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Chapter 1

Introduction

1.1 Motivation

My current research is inspired by the rapid developments of nanoscience

in the last decade. The concept of nanoscience was first addressed by

physicist Richard Feynman in his lecture "There’s Plenty of Room at the

Bottom" [1]. In his talk, he considered a feasibility to manipulate matter

on an atomic scale and offered some challenges which are known later as

nanotechnology.

In this universe, all matter is built up of extremelly small particles called

atoms. Since nanoscience deals with the nanomaterials, it requires the abi-

lity to imagine, observe, and work on the nanoscale, where the prefix "nano"

refers to 10−9.

Nevertheless, both experimental and theoretical studies on behavior of

nanomaterials are still limited. For instance, to see such an extremely small

matter like atom, we need the most advanced microscope, the scanning

tunneling microscope (STM). Recently, computer simulation has emerged

as the midway between the theoretical and experimental approaches to ob-

tain better understanding of matter on the atomic scale.

In particular, my research interest lies in the field of biomolecular mode-

ling and more specifically in the study of the formation of protein complex.

Just like building is made up of bricks, cell is made up of atoms and living
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organism is made up of cells. To understand the properties of the cell, it

is important to understand how the atoms or molecules attract and bind to

another to form a cell.

One of the most common computational methods for studying the dyna-

mics of protein in atomic scale is molecular dynamics simulation. Although

molecular dynamics simulation allow us to observe the protein dynamics in

atomic details, it is limited to the size and time scales. In order to surpass

these limitations, in this thesis I try to extend the biomolecular modeling to

study the protein complex dynamics.

1.2 Overview of the thesis

This thesis is organized as follows:

Chapter 1 gives general introduction consisting of motivation of my research

and overview of this thesis.

In chapter 2, we introduce the basic information of azurin including the struc-

ture and the biological functions. We also introduce the basic concept of

coarse-graining in biomolecular modeling.

The next three chapters are presented based on my published papers as

first author. In chapter 3, we present our study on unfolding process of

azurin using native-center structure based model. The paper is:

M. Rusmerryani, M. T. Pakpahan, M. Nishimura, M . Takasu, K.

Kawaguchi, H. Saito, and H. Nagao. Transition state analysis of azurin

via Gō-like model, AIP Conf. Proc., 1518, 641 (2013).

In chapter 4, we expand this model to simulate several chains of azurin. The

paper is:
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M. Rusmerryani, M . Takasu, K. Kawaguchi, H. Saito, and H. Nagao.

Coarse-grained simulation of azurin crystal complex system: Protein–

protein interactions, ISCS 2013 Selected Papers, 4 (2013).

In chapter 5, we improve our model by using Lennard-Jones potential as the

intermolecular interaction in order to find more transferable coarse-grained

model. The paper is:

M. Rusmerryani, M . Takasu, K. Kawaguchi, H. Saito, and H. Nagao.

Protein–protein interactions of azurin complex by coarse-grained simu-

lations with a Gō-like model, JPS Conf. Proc., 1, 012054 (2014).

Chapter 6 is conclusion of this thesis and future work.

Moreover, in Appendix B we present our extended work which will be

submitted. In this work, we employ knowledge-based approach by empir-

ically evaluate the intermolecular contacts from known crystal structure of

azurin. This work will offer a new insight to approach the intermolecular

potential model for unknown complex structure. Last, in Appendix A we

provide brief derivation of our force field.
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Chapter 2

Research Objectives

In the following sections we will briefly introduce the main objectives for

our research: protein azurin and coarse-grained models in the field of bio-

molecular modeling.

2.1 Azurin

Azurin is one of cupredoxin or blue copper protein that contains a single

Type I copper center. Azurin molecule has low molecular weight around 14

kDa and consists of 128 amino acids [2]. Azurin is found mainly in Pseu-

domonas aeruginosa bacteria [3] which usually grows in the soil but also

often found in the lungs. Azurin from Pseudomonas aeruginosa is known to

exhibit a large stability [4].

As other cupredoxins, azurin functions in the electron transfer. Particu-

larly, the electron transfers occur between azurin and cytochrome c-551 [5]

and between azurin and cytochrome c oxidase [6]. Advanced studies have

been conducted both experimentally and theoretically for further investiga-

tion of the kinetics of electron transfer.

Recently, many researches put their attention to investigate azurin since

azurin may be considered as a proper candidate for treatment of cancer

through nanotechnology [7]. Azurin was found to form a complex with the

tumor-suppressor protein p53 [8] and to induce apoptosis in macrophage
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cells [9]. Several studies on cancer treatment by azurin are performed, in-

cluding melanoma [9], breast cancer [10, 11], bone cancer [12], prostate

cancer [13], brain tumor [13], and leukemia cells treatment [14].

In this thesis, we use the native structure of azurin complex system

obtained from X-ray crystal structure of Pseudomonas Aeruginosa azurin

(PDB entry : 4AZU) [15]. In this azurin complex, the unit cell1 consists of

one asymmetric unit2 where its asymmetric unit is composed of a tetramer

of azurin molecules (Figure 2.1).

Each azurin is composed of eight β-strands and one helix arranged in a

double wound Greek key topology [16]. A Greek key is a series of four se-

quential β-strands arranged in the order three up-and-down β-strands con-

nected by hairpins are followed by a longer connection to the fourth strand

which lies adjacent to the first (Figure 2.2). The structure of azurin contain-

ing Greek key motif can be seen in Figure 2.3. The copper is coordinated

by three strong ligands arranged in a trigonal-planar configuration (the side

chains of Cys112, His117, and His46) and a weak ligand Met121. However,

in this thesis the interaction made by copper will be neglected.

1Unit cell is the smallest building block of a crystal structure
2Asymmetric unit is the smallest part of the crystal that is duplicated and moved by

symmetry operations to form the unit cell of the crystal.
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Figure 2.1: Three dimensional structure of azurin complex obtained from
X-ray crystal structure of Pseudomonas Aeruginosa azurin (PDB entry :
4AZU)

Figure 2.2: Topology of the Greek key motif.
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(a) Topology diagram

(b) Three dimensional structure

Figure 2.3: Structure of Pseudomonas aeruginosa azurin containing Greek
key motif showing in simplified topology diagram (a) and in real three dimen-
sional structure generated by VMD (b).
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2.2 Coarse-grained models

Coarse-grained model is a lower resolution model where some of fine

details are eliminated. In molecular dynamics, this model is obtained by

replacing the "unnecessary" atomistic details of a biological molecule. In the

past decade, coarse-grained models have gained much attention since they

could overcome the spatial and temporal problems of all-atom model. All-

atom simulations are limited to small systems and nanosecond time scales.

Meanwhile, coarse-grained models allow us to simulate larger systems and

slow processes which require micro- to millisecond time scales.

Several coarse-grained models have been developed for many classes

of biomolecules: water, lipids [17–20], proteins [21–26], nucleic acids, and

carbohydrates. These models are constructed with different levels of reso-

lution and approaches. As the current work deals with protein, now we only

discuss coarse-grained protein models and introduce several models that

have been quite successful to characterize protein folding and dynamics.

To construct a coarse-grained model, first we have to determine the re-

solution of the representation for our system. In coarse-grained protein mo-

dels, each amino acid can be represented by one site, usually associated

with the position of α-carbon, or a few sites, usually three or more back-

bone sites. After that, we have to determine the appropriate interactions

between coarse-grained particles. This part has become a great challenge

in biomolecular modeling.

There are several approaches to develop the coarse-grained potentials.

The most common way is to classify these approaches into top-down and

bottom-up approaches. In bottom-up approaches, the interaction between

coarse-grained particles is determined based upon the given fundamental

description from a higher resolution model or classical atomistic model for

the same system. Conversely, top-down models is constructed on the basis

of the real experimental observation that provides the phenomena of physi-

cal principles, especially the thermodynamics properties.
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These approaches have their own advantages and disadvantages. Bottom-

up models can be used to predict the particular system when no such ob-

servation exist. On the other hand, while their models are restricted to their

dependence on the more detailed model, the top-down models are typi-

cally under-constrained, which means that the restrictions are very small.

Nevertheless, as the advancement of coarse-grained models may integrate

both principles, the distinction becomes quite intuitive and blurred. For in-

stance, the popular Martini model has retained a great success in providing

transferable potential for modeling liquid and membrane by incorporating the

top-down and bottom-up approach [27,28].

Another common way is to distinguish them into physics-based and

knowledge-based approaches. While the physics-based approaches em-

ploy physical theories to determine the interaction, the knowledge-based

approaches employ the empirical informations provided from the experi-

mentally determined three-dimensional structure. This distinction is also

becoming blurred with the same reason. Most coarse-grained models for

protein usually combine these two approaches with bottom-up approach.

Several models have been successfully applied to study the dynamics

of protein. The simplest coarse-grained protein model is network model,

such as Elastic Network Model (ENM) [29] or Gaussian Network Model

(GNM) [30]. These models determine their coefficients based on the na-

tive contact map and employ a spring potential for modeling all interactions.

Nevertheless, these models do not provide the directions of particle motions.

Native-centric models also have been greatly used to study the protein

folding. Similar to the network models, native-centric model also determine

the parameters on the basis of the native contacts. This model, usually

referred as Gō model, represents the interaction as bonded and non-bonded

interactions [21]. At this time, this model may be the most realistic coarse-

grained model for protein. However, these models can not be applied to the

unknown structure.

Other promising knowledge-based models have been developed to pro-
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vide more transferable coarse-grained model. The best known model is

Miyazawa and Jernigan model with the statistical contact potentials. This

model has widely been used as a first estimate of the interaction between

particles in coarse-grained model [23,31,32]. On the implementation, people

usually combine those models with bottom-up approach to construct the po-

tential strength. The commonly used strategies are Iterative Boltzmann In-

version (IBI) [33], Inverse Monte Carlo (IMC) [34], and the Force-Matching

[35,36].

After all, that is why the coarse-grained is favored for solving many bio-

molecular problems. The flexibility to improve their models by integrating

several approaches based on their research purposes has become a great

advantage of coarse-grained. This way researchers can optimize the effec-

tiveness of their models.
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Chapter 3

Implementation of

Coarse-Grained Model to Probe

Unfolding Process of Azurin

In this chapter, we employ our structure-based coarse-grained simulation

by adopting Gō potential model to examine the effects of mutated azurin to

the unfolding process.

3.1 Introduction

Protein assembles to the unique three-dimensional structure called the

native state to perform its biological function. The understanding of con-

formational transition from denatured to native state, or usually known as

folding process, is very important. While the native state is unique, the tran-

sition state is not just a single conformation. Multiple folding pathways can

lead the protein sequences toward the native state or in contrast the path-

ways may be trapped in the non-native conformation.

The study of protein folding was pioneered by Anfinsen [37] on his obser-

vation on the refolding of ribonuclease molecule. His famous “Thermody-

namic Hypothesis” has become a fundamental keystone to the develop-

ment on the study of protein folding. Its statement that the native structure

11



of an amino acid sequence in its normal surrounding is the one which has

the lowest free energy, also has been supported by the funneled energy

landscape theory [38].

In recent times, major developments on the study of protein folding dyna-

mics has been greatly advanced into the fast and time-resolved techniques.

Along with the prior advances in the experimental and theoretical studies,

those studies can be combined to develop the computational studies of fold-

ing mechanism at the residue or atomic level. For instance, structure-based

simulation, pioneered by Gō [21], has successfully employed underlying two

essential theories of folding mechanism: the principle of minimal frustra-

tion [39] and the funneled energy landscape [38, 40]. In addition, transition

state theory also has been widely used to probe the folding/unfolding mech-

anism with the computational studies [41,42]. Together, the structure-based

simulation and transition state theory have become powerful tools to exam-

ine the folding/unfolding process in the multiscale level.

In the last decade, understanding the effects of mutation on protein is

one of great issues both in experimental and computational studies. It will

provide many valuable insights to understand stability and kinetics of protein

such as azurin. In this chapter, we will discuss our coarse-grained simulation

on azurin. Azurin is known as an extremely stable protein as (see Section

2.1 for further explanation). However, experimental study of mutated azurin

was found that the mutation of His117 to Gly on the apo-form affects the sta-

bility of azurin whereas the unfolding proceeds much faster [43]. Currently,

we implement the off-lattice Gō-like potential [21,22] to probe the unfolding

dynamics of a mutated azurin and a wild-type azurin.

Experimentally, azurin is known to exhibit two-state folding/unfolding pro-

cess: native and denatured states [44]. Here, we observed the change in ac-

tivation free energy relative to the change in stability of the transition state to

locate three state ensemble and compared with the wild-type azurin. More-

over, we also considered how the temperature affects the unfolding process

of this mutated azurin. For structural description, we probed the unfolding

12



pathways of azurin using protein engineering technique, Φ-value. Our re-

sult has found to be in agreement with both experimental and theoretical

data. Present study also shows that the helix region, known as p28 peptide

fragment of azurin, remains stable in both mutated and wild-type azurin.

3.2 Material and methods

Protein folding/unfolding is a process of unstructured (unfolded) amino

acid sequences transforming into structured state or usually called native

state, and vice versa. To understand the folding mechanism, sometimes

we need to observe the unfolding mechanism beforehand. In this study, we

probe the unfolding mechanism of a mutated azurin and compare it to the

wild-type azurin via coarse-grained simulation. More detailed explanation of

our model system and simulation method is given below.

3.2.1 Protein

As described in Chapter I, we limit our objective by observing dynamics

of azurin. In this chapter, we choose the mutated azurin obtained by chang-

ing His117 for a glycine. His117 is one of the three main ligands on the cop-

per binding site. This mutation increases the flexibility on the loop containing

those ligands and is less rigid compared to the wild-type azurin. Regarding

to the folding process, the folding speed of the mutated azurin is known to

be quite similar to the wild-type azurin. In contrast, the unfolding speed is

found to be faster than the wild-type [43].

Currently, we simulate single apo-azurin for both mutated and wild-type

azurin. The initial structures are taken from protein data bank1 with PDB ID:

3N2J for H117G azurin [45] and 4AZU for wild-type azurin [15]. The crystal

structures of both azurins are almost the same since the position of residue

117 is on the loop which is out of the main β-strand of the azurin.
1http://www.rscb.org/
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3.2.2 Coarse-grained model of protein

The basic concept of coarse-graining is to simplify high-resolution details

that are not necessary to understand the particular process. Coarse-grained

models of biomolecules usually represent groupings of two or more atoms

into a single bead. In our study, we develop coarse-grained model of protein

at the residue level in which each residue is represented only with Cα atoms.

We set each particle with the same mass.

3.2.3 Unit of coarse-grained model

We determine the units for our coarse-grained model using basic quanti-

ties, which are length (σ0), mass (m), time (τ ), and derived quantity, energy

(ε0). The values of our coarse-grained units are listed in Table 3.1. The val-

ues of σ0, m, and ε0 are determined from the radius of protein, the average

mass of amino acids, and the temperature of system, respectively. Mean-

while, the time unit (τ ) is calculated by σ0
√
m/ε0.

3.2.4 Potential model

We applied the off-lattice model founded by Gō [21] to mimic the perfect

funnel aspect of folding energy landscape for our coarse-grained model.

We adapt Gō model interaction energy which is developed by Clementi et

Table 3.1: Units of coarse-grained model

coarse-grained units Experimental units
length σ0 1.0 Å
mass m 137 amu

energy ε0 0.6 kcal/mol
time τ 2.0 ps
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al. [22]. This model explicitly maintains the stability of native contacts by

eliminating the energetic frustration from the non-native interactions. Until

now, this model has retained great success on the folding studies.

The potential energy between particles involves bonded and nonbonded

interaction energy as shown in detail in Table 3.2. Bonded potential energy

between particles describes spring potential for two successive particles,

angle potential energy describes bending motion between two successive

virtual-bonds, and dihedral potential describes the rotation of the four sub-

sequent residues. Meanwhile, nonbonded interaction is distinguished into

two categories, native interaction and non-native interaction.

In Table 3.2, r, θ, and φ represent the distance between two successive

residues, the angles formed by three successive particles, and the dihe-

dral angle defined by four subsequent residues along the chain at the given

configuration, respectively. The non-bonded interaction implement 10-12

Lennard-Jones potential for native interactions and a short-range repulsive

between non-native pairs, where rij represents the distance between i-th

and j-th unsubsequent residues. We define a pair to be in native contact if

r0ij is less than 6.5 Å. Otherwise, it will be categorized as non-native pairs.

All variables with subscript "0" mean the values of the corresponding vari-

ables at the native conformation. Detailed potential parameters are shown

in Table 3.3.
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Table 3.2: Potential model
Type of interaction Potential energy

Bonded Virtual bond-stretching Kbond(r − r0)2
Virtual bond-angle bending Kθ(cos(θ)− cos(θ0))

2

Virtual bond-torsional term Kφ[1− cos (φ− φ0)]+
Kφ
2

[1− cos (3× (φ− φ0))]

Non-bonded Native εnat

[
5
(
rij0
rij

)12
− 6

(
rij0
rij

)10]
Non-native εnon-nat

(
C
rij

)12

Table 3.3: Potential parameter

Parameter Value in kcal/mol
Virtual bond-stretching Kbond 100.0 Å−1

Virtual bond-angle bending Kθ 20.0
Virtual bond-torsional term Kφ 1.0

Native εnat 0.3
Non-native εnon-nat 0.2
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3.2.5 Equation of motion

The main idea of our simulation is to predict the dynamics of the protein.

For every time step, the position and velocity of each residue are calculated

using Newton’s second law:

m
d2~r

dt2
= ~F , (3.1)

where ~r is the vector of Cartesian coordinate of the particle, and ~F is the

gradient of the potential energy at the given particle. In our coarse-grained

simulation, we implement the Langevin equation of motion to mimic the non-

conservative forces from the solvent which is describe in the following equa-

tion:

m
d2~r

dt2
= ~F − ζ d~r

dt
+ ξ(t), (3.2)

where ζ, the damping friction coeffient, is set to be 0.25(τ−1). Meanwhile

ξ(t) represents the random force which satisfy:

〈ξ(t)〉 = 0; (3.3)

〈ξ(t)ξ(t′)〉 = 2mζk
B
Tδ(t− t′), (3.4)

where k
B

is the Boltzmann constant.

We use the simple and widely used numerical integration algorithm, leap-

frog algorithm, to solve the equation 3.2. Then the position and velocity of

each particle can be obtained. This algorithm is computationally less expen-

sive and less "storage consuming" than the predictor-corrector algorithm,

yet is still accurate.

3.3 Analysis methods

The kinetic free energy relation can be used to obtain the position of

the funnel transition state [38, 41, 42]. While the native state is unique, the
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transition state is not just a single conformation which can be defined as

an ensemble. The transition state ensemble (TSE) consists of relatively

large number of configurations described by specific order parameter that

measures its nativeness. Most of small proteins have a two-state fold-

ing/unfolding process. In such a case, three states appear and are defined

as: native, transition, and denatured states.

3.3.1 Measure of nativeness

One way to measure the nativeness of the given configuration is by the

fraction of the native contacts [38]. A pair residue is counted to be in native

contact if the distance is less than 6.5 Å in the native state. Related to the

kinetic free energy, this order parameter also can be defined as the reaction

coordinate. For our convenience, we define it as Q, which mathematically

can be written as

Q =
number of native contacts in a given configuration

number of native contacts in native state
. (3.5)

This value of Q ranges from 0 to 1, in which Q close to unity represents

the similarity to the native structure. In reverse, Q close to zero shows the

dissimilarity to the native structure.

By the histogram method, the free energy profile (F (Q)) can be ob-

tained [46]. The relation between free energy and the position of the funnel

transition state allows us to locate the three states ensemble, which are

denatured, transition, and native state.

3.3.2 Φ-analysis

The free energy profile is a good tool to provide us the general descrip-

tion of the funnel of transition state. Nevertheless, it does not provide us

structural description. Therefore, further analysis is needed to characterize

the TSE. In experimental studies, currently the only way to probe the transi-

tion state of the folding process in depth is the protein engineering method,
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Φ-analysis. It is defined as the ratio of change of the folding barrier energy

to stability upon the mutations, which is represented by following equation

Φ =
∆∆G‡

∆∆G0
, (3.6)

where ∆∆G0 is the difference in the total free energy between mutant and

wild-type proteins, and ∆∆G‡ is the free energy changes of the folding bar-

rier.

In the same objective, the theoretical Φ-analysis technique is introduced

by Fersht and colleagues [47, 48] to characterize the TSE. This technique

has been successfully applied to analyze folding TSE [22,49]. The change in

free energy barrier can be interpreted by a single simple reaction coordinate.

Then, the Φ-value is defined by:

Φi =
〈Ei〉TS − 〈Ei〉D
〈Ei〉N − 〈Ei〉D

, (3.7)

where Ei is the sum of interaction energies of i-th residue with any other re-

sidues and the bracket 〈 〉 means average of the quantity over an ensemble.

The subscripts represent its states: TS, D, and N, for transition, denatured,

and native state, respectively.

This statistical mechanical description of Φ has been widely used for

comparison with the experimental Φ-value. Meanwhile the free energy pro-

file allows us to locate the TSE, Φ-value describes the contribution of each

residue at the transition state. Besides, it also can be used to measure the

changes in TSE upon single or multiple mutations on the folding rate and

stability.

3.4 Results

Several short simulations are performed under various temperatures,

chosen by bisection method over range of temperatures, to estimate the

folding transition temperature (Tf ). We start with the low temperature which
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gives us high population of native state (high Q) and also the high tempera-

ture which gives the opposite condition. Then we select the subinterval to

narrow the range of temperature. Repeatedly we apply the bisection method

over the new subinterval until the criteria for folding transition temperature

is satisfied. The folding transition temperature itself is determined when the

native state and denatured state are equipopulated. The folding tempera-

ture of wild type azurin is considered to be referenced to a set of states.

Then several simulations of mutated azurin are performed under constant

temperatures: T = Tf , T < Tf , and T > Tf , for longer simulation time.

In order to obtain the free energy profile, we observed the thermody-

namic configurations as a function of the reaction coordinate along simula-

tion time which is represented by the fraction of native contacts formed in

a given conformation as we mentioned in the previous section. At the Tf ,

the Q-score fluctuates along simulation and almost equipopulated between

native and denatured states. In the native structure, 186 contacts exist.

As we mentioned before, under thermodynamic conditions most of fold-

ing process is known as a two state reaction. In such a case, the free energy

profile has double minimum corresponding to the ensembles of native state

and denatured state with varying degrees of ordering. In our case, all simu-

lations indicate the two state reactions as shown in Figure 3.1(a). This result

is in agreement with the experimental measurements where both of the wild-

type and H117G azurins unfold in two-state without intermediates [43].

Furthermore, the three ensemble of states based on the ranges of Q-

scores can be identified by this profile. The denatured state is determined

by the well curve which is close to zero, in this case we have QD ≈ 0.18.

Conversely, the native state is determined by the well curve near the position

where the folded state appears around QN ≈ 0.72, and the transition state

which is defined by the position of the free energy barrier in the QTS ≈ 0.3.
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Figure 3.1: Free energy as a function of reaction coordinate Q. Comparison
between mutated azurin and wild-type (a) shows a significant difference on
its double well minimum. Meanwhile, (b) shows the dependence on the
temperature where the simulation were done at T = 0.98 Tf , T = Tf , and
T = 1.01 Tf , respectively.
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Figure 3.1(a) also shows that the mutation of H117G gives changes in

the stability of unfolding azurin. Since QD is getting closer to zero, the mu-

tated azurin gains more stability in the denatured state and less similar-

ity with the native state. The lower F (Q) at denatured state of unfolding

H117G azurin shows that the unfolding of mutated azurin is faster than the

wild-type azurin. In addition, at the folding temperature the mutated azurin

gives sharper transition state than the wild-type. These findings obtained

from free energy profile are in agreement with the experimental results [43].

As well as the mutation, temperature also affects the unfolding of azurin

as shown in Figure 3.1(b). In the lower temperature (T < Tf ) the native

state is found to be more stable. In contrast, higher temperature (T > Tf )

gives us broader distribution of free energy and smaller free energy barrier.

The double minimum also is not clear and its indicates that the azurin may

be trapped in non-native conformation.

To observe the structural description of the unfolding process of azurin,

the unfolding pathways were quantified using Φ-analysis. Φ-value of each

residue was calculated by using equation (3.7). The result in Figure 3.2

shows that the helix region, which contains mainly local interactions, is the

most native-like compared to other regions in both wild-type and mutated

azurin, as expected. The helix is found to fold faster than strands because

its structure contains mainly local interactions [50]. Figure 3.2 also gives us

more detailed information related to our findings from the free energy profile.

In agreement with the free energy profile, the mutated azurin unfolds faster,

specifically at β3 and β5, yet remains more native-like at β7 compared to the

wild-type. Here β3, β5, and β7 are the positions of β-strands of azurin (see

Figure 2.3).
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Moreover, we also compare our result with the experimental data. From

our mutated azurin unfolding simulation at folding transition temperature, the

average Φ-value is found to be 0.148. It is appropriate with the experimental

Φ-value for mutation His117 to Gly which is 0.1± 0.03 [51] or 0.1± 0.06 [52],

and also with the theoretical data which is Φ ≈ 0 [51]. This mutation of

His117 to Gly is found to give more stability to its nearby region, β7, even

though the mutated residue actually has almost no native contact with other

residues. It means the non-native interaction also plays a role in our case.

3.5 Conclusion

Advancing computational study of protein folding is a great issue in bio-

molecular study. Based on two fundamental theories of principle of minimal

frustration and energy landscape theory, we have performed the structure-

based simulation of wild-type and mutated azurin. Present study shows that

the mutation of His117 to Gly affects the stability of the denatured state.

Both free energy profile and protein engineering method, Φ-analysis con-

firmed that the mutated azurin folds faster than the wild-type. In particular,

the β7 region, which is near the mutated residue, is found to be more stable

compare to the wild-type. Nevertheless, in both types of azurin, the helix re-

gion which contains more local interactions has become the most native-like

region at the transition state.

In short, our findings have found to be in agreement with both experi-

mental and theoretical studies. Even so, currently we only use single or-

der parameter Q, defined as the measure of nativeness, to characterize

the changes in free energy and observe the native and denatured states.

Further analysis may be needed to gain insights into the folding/unfolding

mechanism of azurin.
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Chapter 4

Implementation of Gō Model on

Azurin Complex System

Previously we have applied Gō model on single chain of azurin via coarse-

grained simulation. In this chapter, we will discuss the implementation of Gō

model on multiple chains of azurin.

4.1 Introduction

Proteins play extremely important roles not only in human but also in

other living organisms. They usually form complex interactions with other

macromolecules, such as lipids, nucleic acids, or other proteins, to perform

their biological functions [53]. In the last decades, this intermolecular inter-

action has become a great issue in the biophysics field. Other studies have

conducted to advance the computational study on intermolecular interac-

tion [23,31,54–56].

In our present study, we will focus on protein–protein interaction. Several

studies have found that the formation of protein complex is affected by the

presence of other proteins [31, 56]. Their interactions will tend to force the

proteins to form compact configuration [57]. On the study of folding process,

Gō has found that the long-range interactions play an important contribution

on the stability of native conformation [21]. Inspired by his study, we predict
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that the long range interaction formed by the intermolecular interaction also

contributes to the conformational stability of the protein.

Here, our goal is to investigate the effects of protein–protein interaction

on the conformational stability of protein complex. We developed a topology-

based coarse-grained model to simulate several identical chains of azurin.

In previous chapter, we have applied Gō-like model to simulate single chain

of azurin. This model employed the principle of minimal frustration and the

funneled energy landscape. In the similar way, we will treat the intermole-

cular interaction as we have treated the non-bonded interaction on the in-

tramolecular interaction describing in chapter 3. These studies will provide

important insights into the importance of native contacts into the stability of

protein complexes.

4.2 Material and simulation methods

4.2.1 Model system

In this chapter, the native structure of azurin complex system was ob-

tained from X-ray crystal structure of Pseudomonas Aeruginosa azurin (PDB

ID: 4AZU) [15]. This crystal structure is composed of a tetramer of identical

azurin molecules. Using this conformation, we build several systems con-

sisting of dimer, trimer, and tetramer of azurin as shown in Figure 4.1. The

blue chain is chosen as the representative chain that will be our focus in this

observation. Meanwhile other chains act as the crowding agents.

Two dimer systems are presented here, dimer I and dimer II. Dimer I is

an independent system where the distance between the dimer is more than

the cutoff. Otherwise, dimer II is the interacted system obtained from the

original crystal structure. We add one more chain in trimer system and two

more chains in tetramer system. Both systems are also obtained from the

crystal structure, so that the tetramer system actually is the unit cell of the

crystal structure.
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(a) Dimer system I

(b) Dimer system II

(c) Trimer system (d) Tetramer system

Figure 4.1: Initial configurations.

27



4.2.2 Potential model

We performed CG simulation with an implementation of native-structure

based potential interaction to observe the dynamics of each configuration

system. Our potential interaction is distinguished into intramolecular and in-

termolecular interactions. The off-lattice Gō-like model is employed using

the same formula as in Table 3.2 to represent the intramolecular interac-

tions. For the intermolecular interaction energy, we adopt the non-bonded

term from Gō-like potential in Table 3.2 which can be written in the following

formula:

E
αβ

ij
(r) = εnat

[
5
(σ
r

)12
− 6

(σ
r

)10]
+ εnon-nat

(
C

r

)12

. (4.1)

To avoid the ambiguity, we introduce the superscript αβ to distinguish the

non-bonded interaction in intramolecular and intermolecular interactions.

This indicator denotes the different chain. So, in Eq. (4.1), i and j represent

i-th and j-th Gō particles of chain α and β respectively. Meanwhile in Table

3.2, i and j represent i-th and j-th Gō particles of unsubsequent particles

in the same chain.

4.2.3 Simulation condition

As we have done in the non-bonded potential shown in Table 3.2, σ is

set to be the reference pairwise distance obtained from the crystal structure.

The same definition of native and non-native contact is also applied. By us-

ing this potential model, we simulate all systems with the same potential

parameters and simulation condition as in the previous chapter. In addi-

tion, we avoid the translational and rotational movement of the system by

setting the momentum and angular momentum of the whole system to zero

during the simulation [58, 59] for every several steps. Our CG simulations

were performed under constant temperature on the folding temperature as

in Chapter 3.
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4.3 Analysis methods

We calculated several properties to investigate the roles of the intermo-

lecular interactions. We monitored the interchain dynamics by the autocor-

relation of the distance between the centers of mass of pair-chains. Auto-

correlation is a correlation between a time series with itself, so in our case

this property can give us information whether the system remains in the

same state from time to time. The autocorrelation can be calculated by the

sufficient statistical average of the time series, as follows:

A(t′) =
〈(x(t)− 〈x〉) · (x(t+ t′)− 〈x〉)〉

〈x(t)− 〈x〉〉2
, (4.2)

where x is the time series property and t′ is the time lag.

As our previous study in Chapter 3, we also compare the thermodynami-

cal property using the free energy profile. The same method was used in this

study, where the free energy profile is obtained by the histogram method [46]

with the fraction of nativeness (Q) as the reaction coordinate.

4.4 Results

Each system was simulated at the residue level under constant folding

temperature Tf . For our convenience, we will focus on two representative

chains, called A and B, and compare their dynamics in all systems. Their

interchain distances (d
AB

) can be seen in Figure 4.2. These distances re-

present the distance between the centers of mass of those chains.

Figure 4.2 shows that the interchain distance of dimer system I which

has no intermolecular interaction is more fluctuating than the other dimer

systems. In the dimer system I, the non-bonded interaction only involves the

non-native interaction which is a repulsive interaction, since in this system

the dimer does not have native contact. So when the dimer becomes closer,

it tends to repel and move away. On the other hand, the dimer system II
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which has native contacts is much more stable. It shows that native contact

plays a significant role on the interchain interaction. Besides, the crystal

structure is believed to be the most stable conformation of the system.

Furthermore, the stability is also affected by the crowding system. If we

compare the dimer system II, trimer system, and tetramer system which

are all taken from the crystal structure, Figure 4.2 shows that the interchain

distance becomes less fluctuating as the system becomes more crowded.

This comparison clearly shows the importance of native contacts on the dy-

namics of protein complex as well as our comparison of the dimer systems.

The standard deviation in Table 4.1 also confirms that the system with higher

compactness has smaller deviation and reaches equilibrium time faster as

shown in Figure 4.3.
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Figure 4.2: Time series of the interchain distances.

30



Table 4.1: Standard deviation of the interchain distances

System chain A-B chain A-C chain A-D
Dimer I 11.448 - -
Dimer II 0.944 - -
Trimer 0.492 0.329 -
Tetramer 0.39 0.243 0.441
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Figure 4.3: Autocorrelation of the interchain distance as a function of time
lag (τ ).
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Moreover, we also investigated the conformational change to see how

the crowding affects the structure of individual chain. As in previous chapter,

we obtained the free energy profile by using the nativeness measurement

(Q) as the reaction coordinate. This free energy profile is shown in Figure

4.4. The tetramer system is found to be the most native-like configuration.

It is very natural since in the more crowded or more compact system, each

residue will have less space to move, so they tend to keep the optimal dis-

tance.

From the viewpoint of the potential model, the systems will tend to keep

as nearly as possible to the native structure because Gō-like potential model

minimizes the topological frustration. Nevertheless, it means that this model

is very dependent to the native structure. So when the native structure do

not have native contact, as in dimer system I, the system will not have the

attractive interaction. Meanwhile in the real system, when they become

closer and reach the contact distance, the attractive interaction exists.

4.5 Conclusions

We found that the native contact plays an important role on the dynamics

of the protein complex system. Our studies also found that more crowded

and compact system affects the protein movement as well. In consequence,

the tetramer system which is the unit cell of the crystal structure, naturally

has the most stable and native-like configuration over other systems.

Gō-like model can be used to reproduce the native crystal structure very

well. However, we have to consider the dependence of current intermo-

lecular potential model to the presence of native structure. More general

potential model might be considered to represent more realistic interaction

when we start from an independent system.
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Chapter 5

The Effects of Intermolecular

Interactions to The

Conformational Changes of

Azurin Complex

In the following sections, we employ widely used Lennard-Jones poten-

tial for intermolecular interaction and investigate the conformational changes

of azurin complex.

5.1 Introduction

Most proteins perform their biological function by associating to form

protein complex. This association involves the protein–protein interaction.

Recent studies show that noncovalent binding can influence the protein sta-

bility [21, 60]. Therefore, advancing study of protein–protein interactions

becomes very important for better understanding of protein function.

From the viewpoints of coarse-grained simulation, determining the protein–

protein interactions is still a great mystery. Many studies have modeled the

intermolecular interactions in protein complexes [31,56,61]. Each model has

the advantages and disadvantages depending on the goal of their studies.
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In the previous chapter we have shown that non-bonded potential adopted

from the Gō-like model gives good result to reproduce the native conforma-

tion by assuming that the crystal structure is the native structure. Never-

theless, the dependence on the native structure restrict us for more general

implementation, such as for a larger system than the native structure. Here,

we will apply more general intermolecular potential and investigate the con-

formational changes of azurin complex. We treat each chain as rigid as pos-

sible by employing the off lattice Gō-like model to represent the bonded and

non-bonded intramolecular interactions [21,22]. Meanwhile the intermolecu-

lar interaction is represented by the 6-12 Lennard-Jones (LJ) potential with

general parameters [62]. We will observe the stability of azurin complex by

analyzing the conformational change and total surface area.

5.2 Material and simulation methods

5.2.1 Model systems

As in the previous chapter, currently we build several systems consisting

of dimer, trimer, and tetramer of identical azurin as shown in Figure 5.1.

System I, IV, and V are taken from the original crystal structure (4AZU).

System II and III are modified dimer systems which have intermolecular

interaction with different contact areas.
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Figure 5.1: Various initial conformations. System I, II, and III are dimer
systems with different contact orientation.
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5.2.2 Potential model

We carried out coarse-grained simulations by combining native-structure

based potential interaction for the intramolecular interaction and physics-

based potential for the intermolecular interaction. The same intramolecular

potential will be used to minimize the topological frustration of each chain,

since we will focus more on the protein–protein interaction. The widely used

6-12 Lennard-Jones potential will be applied as the intermolecular interac-

tion to describes the van der Waals term [62, 63]. This potential is defined

as follows:

ULJ(r) = 4εLJ

[(σ
r

)12
−
(σ
r

)6]
, (5.1)

where r represents the pairwise distance between two residues from differ-

ent chains and σ is the distance where the intermolecular potential between

two residues is zero.

5.2.3 Simulation condition

In current study, we redefine the units for our coarse-grained model using

the same quantities as our previous units, which are length (σ0), mass (m),

time (τ ), and energy (ε0). The values of our new coarse-grained units are

listed in Table 5.1. The values of σ0, m, and ε0 are determined from the

average van der Waals radii of azurin, the average mass of azurin, and the

temperature of system, respectively. The time unit (τ ) is calculated by the

same method as in Chapter 3. We also redefine the potential parameter

and simulation condition as in Table 5.2.

Table 5.1: New units of coarse-grained model

CG units Experimental units
length σ0 5.7 Å
mass m 110 amu

energy ε0 0.6 kcal/mol
time τ 3 ps
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Table 5.2: Potential parameter and simulation condition

Parameter Value in kcal/mol
Virtual bond-stretching Kbond 50.0 Å−1

Virtual bond-angle bending Kθ 10.0
Virtual bond-torsional term Kφ 1.0

Native εnat 1.0
Non-native εnon-nat 1.0

Intermolecular εLJ 0.4 or 0.13
Others Value

LJ distance σ 6.5 Å
Friction coefficient ζ 0.5 (τ−1)

Temperature T 300 K

For the estimation of σ and εLJ for intermolecular interaction, we con-

sider the correlation with the non-bonded potential model for intramolecu-

lar interactions as shown in Table 5.3. It is not easy to clearly obtain the

value of those parameters. The r0 on intramolecular interaction represents

specific distance obtained from the crystal structure where each pair has

different value. Meanwhile σ, set as general parameter for all pairs, usually

represents the particle size. Here we use σ = 6.5 Å, because the interact-

ing residues within 6.5 Å is found to contribute significantly to the protein–

protein association [61]. By comparing the minimum value of the potential,

εLJ should be smaller than ε1 since intermolecular interaction is weaker than

the intramolecular interaction.

Table 5.3: Comparison of two non-bonded potential

Intramolecular Intermolecular
10-12 LJ potential 6-12 LJ potential

Potential (U(r)) ε1

[
5
(
r0
r

)12 − 6
(
r0
r

)10]
4εLJ

[(
σ
r

)12 − (σ
r

)6]
U(r) = 0 r =

√
5/6r0 r = σ

Minimum U(r) when r = r0 when r = 21/6σ
U(r0) = −ε1 U(21/6σ) = −εLJ
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5.3 Analysis methods

We measured the structural stability of azurin complex through the root

mean square displacement (RMSD) with respect to the initial structure. A

least-square fitting on given structure to the initial structure is performed to

obtain minimal RMSD. We also analyzed the total surface area of the system

to gain insight into the accesibility of the system to a solvent. This concept

was first introduced by Lee and Richards [64]. Our calculation applied sta-

tistical approach for faster calculation of accesible surface area, proposed

by Wodak and Janin [65], and was performed by using POPS program [66].

5.4 Results

In this section we will explain our analyses into two part. First, we inves-

tigate the effects of intermolecular interaction strength to the stability of the

system. We will compare two parameter values of εLJ as in Table 5.2 for the

simulation of system I. Later, we found that εLJ = 0.13 kcal/mol is better and

we will use it to simulate the other systems. Second, we evaluate physical

properties for all systems as described in previous section.

Higher intermolecular potential parameter represents stronger interac-

tion, so we expect that two chains will tend to get closer and the buried area

will increase. Our expectation is well confirmed as shown in Figure 5.2. This

figure shows that the conformation of both chains are starting to denature

as indicated by the steady increment of RMSD values of both chains. This

denaturation is appropriate with the aggregation possibility that is shown by

the decrease of total surface area (Figure 5.3). On the other hand, Figure

5.4(a) shows that the simulation with smaller εLJ gave more stable confor-

mation. These findings show that strong attractive interaction may lead the

system to aggregation.
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Figure 5.2: The root mean square displacement shows the conformational
changes compared to the given initial configuration caused by the strong
intermolecular interaction.
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surface area of one chain is 6735.87 Å2.
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Figure 5.4: The root mean square displacement of the simulations with
εLJ = 0.13 kcal/mol.
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Table 5.4: Quantitative comparison of the RMSD of each system is rep-
resented by the calculation of average (Å) and standard deviation (Å) of
RMSD.

System Average(Standard deviation)
Chain A Chain B Chain C Chain D

I 1.84(0.28) 2.15(0.37) - -
II 1.88(0.30) 1.94(0.30) - -
III 2.11(0.44) 2.35(0.50) - -
IV 2.17(0.45) 1.91(0.34) 1.77(0.28) -
V 1.98(0.34) 2.68(0.76) 1.87(0.35) 2.46(0.74)

Table 5.5: Comparison of the initial and average surface area (Å2), initial
number of pair contacts, and average total energy (kcal/mol).

System Total SASA (Å2) initial Av. total
Initial Average #contacts energy

I 12982.76 13750.75 13 125.99
II 13178.79 14186.64 8 131.03
III 12897.96 13827.58 19 126.78
IV 18615.81 19931.83 35 164.86
V 24108.12 25705.4 82 211.12

Now let us investigate the dynamics of azurin complex regarding to the

role of initial contacts. We measure the structural stability of each chain from

the given configuration against the initial state and compare the behavior of

all systems as shown in Figure 5.4. Figure 5.4 shows that the conforma-

tions of azurin remain relatively stable at all systems. This finding is also

confirmed quantitatively in Table 5.4. The averages of RMSD are below 3 Å

with relatively small deviation.

We also monitor the total surface area (SASA) of azurin complex at

residue level. By this calculation we can investigate the buried area in the

binding site. From our calculation, the total surface area of all system in-

creases about 1,000 Å2 (see Table 5.5). Meanwhile, Figure 5.5 shows that

the ratio of total SASA of the azurin complex to total SASA of independent

chains decreases. This decrease represents the increase of buried area,

which indicates the strong attractive interaction in the binding site.

Moreover, Figure 5.6 shows that the ratio of SASA decreases along with
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Figure 5.5: The normalized total surface area of the simulations with εLJ =
0.13 kcal/mol.

the increase of the number of pair contacts. However, the dimer systems

have steeper slope than the larger systems, which means that the number

of chains also plays an important role in the intermolecular interaction. The

relation between ratio of SASA and number of contacts is very reasonable

since when the contact between two particles is formed, they become closer

and the buried area becomes larger. On the large systems, the space for

their movements becomes less so that even though the initial contacts is

large, the change during simulation may not be significant. In addition, the

time series of the number of contacts in binding area (Figure 5.7) confirms

that as the system becomes more crowding, the increase of the number of

contacts becomes slower.
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Figure 5.7: Number of contacts in the binding area. (a) Comparison among
dimer systems. (b) Comparison among systems from the original PDB file.
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5.5 Conclusion

Development of intermolecular potential model is very important in protein–

protein interaction studies. To use general form of potential model which do

not depend on the native structure, we have to consider what kind of pro-

perties should be involved and what properties can be neglected. Our study

suggested that the choice of coefficient parameter for intermolecular inter-

action can cause the azurin to bind to the other chain.

One of two potential parameters that we use in this study indicates the

possibility of binding chains in azurin complex even though both parame-

ters satisfy our limitation that intermolecular interaction should be weaker

than intramolecular interaction. We suppose that we need to treat the in-

termolecular interaction, especially in the binding area, more carefully by

considering more physical informations from the crystal structure.

Moreover, due to the initial conformation, we found that crowded system

also plays an important role on the stability of protein complex. In this study,

all systems tend to form more packed conformation. However, as the system

is getting more crowded, the increase of the number of contacts becomes

slower. Overall, more considerations are needed to develop the potential

model that can be used for more general implementation, especially on the

estimation of the parameters.
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Chapter 6

General Conclusion

In this thesis, we observed the formation mechanism of azurin complex

by using coarse-grained models. We started it by performing coarse-grained

simulation of a single azurin as described in chapter 3. We carried out

coarse-grained simulation via implementation of Gō model to observe the

unfolding process of wild-type azurin and mutated azurin (H117G). This

model was developed based on two fundamental theories of principle of

minimal frustration and energy landscape theory. We found that the mu-

tation of His117 to Gly affects the stability of the denatured state and the

mutated azurin folds faster than the wild-type.

In the next step, our studies are followed by developing coarse-grained

models for azurin complexes as explained in chapter 4 and 5. In chapter

4, we adopted the non-bonded interaction of the Gō-like model into the in-

termolecular interaction in azurin complex. This potential is very good to

maintain the stability of protein complexes since this model minimize the

topological frustration. Nevertheless, this potential also has limitation. Even

though this model can reproduce the azurin complex, it lacks of transferabi-

lity. We can only apply this model to a particular system which means that

the existence of known native structure is a must on this model.

To overcome this limitation, we explored more general potential model by

adopting the widely used Lennard-Jones potential as described in chapter 5.

However, determining the parameters becomes a great challenge. We found
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that this approach has not yet accurately reproduced the azurin complex.

Intermolecular interactions in protein complexes often can not be derived

into a simple model. Being simple and oversimplified are two different things.

We have to carefully determine which phenomena can be simplified and

which should be described with more complicated models.

Developing accurate and transferable coarse-grained potential for pro-

tein complex remains a challenge. In the future, knowledge-based ap-

proaches may be used by employing physical informations from known PDB

structure to develop a set of transferable and more appropriate interactions

for azurin complex. When this problem is addressed, it would significantly

improve the scope of coarse-grained protein model to be able to predict

unknown structure for new systems.
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Appendix A

Extended research:

An improved coarse-grained

model of azurin complex via

bottom-up approach

A.1 Introduction

In recent times, coarse-grained simulation has gained much attention

due to its ability to overcome the time and size problems of the all-atom

molecular dynamics simulation. Many researchers have advanced coarse-

grained models to study the protein dynamics by various approaches [22,

23, 67]. Several models have been successfully applied to study the pro-

tein folding. Nevertheless, coarse-grained models involving protein–protein

interaction are still limited. Meanwhile in real system, proteins tend to form

a complex to perform its function where the formation of complex system

involves protein–protein interaction.

In our previous work, we found that Gō-like model can be applied to re-

present the intermolecular interaction. This model has good accuracy but

lacks on transferability. This model can not be applied to the unknown struc-
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ture. On the other hand, we can not easily simplify the intermolecular inter-

action. Therefore, development of transferable coarse-grained model which

represents the interactions of protein complex system is needed.

In recent work, we develop a coarse-grained potential model to simulate

azurin complex, which is known as a rigid protein [4]. We introduce new

parameter representing the strength of attractive interaction. To estimate our

parameters, the intermolecular contact is evaluated by bottom-up approach

from the native structure. Since azurin complex is known as a close-packed

complex, our model will be tested to reproduce a native tetramer of azurin.

This study will offer a new coarse-grained model with better accuracy and

transferability. Moreover, our model will be a promising approach for the

intermolecular potential model for unknown structure.

A.2 Material and simulation methods

A.2.1 Model systems

As we have mentioned in previous section, our first goal in this work

is to reproduce a native tetramer azurin. Currently we also employ crystal

structure of wild-type azurin with pdb entry: 4AZU (Figure 2.1) [15]. This

conformation consists of four identical chains of azurin.

A.2.2 Potential model

In current work, we treat the individual chain as a rigid monomer. There-

fore, we employ native-center based Gō-like model as in previous works to

represent the intramolecular interaction. Meanwhile, we extend the inter-

molecular potential in Chapter 5 by knowledge-based approach. This ma-

thematical formulation of modified Lennard-Jones potential is represented

in the following equation:

U
αβ

ij (r) = 4εinter

[(σ
r

)12
− aαβij

(σ
r

)6]
. (A.1)
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Our previous studies in Chapter 4 and 5 suggested that we need to de-

velop more specific potential. In this work, we introduce our new parameter,

a
αβ

ij , to specify the attractive term. This parameter represents the strength of

attractive interaction.

In order to define this parameter, first we determine the zero-potential

and the maximum depth of the potential well of our potential model. From

Equation (A.1), we have:

1. The zero-potential, Uαβ

ij (r) = 0, is obtained when:

(σ
r

)12
− aαβij

(σ
r

)6
= 0(σ

r

)6
= a

αβ

ij

r =
σ

(a
αβ

ij )1/6
; (A.2)

2. The maximum depth of the potential well is obtained when U
αβ

ij (r)

reaches its minimum. This condition is satisfied when:

δ

δr

(
U
αβ

ij (r)
)

= 0

4εinter

1

r

[
12
(σ
r

)12
− 6a

αβ

ij

(σ
r

)6]
︸ ︷︷ ︸

=0

= 0

12
(σ
r

)12
= 6a

αβ

ij

(σ
r

)6
2
(σ
r

)6
= a

αβ

ij (A.3)

r6 =
2σ6

a
αβ

ij

r =
21/6σ

(a
αβ

ij )1/6
. (A.4)
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So, the maximum depth of the potential well becomes:

U
αβ

ij

(
21/6σ

(a
αβ

ij )1/6

)
= 4εinter

(σ(a
αβ

ij )1/6

21/6σ

)12

− aαβij

(
σ(a

αβ

ij )1/6

21/6σ

)6


= 4εinter

(
(a

αβ

ij )2

4
−

(a
αβ

ij )2

2

)
= −εinter(a

αβ

ij )2 (A.5)

From the relation (A.3), we could determine the parameter for attractive

term, aαβij . Since aαβij will be specified for each inter-particle of two interacting

chains, we can rewrite the relation (A.3) into:

a
αβ

ij =

(
21/6σ

r
αβ

ij
crys

)6

, (A.6)

where rαβij
crys

is obtained from the native structure. To accomplish the trans-

ferability problem, again we will simplify this parameter by bottom-up stra-

tegy.

Originally aαβij is a parameter for particular known structure. In our case,

we have six dimers and each inter-particle for each dimer has unique pa-

rameter. Our mission is to provide parameter that can be applied for every

dimer, yet unique for each inter-particle. Or mathematically we can explain

it as follows. Let α, β, and γ be three different chains. Our parameter should

satisfy:

a
αβ

ij = a
αγ

ij = a
βγ

ij , (A.7)

with i and j are two particles from different chains, e.g. a12

56 = a
13

56 = a
23

56.

Those six dimers are packed in the condition where the dimer interface

between two chains is quite similar to the dimer interface between two re-

maining chains. So now we can reduce our cases into three dimers: dimer

A–B, dimer A–C and dimer A–D. In this work, we choose the max aαβij among

three dimers for each inter-particle.

The remaining problems are the estimation of other two parameters, σ
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and εinter. We first determine σ as the particle size by taking the average

of van der Waals (vdW) radii of azurin. From the vdW radii in Table A.1,

we get 〈σi〉 = 5.74 Å. Meanwhile, in order to estimate εinter, we adapt the

Lennard-Jones interaction strength introduced by Kim and Hummer [31].

Table A.1: Van der Waals radii (in Å) for 20 amino acids [68].

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE
5.0 6.6 5.7 5.6 5.5 6.0 5.9 4.5 6.1 6.2

LEU LYS MET PHE PRO SER THR TRP TYR VAL
6.2 6.4 6.2 6.4 5.6 5.2 5.6 6.8 6.5 5.9

Estimation of potential parameter εinter

In their work, they modeled the intermolecular interaction in the following

way. If a pair-residue experiences an attractive interaction, the potential form

is given by:

φij(r) = 4|εij|
[(σij

r

)12
−
(σij
r

)6]
, εij < 0. (A.8)

Otherwise for repulsive interaction, εij > 0,

φij(r) =

4εij

[(σij
r

)12 − (σij
r

)6]
+ 2εij, if r < r0ij,

−4εij

[(σij
r

)12 − (σij
r

)6] if r ≥ r0ij,

(A.9)

where r0ij = 21/6σij, and σij is residue-dependent interaction radius given by

(σi + σj)/2.

They adapted knowledge-based statistical contact potentials obtained by

Miyazawa and Jernigan to determine the potential parameters εij [23]. The

original pair contact potentials, eij, are empirically rescaled as follows:

εij = λ(eij − e0), (A.10)

where e0 is an offset parameter that balances the preference of inter-particle

interactions relative to particle–solvent interactions, while λ scales the strength

of the inter-particle interactions compared to the physical electrostatic inter-
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actions. These two parameters are determined by fitting against experimen-

tal data. In Kim’s paper [31], they used various values. Consistently good

results are found on the following two models:

• λ = 0.159 and e0(kBT ) = −2.27;

• λ = 0.192 and e0(kBT ) = −1.85.

In principle, Miyazawa and Jernigan approximated the contact potentials

by the number of contacts [23]. They define a contact between two resi-

dues if their distance is less than 6.5 Å. Then they estimate eij by Bethe

approximation:

exp(−eij) =
n̄ijn̄00

n̄i0n̄j0
. (A.11)

nii is the total number of contacts between two residues of the same type, i.

Meanwhile nij + nji is the total number of contacts between i and j types of

amino acids, which means i and j are ranged from 1 through 20. Subscript

0 is used to represent effective solvent.

The average of eij lies about −4.0 in kBT . Then 〈εij〉 will be:

〈εij〉 = 〈λ〉 (〈eij〉 − 〈e0〉)

≈ 0.2(−4.0− (−2.0))

≈ −0.4 kBT

≈ −0.24 kcal/mol

(A.12)

By this approximation, in the present work, εinter is set to be 0.2 kcal/mol.

Other parameters and simulation conditions are set to be the same values

as in Chapter 5.

A.3 Analysis methods

We performed analysis on stability of tetramer azurin by measuring se-

veral structural properties. We analyze the motion of azurin through the root

mean square displacement (RMSD) with respect to the initial structure as
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we have done in Chapter 5. We also analyze the fluctuation of each particle

of azurin by calculating the root mean square fluctuation (RMSF). We also

monitor the number of contacts in the contact regions where a pair-residue

belongs to a contact region if the distance is under 6.5 Å [61]. Moreover, the

surface area of tetramer azurin is also calculated [64–66].

A.4 Results

We carried out coarse-grained simulation of tetramer azurin for 30 ns

under constant temperature. Final conformation of tetramer azurin after si-

mulation is shown in Figure A.1(b). Compared with the initial conformation

in Figure A.1(a), the final conformation is less compact.

(a) Initial conformation (4AZU)

(b) After 30 ns

Figure A.1: Snapshots of the tetramer azurin from our simulation.
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Figure A.2: RMSD profile for whole system.
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Figure A.3: RMSD profile for each chain.
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Nevertheless, the RMSD measurement shows that the displacements

are still tolerable since it ranged below 5 Å as shown in Figure A.2. We also

measured the RMSD for each chain and our calculations show that there is

no significant deformation on each individual chain as shown in Figure A.3.

Compared with our study in Chapter 5, we found that our new model

is better to reproduce native tetramer azurin. In Chapter 5 we found the

indication of deformation of each chain on simulation of tetramer azurin.

Our new potential model is able to overcome the aggregation possibility that

appears in the previous study.

In addition, we also performed an all-atom molecular dynamics simu-

lation of tetramer azurin with explicit water solvent as comparison. The

all-atom simulation was conducted using NAMD version 2.9 [69] with the

CHARMM27 force field [70]. This simulation was performed under constant

temperature, 300 K, controlled by Langevin dynamics.

We measured the residue fluctuation for each individual chain as shown

in Figure A.4 from our coarse-grained simulation and in Figure A.5 from all-

atom simulation. Those figures show that proteins in our coarse-grained

simulation are more fluctuating than in all-atom simulation. However, RMSF

from both simulations have almost similar pattern. We also monitored the

number of contacts in the contact regions as shown in Figure A.6. Even

though the number of contacts decreases, it becomes stable after around 5

ns simulation time.

These results indicate that the tetramer azurin is relatively stable. Never-

theless the final conformation is less packed than the native conformation.

It is well confirmed by the calculation of surface area shown in Figure A.7.

The surface area of tetramer azurin gradually increases during simulation

time. Meanwhile RMSD and number of contacts imply that our system be-

comes relatively stable, and the increase of surface area indicate that our

system is starting to separate. We suggest that longer simulation time is

surely needed to investigate more deeply the stability of azurin complex.
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Figure A.4: RMSF profile for each chain.
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Figure A.5: RMSF profile for each chain from all atom simulation.

58



 0

 6

 12

 18

 24

 30

 0  5  10  15  20  25  30

N
u

m
b
e

r 
o

f 
c
o

n
ta

c
t

Time (ns)

Figure A.6: Number of intermolecular contact.
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A.5 Conclusion

In this work we offer new scheme to approach coarse-grained model of

azurin complex. We modified the best known Lennard-Jones 6-12 poten-

tial by introducing new parameter for the attractive term. This parameter is

determined by the native structure, yet is simplified to be more transferable

to the unknown structure. Other parameters are determined by adapting

Miyazawa-Jernigan contact potential and Kim-Hummer scaling.

However, it is still too premature to say that our potential is suitable to

model the azurin complex. The structural properties show that our system

is relatively stable during simulation time. But in contrast, the surface area

of our system gradually increases indicating that the system is starting to

separate.

Therefore, we need to simulate for a longer time to observe the stability

and dynamics of azurin complex more deeply. Other approaches may be

needed, such as force matching approach to determine parameter aαβij or

iterative Boltzmann inversion to determine σ. Further studies on this field

will provide important contribution to advance nanoscience, particularly to

biomolecular modeling.
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Appendix B

Force field

Force, F , can be defined as the negative of the derivative of the potential

function U . This negative sign shows that if the potential U increases along

with increasing of the distance (r), the force will tend to move the particles to

become closer to decrease the potential energy. Since we work on the three

dimensional structures, the force will also be a three-dimensional vector.

~F = −∇U(r) (B.1)

In the following sections, we will provide the derivation of each potential that

we used in this thesis.

B.1 Gō potential

Go model potential for a given configuration of a protein can be seen in

Table 3.2. The force field for each interaction will be described as follows:

Virtual bond-stretching

Virtual bond-stretching is represented by a harmonic potential well.

Ubond(r) = Kbond(r − r0)2, (B.2)
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with r is length of bonds between two adjacent particles, which can be writ-

ten as

ri = [(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2]1/2, (B.3)

and ~ri is the vector connecting those two particles, can also be written as

~ri =


xi+1 − xi

yi+1 − yi

zi+1 − zi

 (B.4)

The force with respect to x direction becomes

Fbond(r)|x = −2Kbond(r − r0)
∂r

∂x
(B.5)

The derivation of the equation B.3 gives us

∂ri
∂x

=
1

2
[(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2]−1/2 · 2(xi+1 − xi) · (−1)

= −(xi+1 − xi)
ri

.

(B.6)

In the same way for the y and z directions, we have

∇ri = −


(xi+1−xi)

r

(yi+1−yi)
r

(zi+1−zi)
r


= −~ri

r

(B.7)

Then,

~Fbond(ri) = −2Kbond(r − r0)∇ri

= −2Kbond(r − r0)
−~ri
r

(B.8)
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and analogously

~Fbond(ri+1) = −~Fbond(ri). (B.9)

Virtual bond-angle bending

Virtual bond-angle bending forces are three-body forces between three

successive bonded particles. The associated angle potential is character-

ized by an angle θ between atoms i−1, i, and i+1. For the potential we can

use the form of trigonometric harmonic potential as the following equation:

Uangle = Kθ(cos θ − cos θ0)
2. (B.10)

The potential depends on angle determined by three successive particles.

The associated angle can be computed from the cartesian coordinates us-

ing the relation

θ = arccos(
−~ri−1 · ~ri
ri−1ri

). (B.11)

The force can be simply determined by the relation:

~Fangle

∣∣∣
i

= − ~Fangle(r)
∣∣∣
i−1
− ~Fangle(r)

∣∣∣
i+1

. (B.12)

Moreover, it holds that

~Fangle(r)
∣∣∣
i−1

= −2Kθ(cos θi − cos θ0i) · (− sin θi)∇θi

= −2Kθ(cos θi − cos θ0i) · (− sin θi)
∂θi

∂ cos θi
∇(cos θi)

= −2Kθ(cos θi − cos θ0i) · (− sin θi)(−
1

sin θi
)∇(cos θi)

= −2Kθ(cos θi − cos θ0i)∇(cos θi).

(B.13)

For the derivation part, we define S = −~ri−1 · ~ri and D = ri−1ri, so cos θi =

S/D. For the x direction, we obtain

∂ cos θi
∂xi−1

=
S ′

D
− SD′

D2
. (B.14)
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S ′ =
∂

∂xi−1
(−~ri−1 · ~ri)

= xi+1 − xi , and
(B.15)

D′ =
∂

∂xi−1
(ri−1ri)

= ri
∂

∂xi−1
(ri−1)

= −(xi − xi−1)
ri−1

ri

= −(xi − xi−1)
D

r2i .

(B.16)

In the same way for other directions, we have

S ′ = ~ri , and (B.17)

D′ = −~ri−1
D

r2i . (B.18)

Then,

~Fangle

∣∣∣
i−1

= −2Kθ(cos θi − cos θ0i)
1

D

(
~ri +

S

D2
~ri−1ri

)
. (B.19)

~Fangle

∣∣∣
i+1

can be computed in an analogous way.

~Fangle(r)
∣∣∣
i+1

= −2Kθ(cos θi − cos θ0i)
1

D

(
−~ri−1 +

S

D2
~riri−1

)
. (B.20)

Virtual bond-torsional term

We define φ as the virtual bond-torsional angle which is formed by for

subsequent residues i− 1, i, i+ 1, and i+ 2.

Udihedral = Kφ[1− cos (φ− φ0)] +
Kφ

2
[1− cos (3× (φ− φ0))] (B.21)

~n1 is defined as normal vector of the plane of atoms i − 1, i, and i + 1, and

~n2 is defined as normal vector of the plane of atoms i, i + 1, and i + 2. So
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we have,

~n1 = −~ri−1 × ~ri (B.22)

~n2 = ~ri ×−~ri+1 (B.23)

The classical definition of the dihedral angle φ is given by the relation

φ = sign(φ) arccos

(
~n1 · ~n2

|~n1||~n2|

)
. (B.24)

Mostly the gradient ∇Udihedral is obtained by the following chain rule fac-

torization

~Fdihedral

∣∣∣
x

= −(dU/dφ)(dφ/d cosφ)∇(cosφ), (B.25)

but it would give us singularity because it contains division by sinφ. To avoid

it, we use

~Fdihedral

∣∣∣
x

= −(dU/dφ)∇φ

= −
[
Kφ sin (φ− φ0)∇φ+−3Kφ

2
sin (3× (φ− φ0))∇φ

] (B.26)

First, we construct the expression of ~Fdihedral

∣∣∣
i−1

by considering the direc-

tion and the length of ~Fdihedral

∣∣∣
i−1

. Notes that ~Fdihedral

∣∣∣
i−1

must be normal to

the equipotential plane in which particle i− 1 can move without changing φ.

Since φ does not change when i− 1 is moved in the plane i− 1, i, i+ 1, the

equipotential plane is obviously the plane i − 1, i, i + 1. Hence ~Fdihedral

∣∣∣
i−1

is in the direction ~n1. Therefore ~Fdihedral

∣∣∣
i−1

=

∣∣∣∣ ~Fdihedral

∣∣∣
i−1

∣∣∣∣ n̂1. When particle

i− 1 is given small displacement ∆ri in the direction ~n1 then

∆φ =
∆ri−1

distance of i− 1 to line i, i+ 1

=
∆ri−1

| − ~ri−1 − 〈−~ri−1, ~riri )
~ri
ri
|

=
∆ri−1

| − ~ri−1 × ~ri|/ri
= ∆ri−1

ri
|~n1|

(B.27)
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Then we obtain ∣∣∣∣ ~Fdihedral

∣∣∣
i−1

∣∣∣∣ =

∣∣∣∣−dU

dφ

∣∣∣∣ ∆φ

∆ri−1

=

∣∣∣∣dV (φ)

dφ

∣∣∣∣ ri
|~n1|

,

(B.28)

and

~Fdihedral

∣∣∣
i−1

= −dU

dφ
ri
~n1

|~n1|2
. (B.29)

Analogously we obtain,

~Fdihedral

∣∣∣
i+2

=
dU

dφ
ri
~n2

|~n2|2
. (B.30)

We have ~Fi−1 + ~Fi + ~Fi+1 + ~Fi+2 = 0. Therefore,

~Fi = −~Fi−1 + ~B, (B.31)

~Fi+1 = −~Fi+2 − ~B, (B.32)

with ~B is an unknown vector and perpendicular to ~ri. The total torque van-

ishes:

~qi−1 × ~Fi−1 + ~qi × (−~Fi + ~B) + ~qi+1 × (−~Fi+2 − ~B) + ~qi+2
~Fi+2 = 0, (B.33)

where ~q is the cartesian coordinate of the particle. It implies

(−~ri−1 × ~Fi−1 + ~ri+1 × ~Fi+2)− (~ri × ~B) = 0. (B.34)

Defining ~A = −~ri−1 × ~Fi−1 + ~ri+1 × ~Fi+2, we have ~ri × ~B = ~A. Since ~B ⊥ ~ri,

so ~B has direction ~A× ~ri and the size | ~A|/ri. Hence,

~B =
~A× ~ri
r2i

=
~ri × (~ri−1 × ~Fi−1)− ri × ~ri+1 × ~Fi+2

r2i
. (B.35)

Using the vector identity ~A× ( ~B× ~C) = ~B(~C · ~A)− ~C( ~B · ~A) and the fact that
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~Fi−1, Fi+2 ⊥ ~ri we find

~B =
1

r2i
(−~Fi−1(~ri−1 · ~ri) + ~Fi+2(~ri+1 · ~ri)). (B.36)

So, we have

~Fi = −~Fi−1 −
(
~ri−1 · ~ri
r2i

)
~Fi−1 +

(
~ri+1 · ~ri
r2i

)
~Fi+2 (B.37)

and

~Fi+1 = −~Fi+2 +

(
~ri−1 · ~ri
r2i

)
~Fi−1 −

(
~ri+1 · ~ri
r2i

)
~Fi+2. (B.38)

Finally we consider the sign of dihedral angle φ. A simpler definition of

sign(φ) is sign(φ) = signum(−~ri−1 · ~n2).

Nonbonded: Native interaction

For non-bonded interaction, we define rij as the distance between non-

bonded particles. In Gō model, σij is represented by rij in the native struc-

ture.

Unat(rij) = εnat

[
5

(
σij
rij

)12

− 6

(
σij
rij

)10
]

(B.39)

~Fnat(rij)
∣∣∣
i

= −εnat

[
60

(
σij
rij

)11

− 60

(
σij
rij

)9
]
∇i

(
σij
rij

)

= −60εnatσij

[(
σij
rij

)11

−
(
σij
rij

)9
]
∇i

(
1

rij

)

= −60εnatσij

[(
σij
rij

)11

−
(
σij
rij

)9
]
~rij
r3ij

= −60εnat

[(
σij
rij

)12

−
(
σij
rij

)10
]
~rij
r2ij
.

(B.40)
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Nonbonded: Non-native interaction

Similarly to the native interaction, the force can be derived as follow:

Unon-nat(rij) = εnon-nat

(
C

rij

)12

(B.41)

~Fnon-nat

∣∣∣
i

= −12εnon-nat

(
C

rij

)11

∇i

(
C

rij

)
= −12εnon-natC

(
C

rij

)11

∇i

(
1

rij

)
= −12εnon-natC

(
C

rij

)11
~rij
r3ij

= −12εnon-nat

(
C

rij

)12
~rij
r2ij

(B.42)

B.2 6-12 Lennard-Jones potential

For the 6-12 Lennard-Jones potential as in Equation 5.1, the force can

be derived into:

~FLJ

∣∣∣
i

= −4εLJ

[
12

(
σ

rij

)11

− 6

(
σ

rij

)5
]
∇i

(
σ

rij

)
,

= −4εLJ

[
12

(
σ

rij

)12

− 6

(
σ

rij

)6
]
σ
~rij
r2ij

(B.43)

B.3 Modified Lennard-Jones potential

For the modified Lennard-Jones potential we used in Appendix A (see

Equation A.1), the force can be derived into:

~F
αβ

ij

∣∣∣
i

= −4εinter

[
12

(
σ

rij

)11

− 6a
αβ

ij

(
σ

rij

)5
]
∇i

(
σ

rij

)
,

= −4εinter

[
12

(
σ

rij

)12

− 6a
αβ

ij

(
σ

rij

)6
]
σ
~rij
r2ij

(B.44)
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