOS-

capacitor

In the nonlinear lattice researchers have been investigating ILMs by using a diode

as the nonlinear electrical element. The capacitance of the diode, which varies with

applied voltage, can be separated into junction capacitance and diffusion capacitance.

The junction capacitance dominates for reverse-biased diodes, which has been used

for some research on both solitons [1–3] and ILMs [4–6], while diffusion capacitance

dominates the forward-biased diode [7] producing a soft nonlinearity for the study of

ILMs [8].

Here, instead of diode we employed a MOS-capacitor as the nonlinear element to

study ILMs. With the applied DC voltage sweeping slowly from a minus value to a

suitable plus voltage, the state of the MOS-capacitor changes as follows: accumula-

tion, depletion, and inversion. From depletion to inversion, the capacitance increases

18



suddenly and almost immediately achieves a saturation state. [9]

Figure 3.1: Schematic diagram of the nonlinear electrical lattices. One unit cell
contains a coupling element, C2 and L2, and a nonlinear resonating MOS-capacitor,
C1 and L1. An AC oscillator with frequency F is used to drive the lattices uniformly
through a small-coupling capacitor Cd.

Figure 3.1 shows the experimental design for generation of ILMs in the nonlinear

electrical lattice. The nonlinear electrical lattice is made from 16 unit cells, each

cell is composed of a nonlinear resonator made by a nonlinear MOS-capacitor C1, a

coil (L1 = 313 µH) and a linear coupling element formed by a capacitor (C2 = 421

pF) and an inductor (L2 = 626 µH). The linear coupler is applied here to achieve a

narrow bandwidth of the plane-wave modes to support well-defined ILMs. [10] The

lattice is excited uniformly by an oscillator at frequency F through a small capacitor

(Cd = 34.3 pF).

Figure 3.2 shows capacitance as a function of the applied DC voltage of the MOS-

capacitor. To make the capacitance symmetric, the MOS-capacitor is composed of
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Figure 3.2: DC voltage dependence of the capacitance of C1. The solid curve is
obtained by −10V to 10V scanning and the dotted curve is measured by decreasing
the bias voltage from 10V to −10V. Two curves overlap in (b) and (c). As shown in
the inset, (a) Two FETs connect parallel and oppositely with drain open. (b) Two
anti-paralleled FETs with source-drain connecting. (c) Connecting source and drain
with an external resistor.
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two anti-paralleled MOS-FETs with drain terminal open as shown in the inset in

Fig. 3.2(a). It shows a larger capacitance at both sides of DC bias voltage, because

of accumulation or inversion states of a semiconductor below an oxide layer of the

MOS. At the middle of the curve, capacitance is small by the depletion state. Since the

capacitance increases with absolute voltage, the resonance frequency decreases with

increasing amplitude which implies that the MOS-capacitor has soft nonlinearity. The

sudden saturation of the MOS capacitance is the key for the variable-width ILMs,

since the nonlinearity decreases abruptly when the vibration amplitude is higher than

the threshold voltage. To have a larger nonlinear capacitance, we used the high power

MOS-FET (2SJ680) that has a larger gate capacitance. However, as shown in Fig.

3.2(a) a small hysteresis occurs at the bottom of the curves because of the electric

charge in the drain terminal. To discharge the stored charge in the drain electrode,

we connected the drain and the source electrode as shown in the inset in Fig. 3.2(b).

Although no hysteresis is observed in the curves in Fig. 3.2(b), the capacitance

does not change extremely as in the drain open state. Therefore the source-drain

connection can not provide enough nonlinearity to generate variable-width ILMs.

Then an external resistor (1.2kΩ) is used to connect source and drain electrode for

discharging stored charge in the drain terminal as shown in the inset in Fig. 3.2(c).

The capacitance curve in Fig. 3.2(c) is almost the same as in Fig. 3.2(a), however,

without hysteresis. Thus we applied this connection in our experiments.

Figure 3.3 shows the linear dispersion curve for the electrical lattice. Since the

nonlinearity of MOS-capacitor is soft, an ILM can be generated below the bottom of

the plane wave band. The dashed line indicates a typical frequency of ILM generation.
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Figure 3.3: Linear dispersion relation curve for this 16 element electrical lattice.
Below the bottom of the band, a typical frequency for ILM generation is indicated
by dashed line.
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3.2 Experimental results: variable width ILM

The experimental procedure is as follows: first, the cw driver excites the nonlinear

electrical lattice; then, the voltage of the MOS-FETs at each site is measured by an

oscilloscope through a 16 channel analog multiplexer. For clarity only the absolute

value of the AC voltage amplitude at each site is monitored. The localized voltage

responses as a function of the driver frequency in three patterns with different starting

conditions are shown in Fig. 3.4: (a) starting from an initial ILM state at 242 kHz, (b)

starting from the ILM at 232 kHz and (c) starting from no ILM state at 229.5 kHz. A

darker image indicates a larger oscillating amplitude. The initial ILM was seeded by

using an external impurity capacitor (270 pF) at a fixed the driver frequency below

the bottom of the linear band frequency (275.9 kHz). After removing the impurity

slowly by decreasing the capacitance, the ILM remains at the impurity location. Once

an ILM is generated, it is phase locked to the driver; by which to compensate the

damping of the nonlinear system. A stable ILM is observed between 230.5 kHz and

244.3 kHz as shown in Fig. 3.4(a) and (b). Below the lower value, the ILM disappears

and above the higher value, the ILM vanishes in the standing wave patterns. Without

seeding, an ILM also can be generated by scanning up from a low driver frequency.

The ILM appears at around 243.5 kHz as shown in Fig. 3.4(c).
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Figure 3.4: The voltage amplitude at the different lattice points as a function of the
driver frequency. Darker represents a larger voltage. Arrows indicate frequency scan-
ning directions. Vertical dashed lines denote frequencies of transitions. (a) The driver
frequency was up-scanned or down-scanned from an ILM state at a high frequency
(242 kHz). The initial ILM was seeded by using an impurity capacitor. As decreas-
ing the driver frequency, the width of the ILM changes in a step-widening modality
and the shape transforms alternately between bond-centered and site-centered. As
the driver frequency is increased, the ILM disappears in the fixed, stationary wave
pattern. (b) The frequency was scanned down or up from a low frequency (232 kHz).
(c) Increasing the driver frequency from a low frequency below the stable ILM region.
The ILM appears around 243.5 kHz and vanishes in standing wave patterns imme-
diately. (d) The maximum amplitude among the lattice points as a function of the
driver frequency. The upper red solid trace, the upper dashed trace and the lower
trace correspond to Fig. 3.4(a), (b), and (c), respectively.
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Step-widening and step-narrowing of the ILM in the stable frequency region are

shown in Fig. 3.4(a) and Fig. 3.4(b), respectively. The position of the ILM alternates

between band-centered and site-centered locations over the autoresonant range. In

these two different processes, step-widening and step-narrowing transitions occur at

different frequencies as indicated by the vertical dashed lines. Fig. 3.4(d) shows a

summary of the maximum amplitude in Fig. 3.4(a)-(c) as a function of the driver

frequency, F . The entire amplitude curve looks very similar to that of a Duffing

resonator with negative nonlinearity, except saw-teeth structure in the stable ILM

region. Besides of this Duffing like hysteresis, several small hysteresis changes are

seen at each step of width varying transition.

An additional weak probe oscillator at frequency fp is necessary to the linear

response measurement. For the purpose of observing all normal modes associated

with the ILM, the probe perturbation is only applied at one lattice site contiguous

to ILM and the output signal of the other site next to ILM is measured by a lock-

in amplifier as shown in Fig. 3.5. The driver frequency is changed slowly inside

the stable ILM region and the probe frequency is scanned slowly in an appropriate

frequency range at each driver frequency. In order to avoid destroying the ILM state,

the amplitude of the probe is set about 1/200 of the driver.

The results of the linear response measurements are displayed in Fig .3.6(a) and

(b), for down and up scans, respectively. From bottom to top, the probe spectra

are aligned by the driver frequency varying from 244 kHz to 230.6 kHz in 0.2 kHz

intervals. Since the ILM occurs below the linear band, the peak on the lower frequency

side of the ILM in each trace is the natural frequency (NF) of the ILM. The NF

frequency difference decrease as decreasing the driver frequency. The peaks on the
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Figure 3.5: Experimental set up for the linear response measurement. Probe pertur-
bation is added to one lattice point next to the ILM through a capacitor and a lock-in
amplifier is used to analyze the output signal from the other side of the ILM. The
probe amplitude is about 1/200 of the driver and the coupling capacitor is 2 pF.

high frequency side of the ILM are linear local modes (LLMs) and the linear band.

To differentiate band and the LLMs, vibration shapes of each mode was investigated.

(See the discussion chapter). The peaks marked by 1st, (A), (B), (C), and (D)

are the LLMs. We call the LLM closest to the ILM the 1st-LLM. As the driver

frequency changes, the peaks of the LLMs move slowly, however, they jump at each

step transition. For the down scans, the band mode jumps to a higher frequency at

the step transitions while this phenomenon was not observed in case of up scans as

indicated by red dotted lines in Fig. 3.6. One novel phenomenon seen in the Fig. 3.6

is an appearance or disappearance of a new LLM at each step transition.

The frequency difference of the linear modes with respect to the driver frequency

are summarized in Fig. 3.7. Red and black marks are for the down scanning, Fig.
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Figure 3.6: Experimental imaginary part of the linear response for the ILM state as
a function of the difference frequency between probe fp and driver F . The driver
frequency is down-scanned in (a) from 244 kHz to 230.6 kHz with 0.2 kHz step, and
up-scanned in (b) as denoted by arrows. NF is the natural frequency of the ILM and
1st is the linear local mode (LLM) closest to the ILM (We named it 1st-LLM). Peaks
indicated by (A), (B), (C), and (D) are other LLMs. The LLMs are located between
the ILM and the band mode, and newly generated when the ILM width increased
stepwise.
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Figure 3.7: (a) The maximum amplitude among the lattice points as a function of
the driver frequency. (b) NF of the ILM and the LLMs frequency difference as a
function of the driver frequency. Bright (red) marks are for the down scanning, Fig.
3.6(a) and black marks are for the up scanning, Fig.3.6(b). NF, 1st, (A), (B), (C),
(D), and band correspond to these in Fig. 3.6. Each symbol denotes one normal
mode. Vertical solid (dashed) lines between 1st and (A) indicate frequencies of step
transitions for down (up) scanning.
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3.6(a) and black marks are for the up scanning, Fig. 3.6(b), respectively. Character

NF, 1st, (A), (B), (C), (D), and band are the same as in Fig. 3.6. To distinguish

the modes, each mode is indicated by a different kind of symbol. The frequencies of

step transition in down (up) scanning are denoted by vertical solid (dashed) lines. As

approaching the lower end of the stable region, the NF frequency difference decreases.

Similar to that found for the saddle-node bifurcation in the Duffing oscillator [11],

the lowest transition point occurs when the NF frequency difference goes close to

zero. For all the LLMs, their frequency difference initially increase, then decrease as

the step transitions approach. Especially for the 1st-LLM, its frequency goes to zero

at the frequency of each step transition. That is, the frequency of the 1st-LLM is

almost the same as the frequency of the ILM. Therefore, at such a point the ILM

is significantly affected by the 1st-LLM and its width changes since the 1st-LLM

corresponds to the lateral vibration of the ILM. Only the band mode closest to the

ILM was investigated and marked by band as shown in Fig. 3.6(b). As decreasing

the driver frequency, its frequency difference increases slowly, decreases near the step

transitions, and then, jumps at the step transitions. In addition, the band mode is

very close to the newly generated LLM around the step transitions.
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Chapter 4

Numerical simulations

4.1 The model of simulation

To compare with experiments we have performed numerical simulation. The numer-

ical model is based on the nonlinear lattice as the same as in experiments. A set of

the fundamental equations for the nth cell of the nonlinear electrical lattice shown in

Fig. 3.1 is given by [1]

L2
∂iL2,n

(t)

∂t
= Vn−1(t)− Vn(t),

iC2,n(t) = C2
∂
∂t

[Vn−1(t)− Vn(t)],

iC2,n(t) + iL2,n(t) = In(t),

iC,n(t) = ∂Q(Vn(t))
∂t

,

L1
∂iL1,n

(t)

∂t
= Vn(t),

iC,n(t) + iL1,n(t) = In(t)− In+1(t) + Cd
∂
∂t

(Vd − Vn(t))

(4.1)

Here Vd indicates AC voltage source, Vn(t) the voltage across C1(V ), iL2,n(t) the

current through L2, iC2,n(t) the current through C2, iC,n(t) the current through the
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C1(V ), iL1,n(t) the current through L1, and Q(Vn(t)) the charge in C1(V ). Combining

Eqs. 4.1, we obtain

∂2Q(Vn(t))
∂t2

= C2
∂2

∂t2
[Vn−1(t)− 2Vn(t) + Vn+1(t)]− Cd ∂

2

∂t2
Vn(t)

+ 1
L2

[Vn−1(t)− 2Vn(t) + Vn+1(t)]

− 1
L1
Vn(t) + Cd

∂2

∂t2
Vd(t).

(4.2)

Introducing the damping part of the nonlinear system, Eq. 4.2 becomes

∂2Q(Vn(t))
∂t2

= C2
∂2

∂t2
[Vn−1(t)− 2Vn(t) + Vn+1(t)]− Cd ∂

2

∂t2
Vn(t)

+ 1
L2

[Vn−1(t)− 2Vn(t) + Vn+1(t)]

− 1
L1
Vn(t)− k0+k1

τ
dVn(t)
dt

+ Cd
∂2

∂t2
Vd(t).

(4.3)

where τ = 41.7 µs is the damping time estimated by experiments. The capacitance

of the nonlinear MOS-capacitor C1 can be approximated by the form

C1(V ) = k0 + k1 exp [−(V/k2)4] (4.4)

Where k0 = 1.63 nF, k1 = −0.603 nF, and k2 = 2.76 V. The calculated results from

Eq. 4.4 are shown by the dashed curve in Fig. 4.1. Considering the relationship

dQ = C1dV , the left side of Eq. 4.3 becomes

d2Q(Vn(t))
dt2

= C1(Vn(t))d
2Vn(t)
dt2

+ dC1(n(t))
dVn(t)

(
dVn(t)
dt

)2
(4.5)

From Eq. 4.4, we obtain

dC1(Vn(t))
dVn(t)

= −4k1
k2

(
Vn(t)
k2

)3
exp [−(Vn(t)/k2)4] (4.6)

Substituting Eq. 4.4 and 4.6 into Eq. 4.5

d2Q(Vn(t))
dt2

= [k0 + k1 exp(−(Vn(t)/k2)4)] d2

dt2
Vn(t)

−
{

4k1
k2

(
Vn(t)
k2

)3
exp [−(Vn(t)/k2)4]

}(
dVn(t)
dt

)2
(4.7)
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Figure 4.1: DC voltage dependence of experimental and simulated C1(V ). The solid
curve is the same as shown in Fig. 3.2(c) that measured from experiments and the
dashed curve is C1(V ) model calculated by Eq. 4.4).

To summarize Eq. 4.3 and 4.7, finally the model of the nonlinear electrical lattices

used for simulations is built on the form [2]

[k0 + k1 exp(−(Vn(t)/k2)4)] d2

dt2
Vn(t)−

{
4k1
k2

(
Vn(t)
k2

)3
exp [−(Vn(t)/k2)4]

}(
dVn(t)
dt

)2

= C2
∂2

∂t2
[Vn−1(t)− 2Vn(t) + Vn+1(t)]− Cd ∂

2

∂t2
Vn(t)

+ 1
L2

[Vn−1(t)− 2Vn(t) + Vn+1(t)]

− 1
L1
Vn(t)− k0+k1

τ
dVn(t)
dt

+ Cd
∂2

∂t2
Vd(t).

(4.8)

Here, the values of k0, k1, and k2 are given above and other parameters are exactly

the same as in experiments mentioned in Chap. 3.

If we only consider the linear part, Eq. 4.8 becomes

[k0 + k1] ∂
2Vn(t)
∂t2

= C2
∂2

∂t2
[Vn−1(t)− 2Vn(t) + Vn+1(t)]− Cd ∂

2

∂t2
Vn(t)

+ 1
L2

[Vn−1(t)− 2Vn(t) + Vn+1(t)]− 1
L1
Vn(t)

(4.9)

Then the linear dispersion relation for the nonlinear electrical lattice has the form

ω2 =
2
L2

(1−cos ka)+ 1
L1

2C2(1−cos ka)+Cd+k0+k1
(4.10)
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The results of the calculation of Eq. 4.10 are shown in Fig. 3.3.

4.2 Simulated results

Calculation results of Eq. 4.8 plotted by the driver frequency dependent amplitude

are shown in Figures 4.1(a)-(c). Compared with the experiments, these patterns are

measured from different starting conditions: (a) starting from an initial ILM state

at 245.5 kHz, (b) starting from the ILM at 233.5 kHz and (c) starting from no ILM

state at 232 kHz. As the same in the experiments, the initial ILM was generated

by introducing and removing impurity capacitor. In Fig. 4.1(a), the stable ILM

region is from 233 kHz to 246 kHz. Outside this region ILM is replaced by standing

waves or disappears. Inside the stable region, similar to the experiments, the ILMs

widens stepwise as the driver frequency decreases. Fig. 4.1(b) shows the scanning

in an opposite direction. However, different from the experiments, ILM cannot be

generated by scanning up from a low frequency. Instead, the standing waves appear

at 245 kHz, inside the stable ILM region. Fig. 4.1(d) shows a summary of the

maximum amplitude in Figures. 4.1(a)-(c) as a function of the driver frequency, F .

Several tiny hysteresis loops between step widening and narrowing transitions are

observed while they are much smaller than in the experiments. In other words, the

difference between down and up scans in the simulations can be ignored. Therefore,

only the linear response spectra of down scans were investigated below.
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Figure 4.1: Simulation results calculated by Eq. 4.8. (a) The voltage amplitude as
a function of the driver frequency. Darker represents a larger voltage. Similar to the
experiments, the driver frequency was scanned up or down from an ILM state at a
high frequency (245.5 kHz). As indicated by arrows. Vertical dashed lines denote
frequencies of transitions. (b) The frequency was scanned down or up from a low
frequency (233.5 kHz). (c) Increasing the driver frequency from a low frequency
below the stable ILM region. (d) The maximum amplitude among the lattice points
as a function of the driver frequency. The upper red solid trace, the upper dashed
trace and the lower trace correspond to Fig. 4.1(a), (b), and (c), respectively.
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The method of the calculation of the linear response spectrum is similar to the

experiments. First, the ILM is generated. Then, a weak probe oscillator ( 10−5 of the

driver) is applied to the site next to the ILM. Voltage at the other site adjacent to

the ILM is multiplied by cosine and sine functions vibrating with the probe frequency

fp and averaged over a certain time. To eliminate the large ILM component, two

set of simulations with opposite phases of the probe driver are made, and difference

between them is calculated. The details of the linear response calculation are given

in Ref. [3].

The imaginary part of the linear response spectra in the case of down scans are

presented in Fig. 4.2. Here, we only focus on the movement of frequency difference

as the driver frequency changes. The traces are for different driver frequencies, from

bottom to top, varying from 246 kHz to 233.4 kHz in 0.2 kHz intervals. By investi-

gating the vibration shapes (see the discussion chapter), it is known that the peak

marked by NF is the natural frequency of the ILM, 1st is the 1st-ILM associated the

ILM, (A)-(D) are other LLMs, band is one of the band modes closest to the ILM, and

the peaks on the right hand of band are other band modes. As the driver frequency

decreases, the NF comes close to the ILM and the LLMs have a tendency of softening.

For the band mode, it jumps away from the ILM at each step transition. Moreover,

a new LLM would be generated as the ILM occupies one more site. Those findings

coincide with the experimental results in the case of down-scanning.

The frequency differences of the linear modes with respect to the driver frequency

are shown in Fig. 4.3(b). As in the experiment, the modes are differentiated by

symbols. The NF of the ILM softens as approaching the fundamental bifurcation at

the lower end of the stable ILM region. Between two step transitions, the LLMs first
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Figure 4.2: Simulated imaginary part of the linear response for the ILM state in the
down scans as a function of the difference frequency between the probe fp and the
driver F . From bottom to top, the driver frequency is from 246 kHz to 233.4 kHz
with 0.2 kHz/step. The vertical arrow indicates the scanning direction of the driver
frequency. Exactly the same as in experiments, NF is the natural frequency of the
ILM and 1st is the 1st-LLM. Peaks indicated by (A), (B), (C), and (D) are other
LLMs.
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increases, then decreases. Because the 1st-LLM is too close to the ILM, it is hard

to examine its behavior. Therefore, the scale of the ordinate was adjusted as shown

in Fig. 4.3(c). The 1st-LLM difference frequency softens at both sides of a transi-

tion. Moreover, its maximum value between every adjacent step transitions decreases

extremely as decreasing the driver frequency. For the band mode, its frequency dif-

ference makes a leap to a higher frequency. In general terms, the movements of linear

modes in simulations are in accordance with the results of the experiments presented

in Fig. 3.7(b).
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Figure 4.3: (a) Summary of simulation results. (a) The maximum amplitude of the
ILM as a function of the driver frequency for the down-scanning. (b) Frequency
difference measured from linear responses as a function of the driver frequency. NF,
1st, (A), (B), (C), (D), and band correspond to these in Fig. 4.2. Each symbol denotes
one normal mode. (c) 1st-LLM frequency. The movement of 1st-LLM enlarged here
for clarity.
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Chapter 5

Discussions

5.1 Stepwise varying width of the ILM.

The observations of step-widening (-narrowing) ILM have been achieved in the non-

linear electric lattice by using MOS-capacitors with saturable nonlinearity. In the

theoretical work, Hadžievski and coworkers have demonstrated that in the DNLS

lattices with saturable nonlinearity site-centered and bond-centered ILM alternates

as power increases as shown in Fig. 2, Ref. [1]. In order to facilitate figurative un-

derstanding of the behavior of the ILM, amplitude plot is presented in Fig. 5.1 by

measuring the amplitudes at power 10, 50, 100, and 160 in Fig. 2 of Ref. [1]. Hence,

it is clear that our experimental findings shown in Fig. 3.2(a) are in accordance with

the theoretical work [1]: the ILM expands as its amplitude increases.

In addition, they have also explained that the interchange of stability between

site-centered and bond-centered states is attributed to the PN barrier height in Fig.

1, Ref. [1]. When the PN barrier is zero the ILM location exchanges between site-
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Figure 5.1: Amplitude plot as a function of power adapted from Fig. 2 of Ref. [1].
Darker is larger amplitude.

centered and bond-centered. That is, the ILM can move freely at the transition

points with zero PN potential. In our experiments, the alternation between site-

centered and bond-centered ILM is due to the 1st-LLM since the NF and other

LLMs are far away from the ILM as shown in Fig. 3.7(b). The 1st-LLM is related

to lateral motion of the ILM. When the 1st-LLM is excited and mixed with the

ILM, the ILM oscillates laterally at the frequency difference of them. The ILM

is pinned at a lattice site and frequency of the motion around the pinning site is

this frequency difference. Thus, the frequency difference of the 1st-LLM measures

an effective pinning potential of the ILM. It is known that the pinning potential is

relevant to the PN barrier height. Therefore, the softening of the 1st-LLM frequency

difference as step transitions approaches corresponds to the decreasing of the PN
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barrier height.

The vibration shapes of NF and LLMs are investigated and the results are shown in

Fig. 5.2 by the experiments and Fig. 5.3 by the simulations. Both in the experiments

and the simulations, these panels are measured at different driver frequencies, each

of which is a suitable frequency located between two neighboring step transitions.

From left to right, the width of the ILM expands stepwise. The character marks are

consistent with these in Fig. 3.7. The vibration shapes are obtained by the similar

way to the linear response measurement in experiments besides the probe frequency

was set at each peak of the spectra. Then voltage at each site was measured by a

lock-in amplifier. The method of vibration shape measurement in the simulations is

almost the same as in the experiments except that a subtraction of two simulations

with opposite probe phase is necessary to eliminate the large vibration of the ILM.

As shown in Fig. 5.2 and Fig. 5.3, the NF shape is very similar to that of the ILM

and 1st-LLM is an even LLM. As the width of the ILM expands, the shape of the NF

and the LLMs extends as expected since they are strongly affected by the ILM. [2,3]

Here, we only focus on the 1st-LLM because other linear modes have nothing to do

the stepwise varying width of the ILM. When the frequency difference between the

ILM and the 1st-LLM is large, the 1st-LLM is weak that the lateral oscillation of the

ILM is puny. However, as approaching the step transitions, the 1st-LLM becomes

very strong because of the resonance with the ILM as shown in Fig. 3.6. In other

words, the ILM has a very intense lateral oscillation at the step transitions. Fig. 5.4

shows the enlarged shapes of the ILM and 1st-LLM in the left two panels of Fig. 5.2.

In Fig. 5.4(a) the ILM occupies site 8, 9, 10, at which amplitude of the 1st-LLM is

plus, near zero, and minus, respectively. At the step transition points, the amplitude
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Figure 5.2: Experimental normalized vectors of vibration shapes for each mode at
their peak frequencies. From left to right, panels are measured at F = 243.1 kHz,
239.4 kHz, 235.2 kHz, and 232.1 kHz, respectively. These frequencies are typical
frequency in every region between two neighboring step transitions. Characters are
defined the same as in Fig. 3.6 and Fig. 3.6 in Chap. 3.
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Figure 5.3: Simulated normalized vectors of vibration shapes. Similar to the exper-
iments, each panel is measured at an ILM state with a regular width. From left
to right, the driver frequency is 245.5 kHz, 241.8 kHz, 237.6 kHz, and 234.6 kHz,
respectively.
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of the ILM at site 8 increases while decreases at site10. As a result, the ILM possesses

site 7, 8, 9, and 10 after width expansion as shown in Fig. 5.4(b). Such processes

give rise to changing the width of the ILM stepwise as shown in Fig. 3.4. It is very

clear that the 1st-LLM is the key for the variable width ILM. Simulations show a

good agreement with the experimental results.

Figure 5.4: Enlargements of the ILM and 1st-LLM shapes in the left two panels in
Fig. 5.2.

5.2 The NF and other LLMs

The lower fundamental transition observed at the lower edge of the stable ILM region

is similar to the saddle-node bifurcation in the Duffing resonator, which is studied

in Ref. [2]. The movements of the NF associated with the ILM in Figs. 3.7(b)
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and Fig. 4.3(b) are consistent with the previous study, that is, that saddle node

bifurcation accompanies the softening of the NF. The NF also plays an important

role in bifurcations of an ILM in a cantilever array, where it measures an effective

potential of phase locking to the driver. Thus, the softening of the NF makes the

ILM unstable because of unlocking the vibration phase from the driver. [2]

In addition, the shape of the NF is almost the same to ILM in both experiments

and simulations, as shown in Fig. 5.2 and Fig. 5.3. It is expected because NF is a

vibration in a van der Pol plane around a fixed point for the ILM state. There are

only two degrees of freedom, amplitude and relative phase to the driver. Thus, there

should be no shape difference. [2]

As shown in Fig. 3.7(b), the frequencies of the LLMs changes with the ILM

frequency (amplitude). Compared with the theoretical work in Ref. [3], where by

Hizhnyakov et al. have demonstrated that LLMs are induced by the ILM and the

movements of their frequencies depend on the ILM amplitude. Moreover, new LLMs

are generated as the width of the ILM expands. When the ILM occupies one more

site it has an additional degree of freedom. Hence, the linear modes associated with

the ILM increases. The additional linear mode is exactly the newly generated LLM.

On the other hand, with the expansion of the ILM the degree of freedom of the band

decreases, that is, the number of the band modes reduces. It implies that a band

mode changes into a LLM at the step transitions since their frequencies are almost

the same as shown in Fig. 3.7(b).

Furthermore, the LLMs extend with the widening of the ILM as displayed in Fig.

5.2 and Fig. 5.3, showing that they are greatly influenced by the ILM. The 1st-LLM,

LLM (B), and LLM (D) are even mode, and LLM (A) and LLM (C) are odd mode. [3]

49



Actually, in the stable ILM state, all linear modes can be classified into odd and even

symmetries in the terms of the vibrating shape and appear alternatively when ordered

by their mode frequency. It can be described as follows: when the ILM occupies only

one site, no LLM exists because the ILM keeps this degree of freedom for itself; then,

the width of the ILM expands to two sites, the 1st-LLM appears and it must be even

mode since the 1st-LLM is the lateral vibration of the ILM in only two sites. Finally,

as a consequence, the LLMs alternate between odd and even mode as shown in Fig.

5.2 and Fig. 5.3.

5.3 The hysteresis inside the stable ILM region

The phenomena of hysteresis have been observed both in the experiments and the

simulations, as shown in Fig. 3.4 and Fig. 4.1, respectively. The existence of hys-

teresis indicates the possibility of different mechanisms for down and up scans. It

suggests that traveling ILMs cannot be generated in our nonlinear electrical lattice

since even at a transition a barriers remains. However, hysteresis in the simulations

is much smaller than in the experiments. To get more quantitative information, the

maximum amplitudes are summarized in Fig. 5.5 (a) and (b), corresponding to Fig.

3.4(d) and Fig. 4.1(d), respectively. In the direction of the decrement of the driver

frequency, frequency regions of hysteresis are 1.3 kHz, 1.1 kHz, and 0.5 kHz in the

experiments, while 0.37 kHz, 0.4 kHz, and 0.45 kHz in the simulations. The differ-

ence between experiments and simulations is the properties of the nonlinear element,

MOS-capacitor. Although we tried our best to fit the C-V curve, there are still some

differences between the measured C-V curve and the approximate one as shown in Fig.

50



4.1. Moreover, as mentioned in Chap. 3, an external resistor is used to connect source

and drain electrode for discharging stored charge in the drain terminal. But because

of large resistance (1.2 kΩ) of the external resistor the speed of discharging may not

be fast enough. A larger hysteresis therefore has been found in the experiments.

For more evidence, hysteresis has been investigated in the case of drain open as

shown in Fig. 3.2(a). Fig. 5.6 shows the driver frequency dependent amplitude in

three patterns, similar to these in Chap. 3. Here, we focus on the hysteresis. As the

driver frequency deceases, hysteresis covers the frequency range: 4.9 kHz, 4.7 kHz,

and 4.6 kHz, respectively. Comparing with Fig. 5.5(a), the hysteresis is much larger.

Because without external resistor the speed of discharging becomes very slow. While

in the simulation, the conditions are ideal so that it is no need to consider the stored

charge in the drain electrode. Hence, hysteresis in the simulations is smaller than in

the experiments.
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Figure 5.5: The maximum amplitude as a function of the driver frequency for mea-
suring hysteresis. (a) Experimental results correspond to Fig. 3.4(d). (b) Simulation
results adapted from Fig. 4.1(d). Vertical solid (dashed) lines indicate frequencies of
step transitions for down (up) scanning case.
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Figure 5.6: Experimental amplitude plots as a function of the driver frequency. Darker
represents a larger voltage. Arrows indicate frequency scanning directions. Vertical
dashed lines denote frequencies of step transitions. (a) The driver frequency was up-
scanned or down-scanned from an ILM state at a high frequency (270 kHz). (b) The
frequency was scanned down or up from a low frequency (236 kHz). (c) Increasing
the driver frequency from a low frequency below the stable ILM region. (d) The
maximum amplitude as a function of the driver frequency. The upper red solid trace,
the upper dashed trace and the lower trace correspond to Fig. 5.6(a), (b), and (c),
respectively.
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The observation of hysteresis between the step widening and narrowing transitions

also gives us a hint to generate traveling ILMs in our nonlinear electrical lattice. It

is known that ILMs must overcome a minimum barrier to propagate in the nonlinear

lattice. [4, 5] When the barrier height is zero, ILMs can move freely. [1] It indicates

that if the zero barrier height was located at the same frequency in step widening

and narrowing transitions, moving ILMs can be generated in the nonlinear electrical

lattice. In other words, the solution of hysteresis inside the stable ILM region is the

key to generate traveling ILMs.

Back to our experiments, the solution of the stored charge in drain terminal be-

comes the key point to vanish hysteresis. A proposed avenue is that connects the drain

and source terminal directly. However, this connection would decrease the nonlinear-

ity as mentioned in Fig. 3.2 and the result is that the width of the ILM didnt change

stepwise [6]. Therefore a new MOS-FET with larger nonlinearity than 2sj680 should

be prepared in the nonlinear electrical lattice for solving the hysteresis problem.
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Chapter 6

Summary

Step widening/narrowing of the ILM in a nonlinear electrical lattice with saturable

nonlinearity has been observed in our experiments. This phenomenon is caused by

the softening of the 1st-LLM frequency difference as a step transition is approached.

The softening of the 1st-LLM, corresponding to the decreasing of the PN barrier

height, leads to the interchange of stability between site-centered and bond-centered

ILM locations. This is consistent with previous theoretical work [1].

The softening of the NF frequency difference gives rise to the lower fundamental

transition observed at the lower edge of the stable ILM region. This transition is

similar to the saddle-node bifurcation in the Duffing resonator. [2] The creation of

new LLMs is attributed to additional degrees of freedom of the ILM, caused by the

expansion of the ILM. The LLMs can be classified into odd and even symmetries in

the terms of the vibrating shape and appear alternatively.

Hysteresis, caused by the stored charge in the drain terminal, has been observed

both in the experiments and the simulations, indicating the possibility of different
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mechanisms for down and up scans. It prevents a free traveling since even at a

transition a barriers still remains. However, we have succeeded in decreasing the

hysteresis by tuning the lattice. If the hysteresis becomes negligibly small, the ILM

could run freely.
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