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Abstract

Numerical Analysis of Multiphase Curvature-driven Interface
Evolution with Volume Constraint

Rhudaina Z. Mohammad

The dissertation focuses on two main points. First, we develop a signed distance vector
approach for approximating volume-preserving mean curvature motions of interfaces sep-
arating multiple phase regions – a variant of the MBO (Merriman-Bence-Osher) thresh-
old dynamics. We construct a vector-valued analogue of the signed distance function,
which provides the needed subgrid accuracy on uniform grids without adaptive refine-
ment; thereby, alleviating the well-known MBO time and grid restrictions. We adopt a
variational method employing the idea of a vector-type discrete Morse flow, which al-
lows us to easily treat volume constraint via penalization, and even, extend our method
to include space-dependent bulk energies and anisotropic energies. We present several
numerical tests and computational examples of curvature-driven interface evolutions.

Second, we analyze a penalization method related to the above volume-constrained vari-
ational problem – an approximation method that penalizes only the increase in volume.
We present existence and regularity results of the sequence of minimizers of the corre-
sponding penalized functional. Without relying on the smoothness of the free bound-
ary, we investigate the behavior of these minimizers for sufficiently large penalty values.
Lastly, we prove the existence of a minimizing movement corresponding to our penalized
functional and some of its properties.

Dissertation Advisor. Karel Švadlenka, Ph.D.
2010 Mathematics Subject Classification. 53C44, 76T30, 49J40, 35R35
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7.4.1 Hölder Continuity up to the Boundary . . . . . . . . . . . . . . . . 86

7.4.2 Lipschitz Continuity up to the Boundary . . . . . . . . . . . . . . 93

7.5 Behavior of the minimizer for large λ . . . . . . . . . . . . . . . . . . . . . 106

7.6 Construction of Minimizing Movement . . . . . . . . . . . . . . . . . . . . 109

7.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Reference Vectors: Its Construction and Properties 115

B Expansion of Scalar Signed Distance Function 117

C A Junction-based Signed Distance Vector Approach 119

D Gaussian Function: Some Useful Integrals and Estimates 125



Contents xi

E Calculations involving the Interface Normal 131

F Discrete Morse Flow Method 135

G Multiphase MBO Method considering Bulk Energies 137

H Notations and Preliminaries 143

Bibliography 147





List of Figures

2.1 An illustration of a k-phase configuration of domain Ω. . . . . . . . . . . . 3

2.2 Thresholding the diffused solution (black) of the characteristic function
(blue) reverts to the same characteristic function causing MBO to get
“stuck”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Assigning corresponding reference vectors to each phase region. . . . . . . 8

3.1 A 4-phase configuration (top left); the reference vectors pi ∈ R3 (bottom
left); and its corresponding signed distance vector field with ε = 1

6 (right). 12

3.2 Setting up interface γij in the new coordinate system. . . . . . . . . . . . 14

3.3 Approximating phase region S by its corresponding tangent wedge Σ. . . 18

3.4 Setting up the triple junction in the new coordinate system. . . . . . . . . 21

3.5 Triangulating domain Ω = [0, 1] × [0, 1] into 32 nearly uniform elements
(black) with 22 nodes (blue). . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Evolution of the radius of a circle generated via MBO (red) and SDV
method (non-red) on a 40 × 40 mesh with ∆t = T/32 (left) and ∆t =
T/256 (right) versus the exact solution (black). . . . . . . . . . . . . . . . 29

3.7 Evolution of the initial T-junction (blue) via SDV method and its under-
lying interface network at different times (black). . . . . . . . . . . . . . . 30

3.8 Transport velocities at y = 0.47, 0.49, 0.505, 0.55 (left) and interface pro-
file at time t = 50∆t (right) of the SDV numerical solution (colored)
versus the constantly transported stable solution (black). . . . . . . . . . 31

3.9 Relative error plot of the phase interior angle measures at the triple junc-
tion for the first 100 time steps. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 An example of a two-phase (left) and four-phase (right) mean curvature
evolution generated via SDV method. . . . . . . . . . . . . . . . . . . . . 33

4.1 Evolution of radii (left) for varying penalties % (colored lines) and exact
solution (black line). A closer look at the evolution of smaller circle (right)
for time t ≥ 0.022 where penalties % = 10−6, . . . , 10−9 overlap. . . . . . . . 44

4.2 Three-phase initial configuration (left in black); its numerical (blue) and
exact (red) stationary solution. A closer look at the interface network
near the triple junctions (right). . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Relative error plot of the phase interior angle measures at junction J1 for
the first 160 time steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Initial 10-phase configuration (top left); its evolution after ∆t = 2.5×10−4

(top center) and at different times; and its stationary solution (bottom
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xiii



xiv List of Figures

5.1 The motion of two split bubbles of equal volumes (in a three-phase setting)
in liquid-filled container with bulk energy density f = 10y (ω1 = ω2 =
2∆)x at different times (left) and the plot of their speed versus time (right). 55

5.2 The motion of two split bubbles of different volumes (in a three-phase
setting) in a liquid-filled container with ω1 = ω2 = 2∆x at different times
(left) and the plot of their speed versus time (right). . . . . . . . . . . . . 56

5.3 The volume-constrained motion of a gas-liquid interface with liquid bulk
energy f = 50(x + y) in the 〈1, 1〉-direction (left) and its speed versus
time plot (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Initial 6-phase configuration (top left) and its volume-preserving mean
curvature evolution with zero gas bulk energies and liquid bulk energy
f = 25y under volume penalty % = 10−6 with time step size ∆t = 10−3

at different times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 A closer look at the first evolution of the rising double bubble (left) and
the two phase regions initially attached to the boundary floor (right). . . 58

5.6 A closer look at the evolution of the interface forming a four bubble link. 58

6.1 Evolution of the radius of an anisotropic circle evolved using φ-MBO
scheme (red) and SDV method (non-red) on an 80×80 (left) and 160×160
(right) mesh resolution with time step size ∆t = T/64 and ∆t = T/128,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Anisotropic mean curvature evolution of a circle via SDV method under
anisotropic energies φ1 (a = 5.5, b = 4.5) and φ2 (a = 0.20). . . . . . . . . 65

6.3 Anisotropic mean curvature evolution of a circle via SDV method under
anisotropic energies φ3 (σ = 10−12, m = 101) and φ4. . . . . . . . . . . . . 66

6.4 Volume-preserving SDV evolution driven by anisotropy φ2 with a = 0.20
(top) and φ4 with parameters n = 8, m = 101, σ = 10−12, e0 = 〈0, 1〉
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Volume-constrained evolution of a circle via SDV method driven by anisotropy
φ1 (a = 5.5, b = 4.5) under penalty paramter % = 10−6. . . . . . . . . . . . 67

6.6 Initial 7-phase configuration (top left); its volume-preserving anisotropic
evolution after one time step ∆t = 5.0 × 10−4 (top center); at t = 10∆t
(top right); at t = 100∆t (bottom left); at t = 200∆t (bottom center);
and its stationary solution (bottom right). . . . . . . . . . . . . . . . . . . 68

7.1 The subsets of domain Ω which form the five cases in consideration. . . . 104

A.1 Examples of Regular Simplices . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 Setting up ∂S in the new coordinate system. . . . . . . . . . . . . . . . . 117

C.1 An example of a 3-phase junction-based signed distance vector field. . . . 120

C.2 Construction of the junction-based signed distance vector. . . . . . . . . . 120

C.3 Evolution of a 3-phase smooth interface via junction-based SDV scheme
at t = 0, 10∆t, 80∆t, 300∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.4 Junction-based SDV: Shrinking Triple Bubble Problem . . . . . . . . . . . 124

G.1 Setting up interface γij in the new coordinate system. . . . . . . . . . . . 137



List of Figures xv

G.2 Initial three-phase configuration (black in bold) and its volume-preserving
mean curvature evolution considering bulk energies e1 = e2 = 0 and
e3 = 150y with prescribed contact angles: 180◦−60◦−120◦ (left) and
180◦−120◦−60◦ (right) at different times. . . . . . . . . . . . . . . . . . . 141





List of Tables

2.1 A Summary of Numerical Methods for Mean Curvature Flow . . . . . . . 10

3.1 MBO Method: Errors for varying mesh-time configurations . . . . . . . . 28

3.2 SDV Method (ε = ∆x): Errors for varying mesh-time configurations . . . 28

3.3 SDV Method (ε = 2∆x): Errors for varying mesh-time configurations . . 28

3.4 SDV Method (ε = 5∆x): Errors for varying mesh-time configurations . . 28

3.5 DFDGM (ε = 1.0): Errors for varying mesh-time configurations . . . . . . 29

4.1 Double Bubble: Phase Volumes under penalty parameter % = 10−6. . . . . 45

4.2 Double Bubble: Contact Angle Measures at the Triple Junctions . . . . . 45

4.3 10-phase Flow: Phase Volumes under penalty parameter % = 10−6. . . . . 47

4.4 SDV Method in comparison to other MBO-variant Algorithms . . . . . . 48

5.1 6-phase Flow: Phase Volumes under penalty parameter % = 10−6. . . . . . 59

xvii





List of Algorithms

2.1 Multiphase MBO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Vector-type Threshold Dynamics . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Signed Distance Vector (SDV) Method for Pure Multiphase MCF . . . . . 13
3.2 SDV Method for Pure Multiphase MCF via Minimization . . . . . . . . . 26
3.3 Steepest Descent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Two-phase Volume-preserving SDV Method . . . . . . . . . . . . . . . . . 39
4.2 Multiphase Volume-preserving SDV Method . . . . . . . . . . . . . . . . . 43
5.1 Multiphase SDV Method with Volume Constraints and Bulk Energies . . 54
6.1 Two-phase SDV Method for Volume-preserving Anisotropic Flow . . . . . 63
G.1 MBO Method for Multiphase MCF considering Bulk Energies . . . . . . . 138

xix





Dedicado con todos mio maestros y maestras
desde ya aprende yo hasta ya principia

yo gusta con el matematica . . .





Chapter 1

Introduction

The bulk of the present thesis is geared towards developing a scheme for multiphase
curvature-driven interface evolutions with volume constraint. By “curvature-driven”,
we mean that each point of the interface (separating multiple phase regions) moves with
a normal velocity equal to a function of its mean curvature. This type of evolutionary
problems often appear in differential geometry and analysis (e.g., study of minimal
surfaces), and in a variety of applied problems (e.g., crystal or grain growth, phase
transitions, flame propagation, image processing).

The most fundamental problem is the pure mean curvature flow, where the normal ve-
locity is given by mean curvature. Under such motion, interfaces contract smoothly to
enclose zero volume in finite time. To preserve these phase volumes, the average curva-
ture over all interfaces is added to the normal velocity, which regularizes the flow. Such
volume-preserving mean curvature flow often appears in applications where physical sys-
tems (e.g. soap bubbles, droplets, cell structures) evolve to minimize its surface energy
while preserving mass. This is also of interest in image processing where smoothing
without shrinkage is desired to preserve significant image features.

Due to its theoretical and practical interest, a variety of computational techniques for
mean curvature flow have been proposed. Of particular interest is the MBO threshold
dynamics [68] where the characteristic function of each phase region is diffused and
sharpened separately (taking the 1

2 -level set as the interface). Such level set approach
allows the method to naturally handle complicated topological changes and does not
require explicit calculation of mean curvature. Its major drawback, however, is its time
and grid restrictions on nonadaptive meshes. To address this issue, Esedoglu et al.[36]
suggested using the signed distance function, in place of the characteristic function.
This provides the needed subgrid accuracies on a uniform mesh to accurately locate the
interface and proceed the evolution without stagnation.

Volume-preserving motions can also be produced by thresholding at the level set which
preserves the prescribed volume [85]. Unfortunately, this cannot be easily extended to
the multiphase case, since average mean curvature of each interface varies, causing inter-
faces to overlap or create vacuums. To resolve this issue, Švadlenka et al.[94] proposed
a vector analogue of the original MBO scheme using a variational approach to solve
the vector-valued heat equation and treat the volume constraint via penalization. How-
ever, due to the inherent MBO time and grid restrictions, a temporary and localized
refinement is introduced in the algorithm.

1



2 Introduction

In this thesis, we are interested in two main points. First, we introduce a signed dis-
tance vector modification to the MBO threshold dynamics – a scheme that benefits the
main features of its predecessors whilst resolving their key issues. To be precise, we
develop a method for realizing volume-preserving multiphase mean curvature flow that
(1) naturally handles changes in topology, (2) incorporates interfacial distances in order
to alleviate the well-known MBO time and grid restrictions, and (3) set up in a vector-
valued fashion to cater any multiphase configuration and easily treat volume constraints
using a variational approach via penalization. Using such vector variational scheme, we
extend our method to include space-dependent bulk energies and anisotropic energies.
The vector analogue of the scalar signed distance function is mathematically appealing
since it may provide hint on characterizing multiphase mean curvature flow by interfacial
distances as in [8, 41]. It also implicitly contains geometric information of the interface,
which defeats the purpose of localized refinement in [94].

Second, we analyze a penalization method related to the above volume-constrained vari-
ational problem. In particular, we consider the problem of successively minimizing the
functional

∫
Ω h
−1|u − un−1|2 + |∇u|2 over all nonnegative functions u ∈ H1(Ω) whose

set of positive values have Lebesgue measure equal to |{u0 > 0}| for a given nonnegative
Lipschitz function u0 ∈ H1(Ω) ∩ L∞(Ω) and time step size h > 0. We use an approx-
imation method that penalizes only the increase in measure of the set {u > 0}. We
prove the existence and regularity of the sequence of minimizers and investigate their
behaviors for sufficiently large penalty value λ. Without relying on the smoothness of
the free boundary, we show that the measure of the set {u > 0} adjusts to its prescribed
value provided λ is large enough; hence, the solution to the original problem is attained
without having to take λ to infinity. To end, we construct a minimizing movement and
show some of its properties.

The thesis is organized as follows. We start with an overview of the pure multiphase
mean curvature flow in Chapter 2. In Chapter 3, we construct a vector analogue of
the signed distance function (Definition 3.1) and show that this vector distance-based
scheme moves the interface according to its mean curvature (Theorem 3.3) and sta-
bly imposes symmetric junction angles (Theorem 3.7). The succeeding three chapters
extend our method to include volume constraints (Chapter 4), space-dependent bulk en-
ergies (Chapter 5), and anisotropic energies (Chapter 6). We present several numerical
tests and computational examples of these curvature-driven interface evolutions. Lastly,
Chapter 7 presents theoretical results on a penalization method for an evolutionary free
boundary problem with volume constraint.



Chapter 2

Overview of Multiphase Mean
Curvature Flow

The present chapter provides an introduction to pure multiphase mean curvature flow.
In addition, we present previous works on numerical approximation of mean curvature
flow highlighting their essential features and key issues in relation to volume preservation
and the multiphase case, from which, we build the motivation for this study.

2.1 Multiphase Motion by Pure Mean Curvature

Consider a partition of RN = P1 ∪P2 ∪ · · · ∪Pk into k phase regions Pi ⊂ RN of positive
Lebesgue measure. Define a collection Γ :=

⋃
{γij : i, j = 1, 2, . . . , k} of hypersurfaces

in RN where γij = γji denotes the interface separating phases Pi and Pj , that is, γij =
Pi ∩ Pj = ∂Pi ∩ ∂Pj(i 6= j).

Ω

P1

P3

Pk

P4

P2

· · ·

· · ·

γ12

γ23

γ24

Figure 2.1: An illustration of a k-phase configuration of domain Ω.

The objective is to find a family {Γ(t) :=
⋃
γij(t)} depending on time t such that every

point x ∈ γij(t) moves with a velocity

V(x) = −κηij on γij(t), (2.1)

3



4 Overview of Multiphase Mean Curvature Flow

where, κ and ηij denotes the mean curvature and unit outer normal from phase Pi to
Pj at x, respectively.

Such curvature-driven interface motions often appear in differential geometry and anal-
ysis. A number of these literature include local regularity [31, 32]; behaviour of singu-
larities [57–59, 95]; uniqueness and existence of generalized solutions in the two-phase
setting – using varifolds of geometric measure theory [14], parametric approach [55],
and level-set techniques based on the idea of viscosity solutions [24, 40–43]; as well as,
existence, uniqueness, and global regularity of interfacial motion with triple junctions
[15, 66]. These problems are not only mathematically appealing, but also of practical
interest as it often arises in applications in the physical sciences and engineering. To
mention a few, grain boundary motion in annealing pure metals [34, 76], phase changes
and moving interfaces [39], fluid dynamics [79, 97], evolution of nanoporosity in dealloy-
ing [33], and even, in the field of image processing, e.g. image selective smoothing and
edge detection [6, 19, 20, 23, 86].

More often than not, this type of interfacial motion is referred to as pure multiphase
mean curvature flow since equation (2.1) (as shown in [65, 81]) is derived as the gradient
flow for the surface energy functional

E(Γ) =
∑
i<j

∫
γij

dHN−1 (2.2)

where HN−1 denotes the N −1-dimensional Hausdorff measure. In this sense, interfaces
evolve in order to decrease their surface energies, thereby, playing an important role in
the theory of minimal surfaces. In the case when there are three or more phases (k > 2),
a natural boundary condition arises from the gradient descent for (2.2), known as the
symmetric Herring boundary condition which imposes a 120◦−120◦−120◦ angle measures
at the triple junction [54].

In the two-phase (k = 2) setting, on the other hand, it was proven that an interface
under mean curvature motion contracts smoothly, becoming more and more spherical,
as it shrinks to a point and eventually vanishes in finite time [44, 55]. As an example,
consider an N -dimensional sphere of initial radius r0, then its mean curvature flow is
given by

dr

dt
= −N − 1

r
, r(0) = r0.

Hence, the radius of the sphere r(t) at time t is

r(t) =
√
r2

0 − 2(N − 1)t,

which implies that the sphere shrinks without changing its shape and disappears at time
t = r2

0/2(N − 1).

It is also well-known that two-phase mean curvature motion can be characterized in
terms of the distance to the interface [8, 41]. More precisely, let P ∈ RN be the phase
region whose boundary ∂P coincides with interface Γ. Define the scalar signed distance
d̂ : RN → R by

d̂(x, t) = dist(x, P (t))− dist
(
x,RN\P (t)

)
.
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Then, ∇d̂ and ∆d̂ gives the outer normal and mean curvature, respectively. Moreover,
the normal velocity of a point on the boundary at each time is given by −∂d̂/∂t; hence,
the evolution is characterized by

∂d̂

∂t
(x, t) = ∆d̂(x, t), (2.3)

for any x ∈ ∂P (t) = {d̂(x, t) = 0}, the zero-level set. However, as far as the author’s
knowledge, such a characterization for the multiphase mean curvature flow has yet to
be established and remains an open problem.

2.2 Volume-constrained Interface Evolution

Let us consider the case when interfaces evolve by mean curvature while simultaneously
preserving the volume of each phase region, that is, |Pi(0)| = |Pi(t)|, ∀t ≥ 0 (i =
1, 2, . . . , k), where | · | = LN (·) denotes the N -dimensional Lebesgue measure. This type
of motions come in handy in the problem of shape recovery where one achieves smoothing
without shrinkage, thereby, preserving important features of the image [29, 87].

This evolutionary problem known as the volume-preserving multiphase mean curvature
motion is characterized by the velocity of interface that depends on the lengths and
curvatures of all other interfaces. In the two-phase case [17, 90], the velocity of interface
Γ is simply given by

V(x) = (−κ+ κa)η(x), x ∈ Γ,

where κa = −
∫

Γ(t) κ(x, t) dHN−1 denotes the average mean curvature along interface Γ.
Adding this extra term κa balances the contraction resulting from the pure mean cur-
vature flow and keeps the enclosed volume of the hypersurface constant; thereby reg-
ularizing the flow. Under a volume-preserving two-phase flow, a convex hypersurface
(interface) remains convex and approaches a constant curvature sphere [9, 45, 56]. Other
literature on this problem include existence of global solution starting from non-convex
initial hypersurfaces [35] and studies related to constant mean curvature surfaces be-
tween parallel places, in particular, stability of cylinders [11] and spherical caps [1]
under volume-preserving mean curvature flow.

Moreover, it was shown that volume-preserving mean curvature flow arises as a singular
limit of a nonlocal Ginzburg-Landau equation, in other words, a nonlocal mean curvature
motion of interfaces which preserves mass [16, 83]. For this reason, such curvature-driven
interface evolution problems often arises in physical systems where the mass of the phase
regions remains constant as in capillarity [92], biological cell structure [13], soap films,
soap bubbles, and droplets [98].

2.3 Numerical Methods on MCF Approximation

Due to its wide array of applications, an interesting selection of numerical methods for
realizing mean curvature flow (MCF) were proposed. This section introduces a number of
these algorithms and presents their pros and cons with emphasis on volume preservation
and multiphase case.
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2.3.1 Front Tracking Method

Front tracking method [17, 63, 67, 69] takes a fundamentally straightforward approach
to approximating mean curvature interface evolutions. It involves direct discretization
of a parametrization of interface and approximate its motion by explicit computation of
the mean curvature and normal direction at each interfacial discrete point, including the
average curvature over all interfaces for the volume-constrained case. In the multiphase
case, triple junctions are treated separately in order to satisfy the required Herring angle
conditions. Moreover, note that all calculations solely are concentrated on the interface.
For this reason, the front tracking method is said to be computationally efficient.

One major drawback of this method is its inability to handle interfaces that cross or have
complicated topology. To overcome this problem, one should explicitly detect and treat
changes in topology by some selection of rules (e.g. [17] for mean curvature motion of a
network of curves). This requires one to enumerate or make assumptions on all possible
topological changes that may typically occur. For example, in the two-dimensional
case, it is expected (though not proven) that interfaces interact only through junction-
junction collisions [66], which translates the problem to detecting junction collisions and
perform some form of “numerical surgery” to generate the next interface evolution. For
general interface networks, however, this method can be quite impractical to implement,
particularly in higher dimensions.

2.3.2 Threshold Dynamics

The threshold dynamics introduced by Merriman, Bence, and Osher (MBO) takes a
level set approach for realizing interfacial motions by mean curvature [68]. This scheme
is very easy to implement and avoids the complications of the front tracking method –
in the sense that it naturally handles topological changes and does not require explicit
calculation of the mean curvature and the normal direction.

In the two-phase case, the interface is defined as a boundary of some compact set which
evolves through time by alternating two steps: diffusion and thresholding. At each time
interval, the 1

2 -level set of the solution of the heat equation (taking the characteristic
function of the compact set as the initial condition) approximates the mean curvature
evolution of the interface. In fact, this has been extensively shown to converge to the
unique viscosity solution of the mean curvature evolution equation [12, 37, 60] ut − tr

{(
I − Du⊗Du

|Du|2

)
D2u

}
= 0

u(0, x) = χΓ(x).

Unfortunately, this algorithm is also known to suffer from a time and grid restriction on
nonadaptive meshes [68]. This means that in order to accurately resolve the interfacial
motions via an MBO process, one must appropriately choose time step size ∆t so that
diffusion proceeds for a long enough time that the half-level set moves at least one grid
point. Otherwise, the thresholding step would keep the interface stationary. (For an
illustration of MBO stagnation in the one-dimensional case, see Figure 2.2).

In the general multiphase case, the characteristic function of each phase region is diffused
and sharpened separately [68, 84], as shown in Algorithm 2.1. Here, the interfaces are
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b b

1/2

× ×
Figure 2.2: Thresholding the diffused solution (black) of the characteristic function

(blue) reverts to the same characteristic function causing MBO to get “stuck”.

taken as the 1
2 -level sets of all k solutions, that is,

⋃k
i=1{ui = 1

2}. Moreover, the update
in the thresholding step maintains the stability of the triple junction imposing symmetric
angles [68].

Algorithm 2.1 Multiphase MBO Algorithm

1. Initialization. Set ui0 := χi, characteristic function of phase Pi (i = 1, 2, . . . , k).

2. Diffusion Step. For each i = 1, 2, . . . , k, solve scalar heat equation until time ∆t:
∂ui

∂t
(t, x) = ∆ui(t, x) in (0,∞)× RN ,

ui(0, x) = ui0(x) on {t=0} × RN .

3. Thresholding Step. For each i = 1, 2, . . . , k, sharpen the diffused regions by setting
ui0 as the characteristic function of {ui(x) ≥ uj , j = 1, 2, . . . , k}.

4. Go back to the diffusion step.

For two-phase volume-preserving motions, Ruuth and Wetton [85] suggested changing
the threshold value to 1

2 −
1
2κa(t)

√
π−1∆t where κa denotes the average mean curvature

along the interface. They showed that at this threshold value, the level set preserves the
prescribed phase volume. However, this scheme lacks theoretical justification and cannot
be easily extended to the multiphase case. This is because each interface yields different
average mean curvature, causing interfaces to possibly overlap or create vacuums.

2.3.3 Distance Function-Based Algorithm

To address the time and grid restriction on the MBO threshold dynamics, Esedoglu,
Ruuth, and Tsai proposed replacing the thresholding step by a redistancing scheme [36]
where scalar signed distance function is instead, taken as the initial condition in solving
the heat equation. Here, the interface is described by the zero-level set of the solution.

Note that the key issue why MBO interface evolutions gets “stuck” lies in the represen-
tation of phase regions by the characteristic function. Since the mesh nodal values are
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set to either 0 or 1 at the beginning of each time step, the true location of the inter-
face is lost and its discrete representation is pushed to the center of the grid. Unlike
characteristic functions, signed distance functions implicitly keep geometric information
regarding the interface; thereby, providing subgrid accuracies on a uniform mesh and
allows one to accurately locate the interface. Hence, this method usually coined as the
“Distance Function-based Diffusion Generated Motion (DFDGM) Algorithm” [34] re-
solves the mean curvature motion of the interface without the need for adaptive mesh
refinement schemes.

As much as DFDGM method alleviates the time and grid restriction, it also inherits both
good and bad points of the threshold dynamics. In particular, it can naturally handle
complicated topological changes and does not require explicit computations of the mean
curvature. However, as in the MBO method, its approximation to volume-preserving
mean curvature flow in the multiphase case still remains in question.

2.3.4 Vector-type Threshold Dynamics

Švadlenka, Ginder, and Omata introduced an interesting spin on the threshold dynamics
using vectors, while aimed at realizing multiphase mean curvature flow with volume
constraint [94]. Since Ruuth’s approach [84] can not be easily extended to the volume-
presering multiphase case, a need to reformat the multiphase MBO algorithm 2.1 arises.
In particular, the authors reformulated the original multiphase MBO scheme in a vector-
valued fashion in such a way that volume constraints can be obtained by a constrained
gradient flow.

In the two-phase setting (k = 2), observe that representing phase regions by the charac-
teristic function is analogous to assigning scalars of equal weights to each phase region,
say 1 and −1, the endpoints of a 2-simplex centered at the origin. With this in mind, the
authors represented each region in a k-phase configuration, by unit vectors of dimension
k − 1 pointing from the centroid of a standard k-simplex to its vertices called reference
vectors pi (i = 1, 2, . . . , k). Figure 2.3 shows an example of a 3-phase representation by
reference vectors.

Figure 2.3: Assigning corresponding reference vectors to each phase region.
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Taking the reference vector field as an initial condition, the vector-valued heat equation
is solved followed by a thresholding step that involves finding the closest reference vector
to the solution vector at each nodal point (see Algorithm 2.2).

Algorithm 2.2 Vector-type Threshold Dynamics

1. Initialization. Set u0(x) = pi if x ∈ Pi.
2. Diffusion Step. Solve the vector-valued heat equation until time ∆t.

3. Projection Step. Update u0 by identifying the reference vector closest to solution
u(∆t, x), that is,

pi · u(∆t, x) = max
j=1,2,...,k

pj · u(∆t, x).

This redistribution of reference vectors determines the approximate new phase
regions after time ∆t, which in turn, defines the new interface network.

4. Go back to the diffusion step.

This method can be thought of as a vector analogue of the original two-phase MBO
scheme. In fact, their equivalence can be shown by considering the functions

wi(t, x) =
k − 1

k

(
u(t, x) · pi +

1

k − 1

)
, i = 1, 2, . . . , k.

This vector setting allowed the authors to easily treat volume-constrained motions by
using a variational approach based on the idea of the discrete Morse flow to solve the
vector-valued heat equation and a penalization technique to handle volume constraints.

To overcome the MBO time and grid restriction on nonadaptive meshes, a temporary
and localized refinement technique is introduced in the algorithm as follows. Just before
the projection step, a record of the interfacial geometry is kept and recalled at the next
minimization step. If the interface crosses an element, the geometric information of the
interface is used to retriangulate the element and extend the reference vector field, which
provides enough subgrid accuracy to proceed to the next evolution.

2.4 Concluding Remarks

We summarize the key features and issues of the above-mentioned numerical methods
in Table 2.1. Weighing in both their pros and cons, we think about an MBO-based
scheme that takes advantage of the essential features of the above-mentioned modifica-
tions whilst resolving their key issues. In particular, our goal is to develop a method
for realizing volume-preserving multiphase mean curvature flow that satisfies all six key
features listed in Table 2.1. To do this, we adopt the vector approach in [94] in order to
cater any multiphase configuration and easily treat volume constraints using a variational
approach via penalization. To inherently resolve the MBO time and grid restrictions,
we incorporate interfacial distances as in [36] which provides subgrid accuracies without
the need for mesh refinement. This requires us to construct a vector analogue of the
scalar signed distance function, which in itself, is of mathematical interest, as it suggests
a good starting point to characterize multiphase pure mean curvature flow as in [8, 41]
using distances to the interface and derive a partial differential equation analogous to
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Table 2.1: A Summary of Numerical Methods for Mean Curvature Flow

Features of the Numerical Method
Front

Tracking
MBO

Ruuth’s
Method

DFDGM
Vector
MBO

1. does not require direct calculation of mean
curvature and normal direction

× X X X X

2. handles complicated topological changes × X X X X

3. proceeds the evolution without stagnation X × — X —

4. can be extended to multiphase case — X X X X

5. preserves volume in two-phase case X × X × X

6. preserves volume in multiphase case — × × × X

(Here, “—” means an auxilliary scheme is introduced in the algorithm to resolve the issue.)

the heat equation (2.3). This then, serves as our motivation for designing a signed
distance vector approach to approximating volume-preserving mean curvature motions
of interfaces separating multiple phase regions, as will be discussed in the succeeding
chapters.



Chapter 3

A Vector Distance Approach to
Multiphase Mean Curvature Flow

In this chapter, we present an MBO-based scheme [68] for treating multiphase mean
curvature motions which combines the vector-valued variational approach in [94] with
the idea of using interfacial distances [36] to alleviate the well-known MBO time and
grid restriction without the need for an adaptive remeshing technique (e.g. [84, 94]). In
section 3.1, we construct such signed distance function in a vector setting, which allows
us to handle any number of phases. We then modify the MBO Algorithm in section
3.2. In sections 3.3 and 3.4, we formally show that under this scheme, interfaces evolve
according to mean curvature flow and that the symmetric Herring angle condition at
the triple junction is preserved, respectively. Finally, in section 3.5, we present how we
execute our modified MBO algorithm and some numerical tests and examples.

3.1 Construction of the Signed Distance Vector Field

Consider a partition of RN = P1 ∪P2 ∪ · · · ∪Pk into k phase regions Pi ⊂ RN of positive
Lebesgue measure. Define a collection Γ :=

⋃
{γij : i, j = 1, 2, . . . , k} of hypersurfaces

in RN where γij = γji denotes the interface separating phases Pi and Pj , that is,

γij = Pi ∩ Pj = ∂Pi ∩ ∂Pj .

Set up reference vectors pi corresponding to each phase region Pi as unit vectors of
dimension k− 1 pointing from the centroid of a standard k-simplex to its vertices. (See
Appendix A for details on how these reference vectors are constructed.)

We incorporate distances to each phase region Pi, as follows.

Definition 3.1. For ε > 0, we define the signed distance vector δε : RN → Rk−1 by:

δε(x) :=

k∑
i=1

[
1−min

(
1,
di(x)

ε

)]
pi,

where di(·) := dist (·, Pi) denotes the usual (Euclidean) distance to phase region Pi.

11
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Remark. For any point x ∈ RN , the following is true for any pair of reference vectors
pi and pj (i 6= j):

1. If B(x, ε) ∩ (Pi ∪ Pj) = ∅, then δε(x) · (pi − pj) = 0.

2. If B(x, ε) ∩ (Pi ∪ Pj) 6= ∅, then

δε(x) · (pi − pj) =
k

ε(k − 1)


ε− di(x), B(x, ε) ∩ Pj = ∅
dj(x)− ε, B(x, ε) ∩ Pi = ∅

dj(x)− di(x), otherwise.

where B(x, ε) denotes ε-neighborhood of x. Hence,

|δε(x) · (pi − pj)| ≤
k

k − 1
.

Moreover, we note that on interface γij , the signed distance vector δε is defined as the
sum of reference vectors pi and pj ; while on regions away from the ε-tubular neigh-
borhood of interface Γ, δε reduces to the reference vector pi corresponding to its phase
location i.

Example 3.1. In the two-phase case, ε = 1.0 yields the scalar signed distance function
(cf. [36]). In this sense, we see that the vector-valued function δε is a multiphase
extension of the scalar signed distance function.

Example 3.2. For any k-phase configuration, the signed distance vector δε approaches
the multiphase vector form of MBO (cf. [94]), as ε→ 0.

Example 3.3. A more concrete example of the signed distance vector δε with ε = 1
6 for

a four-phase configuration is shown in Figure 3.10.

P3P2

P1

γ12 γ13

γ23

P4 γ14

γ24 γ34

p3

p2

p1

p4

Figure 3.1: A 4-phase configuration (top left); the reference vectors pi ∈ R3 (bottom
left); and its corresponding signed distance vector field with ε = 1

6 (right).
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Note that this construction is continuous, as exhibited in the next theorem.

Theorem 3.2. For ε > 0, signed distance vector δε is Lipschitz continuous.

Proof. For any x, y ∈ RN , we see that

|δε(x)− δε(y)| ≤ 1

ε

k∑
i=1

|min{ε, di(y)} −min (ε, di(x))| |pi|

=
1

ε

k∑
i=1



|ε− di(x)|, di(x) < ε ≤ di(y)

|di(y)− ε|, di(y) < ε ≤ di(x)

|di(y)− di(x)|, di(x), di(y) < ε

0, otherwise

≤ k

ε
|x− y|,

since phase distance di is 1-Lipschitz continuous.

3.2 The Algorithm

In view of the inherent time-grid restriction of the vector-type MBO method [94] on
uniform meshes, we claim that taking ε ≥ ∆x will provide the subgrid accuracy needed
to prevent unwanted stagnation of interfaces. In this line, we adopt a similar algorithm
as in [94], as follows:

Algorithm 3.1 Signed Distance Vector (SDV) Method for Pure Multiphase MCF

Given an initial interface network Γ0 :=
⋃
{γij : i, j = 1, 2, . . . , k} and a time step size

∆t > 0, we obtain its mean curvature flow (MCF) approximation by generating a
sequence of time discrete interface networks {Γm}Mm=1 at times t = m∆t (m = 1, . . .M),
as follows:

1. Initialization. Construct δε with respect to Γm−1.

2. Diffusion Step. Solve the vector-valued heat equation until time ∆t: ut(t, x) = ∆u(t, x) in (0,∞)× RN ,

u(0, x) = δε(x) on {t=0} × RN .
(3.1)

3. Projection Step. For each x, identify the reference vector pi closest to the solution
u(∆t, x), that is,

pi · u(∆t, x) = max
j=1,2,...,k

pj · u(∆t, x). (3.2)

This redistribution of reference vectors determines the approximate new phase
regions after time ∆t, which in turn, defines the new interface network Γm.
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Our earlier construction of the signed distance vector field [70] is presented in Appendix
C. Here, the distance vector is obtained by rotating the sum reference vectors corre-
sponding to the two closest phase regions. The angle of rotation is determined by the
distance to the closest interface and the distance to the closest junction point, which
in turn, provide the needed subgrid accuracy. In fact, employing this definition of the
signed distance vector field as an initial condition in Algorithm 3.1 moves the interface
with a normal velocity of minus mean curvature. However, such construction has discon-
tinuities along regions where the point is equidistant to its two closest phase regions. In
this sense, Definition 3.1 provides a more stable construction independent of the triple
junctions.

3.3 Velocity of Interface

In this section, we estimate the normal velocity of an interface subjected to Algorithm
3.1 and formally show that indeed, it evolves according to mean curvature flow. Here,
the interfacial velocity is taken (in the discrete sense) as displacement in the normal
direction over time.

Theorem 3.3. Let x ∈ Γ :=
⋃
{γij : i, j = 1, 2, ..., k} such that there exists a unique

pair (i, j) for which x ∈ γij. Then, the normal velocity v of interface Γ at x evolving via
SDV method is

v(x) = −κ+O(∆t), as ∆t→ 0,

where κ is (N − 1)-times the mean curvature of Γ at x.

Proof. For simplicity, consider N = 2. Fix ε > 0 and select an arbitrary point x ∈ R2

on the interface. Without loss of generality, assume x ∈ γij . Now, rotate and translate
the coordinate system so that x = 0 in the new coordinate system and the normal η to
γij pointing into Pj lies in the positive x2 direction.

2
√
2τ

x = 0

B0 ∩ Pi

γij

Q

x1

x2

η

B0 ∩ Pj

Figure 3.2: Setting up interface γij in the new coordinate system.
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Choose τ > 0, small enough so that B0 := B(0, 2
√

2τ) contains only phases Pi and Pj ,
that is, for n 6= i, j, we have B0 ∩ Pn = ∅. Assume that there exists a smooth function
γ : R→ R whose graph (x1, γ(x1)) describes the interface γij inside the ball B0. Hence,
if κ defines the curvature of the interface γij at point x = (0, 0), then γ(0) = 0, γ′(0) = 0,
and γ′′(0) = −κ.

Consider Q := [−τ, τ ]× [−τ, τ ] and assume τ < ε√
2
, which guarantees that every ε-ball

centered in Q contains a portion of interface γij . Assume further that τ is so small that
the following holds:

di(x) = dist(x, γij ∩Q), if x ∈ Q ∩ Pj ,
dj(x) = dist(x, γij ∩Q), if x ∈ Q ∩ Pi. (3.3)

Let u be the solution of the vector-type heat equation (3.1). For convenience, we will
write t instead of ∆t. Then, the normal velocity v of interface γij at point x = 0 obtained
from SDV method can be found from the relation

0 = u(t, 0, vt) · (pi − pj)

=

∫
Q

+

∫
R2\Q

δε(x) · (pi − pj)Φt(x− z)dx =: I + II.

where z := (0, vt). Here, we write the heat kernel as: Φt(x1, x2) := ϕt(x1)ϕt(x2) where

ϕt(ξ) = 1
2
√
πt
e−

ξ2

4t .

Using Remark 3.1, we show that the second integral II is exponentially small:

|II| ≤ k

k − 1

∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
ϕt(x1)ϕt(x2 − vt)dx2dx1

≤ C

[∫ ∞
τ−vt
2
√
t

+

∫ ∞
τ+vt
2
√
t

e−x
2
2dx2 + 2

∫ ∞
τ

2
√
t

e−x
2
1dx1

]

≤ C

∫ ∞
τ

2
√
t

e−x
2
1dx1 ≤ Ce−

τ2

4t . (3.4)

(Refer to Lemma D.1 for details on how we arrived at the last inequality (3.4) and
Lemmas D.2 and D.3 for succeeding estimates used in this proof.) On the other hand,
it follows from Remark 3.1.2 and equation (3.3) that

I =
k

ε(k − 1)

∫
Q∩Pi
−
∫
Q∩Pj

dist(x, γij ∩Q)Φt(x− z)dx

=
k

ε(k − 1)

∫
Q
d̂γij∩Q(x)Φt(x− z)dx, (3.5)

where d̂ : R2 → R denotes the scalar signed distance. Using the Taylor expansion of the
scalar signed distance (Proposition B.1) at x = 0, equation (3.5) becomes

I =
k

ε(k − 1)

∫
Q

[(
x2 + 1

2κx
2
1

)
+
(

1
6κx1x

3
1− 1

2κ
2x2

1x2

)
+O

(
|x|4
)]

Φt(x− z)dx

=:
k

ε(k − 1)
[I1 + I2 + I3] .
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We estimate the first integral I in the following claims:

Claim 1. I1 = (v + κ) t+O

(
(1 + τ +

√
t)
√
te−

τ2

4t

)
, as t→ 0.

Indeed,∫
R2

(
x2 + 1

2κx
2
1

)
Φt(x− z)dx =

∫
R
x2ϕt(x2 − vt)dx2 + κ

∫ ∞
0

x2
1ϕt(x1)dx1

=

∫
R

(x2 + vt)ϕt(x2)dx2 + κt

= (v + κ) t.

Moreover,∣∣∣∣∣
∫
R2\Q

x2Φt(x−z)dx

∣∣∣∣∣ ≤
∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
|x2|Φt(x1, x2−vt)dx1dx2

≤
(∫ −τ−vt
−∞

+

∫ ∞
τ−vt

+ e−
τ2

4t

∫
R

)
|x2 + vt|ϕt(x2)dx2

≤ C

(∫ ∞
τ

+ e−
τ2

4t

∫ ∞
0

)
(x2 + |v|t)ϕt(x2)dx2

≤ C
(√

t+ |v|t
)
e−

τ2

4t ,

and ∣∣∣∣∣
∫
R2\Q

1
2κx

2
1Φt(x−z)dx

∣∣∣∣∣ ≤
∫ ∞

0

∫
R\(−τ,τ)

+

∫ ∞
τ

∫
R
|κ|x2

1Φt(x1, x2−vt)dx1dx2

≤ C|κ|
(
t

∫ ∞
τ

ϕt(x2)dx2 +

∫ ∞
τ

x2
1ϕt(x1)dx1

)
≤ C|κ|

(
t+
√
t(τ +

√
t)
)
e−

τ2

4t ,

which proves the first claim.

Claim 2. I2 = −vκ2t2 +O

(√
t(τ +

√
t)e−

τ2

4t

)
, as t→ 0.

Indeed,∫
R2

(
1
6κx1x

3
1 − 1

2κ
2x2

1x2

)
Φt(x−z)dx = −κ2

∫ ∞
0

x2
1ϕt(x1)

∫
R
x2ϕt(x2 − vt)dx1dx2

= −κ2t

∫
R

(x2 + vt)ϕt(x2)dx2 = −vκ2t2.

Moreover,∣∣∣∣∣
∫
R2\Q

1
6κx1x

3
1Φt(x−z)dx

∣∣∣∣∣ ≤ C

∣∣∣∣∣
∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
x3

1Φt(x1, x2−vt)dx1dx2

∣∣∣∣∣
≤ C

∫ ∞
τ

x3
1ϕt(x1)dx1

∫ ∞
0

ϕt(x2 − vt)dx2

≤ C
√
t
(
τ +
√
t
)2
e−

τ2

4t ,
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and∣∣∣∣∣
∫
R2\Q
−1

2κ
2x2

1x2Φt(x−z)dx

∣∣∣∣∣ ≤ C

∣∣∣∣∣
∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
x2

1x2Φt(x1, x2−vt)dx1dx2

∣∣∣∣∣
≤ C

(
t

∫ ∞
τ

+
√
t(τ +

√
t)e−

τ2

4t

∫ ∞
0

)
(x2 + |v|t)ϕt(x2)dx2

≤ C

[
t ·
√
te−

τ2

4t +
√
t
(
τ +
√
t
)
e−

τ2

4t · |v|t
]

≤ Ct
√
t
(
τ +
√
t
)
e−

τ2

4t ,

proving the second claim.

Claim 3. I3 = O
(
t2
)
, as t→ 0.

Indeed,

|I3| ≤ C

∫
Q

∣∣x2
1 + x2

2

∣∣2 Φt(x1, x2 − vt)dx1dx2

≤ C

(∫ ∞
0
x4

1ϕt(x1)

∫
R
ϕt(x2) +

∫
R
ϕt(x1)

∫ ∞
0

(x2 + |v|t)4ϕt(x2)

)
dx2dx1

≤ Ct2
(

1 + (1 + |v|
√
t)4
)
,

which proves the claim.

Finally, it follows from all three claims and equation (3.4) that

0 = I + II = k
ε(k−1)

[
(v + κ) t+O

(
(1 + τ +

√
t)
√
te−

τ2

4t

)
+O(t2)

]
+O(e−

τ2

4t ).

This gives v = −κ+O

(
t+ ( εt + τ+1√

t
+ 1)e−

τ2

4t

)
, as t→ 0.

3.4 Triple Junction Analysis

In this section, we formally show that SDV scheme (Algorithm 3.1) preserves the sym-
metric (120◦) Herring angle conditions at the triple junction. We utilize a similar ar-
gument as in [36], as follows: assume a triple junction at the origin and evolve the
configuration via SDV method for one time step t := ∆t; locate the triple junction after
time t and denote this by z; and lastly, determine the junction angles at the new junction
location point z. We proceed throughout the whole section in this manner.

3.4.1 Heat Kernel Convolution of Phase Distance

To establish the stability of the triple junction, we first need to write down the Taylor
expansion of the convolution

ζS(z) :=

∫
B(0,τ)

dS(x)Φt(z − x)dx
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of distance dS to the phase region S with the heat kernel Φt(x), when restricted to a
τ -neighborhood of the origin (triple junction). In particular, we let S be bounded by two
smooth curves intersecting at the origin with an interior angle of 2θ < π. Without loss
of generality, rotate the configuration so that the tangents at the origin form a wedge
Σ symmetric with respect to the negative x2-axis. Choose τ > 0, small enough so that
S ∩B(0, τ) ⊂ R× (−∞, 0].

x1

x2

θθ

R1R2

R3

θ

S
Σ

τ−τ

Figure 3.3: Approximating phase region S by its corresponding tangent wedge Σ.

We estimate dS by the distance dΣ to the approximating wedge Σ and compute its
Gaussuan convolution as follows.

Lemma 3.4. The convolution of distance dΣ to the tangent wedge Σ with the heat kernel
Φt, restricted to some open ball B(0, τ) has the following Taylor expansion at the origin:

ζΣ(z) =

√
t√
π

(π
2

+1−θ
)

+
1

π

(π
2

sin θ + cos θ
)
z2 + (1+z2)ψ1(t) + (z2

1 +z2
2)ψ2(t)

+
4 cos2θ+sin 2θ + π−2θ

16
√
πt

z2
1 +

4 sin2θ−sin 2θ + π−2θ

16
√
πt

z2
2 +O

(
|z|3

t

)
,

where ψ1(t) = O((1+t+τ)e−
τ2

4t ) and ψ2(t) = O(t−2(τ +
√
t)3e−

τ2

4t ), as t→ 0.

Proof. Note that

dΣ(x) =


x1 cos θ + x2 sin θ, in R1 := {x : −x1 cot θ ≤ x2 ≤ x1 tan θ}
−x1 cos θ + x2 sin θ, in R2 := {x : x1 cot θ ≤ x2 ≤ −x1 tan θ}

|x|, in R3 := {x : x2 ≥ |x1| tan θ}
0, otherwise.

Then, using the integrals in Lemma D.4, we have∫
R1∪R2

dΣ(x)Φt(x)dx = 2 cos θ

∫
R1

x1Φt(x)dx+ 2 sin θ

∫
R1

x2Φt(x)dx

=

√
t√
π

[cos θ (sin θ + cos θ) + sin θ (sin θ − cos θ)] =

√
t√
π
,
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and ∫
R3

dΣ(x)Φt(x)dx =
1

4πt

∫ π−θ

θ

∫ ∞
0
r2e−

r2

4t drdρ =
t√
4πt

∫ π−θ

θ
dρ =

√
t

2
√
π

(π − 2θ).

Moreover, since dΣ(x) ≤ |x|, then we have∣∣∣∣∣
∫
R2\B(0,τ)

dΣ(x)Φt(x)dx

∣∣∣∣∣ ≤ 1

4πt

∫ 2π

0

∫ ∞
τ

r2e−
r2

4t drdφ ≤ C
(
τ +
√
t
)
e−

τ2

4t .

Thus, ζΣ(0) =
√
t√
π

(
π
2 + 1− θ

)
+O

(
(τ +

√
t)e−

τ2

4t

)
, as t→ 0.

Next, we evaluate the first partial derivatives of ζΣ. Note that dΣ and Φt are symmetric
with respect to x1 = 0, then∫

B(0,τ)
dΣ(x)

∂

∂z1
Φt(z−x)

⌋
z=0

dx =
1

2t

∫
B(0,τ)

x1dΣ(x)Φt(x)dx = 0,

Hence, the partial derivative with respect to z1: ζΣ
z1(0) = 0. On the other hand, we see

that∫
R1∪R2

dΣ(x)
∂

∂z2
Φt(z−x)

⌋
z=0

dx=

∫
R1

x2

t
(x1cos θ + x2sin θ) Φt(x)dx =

sin θ

2
− cos θ

π∫
R3

dΣ(x)
∂

∂z2
Φt(z−x)

⌋
z=0

dx=
1

2t

∫ π−θ

θ

∫ ∞
0

r3 sin ρ
e−

r2

4t

4πt
drdρ =

2 cos θ

π
.

Similarly,∣∣∣∣∣
∫
R2\B(0,τ)

dΣ(x)
∂

∂z2
Φt(z−x)

⌋
z=0

dx

∣∣∣∣∣ ≤ 1

2t

∫ 2π

0

∫ ∞
τ
r3| sin ρ|e

− r
2

4t

4πt
drdρ = O(e−

τ2

4t ).

Thus, we get ζΣ
z2(0) = 1

2 sin θ + 1
π cos θ +O(e−

τ2

4t ), as t→ 0.

Continuing with the quadratic terms, we have∫
R1∪R2

dΣ(x)
∂2

∂z2
1

Φt(z − x)

⌋
z=0

dx =
1

t

∫
R1

dΣ(x)

(
x2

1

2t
− 1

)
Φt(x)dx

=
1

2t2

∫
R1

(
x3

1 cos θ + x2
1x2 sin θ − 2tdΣ(x)

)
Φt(x)dx

=
1

2
√
πt

(
sin 2θ + cos2 θ

)
,

and∫
R3

dΣ(x)
∂2

∂z2
1

Φt(z − x)

⌋
z=0

dx =
1

4t2

∫
R3

|x|
(
x2

1 − 2t
)

Φt(x)dx

=
1

8t2
√
πt

∫ ∞
0

∫ π−θ

θ
r2
(
r2cos2ρ− 2t

)
ϕt(r)dρdr

=
1

8
√
πt

(π − 2θ − 3 sin 2θ) .
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Moreover, ∣∣∣∣∣
∫
R2\B(0,τ)

dΣ(x)
∂2

∂z2
1

Φt(z−x)

⌋
z=0

dx

∣∣∣∣∣ ≤
∫
R2\B(0,τ)

|x|
∣∣∣∣x2

1 − 2t

4t2

∣∣∣∣Φt(x)dx

≤ C

∫ ∞
τ
r2 r

2 + t

t3
e−

r2

4t dr

≤ C
(τ +

√
t)3

τ2
e−

τ2

4t

Hence, we get

ζΣ
z1z1(0) =

1

8
√
πt

(
4 cos2 θ + sin 2θ + π − 2θ

)
+O(τ−2(τ +

√
t)3e−

τ2

4t ), t→ 0.

Similarly,

ζΣ
z2z2(0) =

1

8
√
πt

(
4 sin2 θ − sin 2θ + π − 2θ

)
+O(τ−2(τ +

√
t)3e−

τ2

4t ), t→ 0.

In addition, since
∂

∂z2∂z1
Φt(z − x)

⌋
z=0

=
x1x2

4t2
Φt(x),

then by a symmetry argument, we have ζΣ
z1z2(0) = 0. Finally, since dΣ is 1-Lipschitz,

then for k ≥ 3, we have∣∣∣ζΣ
zi1zi2 ···zik

(0)
∣∣∣ ≤ ∫

R2

∣∣∣∣ ∂

∂xik
dΣ(x)

∣∣∣∣∣∣∣∣ ∂k−1

∂xi1 · · · ∂xik−1

Φt(x)

∣∣∣∣ dx ≤ Ct 1−k2 .

Using the above approximation, we can now set up the heat kernel convolution of the
distance dS to phase region S.

Lemma 3.5. The Gaussian convolution of phase distance dS, restricted to some open
ball B(0, τ) satisfies the following Taylor expansion at the origin:

ζS(z) =

√
t√
π

(π
2

+ 1− θ + ψ(t)
)

+ ψ(t)z1 +
1

π

(π
2

sin θ + cos θ + ψ(t)
)
z2

+
1

16
√
πt

(4 cos2θ + sin 2θ + π − 2θ + ψ(t))z2
1 +

1√
t
ψ(t)z1z2

+
1

16
√
πt

(4 sin2θ − sin 2θ + π − 2θ + ψ(t))z2
2 +O

(
t−1|z|3

)
,

where ψ(t) = O
(√
t
)
, as t→ 0.

Proof. For any x ∈ ∂Br := ∂B(0, r) where 0 < r ≤ τ � 1, we note that

|dS(x)− dΣ(x)| ≤ H (∂S ∩Br, ∂Σ ∩Br) ≤ Cr2,

where H(·, ·) denotes the Hausdorff distance.
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Hence, for k ≥ 0, we have

∣∣ζSi1i2···ik(0)−ζΣ
i1i2···ik(0)

∣∣ ≤ ∫
B(0,τ)

|dS(x)− dΣ(x)|
∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Φt(x)

∣∣∣∣ dx
≤ C

∫
R2

|x|2
∣∣∣∣ ∂k

∂xi1 · · · ∂xik
Φt(x)

∣∣∣∣ dx
≤ C

tk+1

∫ ∞
0

rk+3e−
r2

4t dr ≤ Ct
2−k
2 .

Finally, adjusting Lemma 3.4 to the above estimates yields the desired result.

3.4.2 Stability of the Triple Junction

For simplicity, take N = 2. Consider a triple junction of a k-phase network where
three interfaces meet, say γ12, γ13 and γ23. Let 2θi be the interior angle of phase region
Pi(i = 1, 2, 3) at the triple junction. Without loss of generality, translate and rotate the
whole plane R2 so that the junction is at the origin and P1-boundary interfaces γ12 and
γ13 make an angle of θ1 ∈ (0, π2 ) with the negative x2 axis, as shown in Figure 3.4.

x1

x2

γ12

γ23

γ13
P1

P2 P3

2θ1

2θ3

B(0, τ )

2θ2

Figure 3.4: Setting up the triple junction in the new coordinate system.

Choose τ > 0, small enough so that P1 ∩B(0, τ) is in the lower half plane with

B(0, τ) ⊂ {x ∈ P1 ∪ P2 ∪ P3 : B(x, ε) ∩ Pi 6= ∅ (i = 1, 2, 3)}

and such that for any x ∈ Pi∩B(0, τ)(i = 1, 2, 3), the distance to phase region Pj(j 6= i)
satisfies dj(x) = dist(x, γij ∩ B(0, τ)). We then perform one step of the SDV method
with time step t.

At time t, we determine the location z of the triple junction by solving{
u(t, z) · (p1 − p2) = 0

u(t, z) · (p1 − p3) = 0
(3.6)
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where u solves the vector-type heat equation (3.1), that is,

u(t, z) =

∫
B(0,τ)

+

∫
R2\B(0,τ)

δε(x)Φt(x− z)dx =: I + II.

For any distinct i, j ∈ {1, 2, 3}, we have by Remark 3.1.2,

|II ·(pi − pj) | ≤
k

k − 1

1

4πt

∫ ∞
τ

∫ 2π

0
re−

r2−2rs cos(θ−ω)+s2
4t dθdr

≤ C

t

∫ ∞
τ−s

(r + s)e−
r2

4t dr ≤ C 1√
t
e−

τ2

4t . (3.7)

where z is written as (s, ω) in polar coordinates. Moreover,

I ·(pi−pj) =
k

ε(k−1)

∫
B(0,τ)

[dj(x)−di(x)] Φt(x−z)dx (3.8)

=
k

ε(k−1)

[
ζj(z)− ζi(z)

]
. (3.9)

Here, we write ζi := ζPi , the Gaussian convolution of the distance to phase region Pi.

By Lemma 3.5, we have

ζ1(z) = A(θ1)
√
t+B(θ1)z2 + 1√

t
D(θ1)z2

1 + 1√
t
E(θ1)z2

2

+ ψ(t)(
√
t+ z1 + z2 + 1√

t
z1z2) +O(t−1|z|3) =: β(θ1, z1, z2)

ζ2(z) = β(θ2,− cos θ3z1−sin θ3z2, sin θ3z1−cos θ3z2) (3.10)

ζ3(z) = β(θ3, cos θ2z1−sin θ2z2,− sin θ2z1−cos θ2z2),

where

A(θ) = 1√
π

(
π
2 + 1− θ

)
D(θ) = 1

16
√
π

(
4 cos2 θ + sin 2θ + π − 2θ

)
B(θ) = 1

π

(
π
2 sin θ + cos θ

)
E(θ) = 1

16
√
π

(
4 sin2 θ − sin 2θ + π − 2θ

)
and ψ(t) = O(

√
t), as t → 0. The expansions for ζ2 and ζ3 are obtained from ζ1 by

(θ1+θ2)-counterclockwise and (θ1 + θ3)-clockwise rotations, respectively.

Remark. From (3.6), (3.7), (3.9) and (3.10), we deduce the following:

1. If θi = π
3 (i = 1, 2, 3), then z moves with a speed of at most O(1).

2. If θi = π
3 +O(1) (i = 1, 2, 3), then z moves with a speed of at least O( 1√

t
).

We now locate the triple junction after one SDV time step as follows.

Lemma 3.6. After time t, the triple junction moves via SDV method from the origin
to the point z = (z1, z2):

z1 =
4
√
πt

3π + 2
√

3
(2θ2 + θ1 − π) +O(δ

√
t+ t)

z2 =
4
√
πt

2 + π
√

3

(
θ1 −

π

3

)
+O(δ

√
t+ t),

where δ = max(θ1 − π
3 , θ2 − π

3 ).
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Proof. Using expansions (3.10) and relations (3.7) and (3.9), we rewrite equation (3.6)
in terms of ξi := 1√

t
zi, as follows:

0 = a0 + b0ξ1 − c0ξ2 +O(
√
t+ |ξ|2)

0 = a1 − b1ξ1 − c1ξ2 +O(
√
t+ |ξ|2)

where the coefficients are given by

a0 = 1√
π

(θ1−θ2) a1 = 1√
π

(θ1−θ3)

b0 = B(θ2) sin θ3 b1 = B(θ3) sin θ2

c0 = B(θ2) cos θ3 +B(θ1) c1 = B(θ3) cos θ2 +B(θ1).

Note that

b0c1 + b1c0 = B(θ1)B(θ2) sin θ3 +B(θ2)B(θ3) sin θ1 +B(θ1)B(θ3) sin θ2

= 3
√

3
2 B(π3 )B(π3 ) +O(δ),

c0a1 − a0c1 = 1√
π

[(θ1−θ3)(B(θ2) cos θ3 +B(θ1))− (θ1−θ2)(B(θ3) cos θ2 +B(θ1))]

= 1√
π

(θ2 − θ3) · 3
2B(π3 ) +O(δ2)

= 3
2
√
π
B(π3 ) (2θ2 + θ1−π) +O(δ2),

a0b1 + a1b0 = 1√
π

[(θ1−θ2)B(θ3) sin θ2 + (θ1−θ3)B(θ2) sin θ3]

= 1√
π

(2θ1 − θ2 − θ3) ·
√

3
2 B(π3 ) +O(δ2)

= 3
√

3
2
√
π
B(π3 )

(
θ1− π

3

)
+O(δ2),

where δ = max(θ1 − π
3 , θ2 − π

3 ). Thus, we get

ξ1 =
c0a1 − a0c1

b0c1 + b1c0
+O(

√
t) =

2θ2 + θ1 − π√
3πB(π3 )

+O(δ +
√
t), as t→ 0

ξ2 =
a0b1 + a1b0
b0c1 + b1c0

+O(
√
t) =

θ1 − π
3√

πB(π3 )
+O(δ +

√
t), as t→ 0.

Next, we look at the effect of the SDV interface evolution after time t on the phase
interior angles of the triple junction located at point z := z (θ1, θ2) given by Lemma 3.6.
Consider the map Θ : R2 → R2 which defines the junction angles at time t as follows:

Θ(θ1, θ2) =
1

2

(
cos−1

(
N31 ·N12

‖N31‖‖N12‖

)
, cos−1

(
N12 ·N23

‖N12‖‖N23‖

))
,

where the normal N ij to interface γij(i, j = 1, 2, 3) is defined by

N ij(z) := ∇ (u(t, z) · (pi − pj))

= k
ε(k−1)

(
ζjz1(z)− ζiz1(z), ζjz2(z)− ζiz2(z)

)
+O(e−

τ2

4t ), t→ 0.

Here, the partial derivatives of ζi are computed from expansions (3.10). We now establish
the stability of triple junction in the following theorem:
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Theorem 3.7. Let (θ̂1, θ̂2) := Θ(θ1, θ2), be the junction angles after time step ∆t. Then,
there exists a 2× 2 matrix M whose largest singular value σ < 1 such that[

θ̂1 − π
3

θ̂2 − π
3

]
= M

[
θ1 − π

3

θ2 − π
3

]
+O(δ2 +

√
∆t), (3.11)

as ∆t→ 0. Here, δ = max(θ1 − π
3 , θ2 − π

3 ).

Proof. For convenience, we write t instead of ∆t. Using the Taylor expansions (3.10),
we see that at point z := z(π3 ,

π
3 ), we have

‖N12‖ = ‖N23‖ = ‖N31‖ = k
√

3
ε(k−1)B(π3 ) +O(

√
t))

and

N31 ·N12 = N12 ·N23 = −1
2

(
k
√

3
ε(k−1)B(π3 )

)2
+O(

√
t),

as t→ 0. Hence,

Θ(π3 ,
π
3 ) = (π3 ,

π
3 ) +O(

√
t), t→ 0.

On the other hand, write Θ := (1
2 cos−1 Ψ1, 1

2 cos−1 Ψ2). Hence, Ψi(π3 ,
π
3 ) = −1

2 , for
i = 1, 2. Now, using expansions (3.10) and Lemma 3.6, we arrive at the following partial
derivatives:

Ψ1
θ1(π3 ,

π
3 ) = ‖N12‖−2

[(
N31−Ψ1N12

)
·N12

θ1 (π3 ,
π
3 ) +

(
N12−Ψ1N31

)
·N31

θ1
(π3 ,

π
3 )
]

= −
√

3

4

[
1 +
√

3
B′(π3 )

B(π3 )
+

2
√

3√
π

E(π3 )−D(π3 )

B(π3 )2

]
+O(

√
t)

=: α+O(
√
t), t→ 0.

In a similar fashion, we get

Ψ1
θ2(π3 ,

π
3 ) = O(

√
t), t→ 0,

Ψ2
θ1(π3 ,

π
3 ) = O(

√
t), t→ 0

Ψ2
θ2(π3 ,

π
3 ) = α+O(

√
t), t→ 0.

(See Appendix E for details on how the above calculations were carried out.) It follows
that

DΘ(π3 ,
π
3 ) = −

√
3

3

[
α 0

0 α

]
+O(

√
t),

as t → 0. Take M := −
√

3
3 αI2 whose singular value σ =

√
3

3 α ≈ 0.2451 < 1. Finally,
equation (3.11) follows from the Taylor expansion of Θ near (π3 ,

π
3 ).

The above theorem guarantees that at every time step of SDV algorithm 3.1, the phase
interior angles at the triple junction that are initially close to the symmetric configuration
will always tend to get closer to 2π

3 with an error of order
√

∆t. In fact, it follows from
Theorem 3.11 that over a period of time T ≥ 0 (assuming no topological changes occured
on the interface evolving via SDV method with time step size ∆t), the junction angles
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stably imposes the symmetric Herring condition [54] at the triple junction, as exhibited
in the following corollary.

Corollary 3.8. At time step n = bT/∆tc, let θni (i = 1, 2) be the angle measure at
triple junction x = 0 of an interface network evolving via SDV method. Then, for some
constant C > 0, ∣∣∣θni − π

3

∣∣∣ ≤ C
(√

∆t+ σbT/∆tc
)
.

Proof. Fix n = bT/∆tc for a given time T > 0. Denote xn = |θn1 − π
3 |, yn = |θn2 − π

3 |,
and δn = max(xn, yn). Applying Theorem 3.7 iteratively gives

xn ≤ σxn−1 + C
(
δ2
n−1 +

√
∆t
)

≤ σ
(
σxn−2 + C

(
δ2
n−2 +

√
∆t
))

+ C
(
δ2
n−1 +

√
∆t
)

= σ2xn−2 + C (1 + σ)
√

∆t+ C
(
δ2
n−1 + σδ2

n−2

)
≤ σ2

(
σxn−3 + C

(
δ2
n−3 +

√
∆t
))

+ C (1 + σ)
√

∆t+ C
(
δ2
n−1 + σδ2

n−2

)
= σ3xn−3 + C

(
1 + σ + σ2

)√
∆t+ C

(
δ2
n−1 + σδ2

n−2 + σ2δ2
n−3

)
...

≤ σnx0 + C
(
1 + σ + · · ·+ σn−1

)√
∆t+ C

(
δ2
n−1 + σδ2

n−2 + · · ·+ σn−1δ2
0

)
=

Cσ

1− σ
√

∆t+ σn

(
x0 −

C
√

∆t

1− σ

)
+ C

n∑
j=1

σj−1δ2
n−j

Note that δj = O(σδj−1 +
√

∆t) where j = 1, 2, . . . , n. Then at any jth time step, we
have

δ2
j ≤ C

(
σδj−1 +

√
∆t
)2
≤ C

(
σ2δ2

j−1 + ∆t
)

Hence,

n∑
j=1

σj−1δ2
n−i = δ2

n−1 + σδ2
n−2 + σ2δ2

n−3 + · · ·+ σn−1δ2
0

≤ C
(
σ2δ2

n−2 + ∆t
)

+ σδ2
n−2 + σ2δ2

n−3 + · · ·+ σn−1δ2
0

≤ C
(
σ + σ2

)
δ2
n−2 + C∆t+ σ2δ2

n−3 + · · ·+ σn−1δ2
0

= Cσ (1 + σ) δ2
n−2 + C∆t+ σ2δ2

n−3 + · · ·+ σn−1δ2
0

...

≤ Cσn−1
(
1 + σ + · · ·+ σn−1

)
δ2

0 + C
(

1 + σ + · · ·+ σ2(n−2)
)

∆t

= Cσn
1− σn−1

1− σ
δ2

0 + C
σ(1− σ2(n−2))

1− σ
∆t

= σn
Cδ2

0

1− σ
− Cσ2n−1 δ2

0

1− σ
+

Cσ

1− σ
∆t− Cσ2n−3 ∆t

1− σ

= σn
Cδ2

0

1− σ
+

Cσ

1− σ
∆t− Cσ2n δ

2
0σ

2 + ∆t

σ3(1− σ)
,

which gives the desired result. The same holds for yn.
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3.5 Numerical Results

In this section, we present several numerical tests and experiments, starting with our
treatment of the numerical computations involved in our algorithm. In addition, we look
at how well our method compares to the original MBO method [68] and present some
computational examples.

3.5.1 Numerical Computations

We adopt a variational method centered on the idea of a vector-type discrete Morse flow
(DMF), which solves the heat equation by discretizing time and defining a sequence of
minimization problems approximating the original problem [61, 82] (see Appendix F).
For a k-phase configuration of domain Ω ⊂ RN , we impose Neumann boundary condi-
tions and rewrite the multiphase SDV algorithm 3.1 for approximating mean curvature
flow, as follows:

Algorithm 3.2 SDV Method for Pure Multiphase MCF via Minimization

Given an initial interface network Γ0 :=
⋃
{γij : i, j = 1, 2, . . . , k} and a time step size

∆t > 0, we obtain its MCF approximation by generating a sequence of time discrete
interface networks {Γm}Mm=1 at times t = m∆t (m = 1, . . .M), as follows:

1. Initialization. Set u0 := δε with respect to Γm−1.

2. Minimization. Discretize ∆t = h×K and successively solve the following problem
for n = 1, 2, . . . ,K:

J hn (u) =

∫
Ω

(
|u− un−1|2

2h
+
|∇u|2

2

)
dx. (3.12)

3. Projection. Define the new interface Γm =
⋃
i 6=j

(∂Pi(uK) ∩ ∂Pj(uK)) ∩ Ω where

Pi(u) :=

{
x ∈ Ω : pi · u(∆t, x) = max

j=1,2,...,k
pj · u(∆t, x)

}
,

the set corresponding to phase Pi with respect to u.

In constructing the signed distance vector δε, we compute the distance di of each node
to phase region Pi using the exact Euclidean distance to its piecewise linear interface.
We then improve the value accurate to second order by fitting a circle into the three
discrete interface points closest to the point projection of the node onto the piecewise
linear interface, and computing the distance to the fitted circle.

We approximate functional by utilizing the finite element method (FEM). The domain
Ω is triangulated into a finite number of elements, over which the function is assumed
to be piecewise linear and continuous. Throughout the whole paper, we use a nearly
uniform mesh where interior elements are isosceles triangles whose base and altitude are
both equal to the mesh size ∆x. An example of a mesh triangulation of a square domain
Ω into 32 elements is illustrated in Figure 3.5.
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Figure 3.5: Triangulating domain Ω = [0, 1] × [0, 1] into 32 nearly uniform elements
(black) with 22 nodes (blue).

Moreover, the minimizers are then found via gradient descent method, as follows:

Algorithm 3.3 Steepest Descent Method

To approximate a solution u to the minimization problem (4.1), we perform:

1. Given an initial approximation v, set u := v.

2. Set z = ∇J hn (u). If ‖z‖2 = 0, then stop.

3. Solve minτ>0 J hn (u− τz) for step length τ by a bisection line-search method.

4. Set u := u− τz. Go to step 2.

3.5.2 Error Analysis: Shrinking Circle Test

In this subsection, we consider the classic two-phase problem for testing algorithms
realizing mean curvature flow and look at the errors of SDV method in comparison to
the original MBO method.

Take a circle of radius r0 = 0.35 on a [0, 1]× [0, 1] domain as our initial condition. Note
that its mean curvature evolution remains a circle of radius r(t) satisfying

dr

dt
= −1

r
⇐⇒ r(t) =

√
r2

0 − 2t.

For various mesh size and time step configurations, we run the original MBO and SDV
method with this initial setup for ε = ∆x, 2∆x, 5∆x, 1.0 until the exact extinction time
T = m∆t = 0.06125. We note that SDV method with ε = 1.0 corresponds to the
two-phase signed distance (DFDGM) scheme in [34, 36].
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At each time step, we use a Least-Squares fitting method to fit the resulting inter-
face points {xi} in a circle and record its radius rfit. In particular, we minimize∑

i

(
|xi − C|2 − r2

)2
with respect to the center C and radii r. The error on the radius of

the shrinking circle is taken as the average over time [0, T/2]. Results are summarized
in Table 3.1 for the original MBO method, and Tables 3.3, 3.2, 3.4, and 3.5 for the SDV
method with varying ε values.

Table 3.1: MBO Method: Errors for varying mesh-time configurations

mesh\time 2 4 8 16 32 64 128 256

10×10 0.01508 0.00604 – – – – – –

20×20 0.01229 0.01154 0.00660 0.00294 – – – –

40×40 0.00151 0.00174 0.00072 0.00167 0.00377 – – –

80×80 0.00223 0.00171 0.00096 0.00071 0.00069 0.00266 – –

160×160 0.00088 0.00192 0.00104 0.00047 0.00066 0.00029 0.00053 –

320×320 0.00129 0.00210 0.00120 0.00070 0.00011 0.00010 0.00038 0.00082

Table 3.2: SDV Method (ε = ∆x): Errors for varying mesh-time configurations

mesh\time 2 4 8 16 32 64 128 256

10×10 0.00478 0.00416 0.00684 0.00981 0.01424 0.01912 0.02764 0.04201

20×20 0.00201 0.00257 0.00270 0.00382 0.00505 0.00749 0.01075 0.01540

40×40 0.00224 0.00174 0.00093 0.00097 0.00124 0.00211 0.00351 0.00524

80×80 0.00136 0.00202 0.00083 0.00014 0.00003 0.00024 0.00075 0.00158

160×160 0.00140 0.00202 0.00109 0.00056 0.00015 0.00044 0.00031 0.00006

320×320 0.00147 0.00201 0.00106 0.00053 0.00011 0.00008 0.00040 0.00054

Table 3.3: SDV Method (ε = 2∆x): Errors for varying mesh-time configurations

mesh\time 2 4 8 16 32 64 128 256

10×10 0.01226 0.00471 0.00523 0.00995 0.01213 0.01189 0.01301 0.02007

20×20 0.00499 0.00258 0.00277 0.00412 0.00506 0.00642 0.00792 0.01015

40×40 0.00290 0.00185 0.00105 0.00120 0.00149 0.00239 0.00375 0.00543

80×80 0.00154 0.00204 0.00084 0.00020 0.00011 0.00037 0.00099 0.00202

160×160 0.00142 0.00202 0.00110 0.00059 0.00010 0.00035 0.00021 0.00014

320×320 0.00147 0.00200 0.00107 0.00054 0.00012 0.00006 0.00037 0.00049

Table 3.4: SDV Method (ε = 5∆x): Errors for varying mesh-time configurations

mesh\time 2 4 8 16 32 64 128 256

10×10 0.01492 0.00787 0.00428 0.00828 0.01055 0.01100 0.01302 0.02136

20×20 0.02259 0.01325 0.00382 0.00222 0.00371 0.00426 0.00627 0.01031

40×40 0.00834 0.00396 0.00126 0.00173 0.00182 0.00182 0.00227 0.00362

80×80 0.00262 0.00209 0.00098 0.00059 0.00046 0.00063 0.00096 0.00131

160×160 0.00170 0.00204 0.00114 0.00067 0.00004 0.00021 0.00002 0.00033

320×320 0.00153 0.00201 0.00108 0.00056 0.00015 0.00002 0.00031 0.00038
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Table 3.5: DFDGM (ε = 1.0): Errors for varying mesh-time configurations

mesh\time 2 4 8 16 32 64 128 256

10×10 0.01492 0.00787 0.00428 0.00828 0.01055 0.01100 0.01302 0.02136

20×20 0.02410 0.01402 0.00430 0.00214 0.00372 0.00426 0.00627 0.01032

40×40 0.02570 0.01556 0.00583 0.00105 0.00165 0.00175 0.00229 0.00361

80×80 0.02533 0.01548 0.00611 0.00103 0.00105 0.00089 0.00087 0.00122

160×160 0.02544 0.01557 0.00605 0.00100 0.00091 0.00065 0.00044 0.00045

320×320 0.02555 0.01561 0.00610 0.00100 0.00089 0.00058 0.00032 0.00022

From Table 3.1, we see that as time step ∆t decreases relative to the mesh size, the
original MBO method ceases to evolve the interface until extinction time as indicated
by the symbol “–”. This confirms the time-grid restriction of the MBO method on
uniform mesh configurations.

On the other hand, SDV evolutions of the interface does not show any tendency of
stagnation, which indicates that the distance to the phase regions provides the needed
subgrid accuracy to help relax the inherent time-grid restrictions. Note that one can
achieve a fairly good MCF approximation using phase distances even on small (at least
one mesh size ∆x) tubular neighborhood of the interface; thereby, saving computational
costs. In particular, smaller ε values behave well on coarse mesh/time configurations.
On finer mesh/time configurations, we see that SDV scheme with large ε values gives
a better MCF approximation since they hold more geometric information regarding the
interface.

Figure 3.6: Evolution of the radius of a circle generated via MBO (red) and SDV
method (non-red) on a 40 × 40 mesh with ∆t = T/32 (left) and ∆t = T/256 (right)

versus the exact solution (black).
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Take for example, a configuration with 40× 40 mesh resolution and time step size ∆t =
T/32. In this setup, Table 3.1 seem to indicate that MBO method does not stagnate
interface evolution, however, Figure 3.6 reveals that this interface evolution is quite
unstable and shows tendency of stagnation. In contrast, SDV method behaves fairly
well under this configuration even with a distance tubular range ε as small as the mesh
size ∆x. Moreover, we observe that SDV method works well even on a smaller time step
size ∆t = T/256 after the onset of MBO interface stagnation. Under this configuration,
it is noticeable how phase distances help alleviate the MBO time-grid restriction. As is
evident from Figure 3.6, SDV mean curvature evolutions with larger ε = 5∆x, 1.0 are
closer to the exact solution since their signed distance vector δε implicitly carries more
geometric information regarding the interface.

Note that at certain unevenly distributed configurations, the error unexpectedly jumps
to irregular values. We expect that this is caused by numerical hanging of the interface
on the nodes in some special cases. Moreover, the error is highly sensitive to the way of
its calculation, especially around the initial state and before the extinction. However, it
can be said on the whole that the error converges to zero approximately linearly in both
space and time, as expected from the MBO approximation and as seen from the error
tables.

3.5.3 Triple Junction: Stability Test

In this subsection, we wish to check if our method imposes the symmetric Herring
conditions at the triple junction.

Consider a three-phase initial condition where a T-shaped interface is rotated 90◦ coun-
terclockwise such that the T-junction point is located at point (0.25, 0.25). On a
[0, 1] × [0, 1] domain, take phase P3 as the region to the left of line x = 0.25, and
the remaining top and bottom regions as phases P1 and P2, respectively (Figure 3.7).

Figure 3.7: Evolution of the initial T-junction (blue) via SDV method and its under-
lying interface network at different times (black).
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We triangulate the domain into 12, 800 elements (∆x = 0.0125) and evolve the interface
via SDV method with time step ∆t = 1.5 × 10−3 and DMF partition K = 30. We
wish to investigate the evolution of the initial T-junction and its underlying interface
network, in particular, we look at the stability of the triple junction.

Let us consider the stable configuration of the problem (cf. [46]). Note that interface
γ12 lies on the line y = 1

2 for any t ≥ 0. Moreover, we can define interface γ23 by

γ23(t, y) := u(y) + vt, y ∈ (0, 1
2),

where u describes the shape of interface and v denotes its transport velocity. Hence,
interface γ13(t, y) = γ23(t, 1

2 − y). If the graph γ := γ23 evolves by mean curvature, then
it satisfies the equation

∂γ

∂t
=

γyy
1 + γ2

y

⇐⇒ v =
u′′

1 + (u′)2
=
(
tan−1 u′

)′
.

By the Neumann boundary condition, we have u′(0) = 0, and thus,

vy = tan−1 u′(y). (3.13)

The Herring condition [54] at the triple junction, on the other hand, gives

u′(1
2) = cot(π3 ) = 1√

3
.

Hence, the transport velocity v = 2 tan−1( 1√
3
) = π

3 .

Figure 3.8: Transport velocities at y = 0.47, 0.49, 0.505, 0.55 (left) and interface profile
at time t = 50∆t (right) of the SDV numerical solution (colored) versus the constantly

transported stable solution (black).

In Figure 3.8, we see that the transport velocity of the numerical interface solution
approaches v = π

3 . In fact, for the first few time steps, the interface rapidly approaches
the 120◦−120◦−120◦ junction angle conditions, and then gradually adjusts itself to reach
its stable configuration.
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From (3.13), we determine the shape of the constantly transported stable solution by

u(y) = − 3
π ln

∣∣cos(π3 y)
∣∣+ c, y ∈ (0, 1

2)

where the constant c of horizontal shift may be chosen appropriately. Comparing this
with the numerical interface solution obtained via SDV method, we see that it is in good
agreement with the exact shape of interface in the stable state, as shown in Figure 3.8
for time t = 50∆t.

Figure 3.9: Relative error plot of the phase interior angle measures at the triple
junction for the first 100 time steps.

To end, we measure the junction angles at each time step using the tangents to the
quadratic interpolation of the piecewise linear interface near the triple junction. It is
evident from the relative error plot (Figure 3.9) that the triple junction first rapidly ap-
proximates the angle conditions, which is consistent with the previous result. Thereafter,
the numerical interface solution gradually reaches a stable state with junction angles of
measure 120◦± 0.16 yielding a relative error of at most 0.14%; thereby confirming that
our method stably imposes the Herring angle conditions at the triple junction.

3.5.4 Numerical Examples

We present numerical examples of mean curvature evolution using the SDV method. In
Figure 3.10, we take a smooth closed curve as an initial condition whose mean curvature
evolution shrinks inward to a circle until concentrically collapsing to a single point. We
also consider a four-phase initial condition that evolves into a shrinking triple bubble
and eventually vanishes. Note that the 120◦−120◦−120◦ angle conditions at the triple
junctions are satisfied.

Here, the domain Ω := [0, 1]×[0, 1] is triangulated into 12, 800 elements and the evolution
time step ∆t = 5.0 × 10−5 is discretized into 30 DMF iterations. Note that under this
configuration, the original MBO algorithm [68] fails to generate such mean curvature
flow approximation as it stagnates after approximately t = 5∆t. However, our method
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Figure 3.10: An example of a two-phase (left) and four-phase (right) mean curvature
evolution generated via SDV method.

naturally alleviates this MBO time and grid restriction without having to retriangulate
elements based on its interfacial geometry (cf. [94]).

3.6 Concluding Remarks

We designed a method for approximating multiphase mean curvature motion of inter-
faces using vector-valued signed distance function. Our method is based on the vector
reformulation of the alternating diffusion and thresholding scheme of the MBO algo-
rithm. This vector setting allowed us to handle any number of phases. Moreover, using
signed distance vector field as the initial condition, we showed that interface evolution
via our method does not stagnate on nonadaptive meshes – alleviating the well-known
MBO restriction without the need for retriangulization. We also formally established
that SDV method evolves interfaces with a normal velocity equal to its minus mean cur-
vature up to a linear order of time and naturally imposes the Herring angle conditions
at the triple junction points.

It would also be interesting to know how well this method handles nonsymmetric junc-
tion angles. The MBO-based scheme for nonsymmetric junction angles in [88] forces
one to either use a finer mesh or a larger time step to prevent stagnation in the gen-
erated interfacial motions; hence, its SDV counterpart should be able to alleviate this
problem. Lastly, we state an open problem: “Can pure k-phase mean curvature flow be
characterized by our construction of signed distance vector, in particular,

δ(x) :=
k∑
i=1

dist (x, Pi) pi,

the distance linear combination of the reference vectors pi? Can the theory in [8, 41] be
used and/or extended to the multiphase case?”





Chapter 4

On Volume-preserving
Multiphase Mean Curvature Flow

This chapter tackles the problem of incorporating volume constraint in the SDV method,
so that a volume-preserving mean curvature motion of the interface is realized. In
particular, we look into altering either the diffusion or projection step in Algorithm 3.1,
in such a way that the normal velocity of the interface is then given by minus mean
curvaure plus a term constant along the interface, which depends on the lengths and
average curvatures of all other interfaces. We first look at the problem in the two-phase
case and present a method of treating the volume constraint in section 4.1. We then,
extend this to the multiphase case in section 4.2. Finally, in section 4.3, we present
several numerical tests and examples.

4.1 Two-phase Flow under Volume Constraint

Consider a two-phase mean curvature flow where volumes of both phase regions are
preserved. In this case, the velocity of the interface γ is simply given by

V(x) = (−κ(x) + κa)η(x), a.e. in γ,

where κ is the mean curvature, κa is the average mean curvature along the interface
and η denotes the outer normal to the interface [56]. Ruuth and Wetton [85] introduced
a two-phase volume-preserving MBO scheme, which retains solving heat equation with
the characteristic function as its initial condition, and treats volume constraint in the
thresholding step. Instead of taking the usual 1

2 -level set, the solution is truncated at

value 1
2 −

1
2κa(t)

√
π−1∆t, that is, the level set which preserves the prescribed volume.

This approach automatically evolves the interface with a normal velocity of −κ + κa
without having to directly compute the mean curvature or the average mean curvature.

Let us look at the same scheme in the light of the two-phase SDV method. Following
the same argument as in the proof of Theorem 3.3, it is easy to show that the prescribed
volume will be preserved if we change the threshold value from 0 to ε−1κa∆t. Unfortu-
nately, this cannot be easily extended to the multiphase case, since different interfaces
give different average mean curvature values. Phase regions may either overlap, or not

35
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even touch at all, creating vacuums; thus, the global interaction of the phase regions are
ignored. Moreover, this scheme lacks theoretical justifications.

In this line, we take a different approach and incorporate the volume constraint into
the diffusion process while retaining the same projection step. Let us continue in the
two-phase setting and discretize time ∆t = h × K. We solve the heat equation by
successively minimizing the functionals

J hn (u) =

∫
Ω

(
|u− un−1|2

h
+ |∇u|2

)
dx, n = 1, 2, . . . ,K, (4.1)

taking u0 as the scalar ε-signed distance function δε with respect to the interface. Note
that the first variation of the above functional yields

0 =
d

dτ
J hn (u+ τφ)

∣∣∣∣
τ=0

= 2

∫
Ω

u− un−1

h
φ+∇u · ∇φ.

= 2

∫
Ω

(
u− un−1

h
−∆u

)
φ+ 2

∫
∂Ω
φ
∂u

∂η
,

for any φ ∈ C∞0 (Ω). Hence, in the weak sense, the minimizer u satisfies

u− un−1

h
−∆u = 0. (4.2)

Moreover, we see that interpolating the corresponding minimizers with respect to time
and then taking h→ 0 yields the solution of heat equation [82].

We incorporate a volume constraint under Dirichlet boundary conditions into the mini-
mization problem 4.1. In the following theorem, we look at the behaviour of the mini-
mizer on the phase boundary and derive its the free boundary condition.

Theorem 4.1 (cf. [94]). Let u be the minimizer of functional

J (u) =

∫
Ω

(
|u− u∗|2

h
+ |∇u|2

)
dx, (4.3)

over set A := {u ∈ H1
0 (Ω) : |{u > 0}| = V } where u∗ ∈ H1(Ω), h denotes the length of

the discrete time step, and V ∈ (0, |Ω|) is the prescribed volume. Then,[
(∂ηu)2

]
γ

= λ on ∂{u > 0} ∩ Ω,

for some constant λ > 0. Here, [ · ]γ denotes the jump of the function across interface
γ, the zero-level set of u.

Proof. Let ζ ∈ C∞0 (Ω,R2) and ρ > 0 small. Define uρ ∈ A by uρ(τρ(x)) = u(x) where
τρ(x) = x+ ρζ(x). To preserve the volume of {uρ > 0}, we must have

V =

∫
Ω
χ{uρ>0} =

∫
τ−1
ρ Ω

χ{u>0} det(Dτρ)

=

∫
Ω
χ{u>0}

(
1 + ρ∇ · ζ +O(ρ2)

)
,
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which implies that

0 =

∫
{u>0}

∇ · ζ +O(ρ).

Taking ρ→ 0 and using the divergence theorem, we get the following condition on ζ,∫
∂{u>0}

ζ · η. (4.4)

Then, for any ζ satisfying (4.4), we must have

lim
ρ↓0

J (uρ)− J (u)

ρ
= 0. (4.5)

First, we note that

J (uρ) = J (u ◦ τ−1
ρ )

=

∫
Ω

1

h
|u ◦ τ−1

ρ − u∗|2 + |∇u(τ−1
ρ ) ·Dτ−1

ρ |2

=

∫
τ−1
ρ Ω

1

h
|u− u∗ ◦ τρ|2 det(Dτρ) + |∇u · (Dτρ)−1|2 det(Dτρ).

Meanwhile,

u∗ ◦ τρ(x) = u∗(x+ ρζ(x)) = u∗(x) + ρ∇u∗(x) · ζ(x) +O(ρ2), ρ→ 0,

and by the divergence theorem,∫
Ω
∇ · (u2

∗ζ) =

∫
∂Ω
u2
∗ζ · η = 0.

Hence, we get∫
Ω
|uρ − u∗|2 − |u− u∗|2 =

∫
Ω
|(u− u∗)− ρ(∇u∗ · ζ) +O(ρ2)|2 det(Dτρ)− |u− u∗|2

=

∫
Ω
−2ρ(u− u∗)(∇u∗ · ζ) + ρ|u− u∗|2∇ · ζ +O(ρ2)

= ρ

∫
Ω

(u2 − 2uu∗)∇ · ζ − 2u(∇u∗ · ζ) +∇ · (u2
∗ζ) +O(ρ)

= ρ

∫
Ω

(u2 − 2uu∗)∇ · ζ − 2u(∇u∗ · ζ) +O(ρ), ρ→ 0.

On the other hand, note that

(Dτρ)
−1 = (I + ρDζ)−1 = I − ρDζ +O(ρ2), ρ→ 0.

Then, we have∫
Ω
|∇uρ|2 − |∇u|2 =

∫
Ω

∣∣∇u− ρ∇u ·Dζ +O(ρ2)
∣∣2 (1 + ρ∇ · ζ +O(ρ2)

)
− |∇u|2

= ρ

∫
Ω
|∇u|2∇ · ζ − 2∇uDζ∇u+O(ρ), ρ→ 0.
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Hence, (4.5) becomes

0 =

∫
Ω

(u2 − 2uu∗)∇ · ζ − 2u(∇u∗ · ζ)

h
+

∫
Ω
|∇u|2∇ · ζ − 2∇uDζ∇u =: I + II. (4.6)

Write

ζ(x) := φ
∇u
|∇u|

,

where φ is a compactly supported scalar function such that∫
∂{u>0}

φ = 0, (4.7)

which follows from (4.4) and noting that η = −∇u/|∇u|.

Let P := {u > 0}. Then, by Green’s theorem, we have

I =
1

h

∫
Ω

(u2−2uu∗)∇·
(
φ
∇u
|∇u|

)
− 2uφ

∇u∗ ·∇u
|∇u|

=
1

h

∫
P∪Ω\P̂

−φ (2u∇u− 2u∇u∗ − 2u∗∇u) · ∇u
|∇u|

− 2uφ
∇u∗ ·∇u
|∇u|

+
1

h

∫
∂{u>0}

[
φ
(
u2 − 2uu∗

) ∇u
|∇u|

· η
]
γ

=

∫
P∪Ω\P̂

−2φ|∇u|u− u∗
h

+

∫
∂{u>0}

[
2uu∗ − u2

h
φ

]
γ

=

∫
P∪Ω\P̂

−2φ|∇u|u− u∗
h

.

Meanwhile, we see that

∇uTDζ∇u = φ∇uTD
(
∇u
|∇u|

)
∇u+

1

|∇u|
∇uT (∇u⊗∇φ)∇u

=
1

|∇u|
∇uT

(
∇u∇φT

)
∇u = |∇u|∇u · ∇φ.

Plugging this in the second integral II and using Green’s theorem, we get

II =

∫
Ω
|∇u|2∇·

(
φ
∇u
|∇u|

)
− 2|∇u|∇u·∇φ

=

∫
P∪Ω\P̂

−φ∇
(
|∇u|2

)
· ∇u
|∇u|

+

∫
∂{u>0}

[
φ|∇u|2 ∇u

|∇u|
· η
]
γ

+

∫
P∪Ω\P̂

2∇ · (|∇u|∇u)φ− 2

∫
∂{u>0}

[φ|∇u|∇u · η]γ

= 2

∫
P∪Ω\P̂

−φ|∇u|∇(|∇u|) · ∇u
|∇u|

+ φ (∇u · ∇(|∇u|) + |∇u|∆u)

+

∫
∂{u>0}

[
−φ|∇u|2 + 2|∇u|∇u · ∇u

|∇u|

]
γ

=

∫
P∪Ω\P̂

2φ|∇u|∆u+

∫
∂{u>0}

φ
[
|∇u|2

]
γ
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Thus, (4.6) becomes

0 =

∫
P∪Ω\P̂

2φ|∇u|
(
−u− u∗

h
+ ∆u

)
+

∫
∂{u>0}

φ
[
|∇u|2

]
γ
.

Using (4.2), we have for any φ satisfying (4.7),∫
∂{u>0}

φ
[
|∇u|2

]
γ

= 0,

that is, [
|∇u|2

]
γ

=

[(
∂u

∂η

)2
]
γ

= λ, on ∂{u > 0} ∩ Ω,

for some constant λ > 0.

In view of the results in [5] and the above free boundary condition, we can rewrite the
minimization problem (4.3) as follows

min
H1

0 (Ω)

∫
Ω

(
|u− u∗|2

h
+ |∇u|2 + λχ{u>0}

)
dx. (4.8)

Moreover, one can expect that this minimization is “in the continuous setting” equivalent
to solving the parabolic free boundary problem

ut = ∆u+ λ(t)H1b{u>0}, (4.9)

where H1 denotes the one-dimensional Hausdorff measure.

Hence, if we wish to preserve the volumes of phase regions, then we must solve (4.9),
instead of the heat equation in the diffusion step of Algorithm 3.1. To be precise, we
write out the two-phase volume-preserving SDV scheme below:

Algorithm 4.1 Two-phase Volume-preserving SDV Method

Given an initial interface Γ0 := ∂D0 for some regionD0 ⊂ R2 and a time step size ∆t > 0,
we generate a sequence of time-discrete approximations {Γn} to its volume-preserving
mean curvature motion at time t = n∆t, by obtaining Γn from Γn−1 as follows:

1. Construct the scalar ε-signed distance function

δε(x) =
1

ε

 min (ε,dist(x,Γ0)) , x ∈ D0

−min (ε,dist(x,Γ0)) , x ∈ R2\D0.
(4.10)

2. For a suitable λ, solve parabolic equation (4.9) with δε as the initial condition.

3. Set Γn := ∂Dn, where Dn := {x : u(∆t, x) > 0} ⊂ R2.

Next, we estimate the normal velocity of the interface evolved via Algorithm 4.1 in the
following theorem.
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Theorem 4.2. For the choice λ(t) = − 4
ε
√
π
κa
√
t, Algorithm 4.1 evolves interface Γ0

according to volume-preserving mean curvature motion with normal velocity

v = −κ+ κa +O(∆t), as ∆t→ 0.

Proof. We proceed in the same manner as in the proof of Theorem 3.3. Thus, we have a
situation of Figure 3.2, where we identify phase Pi with D0, phase Pj with R2\D0, and
γij with Γ0. For simplicity, we denote t := ∆t. Then, the normal velocity v of interface
Γ0 at point x = 0 follows from

0 = u(t, 0, vt)

=

∫
R2

δε(x)Φt(x− z)dx+

∫ t

0

∫
R2

µ(s, x)Φt−s(x− z)dxds =: A+B,

where z = (0, vt) and µ(s, x) = λ(s)H1b{u>0}.

The proof of Theorem 3.3 shows that

A =
1

ε

[
(v + κ) t+O(t2)

]
, as t→ 0. (4.11)

Denote P (s) := {x : u(x, s) > 0}. Then, for B, we have

B =

∫ t

0

∫
∂P (s)

λ(s, x)Φt−s(x−z)dS(x)ds

= −1

ε

∫ t

0

(∫
∂P (s)∩Q

+

∫
∂P (s)\Q

)
κa
√
s

π3/2(t− s)
e
− |x−(0,vt)|2

4(t−s) dS(x)ds

=: − κa

επ3/2
(I + II), (4.12)

where Q := [−τ, τ ]× [−τ, τ ]. Note that integral II is exponentially small:

|II| ≤
∫ t

0

∫
∂P (s)\Q

√
s

t− s
e
− τ2

4(t−s)dS(x)ds

≤ max
s∈[0,t]

|∂P (s)|
∫ t

0

√
s

t− s
e
− τ2

4(t−s)ds

≤ C max
s∈[0,t]

√
s

∫ ∞
τ2

4t

1

s
e−sds

≤ Ct
√
t

∫ ∞
τ2

4t

e−sds = Ct
√
te−

τ2

4t . (4.13)

Here, we assume that ∂P (s) has finite length for s ∈ [0, t]. For integral I, we have

I =

∫ t

0

∫
∂P (s)∩Q

√
s

t− s
e
− |x−(0,vt)|2

4(t−s) dS(x)ds

=

∫ t

0

∫ τ

−τ

∫ γ(s,x1)

−∞

∂

∂x2

( √
s

t− s
e
−x

2
1+(x2−vt)

2

4(t−s)

)√
1 + γ′(s, x1)2dx2dx1ds

=

∫ t

0

∫ τ
ρ

−τ
ρ

(∫ 0

−∞
+

∫ ω

0

)
−
√
s

2ρ
y2e
− |y|

2

4

√
1 + γ′(s, ρy1)2dy2dy1ds =: I1 + I2, (4.14)
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where ω = ρ−1 (γ(s, ρy1)− vt) and ρ =
√
t− s. Using the following expansions at

0 = (0, 0)

√
1 + γ′(s, ρy1)2 =

√
1 + γ′(0)2 +

γ′(0)√
1 + γ′(0)

(
γ′t(0)s+ ργ′′(0)x1) +O(s2 + ρ2x2

1

)
= 1 +O

(
s2 + (ρy1)2

)
,

and
γ(s, ρy1) = vs+O

(
s2 + (ρy1)2

)
,

we can estimate integral I2 as follows:

|I2| ≤ C
√
t

∫ t

0

∫ τ
ρ

−τ
ρ

∫ ω

0

|y2|√
t− s

e−
|y|2
4
(
1 + s2 + (t− s)y2

1

)
dy2dy1ds

≤ C
√
t

∫ t

0

∫ ∞
−∞

1√
t− s

e−
y21
4
(
1 + s2 + (t− s)y2

1

) ∫ ω

0
|y2|dy2dy1ds.

Noting that ∫ ω

0
|y2|dy2 =

ω2

2
≤ (t− s)(v2 + y4

1) +
s4

t− s
,

and ∫
R
yn1 e
− y

2
1
4 dy1 = O(1), n = 0, 2, 4, 6.

yields the following estimate

|I2| ≤ C
√
t

∫ t

0

1

(t−s)3/2

(
(t−s)2 + s4

) (
1 + s2 + (t−s)

)
ds = O(t2), t→ 0. (4.15)

Next, we expand integral I1 as follows

I1 =

∫ t

0

∫ τ
ρ

−τ
ρ

√
s√

t− s
e−

y21
4

√
1 + γ′(s, ρy1)2

∫ 0

−∞
−1

2y2e
− y

2
2
4 dy2dy1ds

=

∫ t

0

√
s√

t− s

[∫
R
−
∫
R\[− τ

ρ
, τ
ρ

]
e−

y21
4 dy1 +

∫ τ
ρ

− τ
ρ

O(s2 + ρ2y2
1)e−

y21
4 dy1

]
ds

=: I11 + I12 + I13. (4.16)

Substituting s = t sin2 θ, we have

I11 = 2
√
π

∫ t

0

√
s√

t− s
ds = 4t

√
π

∫ π
2

0
sin2 θdθ = π3/2t. (4.17)

Moreover,

|I12| ≤ 2

∫ t

0

√
s√

t− s

∫ ∞
τ
ρ

e−
y21
4 dy1ds

≤ 2

∫ t

0

√
s

∫ ∞
τ
ρ

y1

τ
e−

y21
4 dy1ds

≤ C
√
t

∫ t

0
e
− τ2

4(t−s)ds ≤ Ct
√
te−

τ2

4t , (4.18)
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and

|I13| ≤ C
√
t

∫ t

0

1√
t− s

[
s2

∫
R
e−

y21
4 dy1 + (t− s)

∫
R
y2

1e
− y

2
1
4 dy1

]
ds

≤ C
√
t

(∫ t

0

(t− s)2

√
s

ds+

∫ t

0

√
t− sds

)
= O(t2), (4.19)

as t→ 0. Finally, combining the resulting integrals from (4.11) to (4.19), we get

0 = A+B =
1

ε

[
(v + κ) t− κat+O

(
t2 + t

√
te−

τ2

4t

)]
, as t→ 0,

which gives the desired result.

This tells us that with a suitable choice of λ(t), we are assured that a two-phase volume-
preserving mean curvature motion of interfaces is realized via Algorithm 4.1. Extending
this to the multiphase case, however, would require calculation of λ at each time step –
not an easy task. Hence, we turn to the minimization problem (4.8), which is numerically
easier to implement as compared to solving parabolic equation (4.9). To solve this
minimization problem, we use a penalization technique [2] which allows us to perform
nonvolume-preserving variations without having to compute λ. For a small positive
number %, we consider the minimization problem:

min
H1(Ω)

∫
Ω

(
|u− u∗|2

h
+ |∇u|2

)
+ ρsgn (V−|{u>0}|)(V − |{u > 0}|), (4.20)

where V is the prescribed volume. It was shown that as ρ → 0, the penalized solution
converges to a solution of the constrained minimization problem (4.3). What’s more is
that it was shown that the exact minimizer can be achieved for some sufficiently small
penalty % � 1 without having to take the limit to zero [2]. This fact provides a great
advantage in numerical computations.

Similar results were obtained by Tilli [93] for the problem of minimizing the Dirichlet
integral where two or more level sets have prescribed measure, using a technique that
penalizes only the decrease in measure. Translating this to our problem results in the
following minimization problem

min
H1(Ω)

∫
Ω

(
|u− u∗|2

h
+ |∇u|2

)
dx+

1

%
(|{u > 0}| − V )+ . (4.21)

We draw inspiration from this penalized minimization and extend it to the multiphase
case, as will be shown in the succeeding section. We further look into this volume-
contrained variational problem in Chapter 7 and study the behaviour of its minimizer
for small penalty values.

4.2 Multiphase Flow under Volume Constraint

In the previous section, we streamlined our SDV scheme in such a way that it easily
translates into the multiphase case. Our numerical scheme is based on a simplification
of the theory in [2] given by Tilli [93], which penalizes only the decrease in volume;
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thereby, keeping the penalization term always nonnegative. However, since the tendency
of volume change in each phase region is not a priori known, we instead, opt to penalize
both increase and decrease in volume of the phase regions.

Note that such minimization problem can be easily extended to the multiphase case by
adding penalties for each phase region. We summarize this volume-preserving scheme
in the following algorithm.

Algorithm 4.2 Multiphase Volume-preserving SDV Method

Given an initial interface network Γ0 :=
⋃
{γij : i, j = 1, 2, . . . , k} and a time step size

∆t > 0, we obtain its approximation of the volume-preserving mean curvature flow by
generating a sequence of time discrete interface networks {Γm}Mm=1 at times t = m∆t
(m = 1, . . .M), as follows:

1. Initialization. Set u0 := δε with respect to Γm−1.

2. Minimization. Discretize ∆t = h×K. For a small positive number %, successively
minimize (n = 1, 2, . . . ,K):

Fhn (u) = J hn (u) +
1

%

k∑
i=1

∣∣ωi − LN (Pi(u))
∣∣2 , (4.22)

where Vi denotes the prescribed volume of phase Pi, LN denotes the N -dimensional
Lebesgue measure, and

Pi(u) :=

{
x ∈ Ω : pi · u(∆t, x) = max

j=1,2,...,k
pj · u(∆t, x)

}
,

the set corresponding to phase Pi with respect to solution u.

3. Projection. Define the new interface Γm =
⋃
i 6=j

(∂Pi(uK) ∩ ∂Pj(uK)) ∩ Ω.

4.3 Numerical Results

In this section, we present a numerical analysis of the penalty parameter in our volume-
preserving SDV scheme. We also present numerical test on the stability of the triple
junction under volume constraint and some numerical examples of volume-preserving
mean curvature flow in the multiphase case.

4.3.1 Analysis of the Penalty Parameter

Consider a volume-preserving two-phase case where two disjoint circles of radii r1 =
0.1996 and r2 = 0.1384 make up one phase.Since volume is preserved, the larger circle
will grow as the smaller circle shrinks and eventually vanishes, hence satisfying the
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following differential equation
dr1

dt
= − 1

r1
+

2

r1 + r2
,

dr2

dt
= − 1

r2
+

2

r1 + r2
.

(4.23)

We run the volume-preserving SDV method with ε = ∆x for penalty parameters % =
10−i where i = 0, 1, . . . , 10. Here, the domain Ω = [0, 1] × [0, 1] is triangulated into
12, 800 elements (∆x = 0.0125) and time step ∆t = 2.5× 10−4 is discretized into DMF
K = 30 partitions. We then, compare these results with the precise approximation of
the exact solution to the ordinary differential equation (4.23) using Runge-Kutta (RK4)
method of order 4.

Figure 4.1: Evolution of radii (left) for varying penalties % (colored lines) and exact
solution (black line). A closer look at the evolution of smaller circle (right) for time

t ≥ 0.022 where penalties % = 10−6, . . . , 10−9 overlap.

For large penalty parameters % = 100, 10−1, . . . , 10−3, Figure 4.1 shows that weak pe-
nalization on the phase volumes allows the bigger circle to shrink when in fact, it should
grow. For stronger penalty parameters % = 10−4, 10−5, . . . , 10−10, on the other hand,
the result behaves, as expected, similar to the exact solution where the bigger circle
grows as the smaller circle shrinks. We note that as %→ 0, result approaches the exact
solution. This is indeed, consistent with the fact that exact solution can be achieved
with a sufficiently small penalty without taking % → 0 [2, 93]. Moreover, the fact that
the solution almost does not change when %→ 0, justifies the use of penalty method on
our algorithm.

4.3.2 Junction Stability: Double Bubble Test

Consider a three-phase volume-preserving case where two phases are identical squares
sharing one common side of length 0.28. Denote P1 as the left initial square phase, P2

as the right initial square phase, and P3 as the remaining phase. The stationary solution
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of such configuration is known as a double bubble [53] which consists of three circular
arcs meeting at two points at equal 120◦ angles. Since the initial square phases P1 and
P2 have equal volume, the common circular arc would have zero curvature, hence, a line
separating the two identical circular arcs.

Figure 4.2: Three-phase initial configuration (left in black); its numerical (blue) and
exact (red) stationary solution. A closer look at the interface network near the triple

junctions (right).

We run SDV method with ε = 3∆x under penalty parameter % = 10−6. Here, Ω =
[0, 1] × [0, 1] is triangulated into 12800 elements with mesh size ∆x = 1.25 × 10−2 and
time step ∆t = 5× 10−4 with DMF partition K = 30. We test if the stationary solution
of the volume-preserving flow via SDV method satisfies the double bubble theorem by
measuring phase volumes and contact angles θi (interior angle of phase Pi(i=1, 2, 3)) at
both triple junction points J1 and J2 located above and below line y = 0.5, respectively.
Here, the junction angles are computed using the tangents to the quadratic interpolation
of the piecewise linear interface near the triple junction.

Table 4.1: Double Bubble: Phase Volumes under penalty parameter % = 10−6.

phase region prescribed volume stationary state volume absolute error

P1 0.0784 0.078385 1.5× 10−5

P2 0.0784 0.078385 1.5× 10−5

P3 0.8432 0.843229 2.9× 10−5

Table 4.2: Double Bubble: Contact Angle Measures at the Triple Junctions

angle triple junction J1 relative error triple junction J2 relative error

θ1 120.012◦ 1.0× 10−4 120.013◦ 1.0× 10−4

θ2 119.846◦ 1.3× 10−3 119.845◦ 1.3× 10−3

θ3 120.023◦ 1.9× 10−4 120.023◦ 1.9× 10−4

The phase volumes and contact angle measures at both triple junctions of the numerical
stationary solution are shown in Tables 4.1 and 4.2. We see that the volume of each
phase region is preserved under penalty parameter % = 10−6 with a loss of at most
0.0001%. This volume loss may be credited to the approximation error arising in the
numerical computation of phase volumes inside individual finite elements.



46 On Volume-preserving Multiphase Mean Curvature Flow

At both triple junctions, the interior angles of the initial phase squares rapidly increase
from 90◦ to 120◦±0.64 after 10 time steps, then gradually adjusts to its stationary state
of measure 120◦ ± 0.15 at time t = 500∆t. On the other hand, the junction angle of
the outside phase decreases from 180◦ to 120◦± 0.85 after 10 time steps, then gradually
stabilizes to a measure of 120◦ ± 0.02 at time t = 500∆t.

Figure 4.3: Relative error plot of the phase interior angle measures at junction J1 for
the first 160 time steps.

This is in fact, depicted in the relative error plot (Figure 4.3) of phase interior angle
measures at junction J1. In particular, we see that after time t = 10∆t, the junction an-
gles whilst preserving phase volume, tries to achieve a stable state until approximately
t = 120∆t. This confirms that SDV method stably preserves the Herring (120◦) an-
gle conditions, and hence, the stationary volume-preserving solution evolved via SDV
method indeed, approximates a double bubble.

4.3.3 Example: Ten-phase Volume-preserving Flow

Consider a ten-phase configuration where the initial interfaces are circular arcs. The
domain Ω = [0, 1] × [0, 1] is triangulated into 12, 800 elements and time step ∆t =
2.5 × 10−4 with DMF partition K = 30. We preserve the phase volumes using SDV
method with ε = ∆x under a penalty parameter % = 10−6.

Figure 4.4 depicts the mean curvature evolution of the initial circular arcs with volume
constaint. Under this motion, we see that the top leftmost bubble slides to the right
forming a quadruple junction point at time t = 133∆t, which immediately splits after
one time step into two triple junctions and stably cradles itself between two bubbles.
Hence, SDV method is able to naturally handle topological changes. Observe also that
the symmetric Herring angle conditions are satisfied. In fact, the contact angles at the
triple junctions behave in a similar manner as in the double bubble case, where the
angle measure rapidly tends to the symmetric condition and then, gradually adjusts to
its stationary angle measure 120◦ ± 0.24◦.
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Figure 4.4: Initial 10-phase configuration (top left); its evolution after ∆t = 2.5×10−4

(top center) and at different times; and its stationary solution (bottom right).

Table 4.3: 10-phase Flow: Phase Volumes under penalty parameter % = 10−6.

phase region prescribed volume stationary state volume absolute error

P1 0.011185 0.011208 2.3× 10−5

P2 0.011592 0.011585 7.0× 10−6

P3 0.012702 0.012687 1.5× 10−5

P4 0.016988 0.016985 3.0× 10−6

P5 0.019179 0.019178 1.0× 10−6

P6 0.028773 0.028767 6.0× 10−6

P7 0.046392 0.046393 1.0× 10−6

P8 0.052734 0.052734 1.0× 10−7

P9 0.064719 0.064722 3.0× 10−6

P10 0.735737 0.735741 4.0× 10−6

Note also that the volume of each phase region is well preserved relative to the penalty
parameter % = 10−6, as shown in Table 4.3. Under this configuration, we were able to
achieve a fairly good approximation of multiphase volume-preserving MCF without the
need for any auxilliary mesh refinement technique – an advantage of the vector-type
MBO method [94].
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4.4 Concluding Remarks

Up to this point, we were able to develop a signed distance vector approach for realizing
volume-preserving mean curvature flow in the multiphase case. We have shown that our
SDV method benefits the key features of its predecessors and at the same time resolves
their underlying issues (see Table 4.4).

Table 4.4: SDV Method in comparison to other MBO-variant Algorithms

Features of the Numerical Method
Original
MBO

Ruuth’s
Method

DFDGM
Vector
MBO

SDV
Method

1. does not require direct calculation of mean
curvature and normal direction

X X X X X

2. handles complicated topological changes X X X X X

3. proceeds the evolution without stagnation × — X — X

4. can be extended to multiphase case X X X X X

5. preserves volume in two-phase case × X × X X

6. preserves volume in multiphase case × × × X X

(Here, “—” means a refinement technique is needed to alleviate MBO time and grid restrictions.)

The key in approximating volume-constrained multiphase flow lies in the variational
approach to solving the vector-valued heat equation. The volume of the phase regions
are easily preserved using a penalization technique. In fact, we showed that the numerical
SDV solution does not change for small penalty values, which confirms the theory [2, 93]
that the exact solution can be achieved with a sufficiently small penalty without passing
the limit in the penalty parameter. In the succeeding chapters, we experiment with this
vector variational approach to incorporate space-dependent bulk energies (Chapter 5)
and generalize to anisotropic mean curvature flow (Chapter 6).



Chapter 5

Multiphase Mean Curvature Flow
considering Bulk Energies

The present chapter deals with volume-preserving multiphase mean curvature evolution
of interfaces considering space-dependent bulk energy density. We start with an intro-
duction to the problem and some related works in section 5.1. In section 5.2, we present
an extension of our method to realize volume-preserving multiphase mean curvature flow
considering phase energies. We also show our method evolves the interface according to
its mean curvature plus the difference in bulk energies at the interface. Lastly, in section
5.3, we present numerical experiments and computational examples.

5.1 Introduction

Consider a k-phase configuration where each phase region Pi (i = 1, . . . , k) have pre-
scribed bulk energy density ei = div f for some vector-valued function f : RN → RN .
We wish to find a family {Γ(t) :=

⋃
γij(t)} of hypersurfaces depending on time t such

that every point x ∈ Γ(t) moves with a velocity

V(x) = −(κ+ ei − ej)ηij , x ∈ γij , (5.1)

where κ and ηij denotes the mean curvature and unit normal vector from phase Pi to Pj
at x, respectively. This interfacial motion is derived as the gradient flow for the energy
functional

E(Γ) =
∑
i<j

∫
γij

dHN−1 +

k∑
i=1

∫
Pk

ei(x)dLN (5.2)

where HN−1 is the (N−1)-dimensional Hausdorff measure and LN is the N -dimensional
Lebesgue measure.

Let us verify this derivation for the two-phase problem in R2. Consider a smooth Jordan
curve γ := γ12 parametrized as follows:

γ(s) = (γ1(s), γ2(s)) , s ∈ [a, b], γ(a) = γ(b).

49
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Then, the mean curvature and outer normal is given by

κ =
γ′1γ
′′
2 − γ′2γ′′1
|γ′|3

, η =
1

|γ′|
(
γ′2,−γ′1

)
.

Thus, for some vector u(x) = (u1(x), u2(x)) and v = (v1(x), v2(x)), the energy functional
(5.2) becomes

E(γ) =

∫
γ
dH1 +

∫
γ

u · η dH1 −
∫
γ

v · η dH1

=

∫ b

a
|γ′(s)|ds+

∫ b

a
(u1(γ1, γ2)γ′2 − u2(γ1, γ2)γ′1)ds

+

∫ b

a
(v1(γ1, γ2)γ′2 − v2(γ1, γ2)γ′1)ds.

The gradient flow of this energy can be found from its first variation. For any smooth
curve ζ(s), s ∈ [a, b] where ζ(a) = ζ(b), we have

d

dε

∫ b

a
|γ′(s) + εζ ′(s)|ds

⌋
ε=0

=

∫ b

a

γ′1(s)ζ ′1(s) + γ′2(s)ζ ′2(s)

|γ′(s)|
ds

= −
∫ b

a

d

ds

(
γ′1(s)

|γ′(s)|
,
γ′2(s)

|γ′(s)|

)
· ζds

=

∫ b

a

(
γ1γ2γ

′′
2 − (γ′2)2γ′′1 , γ1γ2γ

′′
1 − (γ′1)2γ′′2

)
|γ′(s)|3

· ζds

=

∫
γ
κη · ζ,

and

d

dε

∫ b

a
(u1(γ1 + εζ1, γ2 + εζ2)(γ′2 + εζ ′2)− u2(γ1 + εζ1, γ2 + εζ2)(γ′1 + εζ ′1))ds

⌋
ε=0

=

∫ b

a
u1(γ1, γ2)ζ ′2 +

(
∂u1

∂γ1
ζ1 +

∂u1

∂γ2
ζ2

)
γ′2 − u2(γ1, γ2)ζ ′1 −

(
∂u2

∂γ1
ζ1 +

∂u2

∂γ2
ζ2

)
γ′1

=

∫ b

a
−∂u1

∂γ1
γ′1ζ2 +

∂u1

∂γ1
γ′2ζ1 +

∂u2

∂γ2
γ′2ζ1 −

∂u2

∂γ2
γ′1ζ2

=

∫ b

a

(
∂u1

∂γ1
+
∂u2

∂γ2

)
(γ′2,−γ1) · ζ =

∫
γ
e1η · ζ.

Similarly, we get

d

dε

∫ b

a
(v1(γ1,ε, γ2,ε)γ

′
2,ε − v2(γ1,ε, γ2,ε)γ

′
1,εds

⌋
ε=0

=

∫
γ
e2η · ζ,

where γε = γ + εζ. Thus, we have

d

dε
E(γ + εζ)

⌋
ε=0

=

∫
γ
(κ+ e1 − e2)η · ζ,

which confirms the normal velocity (5.1) on interface γ.
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A related two-phase problem under volume constraint was considered in [50, 94]. It was
shown that two-phase interfacial motions with normal velocity

v = −κ− f + λ̃(t),

for some function λ̃ of time (with a magnitude that precisely guarantees volume preser-
vation) can be realized by applying the original MBO process to the following partial
differential equation in an N -dimensional space under Neumann boundary conditions:

ut = ∆u+
f√
4πt

+ λH1b∂{u> 1
2
},

where λ is a non-local term depending only on time. This term is a Lagrange multiplier,
chosen so that the region enclosed by the 1

2 -level set of the solution preserves the phase
volume for all times. Moreover, f is a term related to a given outer force and H1b∂{u> 1

2
}

is the (N − 1)-dimensional Hausdroff measure supported in the boundary of the set
{x : u(t, x) > 1

2}. This modification to the original MBO scheme was applied to carry
out a two-dimensional simulation of gas bubbles rising from the bottom of a container
filled with a viscous field, taking f = βy where y is the coordinate direction of gravity
and β is a constant expressing buoyancy determined by the physical configuration.

One can think of the above two-phase configuration as a system where the gas phase
enclosed by the interface has zero bulk energy, while the outer liquid phase has bulk
energy density f . We wish to extend this the multiphase setting using our SDV method
to incorporate the influence of pressure force in the parabolic framework, where the bulk
energy can be interpreted as an energy potential.

5.2 Incorporating Bulk Energies in SDV Method

In this section, we extend the results in [50, 94] to realize multiphase mean curvature
motions considering space-dependent bulk energies.

Consider the vector-valued nonhomogenous heat equation ut(t, x) = ∆u(t, x) + w(x) in (0,∞)× RN ,

u(0, x) = δε(x) on {t=0} × RN .
(5.3)

where w is a term related to the prescribed phase energies. The question is how to
construct the (k − 1)-dimensional vector w so that a normal velocity v = −κ − ei + ej
is realized at interface γij using our method.

We apply our SDV process to (5.3) and estimate the normal velocity of interfaces. We
wish to determine the conditions for w, so that interfacial velocity (5.1) is achieved. For
simplicity, take N = 2. Fix ε > 0 and x ∈ γij . We proceed in a similar fashion as in the
proof of Theorem 3.3 where we set up a neighborhood of x in a new coordinate system
as shown in Figure 3.2.

Let u be the solution of equation (5.3). For convenience, we write t instead of ∆t. Then,
the normal velocity v of interface γij at point x = 0 evolved by applying our SDV process
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to (5.3) can be found from the relation

0 = u(t, 0, vt) · (pi − pj)

=

∫
R2

δε(x) · (pi − pj)Φt(x− z)dx

+

∫ t

0

(∫
Q

+

∫
R2\Q

)
w(x) · (pi − pj)Φt−s(x− z)dxds

=: I + II + III (5.4)

where z := (0, vt). By Theorem 3.3, we have

I =
k

ε(k − 1)

[
(v + κ) t+O

(
(1 + τ +

√
t)
√
te−

τ2

4t

)
+O(t2)

]
+O(e−

τ2

4t ).

Moreover, if w · (pi − pj) is bounded in R2, then we can show that integral III is
exponentially small as follows:

|III| ≤ max
R2\Q

w(x)·(pi−pj)

∫ t

0

∫
R2\Q

Φt−s(x− z)dxds

= C

∫ t

0

(∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R

)
ϕt−s(x1)ϕt−s(x2 − vt)dx2dx1ds

≤ C

∫ t

0
e
− τ2

4(t−s)ds

= C

∫ ∞
τ2

4t

s−2e−sds

≤ C max
s≥ τ2

4t

1

s2

∫ ∞
τ2

4t

e−sds

= O(t2e−
τ2

4t ).

Now, using the expansion of w around 0, we have

II =

∫ t

0

∫ τ

−τ

∫ τ

−τ
w(x)·(pi−pj)Φt−s(x−z)dxds

=

∫ t

0

∫ ∞
−∞

∫ ∞
−∞

(w(0) +O(x))·(pi−pj)Φt−s(x−z)dxds+O(t2e−
τ2

4t )

=: II1 + II2 +O(t2e−
τ2

4t ).

Note that

II1 = w(0)·(pi−pj)

∫ t

0

∫ ∞
−∞

ϕt−s(x1)

∫ ∞
−∞

ϕt−s(x2)dx2dx1ds

= w(0)·(pi−pj)

∫ t

0
ds = w(0)·(pi−pj)t.

Moreover, since 2k > k − 1 for k > 1, then

|pi − pj | =

√
2k

k − 1
≤ 2k

k − 1
.
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(See Appendix A for the properties of symmetric reference vectors.)

Thus, we see that

|II2| ≤ C

∫ t

0

∫ ∞
−∞

∫ ∞
−∞
|x·(pi−pj)|Φt−s(x−z)dxds

≤ C|pi−pj |
∫ t

0

∫ ∞
−∞

∫ ∞
−∞
|x1 + x2|ϕt−s(x1)ϕt−s(x2 − vt)dx2dx1ds

≤ Ck

k − 1

∫ t

0

(∫ ∞
0

x1ϕt−s(x1)dx1 +

∫ ∞
−∞
|x2|ϕt−s(x2−vt)dx2

)
ds

≤ Ck

k − 1

∫ t

0

(√
t− s√
π

+

∫ ∞
0

(x2 + |v|t)ϕt−s(x2)dx2

)
ds

=
Ck

k − 1

∫ t

0

(
2
√
t− s√
π

+ |v|t
)
ds =

Ck

k − 1

(√
t+ t

)
t.

Then, (5.4) gives

0 =

[
k

ε(k − 1)
(v + κ) + w(0)·(pi−pj) +O(

√
t)

]
t, t→ 0.

This leads to the following theorem.

Theorem 5.1. Let x ∈ Γ :=
⋃
{γij : i, j = 1, 2, ..., k} such that there exists a unique

pair (i, j) for which x ∈ γij. Suppose w · (pi − pj) is bounded in RN and

w(x) · (pi−pj) =
k

ε(k − 1)
(ei − ej)(x),

where ei denotes the energy density function of phase Pi. Then, the normal velocity v
of interface Γ at x evolving via an SDV process on (5.3) is given by

v(x) = −κ− ei + ej +O(∆t), as ∆t→ 0,

where κ is (N − 1)-times the mean curvature of γij at x.

A simple design for vector-valued function w would be:

w(x) =


pi − pj

2ε
(ei − ej)(x), x ∈ Dω1,ω2

0, otherwise,
(5.5)

where
Dω1,ω2 := {x ∈ Ω : dist(x, γij) < ω1, dist(x, Pr) > ω2 (∀r 6= i, j)},

for some ω1, ω1 > 0. Note that

|pi − pj |2

2ε
(ei − ej) =

k

ε(k − 1)
(ei − ej) < +∞

(see Appendix A for properties of symmetric reference vectors).
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Similar calculations were carried out in extending the MBO Vector Threshold Scheme
[94] to include interfacial motions considering space-dependent bulk energies (see Ap-
pendix G). We employed this algorithm in [89] to simulate two-dimensional rising gas
bubbles (in a three-phase setting) with prescribed contact angles.

5.3 Numerical Results

In this section, we present some numerical experiments using our algorithm to simulate
rising gas bubbles in a liquid-filled container. Here, we incorporate the influence of
pressure force in the parabolic framework where the bulk energy density is taken as an
energy potential. In particular, we consider an initial condition where the first k − 1
phase regions are gas bubbles with zero bulk energies, i.e. e1 = e2 = · · · = ek−1 = 0,
while the liquid phase Pk has bulk energy density ek = f : RN → R. It is expected from
Theorem 5.1 that the normal velocity at each interface using our method is given by

v(x) =

{
−κ, x ∈ γij (i, j 6= k),

−κ+ f, x ∈ γik (i 6= k).

Since mass is preserved, we add a term that penalizes the phase volumes. More precisely,
we write out the algorithm.

Algorithm 5.1 Multiphase SDV Method with Volume Constraints and Bulk Energies

Given time step size ∆t > 0 and initial interface network Γ0 :=
⋃
{γij : i, j = 1, 2, . . . , k}

where each phase region Pi have prescribed energy density ei, we obtain its volume-
preserving MCF approximation by generating a sequence of time discrete interface net-
works {Γm}Mm=1 at times t = m∆t (m = 1, . . .M), as follows:

1. Initialization. Set u0 := δε with respect to Γm−1.

2. Minimization. Discretize ∆t = h×K. For a small positive number %, successively
minimize (n = 1, 2, . . . ,K):

Fhn (u) = J hn (u) +
1

2

∫
Ω

(w · u) dx+
1

%

k∑
i=1

∣∣Vi − LN (Pi(u))
∣∣2 ,

where Vi denotes the prescribed volume of phase region Pi, LN denotes the N -
dimensional Lebesgue measure, and

Pi(u) :=

{
x ∈ Ω : pi · u(∆t, x) = max

j=1,2,...,k
pj · u(∆t, x)

}
,

the set corresponding to phase Pi with respect to solution u.

3. Projection. Define the new interface Γm =
⋃
i 6=j

(∂Pi(uK) ∩ ∂Pj(uK)) ∩ Ω.
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5.3.1 Rising Bubbles with Equal Volumes

Consider a three-phase initial condition where phase regions P1 and P2 are circles of
equal radius r = 0.125 centered at (0.3, 0.4) and (0.7, 0.4), respectively. The region
outside the two circles denotes the external phase P3 with bulk energy density f = 10y.
As in [50, 94], y denotes the coordinate direction of gravity and β = 10 is a constant
expressing buoyancy.

It is expected that under volume-preserving mean curvature motion, both interfaces will
behave in a similar manner and move up at constant speed. However, due to the implicit
nature of our algorithm, it may happen that the motion of one interface depends on the
other, for example, interfaces may move at different speeds, collide, or pull away from
each other. To be sure that this does not happen in our method, we conduct a simple
test to check that the resulting motion of interfaces γ13 and γ23 behave accordingly and
are independent of each other.

Figure 5.1: The motion of two split bubbles of equal volumes (in a three-phase setting)
in liquid-filled container with bulk energy density f = 10y (ω1 = ω2 = 2∆)x at different

times (left) and the plot of their speed versus time (right).

Under parameters ε = ∆x, % = 10−6, and ω1 = ω2 = 2∆x, we run our method and
plot the resulting evolution in Figure 5.1. Here, the domain [0, 1]× [0, 1] is triangulated
into 12, 800 elements (with mesh size ∆x = 0.0125) and time step size ∆t = 1.5× 10−3

is discretized into 30 DMF partitions. We also compute the speed of the interface by
tracking the motion of a representative interface node, in this case, the centroid. It is
clear from the results that our method moves both interfaces upward in a similar manner
and at a constant speed relative to computation error, which can be improved by the
choice of parameters.

5.3.2 Rising Bubbles with Unequal Volumes

It is known that buoyant force on a bubble is proportional to its volume, hence, bigger
bubbles rise faster than smaller bubbles. In the following setup, we check whether or
not this behavior is captured by our method.

Consider a three-phase initial condition where two circles of unequal area make up phase
regions P1 and P2 with zero energy density and the remaining region as the external
phase P3 with prescribed bulk energy f = 10y. In particular, we take P1 as a circle of
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radius r1 = 0.13 centered at (0.25, 0.35) and P2 as a circle of radius r2 = 0.17 centered
at (0.7, 0.35).

Figure 5.2: The motion of two split bubbles of different volumes (in a three-phase
setting) in a liquid-filled container with ω1 = ω2 = 2∆x at different times (left) and

the plot of their speed versus time (right).

Using the same parameters as in the previous experiment, we see that the interface with
a larger enclosed volume rises faster as expected (Figure 5.2). Moreover, the motion of
both interfaces approaches a constant speed, relative to computation errors.

5.3.3 General Transport Motions

So far, we have experimented with bulk energy densities resulting in upward motions,
that is, bubbles moving in the vertical direction. Let us now take f = αx+βy. Consider
a simple two-phase case where the interface is a circle C of radius r0 centered at (x0, y0).
Note that the total force around this interface is given by∫

C
fη =

∫
C

(αx+ βy)〈x− x0, y − y0〉

= r0

∫ 2π

0
(α(x0 + r0 cos t) + β(y0 + r0 sin t)) 〈cos t, sin t〉dt

= r2
0

∫ 2π

0
〈α cos2 t, β sin2 t〉dt = 1

2AC〈α, β〉,

where AC is the area of circle C. This tells us that the motion of the interface is in
the 〈α, β〉-direction and that the influence of the pressure force on the interface varies
proportionally to its enclosed volume.

Let us check whether our algorithm is able to move interfaces in any arbitrary direction.
Take a circle of radius 0.15 centered at (0.3, 0.3) as our initial condition. We trianglulate
the domain [0, 1]×[0, 1] into 12, 800 elements (with mesh size ∆x = 0.0125) and discretize
time step size ∆t = 5.0× 10−4 into 30 DMF partitions.

Under parameters ε = 5∆x, % = 10−7, ω1 = ω2 = 2∆x, and α = β = 50, we run our
method and plot the resulting evolution in Figure 5.3. We also compute the speed of
the interface by tracking the motion of its centroid. Results indicate that our algorithm
can move interface in a 〈α, β〉-direction at a relatively constant speed while preserving
the prescribed phase volume.
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Figure 5.3: The volume-constrained motion of a gas-liquid interface with liquid bulk
energy f = 50(x+ y) in the 〈1, 1〉-direction (left) and its speed versus time plot (right).

5.3.4 Example: Six-phase Volume-preserving Flow with Buoyancy

Consider a six-phase configuration where phase regions P1 and P2 are polygons of differ-
ent heights and initially attached to the floor boundary, P3 and P4 are two overlapping
quadrilaterals, P5 is a circle whose volume is smaller than the volume of phase P2 be-
low it, and P6 is the remaining external phase region (see Figure 5.4) with bulk energy
density f = 25y.

P1

P2

P3 P4

P5

P6

Figure 5.4: Initial 6-phase configuration (top left) and its volume-preserving mean
curvature evolution with zero gas bulk energies and liquid bulk energy f = 25y under

volume penalty % = 10−6 with time step size ∆t = 10−3 at different times.
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The domain [0, 1]×[0, 1] is triangulated into 28, 800 elements (with mesh size ∆x = 8.33×
10−3) and time step size ∆t = 0.0010 (with K = 20 DMF partitions). We preserve the
phase volumes under a penalty parameter % = 10−6 and ω1 = ω2 = ∆x. Under the above
parameters, we evolve the interface using our SDV scheme with ε = ∆x and plot the
resulting evolution at different times t = 2∆t, 5∆t, 9∆t, 20∆t, 60∆t, 70∆t, 100∆t, 150∆t.
One can think of this setup as a simulation of multiple gas bubbles rising in a liquid-filled
container.

Observe that our method evolves interfaces by its mean curvature while being pushed
upwards by the prescribed buoyant force and trying to preserve all phase volumes. This
is especially evident in the motion of phase regions P3 and P4 as it evolves into a double
bubble (see Figure 5.5). Note that the double bubble slightly tilts counterclockwise due
to the difference in phase volumes (V3 = 0.025223, V4 = 0.028242), resulting in phase
P4 to rise a little faster than P3.

Figure 5.5: A closer look at the first evolution of the rising double bubble (left) and
the two phase regions initially attached to the boundary floor (right).

The motion of the two phase regions P1 and P2 that are initially attached to the bound-
ary floor is a result of the competition between the buoyant force pushing the bubbles
upwards and the surface tension force holding the bubbles down (Figure 5.4). In the case
of phase region P1 with a relatively low height and larger contact angle, the adhesive
force prevails and the bubble stays attached to the boundary floor until reaching a stable
state with a 90◦ contact angle (due to the Neumann boundary condition). On the other
hand, phase region P2 detaches itself from the boundary floor since a large portion of
the region is away from the boundary floor and the initial contact angle is small enough
that its curvature evolution and the buoyant force can easily peel it from the bottom.

Figure 5.6: A closer look at the evolution of the interface forming a four bubble link.

Phase P2 then, continues to rise up and evolve into a circle. However, since its volume
V2 = 0.029114 is relatively larger than that phase region P5 (V5 = 0.022442), it is able to
catch up to this bubble and attaches itself onto it. The two phase regions then, evolves
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to form a double bubble while moving up and turning clockwise (since P2 rises faster
than P5). At this stage, we now have two rising double bubbles P3 − P4 and P2 − P5

while phase P1 remains attached to the boundary floor. Note that the volume difference
in the later formed double bubble (|V2 − V5| > |V3 − V4|) is greater than that of double
bubble P3−P4. This means the double bubble P2−P5 turns faster than that of P3−P4,
causing phase P2 to attach to P4 forming a four bubble link (Figure 5.6). This link then
continue to evolve according to its mean curvature as it is being pushed upwards by the
buoyant force.

Table 5.1: 6-phase Flow: Phase Volumes under penalty parameter % = 10−6.

phase region prescribed volume (t = 0) phase volumes at t = 150∆t absolute error

P1 0.021743 0.021512 2.3× 10−4

P2 0.029114 0.029125 1.1× 10−5

P3 0.025223 0.025238 1.5× 10−5

P4 0.028242 0.028259 1.7× 10−5

P5 0.022442 0.022484 4.2× 10−5

P6 0.873236 0.873376 1.4× 10−4

Finally, as depicted in Table 5.1, all phase volumes are preserved relative to the pre-
scribed penalty parameter, and at the same time, the symmetric junction angle condi-
tions are satisfied.

5.4 Concluding Remarks

By applying our signed distance vector scheme to a vector-valued non-homogeneous heat
equation, we were able to extend our algorithm to approximate mean curvature motions
of interfaces separating multiple phases with prescribed bulk energies. This allowed us
to simulate multiple rising gas bubbles in a liquid-filled container, as exemplified in our
numerical experiments. As a side note, we comment that our construction of the vector
function w is in respect analogous to the characteristic function. This means that there
is a possibility that the interfacial motions may stagnate as it is being driven by the
external force. One can, of course, construct a continuous vector w as need be, however,
we reiterate that our choice of w is to reduce computational costs and rely on the signed
distance vector to provide subgrid accuracies.





Chapter 6

Volume-preserving Anisotropic
Mean Curvature Flow

This chapter deals with anisotropic mean curvature flows. In particular, we generalize
our signed distance vector scheme to allow anisotropic energies. Section 6.1 provides
a background on anisotropic mean curvature flows and some related numerical scheme,
which leads us to our algorithm in section 6.2. In section 6.3, we investigate the accuracy
of our method and present numerical results and examples.

6.1 Introduction

Anisotropic mean curvature flow is characterized by the gradient descent of the anisotropic
surface energy

Eφ(Γ) =

∫
Γ
φ(η) dHN−1,

for a given anisotropy function φ : RN → R. Note that pure mean curvature flow
follows from the Euclidean distance φ(·) = | · |. Here, we assume φ ∈ C3(RN+1\{0}) is
nonnegative, convex, and positively homogeneous of degree one. A typical example is
the discrete lr-norm given by

φ(x) = ‖x‖lr =

(
N∑
i=1

|xi|r
) 1

r

, 1 ≤ r <∞,

where x = (x1, . . . , xN ).

For ζ ∈ C∞0 (U) where U denotes a neighborhood of Γ, define ψε = x + εζ(x)η(x) for
x ∈ U and consider Γε = ψε(Γ). Then, (as shown in [28, Lemma 8.2]) we have

d

dε
Eφ(Γε)

∣∣∣∣
ε=0

=

∫
Γ
κφζ dHN−1,

where the anisotropic mean curvature is defined by

κφ = div Γηφ(x), x ∈ Γ.
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Here, div Γ denotes the surface divergence on Γ and ηφ = ∇φ(η) is called the Cahn-
Hoffman vector. Hence, the velocity of interface Γ under φ-curvature flow is given by

V = −div Γ∇φ(η),

in the direction of the outer normal η of Γ. Such evolutionary problems are related to
the description of crystal growth [18] and appear in physical systems involving phase
boundary motions [10, 51, 52]. Generalized solutions [24] and some regularity properties
[47] have also been established.

The corresponding volume-preserving flow is a modification of the anisotropic mean
curvature flow, with an extra term that balances the contraction and keeps the enclosed
volume of the hypersurface constant, where velocity of the interface is given by

V (x) =

(
−κφ +−

∫
Γ
κφ

)
ηφ(x), x ∈ Γ.

Under this motion, convex hypersurfaces in Euclidean space have been proven to remain
smooth and convex for all time, and converge to a limit determined by the anisotropy
[9]. In the succeeding sections, we are interested in the extent of our SDV method to
realize volume-preserving anisotropic mean curvature flow.

6.2 A Numerical Scheme for Anisotropic Evolution

There is an existing number of numerical methods for anisotropic mean curvature flow
which includes, e.g., the case of graphs [26, 27], curve shortening flow [30], and curves
with triple junctions [13].

The direct approach is to solve the gradient flow of the surface free energy by minimizing

Eφ(ξ(Γ))− Eφ(Γ)
1

2h
〈ξ, ξ〉,

over all where ξ(Γ), small deformation of Γ for a given time step size h > 0. The
minimizer is an approximation to the anisotropic mean curvature evolution of Γ by
time h [91]. This variational problem have been studied in a number of literature (e.g.,
[3, 21, 22]).

The anisotropic generalization of the two-phase MBO threshold dynamics is as follows.
Given an anisotropy function φ, the anisotropic mean curvature evolution of the interface
is approximated by the 1

2 -level set of the solution of ut(x, t) ∈ div (φ(∇u)∂φ(∇u)) , t > 0, x ∈ RN

u(·, 0) = χP ,

where ∂ denotes the subdifferential and P is the region enclosed by the interface. Its
variational variant was introduced in [21], which is numerically simpler to solve by
considering the minimization problem

min
u∈H1(Ω)

∫
Ω
φ(∇u(x))2 +

1

h
(u(x)− χP (x))2 dx
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In their numerical experiment, the authors experimented with an implicit method based
on iterative resolutions of the above variational problem. Here, the solution u(·, x) is
approximated with wn(x) where h = nh′ and n is a fixed (small) integer, by successively
minimizing for i = 0, . . . , n− 1, the functional∫

Ω
φ(∇w(x))2 +

1

h′
(w(x)− wi(x))2 dx,

where w0 = χP . This is in fact, the variational scheme for the isotropic mean curvature
flow introduced in [94]. As a result, the inherent MBO time and grid restriction still
lingers in the algorithm where one either appropriately chooses the time step size to
proceed the approximation without stagnation or introduces some form of mesh refine-
ment.

In this light, we invoke the signed distance vector scheme to provide subgrid accuracies
to prevent the resulting evolution from getting stuck. More precisely, for a given time
step size ∆t = h×K, we successively minimize (n = 1, 2, . . . ,K):

J h,φn (u) =

∫
Ω

(
|u− un−1|2

2h
+
|φ(∇u)|2

2

)
dx

where

u0(x) = δε(x) :=
1

ε

{
min (ε,dist(x,Γ)) , x ∈ P
−min (ε,dist(x,Γ)) , x ∈ RN\P.

To realize volume-preserving anisotropic mean curvature flow, we add the penalization
term to our functional as follows.

Algorithm 6.1 Two-phase SDV Method for Volume-preserving Anisotropic Flow

Given an initial interface network Γ0 := ∂P and a time step size ∆t > 0, we obtain
an approximation of the volume-preserving anisotropic mean curvature flow at time
t = m∆t, by obtaining Γm from Γm−1 as follows:

1. Initialization. For all x ∈ Ω, set u0 := δε(x) with respect to Γm−1.

2. Minimization. Discretize ∆t = h×K. For a small positive number %, successively
minimize (n = 1, 2, . . . ,K):

Fh,φn (u) = J h,φn (u) +
1

%

k∑
i=1

∣∣LN (P )− LN ({u > 0})
∣∣2 .

3. Projection. Set Γm := ∂{u > 0}, the zero-level set of the solution.

6.3 Numerical Results

In this section, we conduct numerical test to determine the accuracy of our method in
comparison with the φ-MBO algorithm [21], including some computational examples.
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6.3.1 Shrinking Anisotropic Circle Test

Let us start with a simple two-phase problem. Consider an anisotropic circle of initial
radius r given by the set Γ(0) = {x : φ∗(x) = r} where φ∗ is the dual of φ defined by

φ∗(x) = sup
p∈RN\{0}

x · p
φ(p)

.

Note that the anisotropic distance between x, y ∈ RN is given by φ∗(x− y). Then, the
anisotropic mean curvature evolution of φ-circle (as shown in [48, Theorem 1.7.3]) is
given by

Γ(t) = {x : φ∗(x) =
√
r2 − 2t}, 0 ≤ t ≤ r2/2,

which generalizes the isotropic mean curvature flow of a circle. For this test, we consider
a square-type anisotropy function defined by

φ(x) =
2∑
i=1

√
σ|x|2 + x2

1, (6.1)

the regularized l1-anisotropy. With a smoothing parameter σ = 10−6, we take its corre-
sponding circle with radius r = 0.25 on a [0, 1]× [0, 1] domain as our initial condition.

Figure 6.1: Evolution of the radius of an anisotropic circle evolved using φ-MBO
scheme (red) and SDV method (non-red) on an 80 × 80 (left) and 160 × 160 (right)

mesh resolution with time step size ∆t = T/64 and ∆t = T/128, respectively.

On varying mesh size and time step configurations, we run the SDV method for ε =
∆x, 2∆x, 3∆x, 5∆x until the exact extinction time T = 0.03125. We then, compare
this resulting motion with the approximation via anisotropic MBO scheme [21], as well
as, the exact solution (Figure 6.1). We see that for mesh-time configurations where φ-
MBO scheme stagnates, our algorithm is able to alleviate the time and grid restrictions
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and provides a fine approximation to the exact evolution of the anisotropic circle. In
particular, on a 160×160 mesh resolution with time step size ∆t = T/128, the resulting
motion of SDV scheme with smaller ε values can hardly be distinguished from the exact
solution; thereby, saving computational costs.

As in the isotropic case, the order of convergence is basically linear, but it is noticeable
that results are more accurate on smaller SDV ε values. However, we should also mention
that for even smaller time intervals (far from the onset of stagnation), larger SDV ε values
would come into play since they provide more geometric information on the interfaces
as is needed to overcome the time and grid restrictions, as was observed in our SDV
approximation for isotropic mean curvature.

6.3.2 Example: Two-phase Anisotropic Mean Curvature Flow

Examples of anisotropic mean curvature flow generated via SDV method are given in
this subsection. Consider a circle of radius 0.35 on a [0, 1]× [0, 1] domain as our initial
condition. The domain is triangulated into 12, 800 elements and the time step size
∆t = 2.5 × 10−4 is discretized into 30 DMF partitions. We run SDV method with
ε = 3∆x until its extinction and plot the resulting evolution of the circle under different
anisotropic energies. Note that under this configuration, φ-MBO numerical scheme [21]
stagnates due to time and grid restrictions as in the MBO threshold dynamics [68]. We
show that using our algorithm, we are able to realize anisotropic mean curvature flow
without stagnation.

First, we consider some examples of anisotropy found in the text [28].

Figure 6.2: Anisotropic mean curvature evolution of a circle via SDV method under
anisotropic energies φ1 (a = 5.5, b = 4.5) and φ2 (a = 0.20).

The first evolution of the initial circle in Figure 6.2 is generated under anisotropy function

φ1(x) =
√

(a+ b sgn (x1))x2
1 + x2

2,

for some constant a, b > 0. The second example, on the other hand, follows an anisotropy
function often used in a physical context defined as

φ2(x) =

(
1− a

(
1−
‖x‖4l4
‖x‖4

l2

))
‖x‖l2 ,
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for some a > 0. We see that our algorithm is able to handle anisotropic mean curvature
motion resulting in smooth interfaces.

Next, we consider anisotropy functions with sharp corners (e.g., regular polygons) as
shown in Figure 6.3. The first example evolves under a six-fold anisotropy

φ3(x) =
(
|µ1|m +

∣∣∣12µ1 +
√

3
2 µ2

∣∣∣m +
∣∣∣−1

2µ1 +
√

3
2 µ2

∣∣∣m)1/m

where m ∈ N and µi =
√
σ|x|2 + x2

i (i = 1, 2) for a given smoothing parameter σ.

Figure 6.3: Anisotropic mean curvature evolution of a circle via SDV method under
anisotropic energies φ3 (σ = 10−12, m = 101) and φ4.

This can be generalized to any regular n-fold anisotropy as follows

φ(x) =

(
n−1∑
i=0

|ei · µ|m
)1/m

(6.2)

where µ = (µ1, µ2) and vectors ei (i = 1, . . . , n− 1) are given by

ei =

[
cos iπn − sin iπ

n

sin iπ
n cos iπn

]
e0

for any given vector e0. In other words, the vector ei’s are generated by successively
rotating e0 by an angle of π/n. The second example in Figure 6.3 (top right) is the
resulting motion of an eight-fold anisotropy φ4 with parameters n = 8, m = 101, σ =
10−12, and e0 = 〈cos π8 , sin

π
8 〉. We see that with small enough smoothing parameter, we

are able to achieve a fairly good approximation of a regular n-fold anisotropic evolution
without stagnation.

6.3.3 Example: Two-phase Volume-preserving Anisotropic Flow

Consider the same setup as in the previous subsection. We generate its anisotropic
evolution while preserving the enclosed phase volume using our algorithm with ε = 3∆x
and penalty parameter % = 10−6.
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Figure 6.4: Volume-preserving SDV evolution driven by anisotropy φ2 with a = 0.20
(top) and φ4 with parameters n = 8, m = 101, σ = 10−12, e0 = 〈0, 1〉 (bottom).

Figure 6.4 shows the volume-preserving mean curvature evolution of a circle under
anisotropy functions yielding centroid-symmetric interfaces. On both simulations, the
difference of phase volumes in their initial and stationary state is at most 5.17 × 10−4.
Hence, the enclosed phase volumes are well-preserved, relative to the choice of penalty
parameter.

Figure 6.5: Volume-constrained evolution of a circle via SDV method driven by
anisotropy φ1 (a = 5.5, b = 4.5) under penalty paramter % = 10−6.

Figure 6.5, on the other hand, considers the volume-constrained evolution of a circle
driven by anisotropy function φ1 (with parameters a = 5.5, b = 4.5). In this setup,
the enclosed phase volume is also well preserved with a volume difference of 1.16× 10−4

under penalty parameter % = 10−6. However, due to its asymmetric nature, the interface
continue to move to the right until reaching the boundary.

6.3.4 An Attempt: 7-phase Volume-preserving Anisotropic Flow

In this subsection, we experiment with a vector analogue of Algorithm 6.1 to realize mul-
tiphase volume-preserving anisotropic flow. To be precise, for a small positive number
%, we successively minimize (n = 1, 2, . . . ,K):

Fhn (u) =

∫
Ω

(
|u− un−1|2

2h
+
|φ(∇u)|2

2

)
dx+

1

%

k∑
i=1

∣∣αi − LN (Pi(u))
∣∣2 ,
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where u0 := δε(x) with respect to Γ :=
⋃
{γij : i, j = 1, 2, . . . , k}, αi denotes the pre-

scribed volume of phase Pi, and

Pi(u) := {x ∈ Ω : pi · u(x) ≥ pj · u(x), ∀j = 1, 2, ..., k} ,

the set corresponding to phase Pi with respect to solution u.

Consider a 7-phase configuration where the initial interfaces are circular arcs. The
domain Ω = [0, 1] × [0, 1] is triangulated into 6049 elements and time step size ∆t =
5.0 × 10−4 with DMF partition K = 20. We preserve the phase volumes using SDV
method with ε = ∆x under a penalty parameter % = 10−5 and a square-type anisotropy
(6.1) defined as the regularized l1-anisotropy. Note that this is consistent with our n-fold
anisotropy function (6.2) with parameters m = 1, n = 2, e0 = 〈0, 1〉.

Figure 6.6: Initial 7-phase configuration (top left); its volume-preserving anisotropic
evolution after one time step ∆t = 5.0 × 10−4 (top center); at t = 10∆t (top right);
at t = 100∆t (bottom left); at t = 200∆t (bottom center); and its stationary solution

(bottom right).

Figure 6.6 shows the resulting motion of the initial overlapping circles under the SDV
method for volume-preserving flow driven by a square-type anisotropy (Algorithm 5.1).
We see that our algorithm evolves the interfaces in an attempt to have an enclosed square
region (as set by the anisotropy function (6.1)) while preserving the phase volumes.
Unfortunately, since our algorithm only imposes the symmetric Herring angle conditions,
we were not able to accurately capture the evolution near the triple junction resulting
in nonsquare phase regions in the stationary solution.

For this square-type anisotropy, we conjecture that a 180◦ − 90◦ − 90◦ angle condition
must be satisfied at the junction. This requires us to modify the projection step in the
algorithm, possibly by using a similar projection circle as in [88].
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6.4 Concluding Remarks

We have presented a signed distance vector approach for realizing volume-preserving
anisotropic mean curvature flows, which alleviates the time and grid restriction in [21].
Although we were only successful in the two-phase case, our vector setting also allowed
us to experiment with multiphase anisotropic mean curvature flows. One issue that
needs to be resolved is the evolution at the triple junction using our current method.
To do this, we first need to know what exactly are the junction angle conditions set
by the prescribed anisotropy function. Once this is known, some form of nonsymmetric
reference vectors (as in [88]) in conjunction with our signed distance vector may be
adopted to get a closer approximation of the evolution of the triple junction under
anisotropic mean curvature flow. This is one problem that we would like to work on in
the future. Another would be to show that our method evolves interfaces according to
its anisotropic mean curvature – a similar analysis as in [36, 37, 94].





Chapter 7

On Evolutionary Free Boundary
Problem with Volume Constraint

This chapter focuses on a penalization technique in relation to the volume-constrained
variational method employed in our SDV scheme. We prove the existence and regularity
of the sequence of minimizers of the penalized functional. We also investigate the behav-
ior of these minimizers for large penalty values, and construct a minimizing movement
and show some of its propeties. (For the list of notations and some preliminary results
utilized in this chapter, please refer to Appendix H.)

7.1 Introduction

Let Ω ⊂ RN be an open bounded connected domain with smooth convex Lipschitz
boundary. Consider a Lipschitz continuous function u0 ∈ H1(Ω) ∩ L∞(Ω) whose set of
positive values has Lebesgue measure α ∈ (0, |Ω|). Given time step h = T/M for some
fixed time T ∈ (0,∞) and M ∈ N, we search for a sequence of functions un ∈ H1(Ω) by
successively solving the following problem for n = 1, 2, . . . ,M , un = arg min

A

∫
Ω

(
|u− un−1|2

h
+ |∇u|2

)
dx

A :=
{
u ∈ H1(Ω) : |{u > 0}| = α

}
.

(7.1)

The above problem appears in our numerical approximation of volume-preserving mean
curvature flow by MBO algorithm (see Chapter 4). It is known that it is possible
to realize this geometrical evolution if one solves the L2-gradient flow of the Dirichlet
functional in the admissible set consisting of H1-functions having 0-level set with a
given volume α. The time-semidiscretization of this gradient flow problem leads to
the minimization problem (7.1), which is then solved numerically by a penalization
technique. The purpose of the present chapter is to provide a basic analysis for the above
problem, which could serve as a starting point for a rigorous proof of convergence and
other properties of the volume-preserving MBO algorithm. In particular, by studying
a similar penalty form as in Chapter 4, we show that for sufficiently large (but finite)
penalty coefficient the volume of level sets adjusts to the exact value, and thus we
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justify the usage of this penalization in the numerical scheme. Moreover, the topic is
interesting from the pure mathematical point of view since free boundary problems with
global constraints have been treated only in the stationary (elliptic) case.

The problem of minimizing only the Dirichlet integral over set A assuming a given
boundary value was considered in [2] using a penalization technique by minimizing for
ε > 0, the functional

Jε(u) :=

∫
Ω
|∇u|2 + fε (|{u > 0}|)

where

fε(x) :=


1

ε
(x− α), x ≥ α

ε(x− α), x ≤ α.

In [2], the authors showed that minimizer uε of Jε is a weak solution of the free bound-
ary problem for Laplace equation with free boundary condition −∂ηuε = λε for some
constant λε > 0 in the sense of [4]; thereby allowing them to use the regularity theory es-
tablished therein. Hence, smooth inward and outward perturbations of the set {uε > 0}
were possible. This lead them to establish that for small enough ε, the minimizer uε ac-
tually solves the original problem of minimizing the Dirichlet functional

∫
Ω |∇u|

2 under
the constraint |{u > 0}| = α, since the measure of {uε > 0} automatically adjusts to
the prescribed value.

Similar results were obtained by Tilli [93] for the problem of minimizing the Dirichlet
integral over all H1-functions where each li-level set has prescribed Lebesgue measure
αi (i = 1, 2, . . . , k). He used a technique that penalizes only those functions whose level
sets are of measure less than the prescribed value, that is, for λ > 0,

min
H1(Ω)

∫
Ω
|∇u|2 + λ

k∑
i=1

(αi − |{u = li}|)+ . (7.2)

The smooth inward perturbation of the level sets (which require smoothness of the free
boundary and normal derivatives) was avoided since for any minimizer of (7.2), the
measures of the level sets do not exceed their prescribed values. Moreover, without any
information on smoothness, outward perturbations of the level sets were done by simply
replacing u in the set li < u < li+1 by wδ = li + c(u− li − δ)+, where δ ∈ (li, li+1) and c
is chosen so that li-level set is replaced by a larger set {li ≤ u ≤ li + δ} while the other
level sets are preserved. Using this technique, the same result as in [2] was obtained
without employing the smoothness of the free boundary, namely, there exists a finite
value λ0 such that for any λ ≥ λ0, the minimizer u of (7.2) exactly satisfies the volume
constraints |{u = li}| = αi (i = 1, 2, . . . , k).

In this chapter, we consider the simpler one-phase case when u0 is nonnegative, and
adopt a similar penalization technique as in [93] to solve the original problem (7.1). In
particular, we consider a method that penalizes only the increase in measure of the set
{u > 0}. For a penalty parameter λ > 0, we define

F(h, u, un−1) = Fhn (u) :=

∫
Ω

(
|u− un−1|2

h
+ |∇u|2

)
dx+ λf(|{u > 0}|),
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where the penalization function f(x) = (x− α)+, and we consider the problem of suc-
cessively minimizing the above functional for n = 1, 2, . . . ,M ,

min
u∈H1(Ω)

F(h, u, un−1). (7.3)

We first establish the existence and regularity of minimizer un of Fhn at each time level
in sections 7.2, 7.3, and 7.4. Without relying on the smoothness of the free boundary
as in [93], we show then that for sufficiently large penalty parameter λ, depending on h
but independent of n, the measure of the set {un > 0} adjusts to its prescribed value
(section 7.5). As a consequence, the solution to the original problem is attained without
passing the limit in λ. Moreover, we construct a minimizing movement associated to F
and u0 exists and show some of its properties (section 7.6).

7.2 Existence of minimizer and its properties

In this section, we show the existence of a sequence of minimizers and some of its
properties.

Theorem 7.1. For h, λ > 0, there exists a sequence {un}Mn=1 ⊂ H1(Ω) such that un
minimizes Fhn .

Proof. Fix h, λ > 0. We first show that for any given function v ∈ H1(Ω), there exists
u ∈ H1(Ω) which minimizes

F(h, u, v) =

∫
Ω

|u− v|2

h
+ |∇u|2 + λf(|{u > 0}|).

Since F is nonnegative, then there exists a minimizing sequence {uk} ⊂ H1(Ω) such
that

F(h, u, v) −→ inf
H1(Ω)

F(h, ·, v).

We show that a subsequence {uk} converges to a minimizer of F . Note that∫
Ω
|∇uk|2 ≤ sup

k
F(h, uk, v) < +∞,

which implies that {∇uk} is uniformly bounded in L2(Ω). Then, by L2-weak compact-
ness, we can find a subsequence (still denoted by uk) such that for some φ ∈ L2(Ω), we
have

∇uk ⇀ φ weakly in L2(Ω). (7.4)

Note that

‖uk − v‖2L2(Ω) = h

∫
Ω

|uk − v|2

h
≤ h sup

k
F(h, uk, v) < +∞,

and so, we have

‖uk‖L2(Ω) ≤ ‖uk − v‖L2(Ω) + ‖v‖L2(Ω) < +∞.
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It follows that {uk} is uniformly bounded in H1(Ω). Thus, by Rellich-Kondrachov
theorem, there exists a subsequence (still denoted by uk) such that for some u ∈ L2(Ω),
we have

uk −→ u strongly in L2(Ω), (7.5)

which also implies a weak L2-convergence. Hence,

lim
k→∞

∫
Ω

|uk − v|2

h
= lim

k→∞

∫
Ω

(
uk
)2 − 2ukv + v2

h
=

∫
Ω

|u− v|2

h
. (7.6)

Moreover, by (7.4) and (7.5), we see that for any ψ ∈ C∞0 (Ω),∫
Ω
φ · ψ = lim

k→∞

∫
Ω
∇uk · ψ = − lim

k→∞

∫
Ω
uk divψ = −

∫
Ω
udivψ,

implying that ∇u = φ in the weak sense. Thus, ∇uk ⇀ ∇u weakly in L2(Ω).

Now,
∫

Ω |∇u
k −∇u|2 ≥ 0 implies

2

∫
Ω
∇uk · ∇u ≤

∫
Ω
|∇uk|2 +

∫
Ω
|∇u|2.

Taking the limit inferior and applying the above weak convergence, we get∫
Ω
|∇u|2 ≤ lim inf

k→∞

∫
Ω
|∇uk|2. (7.7)

Moreover, there exists a nonnegative function γ ∈ L∞(Ω; [0, 1]) such that

χ{uk>0} ⇀ γ weakly star in L∞(Ω),

which implies that ∫
Ω
γ = lim

k→∞

∫
Ω
χ{uk>0} = lim

k→∞
|{uk > 0}|. (7.8)

By (7.5), we can find a subsequence (still denoted by uk) such that uk → u almost
everywhere in Ω. Since γ ≤ 1, then∫

Ω
|γ − 1|χ{u>0} =

∫
{u>0}

1− χ{uk>0} +

∫
Ω

(
χ{uk>0} − γ

)
χ{u>0} −→ 0,

which implies that γ = 1 almost everywhere in {u > 0}. By (7.8),

|{u > 0}| =
∫

Ω
χ{u>0} ≤

∫
Ω
γ = lim

k→∞
|{uk > 0}|.

Since f is continuous and nondecreasing, we get

f(|{u > 0}|) ≤ lim
k→∞

f(|{uk > 0}|). (7.9)

Thus, combining (7.6), (7.7), and (7.9) yields

F(h, u, v) ≤ lim inf
k→∞

F(h, uk, v) = inf
H1(Ω)

F(h, ·, v) ≤ F(h, u, v),
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and so, u ∈ H1(Ω) is a minimizer.

Finally, since u0 ∈ H1(Ω), then by the above claim, there exists u1 ∈ H1(Ω) which
minimizes Fh1 = F(h, ·, u0). Inductively, we can find un ∈ H1(Ω) which minimizes Fhn
for all n = 2, . . . ,M .

From hereon, we shall denote this sequence of minimizers by {un} ⊂ H1(Ω). These
minimizers are in fact, nonnegative and bounded from above by the L∞-norm of u0 as
follows.

Theorem 7.2. If un minimizes Fhn (n = 1, . . . ,M) for h, λ > 0, then

0 ≤ un(x) ≤ ‖u0‖∞,

for almost every x ∈ Ω.

Proof by Induction. Note that 0 ≤ u0 ≤ ‖u0‖∞. Fix n and assume that

0 ≤ un−1 ≤ ‖u0‖∞ a.e. in Ω. (7.10)

Suppose |{un < 0}| 6= 0. Consider φ := max (un, 0) ∈ H1(Ω) where

∇φ =

{
∇un, un > 0

0, otherwise,

in the weak sense. Note that |{un > 0}| = |{φ > 0}|. Hence, f (|{un > 0}|) =
f (|{φ > 0}|). Moreover,∫

Ω
|∇φ|2 =

∫
{un>0}

|∇un|2 ≤
∫

Ω
|∇un|2.

and ∫
Ω
|φ− un−1|2 =

∫
{un>0}

|un − un−1|2 +

∫
{un<0}

u2
n−1

=

∫
Ω

(un − un−1)2 +

∫
{un<0}

2unun−1 − u2
n

<

∫
Ω
|un − un−1|2,

since by (7.10), 2unun−1 ≤ 0 and un 6= 0 in set {un < 0}. Thus, Fhn (φ) < Fhn (un), which
contradicts the minimality of un.

Suppose |S| := |{un > ‖u0‖∞}| 6= 0. Take φ := min(un, ‖u0‖∞) ∈ H1(Ω) where

∇φ =

{
∇un, un < ‖u0‖∞

0, otherwise,

in the weak sense. Note that {un > 0} = S ∪ {0 < un ≤ ‖u0‖∞} = {φ > 0}. Then, we
have f (|{un > 0}|) = f (|{φ > 0}|). Moreover,∫

Ω
|∇φ|2 =

∫
{u<‖u0‖∞}

|∇un|2 ≤
∫

Ω
|∇un|2.
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and ∫
Ω
|φ− un−1|2 =

∫
Ω\S
|un − un−1|2 +

∫
S
|‖u0‖∞ − un−1|2

=

∫
Ω
|un − un−1|2 +

∫
S
‖u0‖2∞ − u2

n − 2un−1 (‖u0‖∞ − un)

=

∫
Ω
|un − un−1|2 +

∫
S

(‖u0‖∞ − un) (‖u0‖∞ + un − 2un−1)

<

∫
Ω
|un − un−1|2,

since in set S, we have ‖u0‖∞−un < 0 and ‖u0‖∞+un−2un−1 > 2(‖u0‖∞−un−1) ≥ 0
which follows from (7.10). Hence, Fhn (φ) < Fhn (un). A contradiction!

We end this section with some estimates regarding the minimizer, which we shall utilize
in the succeeding arguments.

Lemma 7.3. If un minimizes Fhn (n = 1, . . . ,M) for h, λ > 0, then

(i.) ‖∇un‖L2(Ω) ≤ ‖∇u0‖L2(Ω),

(ii.) ‖un − un−1‖L2(Ω) ≤
√
h‖∇u0‖L2(Ω),

(iii.) f(|{un > 0}|) ≤ λ−1‖∇u0‖2L2(Ω).

Proof. Denote

J (u) :=

∫
Ω
|∇u|2 + λf(|{u > 0}|).

Then, Fhn (un) ≤ Fhn (un−1) = J (un−1) implies

J (un) ≤
∫

Ω

|un − un−1|2

h
+ J (un) ≤ J (un−1),

which implies that J (un) ≤ J (un−1) ≤ · · · ≤ J (u0). Since |{u0 > 0}| = α, then

Fhn (un) ≤ Fhn (un−1) = J (un−1) ≤ J (u0) = ‖∇u0‖2L2(Ω),

which yields the desired results.

7.3 Interior Regularity of Minimizer

In this section, we establish the interior regularity of the sequence of minimizers. By
virtue of Theorem H.7, we first show that the minimizer is locally Hölder continuous.

Theorem 7.4. If un minimizes Fhn (n = 1, . . . ,M) for h, λ > 0, then un is locally
Hölder continuous. In particular, the (local) Hölder constant of un do not depend on n.
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Proof. Consider an arbitrary ball BR such that BR⊂ Ω. Define function

φ = η2 (un − k)+ ,

where η ∈ C∞0 (Ω; [0, 1]) such that η ≡ 1 in a smaller concentric ball Br and |∇η| ≤
c/(R − r) for some constant c > 1. Fix k ∈ R and denote A+

R := BR ∩ {un > k}. By
Theorem 7.2, we can assume that k ≤ ‖u0‖∞. Since f is 1-Lipschitz continuous, then

f (|{un − φ > 0}|)− f (|{un > 0}|) ≤ ||{un − φ > 0}| − |{un > 0}||
≤

∣∣{un − φ > 0} ∩A+
R

∣∣+
∣∣{un > 0} ∩A+

R

∣∣
≤ 2

∣∣A+
R

∣∣ .
Then, Fhn (un) ≤ Fhn (un − φ) implies that

0 ≤ −2

∫
A+
R

un − un−1

h
φ+

∫
A+
R

φ2

h
− 2

∫
A+
R

∇un · ∇φ+

∫
A+
R

|∇φ|2 + 2λ|A+
R|. (7.11)

Since un is bounded by ‖u0‖∞ almost everywhere, then

−
∫
A+
R

(un − un−1)φ =

∫
A+
R

(un−1 − un)η2(un − k)

≤
∫
A+
R

|un−1 − k − (un − k)|(un − k)

≤
∫
A+
R

|un−1 − k||un − k|+
∫
A+
R

(un − k)2

≤
∫
A+
R

(|un−1|+ |k|) (|un|+ |k|) +

∫
A+
R

(un − k)2

≤ 4‖u0‖2∞|A+
R|+

R2

(R− r)2

∫
A+
R

(un − k)2,

and ∫
A+
R

φ2 =

∫
A+
R

η4(un − k)2 ≤ R2

(R− r)2

∫
A+
R

(un − k)2.

Using Young’s inequality, we have for some ε1 ∈ (0, 1),

−2

∫
A+
R

∇un · ∇φ = −2

∫
A+
R

∇un ·
[
η2∇un + 2(un − k)η∇η

]
≤ (−2 + ε1)

∫
A+
R

η2|∇un|2 +
4

ε1

∫
A+
R

(un − k)2|∇η|2.

Again, by Young’s inequality, we have for some ε2 ∈ (0, 1− ε1),∫
A+
R

|∇φ|2 =

∫
A+
R

η4|∇un|2 + 4

∫
A+
R

η3(un − k)∇un ·∇η + 4

∫
A+
R

η2(un − k)2|∇η|2

≤ (1 + ε2)

∫
A+
R

η4|∇un|2 + 4
(

1 + 1
ε2

)∫
A+
R

η2(un − k)2|∇η|2

≤ (1 + ε2)

∫
A+
R

η2|∇un|2 + 4
(

1 + 1
ε2

)∫
A+
R

(un − k)2|∇η|2.
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Thus, (7.11) becomes

(1−ε1−ε2)

∫
A+
r

|∇un|2 ≤ (−1+ε1+ε2)

∫
A+
R\A

+
r

η2|∇un|2 + 4
(
1+ 1

ε1
+ 1
ε2

)∫
A+
R

(un−k)2|∇η|2

+
3R2

h(R− r)2

∫
A+
R

(un − k)2 + 2 max

(
4‖u0‖2∞

h
, λ

)
|A+

R|.

≤ C

(R− r)2

∫
A+
R

(un − k)2 + 2 max

(
4‖u0‖2∞

h
, λ

)
|A+

R|,

where C(h,R) := max
(

4c(1+ 1
ε1

+ 1
ε2

), 3R2h−1
)

. Hence,

∫
A+
r

|∇un|2 ≤ ρ

[
1

(R− r)2
max
A+
R

(un − k)2 + 1

]
|A+

R|,

where ρ(1 − ε1 − ε2) = max
(

4c(1 + 1
ε1

+ 1
ε2

), 3R2h−1, 8‖u0‖2∞h−1, 2λ
)

. Analogously,

taking φ = η2(un−k)− yields the above inequality for A−R := BR∩{un < k}. Moreover,
by Theorem 7.2, un is bounded with ess supun ≤ ‖u0‖∞. It follows that un belongs to
Di Giorgi class B2(Ω, ‖u0‖∞, ρ,∞, 0).

Fix x0 ∈ Ω and consider an open ball BR := B(x0, R) ⊂ Ω for some R ≤ 1. For any
x, y ∈ BR, denote r = |x − y| < R. By Theorem H.7 [62, Chapter 2, Theorem 6.1], we
can find constants γ < 1 and C(γ,N,R) > 0 such that

|un(x)− un(y)| ≤ sup
Br

un − inf
Br
un ≤ C|x− y|γ .

Then, un is Hölder continuous near x0.

Next, we show that the minimizer is a subsolution to an elliptic partial differential
equation on domain Ω. In fact, on the region where it is strictly positive, the minimizer
is a solution and locally a C2 function.

Theorem 7.5. If un minimizes Fhn (n=1, ...,M) for h, λ > 0, then (in the weak sense)

(i.) ∆un ≥
un − un−1

h
in Ω,

(ii.) ∆un =
un − un−1

h
in the open set {un > 0}.

Proof. For ε > 0 and nonnegative functions φ ∈ C∞0 (Ω), consider ψ := un − εφ. Hence,
if ψ(x) > 0 for some x ∈ Ω, then clearly we have un(x) > εφ(x) > 0. Thus, we get
f(|{ψ > 0}|) ≤ f(|{un > 0}|), which implies that

0 ≤ Fhn (ψ)−Fhn (un)

≤ −2ε

∫
Ω

(
un − un−1

h
φ+∇un · ∇φ

)
+ ε2

∫
Ω

(
|φ|2

h
+ |∇φ|2

)
.

Dividing by 2ε and taking ε→ 0 yields∫
Ω

un − un−1

h
φ+∇un · ∇φ ≤ 0, (7.12)
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thereby, proving (i).

To prove (ii), it suffices to show the reverse inequality of (7.12). Consider ψ := un + εφ
where φ ∈ C∞0 ({un > 0}) with

|ε| < m

maxφ
where m := min

suppφ
un > 0.

It follows that the penalization of ψ is equal to that of un, and so, we get

0 ≤ Fhn (ψ)−Fhn (un)

≤ 2ε

∫
{un>0}

(
un − un−1

h
φ+∇un · ∇φ

)
+ ε2

∫
{un>0}

(
|φ|2

h
+ |∇φ|2

)
.

Dividing by 2ε and taking ε→ 0 gives the desired result.

Corollary 7.6. If un minimizes Fhn (n=1, ...,M) for h, λ > 0, then un ∈ C2
loc({un > 0}).

Proof. Fix x0 ∈ {un > 0}. Consider function φ ∈ C∞0 ({un > 0}) such that φ ≡ 1 in
Br := B(x0, r) ⊂ {un > 0} for some r > 0. Let w = ψ ∗ g where where ψ denotes the
fundamental solution of Laplace equation and function g is defined by

g :=
un − un−1

h
φ.

By Theorem 7.4 and [49, Lemma 4.2], we see that w ∈ C2(Ω) and ∆w = g in Ω. Hence,
by Theorem 7.5, we get

∆(un − w) =
un − un−1

h
(1− φ) = 0 in Br,

which implies that un−w is harmonic (hence, C∞) in Br. Thus, un is C2 near x0.

The following remark will be utilized in the succeeding arguments.

Remark. Fix a ball Br ⊂ Ω. Define functional

In,Br(u) :=

∫
Br

(
|u− un−1|2

h
+ |∇u|2

)
dx.

Then, there exists a unique minimizer v ∈ A := {v ∈ H1(Br) : v = un on ∂Br} such
that

In,Br(v) = min
A
In,Br(·).

Moreover, in the weak sense,

∆v =
v − un−1

h
in Br, (7.13)

which follows from the proof of Theorem 7.5 by simply dropping the penalty arguments.

Existence. A similar argument as in the proof of Theorem 7.1 shows that we can find
a minimizing sequence {uk} ⊂ A that is uniformly bounded in H1(Br) and whose
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subsequence converges weakly in H1(Br) to some v ∈ H1(Br) and

In,Br(v) ≤ lim inf
k→∞

In,Br(uk).

Note that there exists a trace operator T : H1(Br) → L2(∂Br). Since T is a compact
operator, then we can find a subsequence (still denoted by uk) such that

T (uk)→ T (v) strongly inL2(∂Br).

Noting that T (uk) = un on ∂Br, we see v = un on ∂Br in the sense of trace, and so,
v ∈ A.

Uniqueness. Suppose there exist minimizers u, v ∈ A, that is, In,Br(u) = In,Br(v) = m.
Consider w := 1

2(u+ v). By the parallelogram law, we have

‖w − un−1‖2L2(Br)
=

∥∥1
2(u− un−1) + 1

2(v − un−1)
∥∥2

L2(Br)

= 1
2 ‖u− un−1‖2L2(Br)

+ 1
2 ‖v − un−1‖2L2(Br)

−
∥∥∥∥u− v2

∥∥∥∥2

L2(Br)

‖∇w‖2L2(Br)
= 1

2 ‖∇u‖
2
L2(Br)

+ 1
2 ‖∇v‖

2
L2(Br)

−
∥∥∥∥∇u−∇v2

∥∥∥∥2

L2(Br)

Hence,

m ≤ In,Br(w) = 1
2In,Br(u) + 1

2In,Br(v)− 1

4

∫
Br

|u− v|2

h
− 1

4

∫
Br

|∇(u− v)|2

≤ m− 1

4h
‖u− v‖2L2(Br)

,

which implies that ‖u− v‖L2(Br)
= 0, and so, u = v almost everywhere in Br.

Using the above remark, we now show that as λ→∞, the set of positive values of the
minimizer un preserves the prescribed measure. Later, we shall establish that for large
enough λ > 0, this prescribed measure can be attained without having to take λ to
infinity.

Theorem 7.7. If un minimizes Fhn (n = 1, . . . ,M), then we have

α ≤ |{un > 0}| ≤ α+ λ−1‖∇u0‖2L2(Ω). (7.14)

Proof. Assume that |{un > 0}| < α. We will deduce a contradiction by constructing a
suitable perturbation v of the minimizer un.

Since un ≥ 0, then setting E := {un = 0}, we have |E| > |Ω| − α > 0. Take x ∈ ∂E\∂Ω
such that

|B(x, r) ∩ E| > 0, (7.15)

for all r > 0. Fix r, sufficiently small such that Br := B(x, r) ⊂ Ω and

0 < |Br| ≤ α− |{un > 0}|. (7.16)
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Let v ∈ H1(Ω) be the unique minimizer of In,Br in Br and equal to un outside Br.
Then, we must have In,Br(v) ≤ In,Br(un), that is,∫

Br

|v − un−1|2

h
+ |∇v|2 ≤

∫
Br

|un − un−1|2

h
+ |∇un|2. (7.17)

Note that f(|{un > 0}|) = 0. Also, by (7.16), we have

|{v > 0}| = |{un > 0}\Br|+ |{v > 0} ∩Br|
≤ |{un > 0}|+ |Br| ≤ α,

which implies that f(|{v > 0}|) = 0.

On the other hand, (7.17) gives Fhn (v) ≤ Fhn (un). Since un minimizes Fhn , then we get
Fhn (v) = Fhn (un). Equivalently, In,Br(v) = In,Br(un), which follows from the previous
remark that v = un. By (7.15), we see that v is a nonconstant function. Note that

∆v − v

h
= −un−1

h
≤ 0 in Br.

By [49, Theorem 3.5], v cannot achieve a nonpositive minimum in Br, that is, v > 0 in
Br. However, since |B(x, r) ∩ E| > 0, then v 6= un. A contradiction!

Lastly, the second inequality of (7.14) follows from the first inequality and Lemma 7.3,
as follows:

|{un > 0}| − α = f(|{un > 0}| − α) ≤ λ−1‖∇u0‖2L2(Ω),

which gives the desired result.

Following the arguments in [77], we show that the minimizer un is locally Lipschitz con-
tinuous. To start, we establish the following lemma that guarantees Lipschitz continuity
at the free boundary.

Lemma 7.8. (cf. [77, Lemma 4.1]) If un minimizes Fhn (n = 1, . . . ,M) for h, λ > 0,
then there exists constants r0 > 0 and C(r0) > 0 such that if x ∈ Ω satisfies

r(x) := dist(x, {un = 0}) < min

(
dist(x, ∂Ω)

2
, r0

)
, (7.18)

then un(x) ≤ Cr
√
λ. Here, constant C does not depend on N and λ.

Proof. Let x ∈ Ω such that (7.18) holds. Assume that un(x) > 0, that is, r := r(x) > 0.
(The case when un(x) = 0 is trivial.) We claim that for some M > 0, we have un(x) ≤
Mr. Suppose not. Then for any M > 0, there exists x0 ∈ Ω satisfying (7.18) such that

un(x0) > Mr. (7.19)

By Theorem 7.2, we see that for any n,∫
Ω
|un|p ≤ |Ω|‖u0‖p∞ <∞, ∀p ≥ 1,

and so, sup
n≥1
‖un−1‖Lp(Ω) < +∞.
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It follows from [49, Theorem 8.17 and 8.18] that

un(x0) ≤ C1

(
inf

B(x0,
3
4
r)
un(x) + k(r),

)
(7.20)

where C1 = C1(r, h, q) > 0 with the property limr↓0C1(r, h, q) > 0, q > N , and

k(r) = r2(1−N/q) sup
n≥1

∥∥∥un−1

h

∥∥∥
Lq/2(Ω)

= o(r) as r ↓ 0. (7.21)

Let y ∈ ∂B(x0, r) ∩ {un = 0} and consider a function v ∈ H1(B(y, r)) such that

In,B(y,r)(v) = min
A
In,B(y,r)(·),

where A := {v ∈ H1(B(y, r)) : v = un on ∂B(y, r)}. By the previous remark, we have
for any φ ∈ C∞0 (B(y, r)),∫

B(y,r)

v − un−1

h
φ+∇v · ∇φ = 0. (7.22)

By Theorem 7.5, we have (in the weak sense)

∆(un − v) ≥ un − v
h

, in B(y, r),

and so, [49, Theorem 8.1] gives

sup
B(y,r)

(un − v) ≤ sup
∂B(y,r)

(un − v) = 0.

This implies that

0 ≤ un ≤ v in B(y, r). (7.23)

Now, extend function v by un outside the ball, and define

v̂ :=

{
v, on B(y, r)

un, on Ω\B(y, r).

By the minimality of un and taking φ = v − un in (7.22), we get∫
B(y,r)

|v − un|2

h
+ |∇(v − un)|2 = Fn(un)−Fn(v) + λ (f(|{v̂ > 0}|)− f(|{un > 0}|))

+ 2

∫
B(y,r)

(v − un−1)(v − un)

h
+∇v · ∇(v − un)

≤ λ (f(|{v̂ > 0}|)− f(|{un > 0}|)) (7.24)

By (7.23), we see that {un > 0} ∩B(y, r) ⊆ {v > 0} ∩B(y, r). It follows from Theorem
7.7 that

|{v̂ > 0}| = |{v > 0} ∩B(y, r)|+ |{un > 0}\B(y, r)|
≥ |{un > 0} ∩B(y, r)|+ |{un > 0}\B(y, r)|
= |{un > 0}| ≥ α.
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Thus, (7.24) becomes∫
B(y,r)

|∇(v − un)|2 ≤ λ (|{v̂ > 0}| − |{un > 0}|)

= λ|{v̂ > 0} ∩ {un = 0} ∩B(y, r)|. (7.25)

By (7.21), there exists small ε1 � 1 such that for r < ε1, we have

k(r) ≤ r inf
B(x0,

3
4
r)
un(x).

Also, by (7.23), we get

inf
B(x0,

3
4
r)
un(x) ≤ inf

B(x0,
3
4
r)∩B(y,r)

un(x) ≤ inf
B(x0,

3
4
r)∩B(y,r)

v(x).

Hence, (7.19) and (7.20) implies

Mr < un(x0) ≤ C1(1 + r) inf
B(x0,

3
4
r)∩B(y,r)

v(x),

that is,

v(x) ≥ Mr

2C1
, in B(x0,

3
4r) ∩B(y, r).

Invoking this inequality in [49, Theorem 8.18] yields the following for 1 ≤ p < N/(N−2),

inf
B(y, 1

2
r)
v(x) + k(r) ≥ C2(r, h)r−N/p‖v‖Lp(B(y,r))

≥ C2r
−N/p‖v‖Lp(B(x0,

3
4
r)∩B(y,r))

≥ C2r
−N/p|B(x0,

3
4r) ∩B(y, r)|1/pMr

2C1

=: 2C3Mr.

where lim
r↓0

C3(C2, C
−1
1 ) > 0. Again, by (7.21), we can find sufficiently small ε2 � 1 so

that for r < ε2, we have

k(r) ≤ r inf
B(y, 1

2
r)
v(x) < inf

B(y, 1
2
r)
v(x),

which implies that

inf
B(y, 1

2
r)
v(x) ≥ C3Mr. (7.26)

Now, define a function

w(x) = C3Mr

{
exp

(
−µρ

2(x)

r2

)
− exp(−µ)

}
,

where ρ(x) = dist(x, y) and

µ ≥ N +

√
N2 +

r2
0

h
. (7.27)
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Here, we take r0 = min(ε1, ε2)� 1. Then, we have

∆w − w − un−1

h
≥ ∆w − w

h

= C3Mr exp

(
−µρ

2

r2

)(
4µ2ρ2

r4
− 2µN

r2
− 1

h

)
+
C3Mr

h
exp(−µ)

≥ 0 in B(y, r)\B(y, 1
2r). (7.28)

(Indeed, if x ∈ B(y, r)\B(y, 1
2r), then 1

2r ≤ ρ(x) ≤ r. Also from (7.27), we get

(µ−N)2 ≥ N2 +
r2

0

h
.

Then, we have

4µ2ρ2

r4
− 2µN

r2
− 1

h
≥ µ2

r2
− 2µN

r2
− 1

h
=

(µ−N)2

r2
− N2

r2
− 1

h

≥ r2

h

(
r2

0 − r2
)
≥ 0.)

Meanwhile, we note that for any x ∈ ∂B(y, r), we have v(x) = un(x) ≥ 0, and so,
w(x) = 0 ≤ v(x). Also, (7.26) implies that if ρ(x) = 1

2r, then

w(x) = C3Mr
{

exp
(
−1

4µ
)
− exp(−µ)

}
≤ C3Mr

≤ inf
B(y, 1

2
r)
v(x)

≤ v(x) in B(y, 1
2r).

Hence, we have

w(x) ≤ v(x) on ∂(B(y, r)\B(y, 1
2r)).

Note that from (7.28), we get

∆w − w

h
≥ −un−1

h
= ∆v − v

h
in B(y, r)\B(y, 1

2r).

Then, the maximum principle [49, Theorem 8.1] gives

sup
B(y,r)\B(y, 1

2
r)

(w − v) ≤ sup
∂(B(y,r)\B(y, 1

2
r))

(w − v) ≤ 0,

that is,

w(x) ≤ v(x) in B(y, r)\B(y, 1
2r).

There exists constant C4 > 0 such that w(x) ≥ C4(r − ρ) in B(y, r)\B(y, 1
2r). (Indeed,

if x ∈ B(y, r)\B(y, 1
2r), then 1

2r ≤ ρ(x) < r, that is, r − ρ ≤ 1
2r. Moreover, since the

exponential function is nonincreasing, then for some δ > 0,

w(x) ≥ 1
2δC3Mr ≥ εC3M(r − ρ).

Take C4 := δC3M > 0.) Combining this with (7.26) implies that

v(x) ≥ C5M(r − ρ) in B(y, r), (7.29)



On Evolutionary Free Boundary Problem with Volume Constraint 85

for some constant C5 > 0.

Take two disjoint balls B(yi,
1
8r) ⊂ B(y, 1

2r) for i = 1, 2. For ξ ∈ ∂B(y, r), let zi(ξ) be

the point on the line segment ξyi such that the length of segment `i(ξ) := ξzi(ξ) becomes
the largest with zi(ξ) /∈ B(yi, δr) and u(zi(ξ)) = 0. In case u(x) 6= 0 for all x ∈ ξyi, we
set zi(ξ) = ξ. For x ∈ B(y, r)\yi, let ξi(x) ∈ ∂B(y, r) be a point such that x ∈ yiξi.
Then by (7.29), we have for some C6 > 0

v(x) ≥ C5M(r − ρ) ≥ ψi(x) := C6Mr
dist(yi, ξi)− dist(yi, x)

dist(yi, ξi)
.

Hence, ∫ zi

ξ

d

d`i
ψid`i =: ψi(zi) ≤ v(zi) :=

∫ zi

ξ

d

d`i
(v − un) d`i,

that is, ∫ zi

ξ

C5Mr

dist(yi, ξ)
d`i ≤

∫ zi

ξ
|∇(v − un)| d`i.

Integrating with respect to ξ ∈ ∂B(y, r), summing up with respect to i, noting that
r/dist(yi, ξ) = O(1) as r ↓ 0, squaring both sides, and finally, invoking Schwarz’ inequal-
ity yields

C2
6M

2|V | ≤
∫
V
|∇(v − un)|2 , (7.30)

where

V := V1 ∪ V2, Vi =
⋃

ξ∈∂B(y,r)

`i(ξ).

Combining this with (7.25) gives

C2
6M

2|V | ≤ λ|{v > 0} ∩ {un = 0} ∩B(y, r)| ≤ λ|{un = 0} ∩B(y, r)|, (7.31)

thereby, contradicting the arbitrariness of M .

Finally, we note that {un = 0} ∩B(y, r) ⊂ V . By (7.31), we get

C2
6M

2|{un = 0} ∩B(y, r)| ≤ C6M |V | ≤ λ|{un = 0} ∩B(y, r)|.

Hence, invoking the above claim gives un(x) ≤ rC−1
6

√
λ for any x ∈ Ω satisfying (7.18).

Using the above lemma, we can show that the minimizer un is locally Lipschitz in Ω.

Theorem 7.9. If un minimizes Fhn (n = 1, . . . ,M) for h, λ > 0, then un ∈ C0,1
loc (Ω). In

particular, the (local) Lipschitz coefficients of un do not depend on n.

Proof. A similar argument as in the proof of [77, Proposition 4.1] where Qmax =
√
λ.
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7.4 Regularity of Minimizer up to the Boundary

In this section, we establish the regularity of minimizer un up to the fixed Neumann
boundary. Our argument is based on the extension of the harmonic analysis in [80] and
the results in [77] for the time-discrete term. However, instead of the penalization term,
both papers involve a singular term of the form

∫
ΩQ

2(x)χ{u>0}dx for some measurable
function Q satisfying 0 < Qmin ≤ Q ≤ Qmax. Translating this to our problem requires
the use of Theorem 7.7 and the maximum principle where Q2

max becomes λ.

7.4.1 Hölder Continuity up to the Boundary

We first show that minimizer un is Hölder continuous up to the fixed Neumann boundary,
although the Hölder exponent now is not arbitrary, but instead is controlled by the
Lipschitz constant L > 0 of ∂Ω. Our argument is analogous to the proof of [80, Lemma
2] for harmonic functions. The main tool here employs the idea in [74] for the Dirichlet
growth estimate by augmenting the Dirichlet norm with 1√

h
‖ · ‖L2 , which is related to

the time-discrete term.

For simplicity, we consider the equation

∆z − 1

h
z = 0, in Bt

since the generalization to the case with coefficients aij , d is easy. Let H ∈ H1(Bt) be
a harmonic function in Bt with H = z on ∂Bt. Then, the function U ∈ H1

0 (Bt) defined
by U = z −H satisfies

∆U − 1

h
U − 1

h
H = 0, in Bt.

For the above U , define linear operator T by TU = v ∈ H1
0 (Ba) (where a ≤ t) such that

∆v − 1

h
U = 0, in Ba.

Thus, U = v + w where function w ∈ H1
0 (Ba) fulfills

∆w − 1

h
H = 0, in Ba.

As in [74], we define spaces Sγ and Sγ,0 for 0 < γ < 1 as follows: u ∈ Sγ,0(Ba) if and
only if u ∈ H1(Ba) and there exists E > 0 such that

‖∇u‖L2(Ba) ≤ E
(r
δ

)N
2
−1+γ

, 0 ≤ r ≤ δ = a− |x1 − x0| (7.32)

for every x1 ∈ B(x0, a). If u ∈ Sγ(Ba), we define norm |‖u‖|Sγ as the larger of ′‖u‖H1
0

and the smallest E satisfying (7.32). Here, The space Sγ,0 is the subspace of Sγ for
which u ∈ H1

0 (Ba) and the norm |‖u‖|Sγ,0 is the larger of ‖u‖H1
0

and the smallest E as
above.
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Lemma 7.10. (cf. [74, Theorem 4.5]) There exists a1 > 0 depending only on h and N
such that if 0 < a ≤ a1 and 0 < γ ≤ µ := 1− N

2p for some p > N/2, then |‖v‖|Sγ,0(Ba) ≤
1
2 |‖U‖|Sγ,0(Ba), that is, ‖T‖ ≤ 1

2 .

Proof. Note that v = TU ∈ H1
0 (Ba) satisfies∫

Ba

∇φ · ∇v + φ f = 0, ∀φ ∈ H1
0 (Ba),

where f = 1
hU . By [74, Theorem 2.2] and definition of norm |‖ · ‖|Sγ , we have

|U(x)− U(x1)| ≤ C(N, γ)|‖U‖|Sγ,0(Bδ(x1))δ
1−N

2
−γ |x− x1|γ , 0 ≤ |x− x1| ≤ δ/2

and ∫
Bδ(x1)

|U |2 ≤ δ2|‖U‖|2Sγ(Bδ(x1)) ≤ Cδ
2|‖U‖|2Sγ,0(Bδ(x1)),

for each x1 ∈ Ba where δ = a− |x1 − x0|.

Hence,∫
Bδ(x1)

|U(x1)| ≤
∫
Bδ(x1)

|U(x1)− U(x)|+
∫
Bδ(x1)

|U(x)|

≤ C(N, γ)|‖U‖|Sγ,0(Bδ)δ
1−N

2
−γ
∫
Bδ

|x− x1|γ + C(N)δ
N
2 ‖U‖L2(Bδ)

≤ C(N, γ)δ1+N
2 |‖U‖|Sγ,0(Bδ(x1)).

Taking x1 = x0, we see that for any x ∈ Ba(x0),

|U(x)| ≤ C(N, γ)a1−N
2 |‖U‖|Sγ,0(Ba(x0)).

Thus, for some p > N/2,

∫
Bρ(x0)

|f | =
1

h

∫
Bρ(x0)

|U | ≤ 1

h
ρ
N
p

(∫
Bρ

|U |
p
p−1

)1− 1
p

, 0 < ρ ≤ a

≤ C(N, γ)h−1ρ
N
p a1−N

2 |‖U‖|Sγ,0(Ba(x0))ρ
N(1− 1

p
)

= C(N, γ)ρ
N
p
a1−N

2

h
|‖U‖|Sγ,0(Ba(x0))ρ

N−2+2µ

= C(N, γ)ρ
1+N

2p
a1−N

2

h
|‖U‖|Sγ,0(Ba(x0))ρ

N−2+µ, 0 < µ < 1

= C(N, γ)ρ2−µa
1−N

2

h
|‖U‖|Sγ,0(Ba(x0))ρ

N−2+µ

≤ C(N, γ)a2−µa
1−N

2

h
|‖U‖|Sγ,0(Ba(x0))ρ

N−2+µ

= C(N, γ)
a2

h
a1−µ−N

2 |‖U‖|Sγ,0(Ba(x0))ρ
N−2+µ

=: C(N, γ)E(a)ρN−2+µ. (7.33)
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By [74, Theorem 3.1], the potential of f , denoted by V is H1(Bρ) where 0 < ρ ≤ a and
satisfies ∫

Bρ

|∇V |2 ≤ C(N, γ)E(a)2ρN−2+2µ, 0 < ρ ≤ a

= C(N, γ)

(
a2

h
|‖U‖|Sγ,0(Ba(x0))

)2 (ρ
a

)N−2+2µ
.

Moreover, for any φ ∈ H1
0 (Ba), we have

∫
Ba

φf = −
∫
Ba

∇φ · ∇V , and so,

∫
Ba

∇φ · ∇(v − V ) = 0.

By [74, Theorem 3.3],∫
Bρ

|∇v|2 ≤ C(N, γ)

(
a2

h
|‖U‖|Sγ,0(Ba)

)2 (ρ
a

)N−2+2µ
, 0 < ρ ≤ a. (7.34)

Hence, we have

|‖v‖|Sγ,0(Ba) ≤ C(N, γ)
a2

h
|‖U‖|Sγ,0(Ba)

Take a1 > 0 so that for any a ≤ a1, we have a2 ≤ 1
2hC

−1(N, γ).

By Lemma 7.10, we have for sufficiently small a1 that ‖T‖ ≤ 1
2 , i.e., for any t ≤ a1, we

have |‖v‖|Sγ,0(Bt) ≤
1
2 |‖U‖|Sγ,0(Bt). Since U = v + w, this implies

|‖U‖|Sγ,0(Bt) ≤ |‖v‖|Sγ,0(Bt) + |‖w‖|Sγ,0(Bt) ≤
1
2 |‖U‖|Sγ,0(Bt) + |‖w‖|Sγ,0(Bt)

that is, |‖U‖|Sγ,0(Bt) ≤ 2|‖w‖|Sγ,0(Bt). Thus, we get

|‖z‖|Sγ(Bt) ≤ |‖U‖|Sγ(Bt) + |‖H‖|Sγ(Bt)

≤ C|‖U‖|Sγ,0(Bt) + |‖H‖|Sγ(Bt)

≤ C|‖w‖|Sγ,0(Bt) + |‖H‖|Sγ(Bt).

Meanwhile, a similar argument as in the proof of Lemma 7.10 gives

|‖w‖|Sγ,0(Bt) ≤
1
2 |‖H‖|Sγ,0(Bt),

and so, we have |‖z‖|Sγ(Bt) ≤ C|‖H‖|Sγ(Bt) for some constant C > 0.

Note that ∫
Bt

|∇z|2 =

∫
Bt

∇(U +H) · ∇(U +H))

=

∫
Bt

∇U · ∇U + 2∇U · ∇H +∇H · ∇H

=

∫
Bt

|∇U |2 +

∫
Bt

|∇H|2,

and so, ‖∇H‖L2(Bt) ≤ ‖∇z‖L2(Bt).
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By [74, Theorem 2.1], we see that for l < t < a1,

‖∇H‖L2(Bl) ≤ C(N)‖∇H‖L2(Bt)

(
l

t

)N
2
−1+γ

, 0 < γ < 1.

≤ C(N)‖∇z‖L2(Bt)

(
l

t

)N
2
−1+γ

≤ C(N) h‖z‖H1(Bt)

(
l

t

)N
2
−1+γ

(7.35)

and so, |‖H‖|Sγ(Bt) ≤ C(N) h‖z‖H1(Bt). Here, we define

h‖ · ‖H1 :=
1√
h
‖ · ‖L2 + ‖∇(·)‖L2 . (7.36)

Then, we have

‖∇z‖L2(Bl) ≤ C(N)|‖H‖|Sγ(Bt)

(
l

t

)N
2
−1+γ

, l < t < a1

≤ C(N) h‖z‖H1(Bt)

(
l

t

)N
2
−1+γ

,

which proves the following lemma.

Lemma 7.11. Suppose z ∈ H1(Bt) satisfies

∆z − 1

h
z = 0, in Bt.

Then, for l < t < a1, we have

‖∇z‖L2(Bl) ≤ C(N, γ) h‖z‖H1(Bt)

(
l

t

)N
2
−1+γ

, 0 < γ ≤ µ < 1.

Here, µ := 1− N
2p for some p > N/2 and a1 > 0 is the constant in Lemma 7.10.

We can in fact, extend this result to the nonhomogeneous case as follows.

Lemma 7.12. Suppose z ∈ H1(Bt) satisfies

∆z =
z − g
h

, in Bt,

for some h > 0 and g ∈ C0,1(Ω). Then, for l < t < a1, we have

‖∇z‖L2(Bl) ≤ C(N, γ) h‖z‖H1(Bt)

(
l

t

)N
2
−1+γ

, 0 < γ ≤ µ < 1.

Here, µ := 1− N
2p for some p > N/2 and a1 > 0 is the constant in Lemma 7.10.

Proof. This follows from a similar argument as in the proof of Lemma 7.11 employing
[74, Theorem 3.1] and [74, Theorem 3.3]. Here, we write v = U +H where U ∈ H1

0 (Bt)
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satisfies

∆U − 1

h
U − 1

h
(H − un−1) = 0, in Bt,

and H ∈ H1(Bt) is a harmonic function with H = v on ∂Bt.

In the following lemma, we establish the weak maximum principle on a Lipschitz domain
with mixed boundary conditions.

Lemma 7.13. (cf. [80, Lemma 4]) Let Ω ⊂ RN be a bounded, connected Lipschitz
domain and let Γ ⊂ ∂Ω be a measurable set of positive Hausdorff measure in ∂Ω. Let
u ∈ H1(Ω) satisfy the following

1. ∀φ ∈ {f ∈ H1(Ω) : f ≥ 0, f |Γ = 0}, we have

∫
Ω
∇u · ∇φ+

uφ

h
≥ 0,

2. ∃u0 ∈ L2(∂Ω) such that u|Γ = u0 ≥ 0 on Γ.

Then, u ≥ 0 in Ω.

Proof. Consider the function u− := max(0,−u) ∈ H1(Ω). Note that u− ≥ 0 and
u−|Γ = 0. Taking φ = u− gives∫

Ω
∇u · ∇u− +

uu−

h
≥ 0.

Hence, we get

0 ≤
∫

Ω
|∇u−|2 ≤

∫
Ω
|∇u−|2 +

|u−|2

h
≤ 0,

which implies that ∇u− = 0. Since Ω is connected, then u− is constant. But u−|Γ = 0,
and so, u− = 0. Therefore, u ≥ 0.

We are now ready to prove Hölder continuity up to the fixed Neumann boundary.

Theorem 7.14. (cf. [80, Lemma 2]) There exists γ > 0 such that un ∈ C0,γ(Ω) with γ
depending on N, h, and L.

Proof. There exists s > 0 depending only on the Lipschitz character of Ω such that one
can cover ∂Ω with balls Bs of radius s such that Bs ∩ ∂Ω is a Lipschitz graph with
Lipschitz constant less than or equal to L. Let r = 1

2 min(1, s, r0, a1) where r0, a1 > 0
are the constants in Lemma 7.8 and Lemma 7.10, respectively. Cover Ω with a finite
number of balls Br of radius r such that either B2r ⊂ Ω or ∂Ω∩B2r is a Lipschitz graph
as above. (Note that such finite covering is due to Heine-Borel Theorem.) Let x0 be the
center of one of these balls. We wish to show that un ∈ C0,γ(Br(x0) ∩ Ω) for some γ
independent of x0, from which we conclude the same for all of Ω.

If B2r(x0) ⊂ Ω, then Theorem 7.4 implies that un ∈ C0,γ(Br(x0)) for any γ ∈ (0, 1).
Otherwise, let x ∈ Br(x0) and t < rx := dist(x, ∂B2r(x0)). Denote Dt = Bt(x) ∩ Ω,
ΓD,t = ∂Bt(x) ∩ Ω, and ΓN,t = Bt(x) ∩ ∂Ω.
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If ΓN,t = ∅, consider a function vt ∈ H1(Dt) satisfying ∆vt =
vt − un−1

h
, in Dt

vt = un, on ∂ΓD,t.

Now, extend function vt by un outside Dt, and define

v̂t :=

{
vt, in Dt

un, on Ω\Dt.

By a similar argument as in the proof of Lemma 7.8, we get∫
Dt

|un − vt|2

h
+ |∇(un − vt)|2 ≤ λ|{v̂t > 0} ∩ {un = 0} ∩Dt| ≤ λC(N)tN .

On the other hand, if ΓN,t 6= ∅, we consider function vt ∈ H1(Dt) satisfying
∆vt =

vt − un−1

h
, in Dt,

vt = un, on ΓD,t,
∂vt
∂η

= 0, on ΓN,t.

By Theorem 7.5, we have for any ζ ∈ {f ∈ H1(Ω) : f ≥ 0, f |ΓD,t = 0},∫
Dt

∇(vt − un) · ∇ζ +
vt − un
h

ζ ≥ 0.

Note also that vt = un ≥ 0 on ΓD,t. Hence, Lemma 7.13 gives un ≤ vt in Dt. As above,
for every t < rx, we get∫

Dt

|un − vt|2

h
+ |∇(un − vt)|2 ≤ λC(N)tN . (7.37)

Now, since ∂Ω is a Lipschitz graph, then there exists a bilipschitz map

F : Dt → Bt(0)+

where {xN = 0} = F (ΓN,t) and (∂Bt(0))+ = F (ΓD,t). The Lipschitz constants of F and
F−1 are controlled solely by L. Let

aij(y) = | det∇F−1(y)|
(
(∇F )T (∇F )

)
(F−1(y))

d(y) = | det∇F−1(y)|,

whenever yN ≥ 0. Otherwise, let

aij(y1, . . . , yN ) =


aij(y1, . . . ,−yN ), i 6= N and j 6= N

−aij(y1, . . . ,−yN ), i = N or j = N but i 6= j

aij(y1, . . . ,−yN ), i = j = N,

and d(y1, . . . , yN ) = d(y1, . . . ,−yN ). Note that coefficients aij is uniformly elliptic with
bounded, measurable coefficients on all of Bt(0), and that the bounds of aij and d depend
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only on Lipschitz constant L.

Define ṽt(y) = vt(F
−1y) on Bt(0) when yN ≥ 0. Otherwise, set ṽt(y1, . . . , yN ) =

ṽt(y1, . . . ,−yN ). Then on Bt(0), we have for any ζ ∈ C∞0 (Bt(0)),∫
Bt(0)
〈aij∇ṽt,∇ζ〉+

〈
d
ṽt−ũn−1

h
, ζ

〉
=

∫
B+
t (0)

+

∫
B−t (0)

〈aij∇ṽt,∇ζ〉+

〈
d
ṽt−ũn−1

h
, ζ

〉
=

∫
B+
t (0)
〈aij∇ṽt,∇φ〉+

〈
d
ṽt − ũn−1

h
, φ

〉
+

∫
B+
t (0)
〈aij∇ṽt,∇ψ〉+

〈
d
ṽt − ũn−1

h
, ψ

〉
:= I + II.

Here, ψ is defined on Bt(0) by ψ(y1, . . . , yN ) = φ(y1, . . . ,−yN ). Both test functions
φ, ψ ∈ C∞(Bt(0) ∩ {yN ≥ 0}) and φ = ψ = 0 on ∂Bt(0) ∩ {yN ≥ 0}. Define φ̃ = φ ◦ F
and ψ̃ = ψ ◦ F , which are valid test functions in {ζ ∈ H1(Dt) : ζ = 0 on ΓD,t}. Hence,
we have

I =

∫
B+
t (0)

〈
∇F (F−1(y))∇ṽt(y),∇F (F−1(y))∇φ(y)

〉
| det∇F−1(y)|dy

+

∫
B+
t (0)

〈
ṽt(y)− ũn−1(y)

h
, φ(y)

〉
|det∇F−1(y)|dy

=

∫
Bt(x)∩Ω

∇vt · ∇φ̃+
vt − un−1

h
φ̃ = 0.

Similarly,

II =

∫
Bt(x)∩Ω

∇vt · ∇ψ̃ +
vt − un−1

h
ψ̃ = 0.

Thus, ṽt satisfies (in the weak sense)

Di

(
aij(y)Dj ṽt(y)

)
= d(y)

ṽt(y)− ũn−1(y)

h
in Bt(0).

Set w̃i := ṽ2i−1t − ṽ2it. It follows that∫
Bt(0)

Diζ(aijDjw̃i)−
1

h
ζ(dw̃i) = 0, ∀ζ ∈ H1

0 (Bt(0)).

By Lemma 7.11, there exists C > 0 and 0 < µ < 1, depending only on the coefficients
aij and d (which in turn depend only on L) such that for l < t < r,

‖∇wi‖L2(Dl) ≤ C(N, γ) h‖wi‖H1(Dt)

(
l

t

)N
2
−1+µ

.

Now, we return to the consideration of un. Choose some t < rx. By (7.37), we have

h‖wi‖H1(D2i−1t)
≤ h‖v2i−1t − un‖H1(D2i−1t)

+ h‖un − v2it‖H1(D2it)

≤
√
λC(N)

(
(2i−1t)

N
2 + (2it)

N
2

)
=
√
λC(N)(2i−1t)

N
2 . (7.38)
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Hence, if ΓN,2i−1t 6= ∅, we have

‖∇wi‖L2(Dt) ≤ C(N, γ) h‖wi‖H1(D2i−1t)

(
1

2i−1

)N
2
−1+µ

≤
√
λC(N, γ)t

N
2

(
2(1−µ)i

)
.

On the other hand, if ΓN,2i−1t = ∅, we get

h‖v2t − vt‖H1(Dt) ≤
h‖v2t − un‖H1(Dt) + h‖un − vt‖H1(Dt)

≤
√
λC(N)t

N
2 ,

which is even better.

Finally, by triangle inequality, we see that for t < rx,

‖∇un‖L2(Dt) ≤ ‖∇(un − vt)‖L2(Dt) +

log2(rx/t)∑
i=1

‖∇wi‖L2(Dt) + ‖∇vr‖L2(Dt)

≤
√
λC(N, γ)t

N
2

1 +

log2(rx/t)∑
i=1

2(1−µ)i

+ C(N, γ)t
N
2
−1+µ,

where the last term follows from Lemma 7.12. Note that

1 +

log2(rx/t)∑
i=1

2(1−µ)i =
1− 2(1−µ)(1+log2(rx/t))

1− 2(1−µ)
= C(N)

(
1− C(rx)tµ−1

)
= C(N)

(
t1−µ − C(rx)

)
tµ−1, t < rx

≤ C(N, rx)tµ−1.

Hence, for any x ∈ B(x0, r) and for any t < rx,∫
Bt(x0)∩Ω

|∇un|2 ≤ C(N, γ, rx)(1 +
√
λ)tN−2+2µ.

By [74, Theorem 2.2] ([75, Theorem 3.5.2]), we have un ∈ C0,µ(Br(x0) ∩ Ω) where the
Hölder exponent µ := 1− N

2p < 1 for some p > N/2.

7.4.2 Lipschitz Continuity up to the Boundary

In this subsection, we establish that the minimizer is Lipschitz continuous up to the
boundary employing several properties of a function satisfying an elliptic equation on a
convex domain with Neumann boundary conditions, which are proven in this subsection.

First, we provide a gradient control lemma for nonnegative functions satisfying an elliptic
equation near a Neumann boundary. We extend the harmonic results in [80], which
employs the auxilliary function Φ first introduced in [25] and the idea in [64] of using
convexity to control the Neumann boundary.

Lemma 7.15. (cf. [80, Lemma 6]) Let Ω ⊂ RN be a domain with smooth convex
boundary. For 0 ∈ Ω, denote r = dist(0, ∂Ω). Let D := BR(0)∩Ω, Γ = BR(0)∩∂Ω, and
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S = ∂BR(0) ∩ Ω where R > 2r. Let u ∈ H1(Ω) be a nonnegative function on D bounded
by A, with ∂u

∂η = 0 along Γ and satisfies

∆u− u− g
h

= 0, in D,

where h > 0 and g ∈ H1(Ω) ∩ L∞(Ω) ∩ C0,1(Ω). Here, we denote the gradient bound of
g by L. Then, either one of the following is true:

(i.) |∇u| ≤ L on BR
2

,

(ii.) ∃C(N,h) > 0 such that |∇u| ≤ C A
R on BR

2
.

Proof. If u is constant, then we are done. Suppose not. Consider

Φ(x) =
(R2 − |x|2)2|∇u|2

(9A2 − (u− 2A)2)2
.

Then,

1. Φ = 0 on S.

2. Φ > 0 inside D.

3. Φ is smooth in D ∪ Γ because u and ∇u are smooth and the denominator of Φ
cannot approach 0.

4. max
Γ

Φ < max
D

Φ. Indeed,

∂Φ

∂η
= 2

(
R2 − |x|2

9A2 − (u− 2A)2

)2

∇u · ∂
∂η
∇u

− 4|∇u|2
(

R2 − |x|2

(9A2 − (u− 2A)2)2

)
x · ∂x

∂η

− 4|∇u|2
(

(R2 − |x|2)2

(9A2 − (u− 2A)2)3

)
(u− 2A)

∂u

∂η

=: I + II + III.

Note that III = 0, since ∂u
∂η = 0 on Γ. Moreover, by convexity of Ω, x · ∂x∂η > 0,

and so, II < 0. Now, after rotation, suppose η = eN , so we can use e1, . . . , eN−1

as local coordinates for Γ. Then,

∇u · ∂
∂η
∇u = ∇u · ∇

(
∂u

∂η

)
−

N−1∑
i,j=1

∂ηi
∂xj

∂u

∂xi

∂u

∂xj

= −
N−1∑
i,j=1

∂ηi
∂xj

∂u

∂xi

∂u

∂xj
.

The matrix ∂ηi
∂xj

is the second fundamental form of Γ in local coordinates, and so,

by convexity, it is positive definite. Then, ∇u · ∂∂η∇u < 0 along Γ. Hence, ∂Φ
∂η < 0

along Γ, so the maximum of Φ cannot occur on Γ.
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By the first and fourth properties of Φ, we see that its maximum occurs at a point
x0 ∈ D. At x0, we have

0 = ∇Φ =
(R2 − |x|2)2

(9A2 − (u− 2A)2)2
∇(|∇u|2)− 2

(R2 − |x|2)|∇u|2

(9A2 − (u− 2A)2)2
∇(|x|2)

+ 2
(R2 − |x|2)2|∇u|2

(9A2 − (u− 2A)2)3
∇((u− 2A)2)

=

(
∇(|∇u|2)

|∇u|2
− 2∇(|x|2)

R2 − |x|2
+

2∇((u− 2A)2)

9A2 − (u− 2A)2

)
Φ, (7.39)

and

0 ≥ ∆Φ =

(
∆(|∇u|2)

|∇u|2
− |∇(|∇u|2)|2

|∇u|4
− 2∆(|x|2)

R2 − |x|2
− 2|∇(|x|2)|2

(R2 − |x|2)2

+
2∆((u− 2A)2)

9A2 − (u− 2A)2
+

2|∇((u− 2A)2)|2

(9A2 − (u− 2A)2)2

)
Φ. (7.40)

Note that ∇(|x|2) = 2x and ∇((u− 2A)2) = 2(u− 2A)∇u. Then, (7.39) gives

0 =
∇(|∇u|2)

|∇u|2
− 4x

R2 − |x|2
+

4(u− 2A)∇u
9A2 − (u− 2A)2

,

which implies that

|∇(|∇u|2)|2

|∇u|4
=

16|x|2

(R2−|x|2)2
− 32(u−2A)x · ∇u

(R2−|x|2)(9A2−(u−2A)2)
+

16(u−2A)2|∇u|2

(9A2−(u−2A)2)2

≤ 16|x|2

(R2−|x|2)2
+

32|x||u−2A||∇u|
(R2−|x|2)(9A2−(u−2A)2)

+
16(u−2A)2|∇u|2

(9A2−(u−2A)2)2
. (7.41)

Note that |∇u|2 =

N∑
i=1

(
∂u

∂xi

)2

. Then,

∇(|∇u|2) = 2

N∑
i=1

∂u

∂xi

(
∂2u

∂xi∂x1
, . . . ,

∂2u

∂xi∂xN

)

∆(|∇u|2) = 2
N∑

i,j=1

[(
∂2u

∂xi∂xj

)2

+
∂u

∂xi

∂3u

∂xi∂x2
j

]
.

Since ∆u− h−1(u− g) = 0, then

N∑
i,j=1

∂u

∂xi

∂3u

∂xi∂x2
j

=

N∑
i=1

∂u

∂xi

∂

∂xi

 N∑
j=1

∂2u

∂x2
j


=

1

h

N∑
i=1

∂u

∂xi

∂(u− g)

∂xi
=
∇(u− g)

h
· ∇u.

Hence,

∆(|∇u|2) = 2
N∑

i,j=1

(
∂2u

∂xi∂xj

)2

+ 2
∇(u− g)

h
· ∇u. (7.42)



96 On Evolutionary Free Boundary Problem with Volume Constraint

Moreover,

|∇(|∇u|2)|2 = 4

N∑
j=1

(
N∑
i=1

∂u

∂xi

∂2u

∂xi∂xj

)2

= 4
∑
i,j,k

∂u

∂xi

∂u

∂xk

∂2u

∂xi∂xj

∂2u

∂xk∂xj
.

Thus, we have

2|∇u|2∆(|∇u|2) ≥ |∇(|∇u|2)|2 + 4|∇u|2∇(u− g)

h
· ∇u,

that is,

∆(|∇u|2)

|∇u|2
≥ |∇(|∇u|2)|2

2|∇u|4
+ 2
∇(u− g) · ∇u

h|∇u|2
. (7.43)

Moreover, we see that ∆(|x|2) = 2N and

∆((u− 2A)2) = 2
(
(u− 2A)∆u+ |∇u|2

)
= 2(u− 2A)

u− g
h

+ 2|∇u|2.

Combining (7.41), (7.43), and (7.40) yields

0 ≥ −|∇(|∇u|2)|2

2|∇u|4
+ 2
∇(u− g) · ∇u

h|∇u|2
− 4N

R2 − |x|2
− 8|x|2

(R2 − |x|2)2

+
2h−1(u− 2A)(u− g) + 4|∇u|2

9A2 − (u− 2A)2
+

8(u− 2A)2|∇u|2

(9A2 − (u− 2A)2)2

≥ − 8|x|2

(R2 − |x|2)2
− 16|x||u− 2A||∇u|

(R2 − |x|2)(9A2 − (u− 2A)2)
− 8(u− 2A)2|∇u|2

(9A2 − (u− 2A)2)2

+ 2
∇(u− g) · ∇u

h|∇u|2
− 4N

R2 − |x|2
− 8|x|2

(R2 − |x|2)2

+
2h−1(u− 2A)(u− g) + 4|∇u|2

9A2 − (u− 2A)2
+

8(u− 2A)2|∇u|2

(9A2 − (u− 2A)2)2

≥ − 16|x|2

(R2 − |x|2)2
− 16|x||u− 2A||∇u|

(R2 − |x|2)(9A2 − (u− 2A)2)
+ 2
∇(u− g) · ∇u

h|∇u|2
− 4N

R2 − |x|2

+
2(u− 2A)(u− g)

h(9A2 − (u− 2A)2)
+

4|∇u|2

9A2 − (u− 2A)2
,

that is,

4|∇u|2

9A2 − (u− 2A)2
≤ 16|x||u− 2A||∇u|

(R2 − |x|2)(9A2 − (u− 2A)2)
+

4N(R2 − |x|2) + 16|x|2

(R2 − |x|2)2

− 2

h

(
∇(u− g) · ∇u
|∇u|2

+
(u− 2A)(u− g)

9A2 − (u− 2A)2

)
.

If |∇g(x0)| ≤ |∇u(x0)|, then

−2

h

∇(u− g) · ∇u
|∇u|2

≤ 2

h

|∇g|2 − |∇u|2

|∇u|2
≤ 0.
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Moreover, −2(u−2A)u ≤ u2+(u−2A)2 and 2(u−2A)g ≤ −2Ag ≤ 0. Hence, multiplying
by (R2 − |x|2)2 and dividing by 9A2 − (u− 2A)2 yields

4Φ(x0) ≤
16|x||u− 2A|

√
Φ(x0)

9A2 − (u− 2A)2
+

4N(R2 − |x|2) + 16|x|2

9A2 − (u− 2A)2

+
1

h

(
u2 + (u− 2A)2

9A2 − (u− 2A)2

)
(R2 − |x|2)2

9A2 − (u− 2A)2

≤
48R

√
Φ(x0)

5A
+

(4N + 16)R2

5A2
+

R4

5hA2
:= I, (7.44)

since 5A2 ≤ 9A2 − (u − 2A)2 ≤ 8A2. Suppose Φ(x0) ≥ CΦ
R2

A2 for some large CΦ > 0.
Then, if CΦ > 1

5h and R < 1, we get

R4

5hA2
≤ CΦ

R2

A2
.

Hence, the right-hand side of (7.44) gives

I ≤
(

48

5
√
CΦ

+
4N + 16

5CΦ
+ 1

)
Φ(x0).

If |∇g(x0)| ≤ |∇u(x0)|, then we can take CΦ large enough so that I < 4Φ(x0). A
contradiction to (7.44). Otherwise, |∇u(x0)| ≤ |∇g(x0)| ≤ L.

Since x0 is the maximum of Φ, we infer that on BR(0) ∩ Ω, either we have

Φ(x) ≤ CΦ
R2

A2
, CΦ > C max

(
1

5h , 4
√

3
5 ,

(4N+16)
5

)
,

or

Φ(x) ≤ (R2 − |x|2)2L2

(9A2 − (u− 2A)2)2
⇔ |∇u(x)| ≤ L.

Hence, on BR
2

(0) ∩ Ω where R2 − |x|2 ∼ R2, we get the desired result.

We return to the evolutionary free boundary problem setting. To show that the min-
imizer un is Lipschitz continuous up to convex Neumann boundaries, the main tool is
the extension of the arguments in [4, Lemma 3.2] that gives an average growth rate of
harmonic functions away from the free boundary. After which, we prove Lipschitz reg-
ularity on the Neumann boundary itself using the gradient control lemma 7.15. Using
these tools, we give a complete proof of Lipschitz continuity via the maximum principle.

Lemma 7.16. (cf. [80, Lemma 8]) If x ∈ ∂Ω, then there exists r1 > 0 and C(h,N,L, r1) >
0 such that for every ball Br(x) with r < r1,

un(x) > Cr
√
λ implies un > 0 in Br ∩ Ω.

Proof. Without loss of generality, assume x = 0. Let Dr := Br(0)∩Ω, ΓD,r := ∂Br(0)∩Ω
and ΓN,r := Br(0) ∩ ∂Ω. Consider a function v ∈ H1(Dr) satisfying

∆v − v

h
= −un−1

h
≤ 0, in Dr,
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with v = un in ΓD,r and Neumann boundary conditions along ΓN,r. Note that v min-
imizes functional In,Dr on the set {f ∈ H1(Dr) : f = un on ΓD,r}. By Lemma 7.13,
we see that v ≥ 0 in Dr, and therefore by the strong maximum principle ([49, Theorem
3.5]), v cannot achieve a nonpositive minimum in Dr, that is, we must have v > 0 in
Dr.

Now, extend function v by un outside Dr, and denote this function by v̂. Using a similar
argument (by virtue of Lemma 7.13) as in the proof of Theorem 7.14, we get (cf. (7.37))∫

Dr

|v − un|2

h
+ |∇(v − un)|2 ≤ λ|{v̂ > 0} ∩ {un = 0} ∩Dr|,

that is, ∫
Dr

|∇(v − un)|2 ≤ λ|{un = 0} ∩Dr|. (7.45)

Next, we want to show that for some C(N,L) > 0,(
un(0)

r

)2

|{un = 0} ∩Dr| ≤ C

∫
Dr

|∇(v − un)|2. (7.46)

We may assume (after rotation) that ∂Ω∩Br(0) is a Lipschitz graph in the xN -direction
with Lipschitz constant L. Then, there exists an ε(L) such that B2ε(0, 0, . . . , 0,

1
2r) ⊂ Dr.

Note that ε ≤ 1
4r.

Note that since 0 ∈ ∂Ω and Ω is convex, then ΓD,r is simply connected and Dr is
contained in {x ∈ Br(0) : xN > 0}. Let F be a bilipschitz map from Dr to D′r :=
Br(0)\Dr such that F extends continuously to a map from Dr to D′r with F |∂Ω = Id
and F (Ω ∩ ∂Br(0)) = (∂Br(0))\Ω. The Lipschitz constants of F and F−1 depend only
on L. Define function ũn on Br(0) by

ũn =

{
un(x), x ∈ Ω ∩Br(0),

un(F−1x), x ∈ Br(0)\Ω,

and define ṽ similarly. By a similar argument as in proof of Theorem 7.14 (Hölder
continuity up to the fixed Neumann boundary), we see that ṽ satisfies

Di

(
aij(x)Dj ṽ

)
− d(x)

ṽ − ũn−1

h
= 0, in Br(0),

where

aij(x) = |det∇F−1(x)|
(
(∇F )T (∇F )

)
(F−1(x))

d(x) = |det∇F−1(x)|,

when x ∈ Br(0)\Ω. Otherwise, aij = d = 1. Note that the bounds of aij and d depend
only on L.

Claim 1. There exists r1 > 0 and C(N,h) > 0 such that for any x ∈ Dr (with r < r1),
we have rv(x) ≥ Cv(0)(r − |x|). Indeed, by Theorem 7.2, we have for any p ≥ 1,∫

B1(0)∩Ω
|un−1|p ≤

∫
Ω
|un−1|p ≤ |Ω|‖u0‖p∞ <∞
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and ∫
B1(0)\Ω

|ũn−1|p ≤
∫
B1(0)\Ω

|un−1 ◦ F−1|p

=

∫
F−1(B1(0)\Ω)

|un−1|p|det∇F |

≤ C(L)|Ω|‖u0‖p∞ <∞

and so, sup
n≥1
‖ũn−1‖Lp(B1(0)) < +∞. It follows from [49, Theorem 8.17 and 8.18] that

v(0) ≤ C1

(
inf

B(0, 1
2
r)
ṽ(x) + k(r),

)
(7.47)

where C1 = C1(r, h, q) > 0 with the property limr↓0C1(r, h, q) > 0, q > N , and

k(r) = r2(1−N/q) sup
n≥1

∥∥∥∥ ũn−1

h

∥∥∥∥
Lq/2(Ω)

= o(r) as r ↓ 0. (7.48)

Hence, we can find small enough r1 > 0 such that for any r < r1 � 1, we have

k(r) ≤ r inf
B(0, 1

2
r)
ṽ(x) ≤ inf

B(0, 1
2
r)
ṽ(x).

Thus, for some constant C2 > 0,

v(0) ≤ C2 inf
B(0, 1

2
r)
ṽ(x),

that is, for any x ∈ B(0, 1
2r), then

rv(x) ≥ C3rv(0) ≥ C4v(0)(r − |x|), (7.49)

since r − |x| ≤ r. Here, C3 = C−1
2 > 0.

For x ∈ V := D\B 1
2
r(0), we define a function

w(x) = C3v(0)

(
exp

(
−µ|x|2

r2

)
− exp(−µ)

)
,

where µ ≥ N +
√
N2 + r2

1h
−1. By a similar argument as in Lemma 7.8, we see that

∆w − w − un−1

h
≥ 0, in V. (7.50)

If x ∈ ∂V ∩ ∂Br(0), then v(x) = un(x) ≥ 0. Since |x| = r, then w(x) = 0 ≤ v(x).
Moreover, if x ∈ ∂V ∩ ∂B 1

2
r(0), that is, |x| = 1

2r, then by (7.49),

w(x) = C3v(0)
(
e−

1
4
µ − e−µ

)
≤ C3v(0) ≤ v(x). (7.51)

Lastly, if x ∈ ∂V ∩ ∂Ω, then ∂v
∂η = ∂un

∂η = 0. By convexity of D,

∂w

∂η
(x) = −2µC3v(0)

r2
exp

(
−µ|x|2

r2

)
x · η ≤ 0,
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and so, ∂(v−w)
∂η ≥ 0. From (7.50), we get

∆w − w

h
≥ −un−1

h
= ∆v − v

h
in V.

Hence, for any φ ∈ {f ∈ H1(V ) : f ≥ 0, and f |∂V ∩Ω = 0}, we have

0 ≥ −
∫
V
∇(v − w) · ∇φ+

∫
∂V ∩∂Ω

∂(v − w)

∂η
φ− v − w

h
φ

≥ −
∫
V
∇(v − w) · ∇φ− v − w

h
φ.

Moreover, from (7.51), we have (v − w)|∂V ∩Ω ≥ 0. By Lemma 7.13, v − w ≥ 0 in V .
Hence, for any x ∈ V , there exists C4 > 0 such that

rv(x) ≥ rw(x) ≥ C4v(0) (r − |x|) .

(Indeed, if x ∈ V , then 1
2r ≤ |x| < r, that is, r − |x| ≤ 1

2r. Moreover, since the
exponential function is nonincreasing, then for some δ > 0,

rw(x) ≥ 1
2δC3rv(0) ≥ δC3v(0)(r − |x|).

Take C4 := δC3 > 0.) Therefore for any x ∈ D, we have rv(x) ≥ Cv(0) (r − |x|) which
proves the claim.

Further, we may assume r = 1, since we can dilate urn(y) = 1
run(ry) and similarly for v

so that both sides of the inequality (7.46) remains unchanged. Let z ∈ Bε(0, 0, . . . , 0, 1
2).

For every ξ ∈ ∂B1(0), we define

Rξ := sup{r : rξ + z ∈ B1(0)}
rξ := inf

{
r : 1

2ε ≤ r ≤ Rξ and ũn(rξ + z) = 0
}
,

if such an r exists. Otherwise, set rξ = Rξ. Define τξ(t) = z + tξ for rξ ≤ t ≤ Rξ,
and denote the line segment by τξ. Note that ṽ(τ(Rξ)) = ũn(τ(Rξ)). (Indeed, if y ∈
∂(B1(0)\D), then F−1(y) ∈ ∂(B1(0)\D), and so, ṽ(y) = v(F−1y) = un(F−1y) = ũn(y)).
Also, we note that the path τ has unit speed at all times, and recall that ũn(τ(rξ)) = 0
(unless rξ = Rξ, in which case |rξ| = 0). Then,

ṽ(rξξ + z) = ṽ(rξξ + z)− ũn(rξξ + z) = ṽ(τ(rξ))− ũn(τ(rξ))

= ṽ(τ(Rξ))− ũn(τ(Rξ))−
∫
τξ

∂

∂t
(ṽ − ũn)(τξ(t))dt

=

∫
τξ

∂

∂t
(ũn − ṽ)(τξ(t))dt

≤
∫
τξ

|∇(ṽ − ũn)| ≤
√
Rξ − rξ

(∫
τξ

|∇(ṽ − ũn)|2
) 1

2

(7.52)

Define sξ to be the unique (due to convexity) s < Rξ such that τ(s) ∈ ∂Ω if such an s
exists. Otherwise, set sξ = Rξ.

Claim 2. There exists C > 0 such that 1 − |rξξ + z| ≥ C(Rξ − rξ). Indeed, we may
assume that (1− |rξξ + z|) < 1

4 . (Otherwise, taking C = 1
8 and noting that Rξ − rξ ≤ 2

gives the desired result.) Since |z| ≤ 3
4 , then we can find τ0 <

π
2 such that if |rξξ+z| > 3

4 ,
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the ray from 0 to point rξξ + z and the ray from z to that point must meet at an angle
τ < τ0. Then,

Rξ − rξ ≤
1− |rξξ + z|

cos(τ)
≤

1− |rξξ + z|
cos(τ0)

≤ C(1− |rξξ + z|),

which proves the claim.

Now, Theorem 7.5 gives

Di

(
aij(x)Dj(ũn − ṽ)

)
− d(x)

ũn − ṽ
h

≥ 0, in B1(0),

and so, [49, Theorem 8.1] gives

sup
B1(0)

(ũn − ṽ) ≤ sup
∂B1(0)

(ũn − ṽ) = 0.

This implies that 0 ≤ ũn(x) ≤ ṽ(x), for any x ∈ B1(0). In particular, un(0) ≤ v(0).

If rξ ≤ sξ, then by the first claim,

ṽ(rξξ + z) ≥ C(N,h)v(0)(1− |rξξ + z|)
≥ C(N,h)un(0)(1− |rξξ + z|).

Otherwise,

ṽ(rξξ + z) = v(F−1(rξξ + z)) ≥ C(N,h)v(0)(1− |F−1(rξξ + z)|)
≥ C(N,h)un(0)(1− |rξξ + z|),

since F is bilipschitz. Invoking the second claim on both cases gives

ṽ(rξξ + z) ≥ C(N,h)un(0)(Rξ − rξ).

By (7.52), we get

C(N,h)un(0)2(Rξ − rξ) ≤
∫
τξ

|∇(ṽ − ũn)|2. (7.53)

Integrating the left-hand side of (7.53) with respect to ξ gives∫
∂B1(0)

(Rξ − rξ)dξ =

∫
∂B1(0)

∫ Rξ

rξ

drdξ ≥ 1

2N−1

∫
∂B1(0)

∫ Rξ

rξ

rN−1drdξ

≥ 1

2N−1

∫
B1(0)\B ε

2
(z)
χ{ũn=0}dx

≥ 1

2N−1

∫
D\B ε

2
(z)
χ{un=0}dx. (7.54)

On the other hand, integrating the right-hand side of (7.53) with respect to ξ yields∫
∂B1(0)

∫ Rξ

rξ

|∇(ṽ − ũn)|2drdξ =

∫
∂B1(0)

(∫ sξ

rξ

+

∫ Rξ

sξ

)
|∇(ṽ − ũn)|2drdξ

:= I + II,
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whenever sξ ≥ rξ. Since rξ ≥ ε(L)/2, then

I =

∫
∂B1(0)

∫ sξ

rξ

|∇(v − un)(rξ + z)|2drdξ

≤ 2N−1

ε(L)N−1

∫
∂B1(0)

∫ sξ

rξ

|∇(v − un)(rξ + z)|2rN−1drdξ

≤ C(L)

∫
D
|∇(v − un)|2dx.

Moreover, noting that sξ ≥ 2ε(L), we get

II ≤
∫
∂B1(0)

∫ Rξ

sξ

|∇F−1|2|∇(v − un)(F−1(rξ + z))|2drdξ

≤ C(L)

∫
∂B1(0)

∫ Rξ

sξ

|∇(v − un)(F−1(rξ + z))|2drdξ

≤ C(L)

(2ε(L))N−1

∫
∂B1(0)

∫ Rξ

sξ

|∇(v − un)(F−1(rξ + z))|2rN−1drdξ

≤ C(L)

∫
D′
|∇(v − un)(F−1x)|2dx

≤ C(L)

∫
D
|∇(v − un)|2|det(∇F )|

≤ C(L)

∫
D
|∇(v − un)|2.

Hence, ∫
∂B1(0)

∫ Rξ

rξ

|∇(ṽ − ũn)|2drdξ ≤ C(L)

∫
D
|∇(v − un)|2. (7.55)

By a similar argument, we see that this also holds when sξ < rξ.

Combining (7.53), (7.54), and (7.55) gives

un(0)2

∫
D\B ε

2
(z)
χ{un=0} ≤ C(h,N,L)

∫
D
|∇(v − un)|2.

Hence, integrating with respect to z ∈ Bε(L)(0, . . . , 0,
1
2) yields

un(0)2

∫
D
χ{un=0} ≤ C(h,N,L)

∫
D
|∇(v − un)|2,

which from (7.45) implies

un(0)2|{un = 0} ∩D| ≤ λC(h,N,L)|{un = 0} ∩D|.

Hence, if {un = 0}∩D 6= ∅, then we must have un(0) ≤ C(h,N,L)
√
λ. A contradiction.

Next, we check the Lipschitz gradient bound on the fixed Neumann boundary, near the
free boundary.
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Lemma 7.17. (cf. [80, Lemma 9]) Let Ω ⊂ RN be an open bounded domain with convex
Lipschitz boundary. There exists constants r2 > 0 and C(h,N, µ, L, r2) > 0, such that if
x ∈ ∂Ω satisfies dist(x, ∂{u > 0}) < r2, then

|∇un(x)| ≤ C(1 +
√
λ).

Proof. Let x ∈ ∂Ω and denote rx := inf{r > 0 : B(x, r) ∩ {un = 0} 6= ∅}. Note that

∆un =
un − un−1

h
, in D := B(x, rx) ∩ Ω.

Denote ΓD = ∂Brx ∩ Ω and ΓN = Brx ∩ ∂Ω. Since ∂Ω is a Lipschitz graph, then there
exists a bilipschitz map F : Dt → B+

rx where {xN = 0} = F (ΓN ) and (∂Brx)+ = F (ΓD).
The Lipschitz constants of F and F−1 are controlled solely by L. As in the proof of
Theorem 7.14, we can define ũn(y) = un(F−1y) on Brx such that

Di

(
aij(x)Dj ũn

)
− d(x)

ũn − ũn−1

h
= 0, in Brx ,

where aij is uniformly elliptic with bounded, measurable coefficients on all of Brx , and
that the bounds of aij and d depend only on L.

By Theorem 7.2, we have for any p ≥ 1,∫
Brx

|ũn−1|p ≤
∫
Brx

|un−1 ◦ F−1|p

=

∫
F−1(Brx )

|un−1|p| det∇F |

≤ C(L)|Ω|‖u0‖p∞ <∞

and so, sup
n≥1
‖un−1‖Lp(Brx ) < +∞. By [49, Theorem 8.17 and 8.18],

sup
Brx

ũn ≤ C1

(
inf
Brx

ũn + k(rx)

)
,

where C1(rx, h, q) > 0 with the property limr↓0C1(rx, h, q) > 0, q > N , and k(·) is
defined as in (7.48). Hence, we can find small enough ε1 > 0 such that if rx < ε1 � 1,
we have

k(rx) ≤ rx inf
Brx

ũn(x) ≤ inf
Brx

ũn(x),

that is, for some C2 > 0, sup
Brx

ũn(x) ≤ C2ũn(x).

Now, for any δ > 0, we see that |B(x, rx + δ) ∩ {un = 0}| > 0. By Lemma 7.16, there
exists r1 > 0 small such that if rx + δ < r1, we get

un(x) ≤ C(rx + δ)
√
λ.

Taking δ ↓ 0 gives un(x) ≤ Crx
√
λ, provided rx < r1. Take r2 = min(ε1, r1) > 0. Thus,

for any y ∈ B(x, 1
2rx), we have

ũn(y) ≤ C
√
λrx.
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By Lemma 7.15, we see that if (i) holds, then we are done. Otherwise, for some
C(N,h) > 0,

|∇un(x)| ≤ CC
√
λrx
rx

≤ C

Finally, we arrive at the Lipschitz regularity theorem.

Theorem 7.18. If un minimizes Fhn (n = 1, . . . ,M) for h, λ > 0, then for a.e. x ∈ Ω,

|∇un(x)| ≤ C`(1 +
√
λ),

where constant C` := C(N,L, h) > 0. Here, ∂Ω is locally a Lipschitz graph with Lipschitz
constant L > 0.

Proof by Induction. Fix n. Suppose |∇un−1| ≤ C(N,L, h)(1 +
√
λ). We wish to show

the same for the gradient bound of un.

There exists s > 0 depending only on the Lipschitz character of Ω such that one can
cover ∂Ω with balls Bs of radius s such that Bs ∩∂Ω is a Lipschitz graph with Lipschitz
constant is less than or equal to L. Let R = 1

2 min(1, s, r0, r1, r2) where r0, r1, r2 > 0
are the constants in Lemma 7.8, Lemma 7.16, and Lemma 7.17, respectively. Denote
Un := {un > 0} and Λn := Ω ∩ ∂Un. Let x ∈ Ω. Then, x belongs to one of the five
regions depicted in Figure 7.1. To show the Lipschitz continuity, we consider each case
separately.

un = 0 un > 0

(1)
(2)

(3)

(4)

(5)

R

R

Ω Λn

Figure 7.1: The subsets of domain Ω which form the five cases in consideration.

Case 1. x ∈ Ω\Un. Clearly, |∇un(x)| = 0 for almost every such x.

Case 2. x ∈ Un and dist(x, ∂Un) ≥ R. Note that BR := B(x,R) ⊂ Un. By C2-continuity
of un (Corollary 7.6), Hölder continuity of un−1 (Theorem 7.4), and [49, Lemma 6.16],
we see that un ∈ C2,γ(BR). Hence, the elliptic Schauder estimate [49, Theorem 6.2]
gives the desired result.

Case 3. x ∈ Un and dist(x,Λn) < min(R, 1
4dist(x, ∂Ω)). By virtue of Lemma 7.8, un has

Lipschitz continuity at the free boundary Λn with Lipschitz constant depending linearly
on
√
λ. By Theorem 7.9, we are done.

Case 4. x ∈ Un and dist(x,Λn) ≥ R ≥ dist(x, ∂Ω). By Lemma 7.15, we see that if
(i) holds, then we are done. Otherwise, Theorem 7.2 gives |∇un| ≤ C

R‖u0‖∞ for some
C(N,h) > 0.
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Case 5. x ∈ Un and 1
4dist(x, ∂Ω) ≤ dist(x,Λn) ≤ R. By slightly shrinking Un := {un >

0}, we can find a set U ′n such that x ∈ U ′n, ∂U ′n ∩ Ω is smooth, and

|∇un(x)| ≤ C(N,h, γ, ‖u0‖∞)(
√
λ+ 1) on ∂U ′n ∩ Ω, (7.56)

where we employed Case 3. Since un ∈ H1(Ω), then ∇un ∈ L2(Ω). By Fubini’s theorem,
there exists a radius r and C(N) > 0 such that 3

4R ≤ r ≤ R and ∇un ∈ L2(∂Br(x))
with

rN−1‖∇un‖L2(∂Br(x)) ≤ C‖∇un‖L2(Ω).

(Otherwise, ∫
Ω
|∇un|2 ≥

∫
BR∩Ω

|∇un|2 ≥
∫ R

3
4
R

∫
∂Br∩Ω

|∇un|2

≥ C(N)

∫ R

3
4
R

1

r2(N−1)

∫
Ω
|∇un|2

=
C(N)

R2N−3

∫
Ω
|∇un|2,

which gives R2N−3 ≥ C(N) ≥ 1.) Note that un satisfies

∆un −
un
h

= −un−1

h
, in D := Br(x) ∩ U ′n.

Moreover, ∂D has three parts: Γ1 = Br ∩ ∂Ω ∩ ∂U ′n, Γ2 = Br ∩ Ω ∩ ∂U ′n, and Γ3 =
U ′n ∩ ∂Br. These parts may not each be connected, but they are pairwise disjoint and
Γ1 ∪Γ2 ∪Γ3 = ∂D. Note that Γ1 is a convex Lipschitz hypersurface, and so, by Lemma
7.17, we have

|∇un| ≤ C(N,L, h,R)(1 +
√
λ), on Γ1.

By construction, Γ2 is a Lipschitz curve on which (7.56) holds. Moreover, Γ3 is a smooth
curve. Define function v on Br(x) by{

∆v = 0, in Br(x),

v = C2
3 + (|∇un|2)χΓ3 , on ∂Br(x)

where C3 = max(C1(1+
√
λ), C2). Then, on Γ1 and Γ2, we have v = C2

3 ≥ |∇un|2. Now,
if x ∈ Γ3, we see that

v(x) = C2
3 + |∇un(x)|2 ≥ |∇un(x)|2.

Moreover, recalling (7.42) and invoking Theorem 7.5, we have

∆(|∇un|2) = 2
N∑

i,j=1

(
∂2un
∂xi∂xj

)2

+ 2
∇(un − un−1)

h
· ∇un

≥ 2|∇un|2 − 2∇un−1 · ∇un
h

≥ |∇un|2 − |∇un−1|2

h
≥ −|∇un−1|2

h
in D



106 On Evolutionary Free Boundary Problem with Volume Constraint

and so, in the weak sense,

∆(|∇un|2 − v) +
|∇un−1|2

h
≥ 0, in D.

By the induction hypothesis, we have for any p ≥ 1,∫
D
|∇un−1|p ≤ C(N,L, h)p(1 +

√
λ)p|D| < +∞.

Hence, for some q > 2N , [49, Theorem 8.16] gives

sup
D

(|∇un|2 − v) ≤ sup
∂D

(|∇un|2 − v)+ + C(N,h,R)
∥∥|∇un−1|2

∥∥
Lq(D)

=: C4(N,L, h,R)2(1 +
√
λ)2

since v ≥ |∇un|2 in ∂D. Hence, |∇un|2 ≤ v + C2
4 on D ⊂ Br, and so,

|∇un(x)|2 ≤ v(x) + C2
4 (1 +

√
λ)2.

Since v is harmonic in Br(x), we have

v(x) = −
∫
∂Br(x)

v(y)dσ(y) = C2
3 +

C(N)

ωNrN−1

∫
Γ3

|∇un|2

≤ C2
3 +

C(N)

ωNr3(N−1)

∫
Ω
|∇un|2

≤ C2
3 +

C(N)

ωN
(

3
4R
)3(N−1)

‖∇u0‖2L2(Ω)

≤ C(N,L, h,R)(1 +
√
λ).

Hence, we have

|∇un(x)|2 ≤ v(x) + C2
4 (1 +

√
λ)2 ≤ C(1 +

√
λ).

Thus, for almost every x ∈ Ω, |∇un| ≤ (1 +
√
λ)C`(N,L, h).

7.5 Behavior of the minimizer for large λ

This section investigates the behavior of minimizer un for sufficiently large penalty λ > 0.
In particular, we show that the solution to the original problem (7.1) is attained without
having to take λ to infinity.

Note that Theorem 7.7 implies that our penalization does not affect those functions
whose |{u > 0}| is less than the prescribed measure. This allows us to avoid smooth
outward perturbations of {u > 0}. Inward perturbations, on the other hand, can be
done in a natural way (cf. [93]) by replacing u in the set u > 0 by wδ := (u−δ)+. When
λ is large enough, we rule out the case |{un > δ}| > α by showing that, in this case,
Fhn (un) ≤ Fhn (wδ) for small δ, contrary to the minimality of un. The crucial point here
is the gradient bound for un (Theorem 7.18).
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Theorem 7.19. Suppose

λ > max

2‖∇u0‖2L2(Ω)

|Ω| − α
,

[
(C∗ +

√
h)‖u0‖∞ + h

]2

h2

 ,

where

C∗ :=
2CSC`|Ω|2+1/N

α(|Ω| − α)
.

If un minimizes Fhn (n = 1, . . . ,M), then |{un > 0}| = α. As a consequence, un solves
(7.3) if and only if it solves (7.1).

Here, CS is the Sobolev-Poincaré constant relative to Ω, that is, the smallest number
such that ∫

Ω

∣∣∣∣v −−∫
Ω
v

∣∣∣∣ ≤ CS |Ω|1/N‖Dv‖(Ω), ∀v ∈ BV (Ω) (7.57)

where ‖Dv‖(Ω) is the total variation of the distributional derivative of v.

Proof. By Theorem 7.7, it suffices only to show that |{un > 0}| ≤ α. Suppose not.
Then, we can find a sufficiently small δ ∈ (0, 1) such that

|{un > δ}| ≥ α. (7.58)

For such δ, consider the comparison function wδ := (un − δ)+ ∈ H1(Ω). Note that
{wδ > 0} = {un > δ}. Then, Fhn (un) ≤ Fhn (wδ) implies∫

Ω

|un − un−1|2

h
− |wδ − un−1|2

h
+

∫
Ω
|∇un|2 − |∇wδ|2 ≤ λ(|{wδ > 0}|−|{un > 0}|)

≤ −λ|{0 < un < δ}|. (7.59)

By the definition of wδ, we have∫
Ω
|∇wδ|2 − |∇un|2 =

∫
{un>δ}

|∇un|2 −
∫

Ω
|∇un|2

= −
∫
{0<un<δ}

|∇un|2 ≤ 0,

and∫
Ω

|wδ − un−1|2

h
− |un − un−1|2

h

=

∫
{0<un<δ}

u2
n−1

h
+

∫
{un≥δ}

|un − δ − un−1|2

h
−
∫

Ω

|un − un−1|2

h

=

∫
{0<un<δ}

(
u2
n−1

h
− |un − un−1|2

h

)
+
δ

h

∫
{un≥δ}

(δ − 2(un − un−1))

≤
∫
{0<un<δ}

u2
n−1

h
+
δ

h

∫
{un≥δ}

(2un−1 − δ)

≤ ‖u0‖2∞
h
|{0 < un < δ}|+ δ|Ω|2‖u0‖∞

h
.
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Thus, (7.59) becomes

λ ≤ ‖u0‖2∞
h

+
2δ|Ω|‖u0‖∞

h|{0 < un < δ}|
. (7.60)

We will estimate the second term on the right-hand side of (7.60) by a quantity indepen-
dent of δ, which will lead to a contradiction. To this end, consider set At := {un < t}
for t ∈ (0, δ). Then, {un > δ} ⊂ Ω\At ⊂ {un > 0}. By (7.58) and Theorem 7.7, we get

α ≤ |Ω| − |At| ≤ α+ λ−1‖∇u0‖2L2(Ω),

which implies that∫
Ω

∣∣∣∣χAt −−∫
Ω
χAt

∣∣∣∣ =

∫
At

∣∣∣∣1− |At||Ω|
∣∣∣∣+

∫
Ω\At

|At|
|Ω|

= 2(|Ω| − |At|)
|At|
|Ω|

≥ 2α
|Ω| − α− λ−1‖∇u0‖2L2(Ω)

|Ω|

≥ α(|Ω| − α)

|Ω|
, (7.61)

since λ−1‖∇u0‖2L2(Ω) < (|Ω| − α)/2. Note that the total variation of un ∈ H1(Ω) is∫
Ω
|∇un| ≤ |Ω|1/2‖∇un‖L2(Ω) ≤ |Ω|1/2‖∇u0‖L2(Ω) <∞,

which follows from Hölder’s inequality and Lemma 7.3. Then, by [38, Section 5.5,
Theorem 1], At has finite perimeter, that is, HN−1(∂At) <∞ for L1 a.e. t ∈ (0, δ). This
implies that χAt ∈ BV (Ω), and so, by the isoperimetric inequality (7.57) and (7.61), we
have

α(|Ω| − α)

|Ω|
≤

∫
Ω

∣∣∣∣χAt −−∫
Ω
χAt

∣∣∣∣ ≤ CS |Ω| 1NHN−1(∂At). (7.62)

By the Coarea formula and Theorem 7.18, we have for some C`(N,L, h) > 0,∫ δ

0
HN−1(∂At)dt =

∫
{0<un<δ}

|∇un| ≤ (1 +
√
λ)C`|{0 < un < δ}|.

Integrating (7.62) with respect to t over (0, δ) and multiplying |Ω| yields

δα(|Ω| − α) ≤ CSC`(1 +
√
λ)|Ω|1+1/N |{0 < un < δ}|

Thus, (7.60) becomes

λ ≤ ‖u0‖2∞
h

+ C∗(1 +
√
λ)
‖u0‖∞
h

.

By the quadratic formula, we get
√
λ ≤ C∗ ‖u0‖∞h + ‖u0‖∞√

h
+ 1. A contradiction.
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7.6 Construction of Minimizing Movement

This section presents the minimizing movement for our evolutionary free boundary prob-
lem and some of its properties.

For h, λ > 0, let un be the minimizer of functional Fhn (n = 1, . . . ,M). Define h-step
function ũh : [0, T ]× Ω→ R by

ũh(t, x) := ubt/hc+1(x) =

{
u0(x), t = 0

un(x), t ∈ ((n− 1)h, nh], n = 1, . . . ,M
(7.63)

and h-piecewise linear function uh : [0, T ]× Ω→ R by

uh(t, x) := (1− τ)ubt/hc(x) + τubt/hc+1(x), (7.64)

where τ = t/h − bt/hc ∈ [0, 1]. Here, b·c denotes the floor function. Hence, for any
t ∈ [(n− 1)h, nh] where n = 1, . . . ,M ,

uh(t, x) =
nh− t
h

un−1(x) +
t− (n− 1)h

h
un(x).

Remark. By Theorem 7.2, we have

0 ≤ ũh(t, x), uh(t, x) ≤ ‖u0‖∞, (7.65)

for any t ∈ [0, T ] and for almost every x ∈ Ω. Moreover, for any t ∈ (0, T ),

lim
h↓0
‖ũh(t, ·)− uh(t, ·)‖L2(Ω) = 0. (7.66)

Indeed, ∫
Ω

∣∣∣ũh(t, x)− uh(t, x)
∣∣∣2 dx = (1− τ)2

∫
Ω

∣∣ubt/hc(x)− ubt/hc+1(x)
∣∣2 dx

≤ h‖∇u0‖2L2(Ω),

which follows from Lemma 7.3.

First, we state the definition of the generalized minimizing movement.

Definition 7.20 (Generalized Minimizing Movement). Consider a separable Hilbert
space X, a functional

F : (0, 1)×X ×X −→ R ∪ {−∞,+∞},

and an initial datum u0 ∈ X. We say that u : [0,+∞)→ X is a generalized minimizing
movement in X associated to F and u0, written as

u ∈ GMM(F , u0;X)

if there exists a family of sequences
{
uhn
}∞
n=1

depending on h ∈ (0, 1) such that{
uh0 = u0

F(h, uhn, u
h
n−1) = min

v∈X
F(h, v, uhn−1), ∀n ∈ N, h ∈ (0, 1)

(7.67)
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and u is the pointwise limit in X, as h goes to 0, of the h-step functions ũh (defined in
(7.63)), that is,

lim
h↓0

ũh(t) = u(t) in X ∀t ∈ [0,+∞). (7.68)

Theorem 7.21. There exists u ∈ GMM(F , u0, L
2(Ω)).

Proof. Consider a sequence {h} ⊂ (0, 1) such that h → 0. For each h > 0, there exists
a sequence

{
uhn
}∞
n=0

such that (7.67) holds (Theorem 7.1).

Note that for any t ∈ (0, T ),∫
Ω
|∇uh(t)|2 =

∫
Ω

∣∣(1− τ)∇ubt/hc + τ∇ubt/hc+1

∣∣2
=

∫
Ω

(1−τ)2
∣∣∇ubt/hc∣∣2 + 2τ(1−τ)∇ubt/hc ·∇ubt/hc+1 + τ2

∣∣∇ubt/hc+1

∣∣2
≤

∫
Ω

∣∣∇ubt/hc∣∣2 + 2
∣∣∇ubt/hc∣∣ ∣∣∇ubt/hc+1

∣∣+
∣∣∇ubt/hc+1

∣∣2
≤ 2

∫
Ω

∣∣∇ubt/hc∣∣2 + 2

∫
Ω

∣∣∇ubt/hc+1

∣∣2 ≤ 4‖∇u0‖2L2(Ω), (7.69)

which follows from Lemma 7.3. Moreover, by Poincaré-Wirtinger inequality and Lemma
7.3, there exists CP > 0 such that

‖uh(t)− uhΩ(t)‖2L2(Ω) ≤ CP ‖∇u
h(t)‖2L2(Ω) ≤ C‖∇u0‖2L2(Ω),

where uhΩ(t) = −
∫

Ω
uh ≤ ‖u0‖∞. Hence,

∫
Ω

∣∣∣uhΩ(t)
∣∣∣2 ≤ |Ω|‖u0‖2∞.

By triangle inequality, we have

‖uh(t)‖L2(Ω) ≤ ‖uh(t)− uhΩ(t)‖L2(Ω) + ‖uhΩ(t)‖L2(Ω) < +∞.

It follows that {uh(t)}h>0 is uniformly bounded in H1(Ω) for any t ∈ (0, T ). Hence,
Rellich-Kondrachov theorem implies that for a fixed t0 ∈ (0, T ), there exists a subse-
quence {ũhj (t0)}∞j=1 such that for some u(t0) ∈ L2(Ω), we have

ũhj (t0) −→ u(t0) strongly in L2(Ω).

By a diagonal argument, we can find a subsequence {ũhj}∞j=1 such that

ũhj (q) −→ u(q) strongly in L2(Ω) for q ∈ Q+ ∩ (0, T ). (7.70)

We wish to extend this result from q ∈ Q+ ∩ (0, T ) to t ∈ (0, T ). To do so, we utilize
the idea of [7] and derive an estimate for ‖ũh(s)− ũh(t)‖L2(Ω) for any s, t ∈ (0, T ). From
the proof of Lemma 7.3, recall that∫

Ω

|un − un−1|2

h
≤ J (un−1)− J (un).
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Then, for t > s,

‖ũhj (t)− ũhj (s)‖L2(Ω) ≤
bt/hjc∑

n=bs/hjc+1

‖un − un−1‖L2(Ω)

≤

 bt/hjc∑
n=bs/hjc+1

12

1/2 bt/hjc∑
n=bs/hjc+1

‖un − un−1‖2L2(Ω)

1/2

≤
√
bt/hjc − bs/hjc

hj bt/hjc∑
n=bs/hjc+1

(J (un−1)− J (un))

1/2

=
√
bt/hjc − bs/hjc

√
hj

(
J (ubs/hjc)− J (ubt/hjc)

)
≤

√
J (u0)

√
hj (bt/hjc − bs/hjc)

≤ ‖∇u0‖L2(Ω)

√
t− s+ hj . (7.71)

This shows that step functions ũhj are (almost) equicontinuous and equibounded in
C([0,+∞);L2(Ω)). Hence, they converge uniformly.

Now, given ε > 0 and an arbitrary t ∈ (0, T ), we select q ∈ Q+ so that

2‖∇u0‖L2(Ω)

√
|t− q| < 1

3ε.

By (7.70), we can find δ1 > 0 such that for all hi, hj < δ1, we have

‖ũhi(q)− ũhj (q)‖L2(Ω) <
1
3ε.

Take δ = min(δ1, δ
2
2), where δ2 = ε/(6‖∇u0‖L2(Ω)) > 0. Then, for all hi, hj < δ, we get

‖ũhi(t) − ũhj (t)‖L2(Ω)

≤ ‖ũhi(t)− ũhi(q)‖L2(Ω) + ‖ũhi(q)− ũhj (q)‖L2(Ω) + ‖ũhj (q)− ũhj (t)‖L2(Ω)

≤ ‖∇u0‖L2(Ω)

√
t− q + hi + 1

3ε+ ‖∇u0‖L2(Ω)

√
t− q + hj

≤ 2
3ε+ ‖∇u0‖L2(Ω)

(√
hi +

√
hj
)

≤ 2
3ε+ 2‖∇u0‖L2(Ω)

√
δ < ε.

By the completeness of L2(Ω), we conclude that

ũhj (t) −→ u(t) in L2(Ω) for t ∈ (0, T ).

Moreover, thanks to (7.66), the same holds for the sequence uhj (t).

To end, we present some properties of the minimizing movement in the following theo-
rem.

Theorem 7.22. u ∈ GMM(F , u0, L
2(Ω)) belongs to L2((0, T );H1(Ω)) ∩ L∞((0, T ) ×

Ω)) ∩ C0,1/2([0, T ];L2(Ω)) and satisfies (in the weak sense) ut ≤ ∆u in (0, T )× Ω.

Proof. Passing to the limit as hj → 0 in (7.65) gives

0 ≤ u(t) ≤ ‖u0‖∞, ∀t ∈ (0, T ). (7.72)
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Using (7.71) for t > s, we find (by dropping the index j from hj),

‖u(t)− u(s)‖L2(Ω) ≤ ‖u(t)−ũh(t)‖L2(Ω) + ‖ũh(t)−ũh(s)‖L2(Ω) + ‖ũh(s)−u(s)‖L2(Ω)

≤ ‖u(t)−ũh(t)‖L2(Ω) + ‖∇u0‖L2(Ω)

√
t−s+h+ ‖ũh(s)−u(s)‖L2(Ω)

→ ‖∇u0‖L2(Ω)

√
t− s, h→ 0,

and thus, u ∈ C0,1/2([0,+∞);L2(Ω)) .

Moreover, adding the inequalities Fhn (un) ≤ Fhn (un−1) up to an arbitrary n = bt/hc
gives that for any t ∈ (0, T ),∫ t

0
‖uht ‖2L2(Ω)dt+ ‖∇ũht (t)‖2L2(Ω) ≤ ‖∇u0‖2L2(Ω).

Hence, we can find a subsequence {uhj} such that

u
hj
t ⇀ ut weakly in L2((0, T )× Ω)

∇uhj ⇀ ∇u, weakly in L2((0, T )× Ω).

Finally, we show the subsolution property. For any h > 0 and n = 1, 2, . . . ,M , and an
arbitrary nonnegative φ ∈ C∞0 ((0, T )× Ω), define

φhn(x) :=
1

h

∫ nh

(n−1)h
φ(t, x)dt

and set for all t > 0, φh(t, x) := φh[t/h]+1(x). Note that as h→ 0,

φh −→ φ strongly in L2((0, T )× Ω),

∇φh −→ ∇φ strongly in L2((0, T )× Ω;RN ).

By Theorem 7.5, we have for any t ∈ (0, T ),∫
Ω

un − un−1

hj
φ
hj
n +∇un · ∇φ

hj
n ≤ 0,

where n = bt/hjc+ 1. Adding up to bT/hjc and multiplying by hj gives

0 ≥
bT/hjc∑
n=1

hj

∫
Ω

∂uhj

∂t
φhj +∇ũhj · ∇φhj

=

∫ T

0

∫
Ω

∂uhj

∂t
φhj +∇ũhj · ∇φhj .

=

∫ T

0

∫
Ω

∂uhj

∂t

(
φhj − φ

)
+
∂uhj

∂t
φ+

∫ T

0

∫
Ω
∇ũhj ·

(
∇φhj −∇φ

)
+∇ũhj · ∇φ.

Taking hj → 0 yields the desired result.
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7.7 Concluding Remarks

For any given time step size h > 0, we have shown that one can choose penalty parameter
λ (independent of n) large enough that the measure of set {un > 0} automaticaly
adjusts to its prescribed value. This means that one can achieve the solution to the
original problem (7.1) without having to take λ to infinity in (7.3) – a clear advantage
in numerical computations.

There is still a number of questions on this problem which we plan to address in the
future. First, we wish to investigate the behavior of the sequence of minimizers for
sufficiently large penalty λ independent of h and n. Since the techniques introduced in
this chapter are not applicable, we instead, opt to use a smoothing technique on our
penalization term and employ the Bernstein method to first establish uniform regularity
of the minimizer (cf. [96]). Second, we would like to extend these results to the two-
phase case where the initial datum u0 is not required to be nonnegative. Our goal
is to prove the convergence of the volume-preserving MBO algorithm, which requires
investigation of the regularity of free boundary. Is the free boundary (in some sense) a
“nice” hypersurface? What is its shape as it comes into the fixed boundary? Does it hit
the fixed boundary smoothly? Finally, we wish to generalize the results in Section 7.4
(regularity up to the fixed Neumann boundary) to other elliptic operators. What is the
most general type of operator to which it should apply? Does it also work with other
boundary conditions, aside from the Neumann boundary condition?





Appendix A

Reference Vectors: Its
Construction and Properties

In this appendix, we construct reference unit vectors, denoted by pi corresponding to
each phase region Pi as vectors of dimension k − 1 pointing from the centroid of a
standard k-simplex to its vertices as in [94]. Based on this construction, we list down
some of its useful properties.

Consider the standard (k − 1)-simplex in Rk given by

Sk−1 =

{
(x1, x2, . . . , xk) ∈ Rk :

k∑
i=1

xi = 1 and xi ≥ 0, for i = 1, 2, . . . , k

}
.

Then, its vertices form the natural basis {ei : 1 ≤ i ≤ k} for the Euclidean space Rk.

p1

p2

p3

p1

p4 p2

p3

Figure A.1: A 3-phase regular simplex (left) and a 4-phase regular simplex (right).

Translate the simplex so that its centroid lies in the origin. Hence, the translated vertices
are now of the form

vi =
1

k

(
kei −

k∑
i=1

ei

)
.

Fix an orthonormal basis for the (k − 1)-dimensional hyperplane containing the sim-
plex. Take, for example, the first translated vertex v1 as the first basis vertex (after
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116 Reference Vectors: Its Construction and Properties

normalization), and construct the remaining vectors as follows:

qk1 =
1√

(k − 1)k
(k − 1,−1,−1,−1 . . . ,−1)

qk2 =
1√

(k − 2)(k − 1)
(0, k − 2,−1,−1, . . . ,−1)

qk3 =
1√

(k − 3)(k − 2)
(0, 0, k − 3,−1, . . . ,−1)

...

qkk−1 =
1√
2

(0, . . . , 0, 1,−1)

Let Qk be the matrix havingqk1,q
k
2, . . . ,q

k
k−1 as its rows. Then, the reference vectors pi

are obtained by normalized projection of vi(i = 1, . . . , k) into this orthonormal system,
that is,

pTi =
1

|QkvTi |
Qkv

T
i .

Note that for any pair i, j = 1, 2, . . . , k, we have

1. pi · pj =

 1, i = j
1

1− k
, i 6= j

2. (pi + pj) · (pi − pj) = 0,

3. |pi + pj | =
√

2(k − 2)

k − 1
, when i 6= j,

4. |pi − pj | =
√

2k

k − 1
, when i 6= j.

Moreover, if θ denotes the angle between any pair of reference vectors, say pi and pj ,
then, the following is true:

1. cos θ =
pi · pj
|pi||pj |

= − 1

k − 1
,

2. cos( θ2) = 1
2 |pi + pj |,

3. sin( θ2) = 1
2 |pi − pj |.

The above properties of the reference vectors are used in the calculation of the velocity
of the interface.



Appendix B

Expansion of Scalar Signed
Distance Function

Consider the scalar signed distance function d̂S : R2 → R with respect to set S ⊂ R2,
defined by

d̂S =

{
dist(x, Sc), x ∈ S,
−dist(x, S), x ∈ Sc.

In this appendix, we write out its Taylor expansion around a point x on the smooth
boundary ∂S where the expansion coefficients are expressed in terms of the geometry
(curvature and derivatives of curvature) of ∂S as in [36].

Let us rotate and translate the coordinate system so that x = 0 in the new coordinate
system and the outer unit normal η at the origin lies in the negative x2 direction (Figure
B.1).

d̂S > 0 S

x1

x2

η

−d̂S > 0

γ(x)

Figure B.1: Setting up ∂S in the new coordinate system.

Let γ(x) be the smooth function whose graph (x1, γ(x2)) describes the smooth boundary
∂S in the neighborhood of the origin. Then, if κ defines the curvature of the interface γij
at point x = (0, 0), then γ(0) = 0, γ′(0) = 0, and γ′′(0) = −κ. Note that d̂S(x1, x2) > 0
if x2 > γ(x1) (which implies that d̂S(x1, x2) < 0 if x2 < γ(x1)).
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118 Expansion of Scalar Signed Distance Function

Proposition B.1. (cf. [36, Proposition 2]) The scalar signed distance function d̂S(x1, γ(x1))
has the following Taylor expansion at x = 0:

d̂S(x) = x2 + 1
2κx

2
1 + 1

6κx1x
3
1 − 1

2κ
2x2

1x2 +O(|x|4).

Proof. For convenience, denote d := d̂S . Take r > 0 small enough so that d̂S ∈ Ck,m
where k ≥ 2 and m ≥ 0 in a neighborhood B := B(0, r) of x = 0 ∈ ∂S. Then, for all
x ∈ B, we have

d̂S(x) = (x− P (x)) · η(P (x)),

where P : R2 → ∂S denotes the closest point projection. Hence, for sufficiently small
x2, we have d(0, x2) = x2 and so, dx2(0) = 1 and

∂k

∂xk2
d(0) = 0, k ≥ 2.

Moreover, the scalar signed distance function satisfies the Eikonal equation

|∇d(x)|2 = d2
x1(x) + d2

x2(x) = 1, (B.1)

which implies that dx1(0) = 0. Now, differentiating B.1 with respect to x1, we have

dx1(x)dx1x1(x) + dx2(x)dx1x2(x) ≡ 0. (B.2)

It follows that dx1x2(0) = 0 and

∂k

∂xk2
dx1(0) = 0, k ≥ 1.

Meanwhile, recall that the Laplacian of the signed distance function d̂ at a point gives
the mean curvature H of the isosurface of d̂ passing through the point, that is,

∆d(x1, γ(x1)) = dx1x1(x1, γ(x1)) + dx2x2(x1, γ(x1)) = H(x1, γ(x1)), (B.3)

which implies that dx1x1(0) = H(0, 0) = κ.

Now, differentiating (B.2) with respect to x1, we get

d2
x1x1(x) + dx1(x)dx1x1x1(x) + d2

x1x2(x) + dx2(x)dx1x1x2(x) ≡ 0. (B.4)

Thus, we have dx1x1x2(0) = −κ2. On the other hand, differentiating (B.3) with respect
to x1 yields

Hx1(x1, γ(x1)) = dx1x1x1(x1, γ(x1)) + dx1x1x2(x1, γ(x1))γ′(x1)

+ dx2x2x1(x1, γ(x1)) + dx2x2x2(x1, γ(x1))γ′(x1),

which implies that dx1x1x1(0) = Hx1(0, 0) =: κx1 . Finally, collecting the expansion
coefficient terms yields the desired Taylor expansion.



Appendix C

A Junction-based Signed
Distance Vector Approach

This appendix presents an alternative construction of the signed distance vector function
[70],which when set as an initial condition in Algorithm 3.1 evolves the interface with a
normal velocity of minus mean curvature.

§ Construction of Signed Distance Vector

Consider a partition of RN = P1 ∪ P2 ∪ · · · ∪ Pk into k > 2 mutually exclusive phase
regions Pi ⊂ RN (i = 1, 2, . . . , k). Fix a point x ∈ RN . Without loss of generality, say
x ∈ Pi with Pj as the nearest phase to x. Denote the interface between phase Pi and
Pj by γij = γji. As in Appendix A, set up the reference vectors pi corresponding to
each phase Pi as vectors of dimension k − 1 pointing from the centroid of a standard
k-simplex to its vertices. Denote θ as the angle between any pair of reference vectors
(depends only on the number of phases).

Let d1 : RN → R+ ∪ {0} be the distance of point x to the nearest interface, defined by:

d1(x) := min
i 6=n

dist (x, γin) = dist (x, γij) ,

and s : RN → R+ ∪ {0}, be the distance to the nearest junction point

s(x) := min {dist (x, z) : z ∈ Tij} ,

where Tij is the set of all junction points on interface γij .

Definition C.1. We define the signed distance vector δ : RN → Rk−1, as follows:

δ(x) := s(x)rot ji

(
pi + pj
|pi + pj |

,
d1(x)

s(x)

θ

2

)
,

where rot ji(v, α) means rotating vector v by angle α in the direction of rotation from
reference vector pj to reference vector pi.
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120 A Junction-based Signed Distance Vector Approach

From this construction, we see that δ(x) = 0 when x is a junction point; and

δ(x) = s(x)
pi + pj
|pi + pj |

when point x lies on interface γij . An example of this signed distance vector is shown
in Figure C.1.

P1

P2

P3

Figure C.1: Three-phase initial condition (left) and its corresponding signed distance
vector field (right).

Proposition C.2. If x ∈ Pi with γij as its nearest interface, then,

δ(x) = s(x)

[
cosα(x)

pi + pj
|pi + pj |

+ sinα(x)
pi − pj
|pi − pj |

]
,

where α(x) :=
d1(x)

s(x)

θ

2
.

Proof. Let δ(x) = s(x)r, where r := rot ji (v, α).

pi

pj
v =

pi + pj

|pi + pj|

δ(x)
α = d1(x)

c(x)
θ
2

θ

Figure C.2: Construction of the junction-based signed distance vector.

Write r = av + bpi for some a, b ∈ R. Since pi · pj = cos θ, then taking the dot product
r · v gives cosα = a+ b cos θ2 . Hence, a = cosα− b cos θ2 . On the other hand, taking the
dot product r · pi gives

cos
(
θ
2 − α

)
= a cos θ2 + b =

(
cosα− b cos θ2

)
cos θ2 + b,

which gives b =
sinα

sin θ
2

.
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Thus, we have

r =
(
cosα− b cos θ2

) pi + pj
|pi + pj |

+ bpi

=

(
cosα

|pi + pj |
+
b

2

)
pi +

(
cosα

|pi + pj |
− b

2

)
pj

= cosα
pi + pj
|pi + pj |

+ sinα
pi − pj
|pi − pj |

.

We remark that for any point x ∈ RN having γij(i, j ∈ {1, 2, . . . , k}) as its nearest
interface, we have,

δ(x) · (pi − pj) =


√

2(k−2)
k−1 s(x) sinα(x), x ∈ Pi

−
√

2(k−2)
k−1 s(x) sinα(x), x ∈ Pj .

(C.1)

Meanwhile, if x ∈ Pm ⊂ RN with γmn(m,n ∈ {1, 2, . . . , k}\{i, j}) as its nearest interface,
then we can find a constant C > 0 such that

|δ(x) · (pi − pj)| ≤
√

2k

k − 1
|s(x)|. (C.2)

§ Velocity of the Interface

Next, we estimate the “normal velocity” of the interface evolving according to the
junction-based SDV scheme.

Theorem C.3. The velocity of the interface γ at any point x ∈ γ ⊂ RN is

v = −κ+O(
√

∆t), ∆t→ 0,

where κ denotes the (N−1)-times mean curvature of γ at x with respect to the outer
normal η.

Proof. For simplicity, take N = 2 and write t = ∆t. We proceed in the same manner as
in the proof of Theorem 3.3. The normal velocity v of interface γij can be found from
the relation

0 =

∫
Q

+

∫
R2\Q

δ(x) · (pi − pj)Φt(x− z)dx := I + II

where z = (0, vt). Using equation (C.2) and the fact that |s(x)| ≤ |x| + M for some
M > 0, we get

|II| ≤ C

∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R

(|x1|+ |x2|+M)ϕt(x1)ϕt(x2 − vt)dx2dx1

≤ C

∫ ∞
0

(∫ ∞
τ+vt

+

∫ ∞
τ−vt

)
+

∫ ∞
τ

∫
R

(x1 + |x2|+ |v|t+M)ϕt(x1)ϕt(x2)dx2dx1

≤ C
(√

t+ t+ 1
)
e−

τ2

4t (C.3)
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On the other hand, it follows from equation (C.1) that for some C > 0,

I :=

√
2(k − 2)

k − 1

∫
Q∩Pi

−
∫
Q∩Pj

s(x) sin

(
dist(x, γij)

s(x)

θ

2

)
Φt(x)dx

=

√
2(k − 2)

k − 1

∫
Q
s(x) sin

(
d(x)

s(x)

θ

2

)
Φt(x− z)dx

where d : R2 → R is the scalar signed distance to Qε ∩ Pi. Using the Taylor expansion
of sine up to the third order, we have

I =
θ
√
k − 2√

2(k − 1)

∫
Q
s(x)

[
d(x)

s(x)
+O

(
d3(x)

s3(x)

)]
Φt(x− z)dx

=:
θ
√
k − 2√

2(k − 1)
(I1 + I2)

Moreover, using the Taylor expansion of the scalar signed distance (Proposition B.1),
we get

I1 =

∫
Q

[(
x2 + 1

2κx
2
1

)
+O

(
|x|3
)]
ϕt(x1)ϕt(x2 − vt)dx2dx1 =: I11 + I12.

We estimate these integrals in the following claims.

Claim 1: I11 = (v + κ) t+O(e−
τ2

4t ), as t→ 0.
Indeed,∫

R2

(
x2 + 1

2κx
2
1

)
Φt(x− z)dx =

∫
R

(x2 + vt)ϕt(x2)dx2 + κ

∫ ∞
0

x2
1ϕt(x1)dx1

=
1

2
√
πt

∫
R

(x2 + vt) e−
x22
4t dx+ κt = vt+ κt

Moreover, we have∣∣∣∣∣
∫
R2\Q

x2Φt(x− z)dx

∣∣∣∣∣ ≤
∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
|x2|ϕt(x1)ϕt(x2 − vt)dx2dx1

≤
∫ ∞
τ+vt

+

∫ ∞
τ−vt

+ e−
τ2

4t

∫
R

(|x2|+ |v|t)ϕt(x2)dx2

≤ C
(

1 +
√
t+ t

)
e−

τ2

4t ,

and∣∣∣∣∣
∫
R2\Q

1
2κx

2
1Φt(x− z)dx

∣∣∣∣∣ ≤ C

∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
x2

1ϕt(x1)ϕt(x2 − vt)dx2dx1

≤ C

(∫ ∞
τ+vt

+

∫ ∞
τ−vt

tϕt(x2)dx2 + 2

∫ ∞
τ

x2
1ϕt(x1)dx1

)
≤ C

(
t+
√
t(τ +

√
t)
)
e−

τ2

4t ,

which proves the claim.
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Claim 2: I12 = O
(
t
√
t
)
, as t→ 0.

Indeed,

|I12| ≤ C

∫
Q

(|x1|+ |x2|)3 ϕt(x1)ϕt(x2 − vt)dx2dx1

≤ C

(∫ ∞
0
x3

1ϕt(x1)

∫
R
ϕt(x2) +

∫
R
ϕt(x1)

∫ ∞
0

(x2 + |v|t)3ϕt(x2)

)
dx2dx1

≤ Ct
√
t
(

1 + (1 + |v|
√
t)3
)
,

which proves the claim.

For the second term I2, it is enough to consider the first two terms of the Taylor expansion
(Proposition B.1) of the scalar signed distance. Moreover, we can take τ > 0, small
enough so that min

x∈Q
s(x) > 0. Thus,

|I2| ≤ C max
Q

1

s2(x)

∫
Q

∣∣d3(x)
∣∣Φt(x− z)dx

≤ C

∫
Q

(|x2|+ |x1|)3 ϕt(x1)ϕt(x2 − vt)dx2dx1

≤ C

∫ ∞
0

∫
R

(|x2|+ |v|t+ x1)3 ϕt(x1)ϕt(x2)dx2dx1

≤ Ct
√
t
(

1 + (1 + |v|
√
t)3
)
, (C.4)

Finally, it follows from claims 1 and 2, and equations (C.3) and (C.4) that

0 = I + II = (v + κ) t+O

(
t
√
t+ e−

τ2

4t

)
, as t→ 0,

which gives the desired result.

§ Numerical Example

We present examples of mean curvature evolution of a three-phase smooth interface and
a four-phase triple bubble using a junction-based signed distance vector approach in
figures C.3 and C.4, respectively. Here, the domain Ω := [0, 1] × [0, 1] is triangulated
into 5000 elements with 2576 nodes and the evolution time step ∆t = 0.0005 is discretized
into 30 DMF iterations.

Figure C.3: Evolution of a 3-phase smooth interface via junction-based SDV scheme
at t = 0, 10∆t, 80∆t, 300∆t.
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Figure C.4: An example of a shrinking triple bubble via junction-based SDV scheme
at t = 0, 20∆t, 50∆t, 70∆t.

Note that under these configurations, the original MBO algorithm gets “stuck”, while,
our multiphase signed distance vector approach naturally alleviates the time and grid
restriction (cf. [36]), without having to retriangulate elements based on the interfacial
geometry.



Appendix D

Gaussian Function: Some Useful
Integrals and Estimates

Consider the Gaussian function Φt : RN → R defined by:

Φt(x1, x2, . . . , xN ) := ϕt(x1)ϕt(x2) · · ·ϕt(xN )

where ϕt(ξ) = 1√
4πt
e−

ξ2

4t . We list down some integrals involving the Gaussian function

which were utilized in our calculations and proofs, as follows:

1.

∫
R
ϕt(ξ)dξ = 1

2.

∫
R
ξkϕt(ξ)dξ = 0, where k is odd

3.

∫
R
ξ2kϕt(ξ)dξ = O(tk), as t→ 0 where k ∈ N

4.

∫
R
ϕt(ξ)dξ =

∫
R
ϕt(v − ξ)dξ

5.

∫ ∞
0

ξϕt(ξ)dξ =

√
t√
π

6.

∫ ∞
0

ξ2ϕt(ξ)dξ = t

7.

∫ ∞
α

ξϕt(ξ)dξ =

√
t√
π
e−

α2

4t

§ Some Useful Estimates involving the Gaussian Functions

In this section, we prove some estimates of Gaussian integrals.

Lemma D.1. For any α ≥ 0,

∫ ∞
α

e−ξ
2
dξ ≤ 1

2

√
πe−α

2
.
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Proof. Note that ξ ≥ α ≥ 0. Then,

ξ2 = (ξ − α)2 + 2αξ − α2 ≥ (ξ − α)2 + α2.

Hence, ∫ ∞
α

e−ξ
2
dx ≤ e−α

2

∫ ∞
α

e−(ξ−α)2dξ = 1
2

√
πe−α

2
.

Lemma D.2. For any α > 0,

∫
R\(−α,α)

ϕt(ξ − vt)dξ = O

(
e−

α2

4t

)
as t→ 0.

Proof. Applying Lemma D.1 yields∣∣∣∣∣ 1√
4πt

∫
R\(−α,α)

e−
(ξ−vt)2

4t dξ

∣∣∣∣∣ =
1√
π

∫ ∞
α−vt√

4t

+

∫ ∞
α+vt√

4t

e−ξ
2
dξ

≤ 1

2

[
e−

(α−vt)2
4t + e−

(α+vt)2

4t

]
≤ Ce−

α2

4t .

Lemma D.3. For any α > 0 and n ∈ N, we have

1.

∫
R\(−α,α)

ξnϕt(ξ)dξ = O

(√
t(α+

√
t)n−1e−

α2

4t

)
, t→ 0.

2.

∫
R\(−α,α)

ξne−
(ξ−vt)2

4t dξ = O

(
t
n+1
2 (α+

√
t)n−1e−

α2

4t

)
, t→ 0.

Proof. Note that

I :=

∣∣∣∣∣ 1√
4πt

∫
R\(−α,α)

ξne−
ξ2

4t dξ

∣∣∣∣∣ ≤ C(
√
t)n
∫ ∞

α√
4t

|ξ|n e−ξ2dξ (D.1)

Applying integration by parts and Lemma D.1, we have for τ = α√
4t

,

∫ ∞
τ

ξne−ξ
2
dξ = 1

2τ
n−1e−τ

2

[
1 +

k∑
i=1

(n−1)(n−3)···(n−2i+1)

2iτ2i

]
+


∫ ∞
τ
e−x

2
dx, n, even,

e−τ
2
, n, odd.

≤ C
[
τn−1 + τn−3 + · · ·+ τn−2k−1 + 1

]
e−τ

2

where k = n−2
2 when n is even and n−3

2 , otherwise. Thus,

I ≤ C
[
αn−1

√
t+ αn−3(

√
t)3 + · · ·+ αn−2k−1(

√
t)2k−1 + (

√
t)n
]
e−α

2

≤ C
√
t(α+

√
t)n−1e−

α2

4t , t→ 0. (D.2)
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On the other hand, using (D.2), we get∣∣∣∣∣
∫
R\(−α,α)

ξne−
(ξ−vt)2

4t dξ

∣∣∣∣∣ =
(2
√
t)n√
π

∫ −α+vt√
4t

−∞
+

∫ ∞
α−vt√

4t

∣∣∣ξ +
v

2

√
t
∣∣∣n e−ξ2dξ

≤ C(
√
t)n
∫ ∞
α−vt√

4t

+

∫ ∞
α+vt√

4t

(
|ξ|+

√
t
)n
e−ξ

2
dξ

≤ Ctn
n∑

m=0

(
n

m

)
1

(
√
t)m

∫ ∞
α√
4t

ξme−ξ
2
dξ

≤ Ctne−
α2

4t

[
1 +

n−1∑
m=0

(
n

m

)(
α+
√
t√

t

)m]

= Ctne−
α2

4t

[
1 +

(
2 +

α√
t

)n−1
]

≤ Ct
n+1
2 (α+

√
t)n−1e−

α2

4t , t→ 0.

§ Gaussian Integrals over a Region

We list down some integrals used in the proof of Lemma 3.4, as follows:

Lemma D.4. Let R1 :=
{
x ∈ R2 : −x1 cot θ ≤ x2 ≤ x1 tan θ

}
where θ ∈ (0, π2 ). Then,

the following is true:

1.

∫
R1

x1Φt(x)dx =

√
t

2
√
π

(sin θ+cos θ)

2.

∫
R1

x2Φt(x)dx =

√
t

2
√
π

(sin θ−cos θ)

3.

∫
R1

x1x2Φt(x)dx = − t
π

cos 2θ

4.

∫
R1

x2
2Φt(x)dx = t

(
1

2
− 1

π
sin 2θ

)
5.

∫
R1

x3
1Φt(x)dx =

t
√
t√
π

(sin θ+cos θ) (2+sin θ cos θ)

6.

∫
R1

x3
2Φt(x)dx =

t
√
t√
π

(sin θ−cos θ) (2−sin θ cos θ)

7.

∫
R1

x2
1x2Φt(x)dx =

t
√
t√
π

(sin θ−cos θ) (1+sin θ cos θ)

8.

∫
R1

x1x
2
2Φt(x)dx =

t
√
t√
π

(sin θ+cos θ) (1−sin θ cos θ)
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Proof. Indeed, we have

1.

∫
R1

x1Φt(x)dx =
1

4πt

∫ ∞
0

∫ ∞
x2

tan θ

+

∫ 0

−∞

∫ ∞
− x2

cot θ

x1e
−x

2
1

4t e−
x22
4t dx1dx2

=
1√
4πt

[∫ ∞
0

√
t√
π
e
−x

2
2

4t

(
1

tan2 θ
+1
)
dx2 +

∫ 0

−∞

√
t√
π
e
−x

2
2

4t

(
1

cot2 θ
+1
)
dx2

]

=

√
t

2
√
π

[
tan θ√

1 + tan2 θ
+

cot θ√
1 + cot2 θ

]
=

√
t

2
√
π

(sin θ + cos θ) .

2.

∫
R1

x2Φt(x)dx =
1

4πt

∫ ∞
0

∫ x1 tan θ

−x1 cot θ
x2e
−x

2
2

4t e−
x21
4t dx2dx1

=
1√
4πt

√
t√
π

∫ ∞
0

[
e−

x21
4t

(cot2 θ+1) − e−
x21
4t

(tan2 θ+1)

]
dx1

=

√
t

2
√
π

[
1√

1 + cot2 θ
− 1√

1 + tan2 θ

]
=

√
t

2
√
π

(sin θ − cos θ) .

3.

∫
R1

x1x2Φt(x)dx =
1

4πt

∫ ∞
0

x1

∫ x1 tan θ

−x1 cot θ
x2e
−x

2
2

4t e−
x21
4t dx2dx1

=
1√
4πt

√
t√
π

∫ ∞
0

x1

[
e−

x21
4t

(cot2 θ+1) − e−
x21
4t

(tan2 θ+1)

]
dx1

=

√
t√
π

(
sin2 θ − cos2 θ

)
· 1√

4πt

∫ ∞
0

x1e
−x

2
1

4t dx1 = − t
π

cos 2θ,

4.

∫
R1

x2
2Φt(x)dx =

1

4πt

∫ θ

θ−π
2

∫ ∞
0

r2 sin2 ρe−
r2

4t rdrdρ

=

∫ θ

θ−π
2

sin2 ρdρ · 1

4πt

∫ ∞
0

r3e−
r2

4t rdr

=

∫ θ

θ−π
2

1− cos 2ρ

2
dρ · 4t

π

∫ ∞
0

r3e−r
2
dr =

t

2π
(π − 2 sin 2θ) .

5.

∫
R1

x3
1Φt(x)dx =

1

4πt

∫ θ

θ−π/2

∫ ∞
0

r4 cos3 ρe−
r2

4t drdρ

=
1

π
(2
√
t)3

∫ θ

θ−π/2

(
1− sin2 ρ

)
cos ρdρ ·

∫ ∞
0

r4e−r
2
dr

=
1

π
(2
√
t)3
(
sin θ + cos θ − 1

3 sin3 θ − 1
3 cos3 θ

)
· 3
√
π

8

=
t
√
t√
π

(sin θ + cos θ) (2 + sin θ cos θ) ,
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6.

∫
R1

x3
2Φt(x)dx =

1

4πt

∫ θ

θ−π/2

∫ ∞
0

r4 sin3 ρe−
r2

4t drdρ

=
1

π
(2
√
t)3

∫ θ

θ−π/2

(
1− cos2 ρ

)
sin ρdρ ·

∫ ∞
0

r4e−r
2
dr

=
1

π
(2
√
t)3
(
sin θ − cos θ + 1

3 cos3 θ − 1
3 sin3 θ

)
· 3
√
π

8

=
t
√
t√
π

(sin θ − cos θ) (2− sin θ cos θ) .

7.

∫
R1

x2
1x2Φt(x)dx =

1

4πt

∫ ∞
0

x2
1e
−x

2
1

4t

∫ x1 tan θ

−x1 cot θ
x2e
−x

2
2

4t

dx2dx1

=
1√
4πt

√
t√
π

∫ ∞
0

x2
1

[
e−

x21
4t

(cot2 θ+1) − e−
x21
4t

(tan2 θ+1)

]
dx1

=

√
t√
π

(
sin3 θ − cos3 θ

)
· 1√

4πt

∫ ∞
0

x2
1e
−x

2
1

4t dx1

=
t
√
t√
π

(sin θ − cos θ) (1 + sin θ cos θ) ,

8.

∫
R1

x1x
2
2Φt(x)dx =

1

4πt

∫ ∞
0

∫ ∞
x2

tan θ

+

∫ 0

−∞

∫ ∞
− x2

cot θ

x1x
2
2e
−x

2
1

4t e−
x22
4t dx1dx2

=

√
t√
π

1√
4πt

[∫ ∞
0

x2
2e
−x

2
2

4t

(
1

tan2 θ
+1
)
dx2 +

∫ 0

−∞
x2

2e
−x

2
2

4t

(
1

cot2 θ
+1
)
dx2

]

=

√
t√
π

(
sin3 θ + cos3 θ

)
· 1√

4πt

∫ ∞
0

x2
2e
−x

2
2

4t dx2

=
t
√
t√
π

(sin θ + cos θ) (1− sin θ cos θ) .





Appendix E

Calculations involving the
Interface Normal

In this appendix, we expound on the proof of Theorem 3.7. We evaluate the normal N ij

to interface γij(i, j = 1, 2, 3) and its partial derivatives with respect to θ1 and θ2 at the
triple junction point z := z(π3 ,

π
3 ) at time t. We define the normal as follows:

N ij(z) := ∇ (u(t, z) · (pi − pj))

=
k

ε(k − 1)

(
ζjz1(z)− ζiz1(z), ζjz2(z)− ζiz2(z)

)
+O(e−

τ2

4t ), t→ 0,

where partial derivatives of the convolution are evaluated from its Taylor expansion
(3.10), as follows:

ζ1
z1(z) = 2√

t
D(θ1)z1 + ψ(t)(1 + 1√

t
z2) +O

(
t−1z1|z|

)
=: β1(θ1, z)

ζ1
z2(z) = B(θ1) + 2√

t
E(θ1)z2 + ψ(t)(1 + 1√

t
z1) +O

(
t−1z2|z|

)
=: β2(θ1, z)

ζ2
z1(z) = −β1(θ2, u) cos θ3 + β2(θ2, u) sin θ3

ζ2
z2(z) = −β1(θ2, u) sin θ3 − β2(θ2, u) cos θ3

ζ3
z1(z) = β1(θ3, v) cos θ2 − β2(θ3, v) sin θ2

ζ3
z2(z) = −β1(θ3, v) sin θ2 − β2(θ3, v) cos θ2

where θ3 = π − θ1 − θ2 and
u = (− cos θ3z1−sin θ3z2, sin θ3z1−cos θ3z2)

v = (cos θ2z1−sin θ2z2, − sin θ2z1−cos θ2z2).

Thus, if θ1 = θ2 = π
3 , we have by Lemma 3.6 that z = O(t), and so, u = v = O(t), as

t→ 0. This implies that

β1(π3 , u) = β1(π3 , v) = O(
√
t), t→ 0,

β2(π3 , u) = β2(π3 , v) = B(π3 ) +O(
√
t), t→ 0.

Then, we get

ζ1
z1(z) = O(

√
t), ζ2

z1(z) =
√

3
2 B(π3 ) +O(

√
t), ζ3

z1(z) = −
√

3
2 B(π3 ) +O(

√
t),

ζ1
z2(z) = B(π3 ) +O(

√
t), ζ2

z2(z) = −1
2B(π3 ) +O(

√
t), ζ3

z2(z) = −1
2B(π3 ) +O(

√
t),
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as t→ 0. Hence,

N12(z) = k
ε(k−1)B(π3 )

(√
3

2 ,−
3
2

)
+O(

√
t+ e−

τ2

4t ), t→ 0

N23(z) = k
ε(k−1)B(π3 )

(
−
√

3, 0
)

+O(
√
t+ e−

τ2

4t ), t→ 0

N31(z) = k
ε(k−1)B(π3 )

(√
3

2 ,
3
2

)
+O(

√
t+ e−

τ2

4t ), t→ 0,

which implies that

‖N12‖ = ‖N23‖ = ‖N31‖ = k
√

3
ε(k−1)B(π3 ) +O(

√
t)), t→ 0,

and

N31 ·N12 = N12 ·N23 = −1
2

(
k
√

3
ε(k−1)B(π3 )

)2
+O(

√
t), t→ 0.

Let us now take the partial derivatives of ζ1
zi ◦ z (for i = 1, 2) with respect to θ1 and θ2.

First, we note by Lemma 3.6 that

∂z1

∂θ1
=

√
t√

3πB(π3 )
+O(t) =: C1

√
t+O(t),

∂z2

∂θ1
= C1

√
3t+O(t),

∂z1

∂θ2
= 2C1

√
t+O(t),

∂z2

∂θ2
= O(t),

as t→ 0. Thus, we get

∂

∂θ1
ζ1
z1 ◦ z(

π
3 ,

π
3 ) = 2C1D(π3 ) +O(

√
t), t→ 0,

∂

∂θ2
ζ1
z1 ◦ z(

π
3 ,

π
3 ) = 4C1D(π3 ) +O(

√
t), t→ 0,

∂

∂θ1
ζ1
z2 ◦ z(

π
3 ,

π
3 ) = B′(π3 ) + 2

√
3C1E(π3 ) +O(

√
t), t→ 0,

∂

∂θ2
ζ1
z2 ◦ z(

π
3 ,

π
3 ) = O(

√
t), t→ 0.

Morever, we note that

∂u1

∂θ1
= −2C1

√
t+O(t),

∂v1

∂θ1
= −C1

√
t+O(t),

∂u1

∂θ2
= −C1

√
t+O(t),

∂v1

∂θ2
= C1

√
t+O(t),

∂u2

∂θ1
= O(t),

∂v2

∂θ1
= −C1

√
3t+O(t),

∂u2

∂θ2
= C1

√
3t+O(t),

∂v2

∂θ2
= −C1

√
3t+O(t), t→ 0,

Hence, if θ1 = θ2 = π
3 , we have

∂

∂θ1
β1(θ2, u) = −4C1D(π3 ) +O(

√
t),

∂

∂θ1
β2(θ2, u) = O(

√
t),

∂

∂θ2
β1(θ2, u) = −2C1D(π3 ) +O(

√
t),

∂

∂θ2
β2(θ2, u) = B′(π3 ) + 2

√
3C1E(π3 ) +O(

√
t),
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and

∂

∂θ1
β1(θ3, v) = −2C1D(π3 ) +O(

√
t),

∂

∂θ1
β2(θ3, v) = −B′(π3 )− 2

√
3C1E(π3 ) +O(

√
t),

∂

∂θ2
β1(θ3, v) = 2C1D(π3 ) +O(

√
t),

∂

∂θ2
β2(θ3, v) = −B′(π3 )− 2

√
3C1E(π3 ) +O(

√
t),

as t→ 0. Thus, we get the following partial derivatives

∂

∂θ1
ζ2
z1 ◦ z(

π
3 ,

π
3 ) = −1

2B(π3 ) + 2C1D(π3 ) +O(
√
t),

∂

∂θ2
ζ2
z1 ◦ z(

π
3 ,

π
3 ) = −1

2B(π3 ) +
√

3
2 B

′(π3 ) + C1(D(π3 ) + 3E(π3 )) +O(
√
t),

∂

∂θ1
ζ2
z2 ◦ z(

π
3 ,

π
3 ) = −

√
3

2 B(π3 ) + 2
√

3C1D(π3 ) +O(
√
t),

∂

∂θ2
ζ2
z2 ◦ z(

π
3 ,

π
3 ) = −

√
3

2 B(π3 )− 1
2B
′(π3 ) +

√
3C1(D(π3 )− E(π3 )) +O(

√
t),

∂

∂θ1
ζ3
z1 ◦ z(

π
3 ,

π
3 ) =

√
3

2 B
′(π3 )− C1(D(π3 )− 3E(π3 )) +O(

√
t),

∂

∂θ2
ζ3
z1 ◦ z(

π
3 ,

π
3 ) = −1

2B(π3 ) +
√

3
2 B

′(π3 ) + C1(D(π3 ) + 3E(π3 )) +O(
√
t),

∂

∂θ1
ζ3
z2 ◦ z(

π
3 ,

π
3 ) = 1

2B
′(π3 ) +

√
3C1(D(π3 ) + E(π3 )) +O(

√
t),

∂

∂θ2
ζ3
z2 ◦ z(

π
3 ,

π
3 ) =

√
3

2 B(π3 ) + 1
2B
′(π3 )−

√
3C1(D(π3 )− E(π3 )) +O(

√
t),

as t→ 0. For u, v, w ∈ R2, define the mapping ζ : R2 × R2 × R2 −→ R2 by

ζ(u, v, w) = uB(π3 ) + vB′(π3 ) + wC1(D(π3 )− E(π3 )).

Then for any p ∈ R2, we have p · ζ(u, v, w) = ζ(p · u, p · v, p · w). Hence,

∂

∂θ1
N12(π3 ,

π
3 ) = k

ε(k−1) ζ
(

(−1
2 ,−

√
3

2 ), (0,−1), (0, 2
√

3)
)

+O(
√
t+ e−

τ2

4t )

∂

∂θ2
N12(π3 ,

π
3 ) = k

ε(k−1) ζ
(

(−1
2 ,−

√
3

2 ), (
√

3
2 ,−

1
2), (−3,

√
3)
)

+O(
√
t+ e−

τ2

4t )

∂

∂θ1
N23(π3 ,

π
3 ) = k

ε(k−1) ζ
(

(1
2 ,
√

3
2 ), (

√
3

2 ,
1
2), (−3,−

√
3)
)

+O(
√
t+ e−

τ2

4t )

∂

∂θ2
N23(π3 ,

π
3 ) = k

ε(k−1) ζ
(
(0,
√

3), (0, 1), (0,−2
√

3)
)

+O(
√
t+ e−

τ2

4t )

∂

∂θ1
N31(π3 ,

π
3 ) = k

ε(k−1) ζ
(

(0, 0), (−
√

3
2 ,

1
2), (3,−

√
3)
)

+O(
√
t+ e−

τ2

4t )

∂

∂θ2
N31(π3 ,

π
3 ) = k

ε(k−1) ζ
(

(1
2 ,−

√
3

2 ), (−
√

3
2 ,−

1
2), (3,

√
3)
)

+O(
√
t+ e−

τ2

4t )

Finally, we evaluate the partial derivatives of

(Ψ1,Ψ2) =

(
N31 ·N12

‖N31‖‖N12‖
,
N12 ·N23

‖N12‖‖N23‖

)
,

with respect to θ1 and θ2.
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Note that if θ1 = θ2 = π
3 , we have Ψ1 = Ψ2 = −1

2 . Hence,

∂

∂θ1
Ψ1(π3 ,

π
3 )=

(
N31 −Ψ1N12

)
· ∂
∂θ1

N12(π3 ,
π
3 )

‖N31‖‖N12‖
+

(
N12 −Ψ1N31

)
· ∂
∂θ1

N31(π3 ,
π
3 )

‖N31‖‖N12‖

=
−
√

3

12B(π3 )

{
(−3,−

√
3) · ζ

(
(−1

2 ,−
√

3
2 ), (0,−1), (0, 2

√
3)
)

+ (−3,
√

3) · ζ
(

(0, 0), (−
√

3
2 ,

1
2), (3,−

√
3)
)}

+O(
√
t)

=
−
√

3

12B(π3 )

{
3B(π3 ) + 3

√
3B′(π3 )− 18C1(D(π3 )− E(π3 ))

}
= −
√

3

4

[
1 +
√

3
B′(π3 )

B(π3 )
+

2
√

3√
π

E(π3 )−D(π3 )

B(π3 )2

]
+O(

√
t), t→ 0.

In a similar fashion, we get

∂

∂θ2
Ψ1(π3 ,

π
3 )=

(
N31 −Ψ1N12

)
· ∂
∂θ2

N12(π3 ,
π
3 )

‖N31‖‖N12‖
+

(
N12 −Ψ1N31

)
· ∂
∂θ2

N31(π3 ,
π
3 )

‖N31‖‖N12‖

=
−
√

3

12B(π3 )

{
(−3,−

√
3) · ζ

(
(−1

2 ,−
√

3
2 ), (

√
3

2 ,−
1
2), (−3,

√
3)
)

+ (−3,
√

3) · ζ
(

(1
2 ,−

√
3

2 ), (−
√

3
2 ,−

1
2), (3,

√
3)
)}

+O(
√
t)

= O(
√
t), t→ 0.

Moreover,

∂

∂θ1
Ψ2(π3 ,

π
3 )=

(
N12 −Ψ2N23

)
· ∂
∂θ1

N23(π3 ,
π
3 )

‖N12‖‖N23‖
+

(
N23 −Ψ2N12

)
· ∂
∂θ1

N12(π3 ,
π
3 )

‖N12‖‖N23‖

=
−
√

3

12B(π3 )

{
(0, 2
√

3) · ζ
(

(1
2 ,
√

3
2 ), (

√
3

2 ,
1
2), (−3,−

√
3)
)

+ (3,
√

3) · ζ
(

(−1
2 ,−

√
3

2 ), (0,−1), (0, 2
√

3)
)}

+O(
√
t)

= O(
√
t), t→ 0.

and

∂

∂θ2
Ψ2(π3 ,

π
3 )=

(
N12 −Ψ2N23

)
· ∂
∂θ2

N23(π3 ,
π
3 )

‖N12‖‖N23‖
+

(
N23 −Ψ2N12

)
· ∂
∂θ2

N12(π3 ,
π
3 )

‖N12‖‖N23‖

=
−
√

3

12B(π3 )

{
(0, 2
√

3) · ζ
(

(0,
√

3), (0, 1), (0,−2
√

3)
)

+ (3,
√

3) · ζ
(

(−1
2 ,−

√
3

2 ), (
√

3
2 ,−

1
2), (−3,

√
3)
)}

+O(
√
t)

=
−
√

3

12B(π3 )

{
3B(π3 ) + 3

√
3B′(π3 )− 18C1(D(π3 )− E(π3 ))

}
= −
√

3

4

[
1 +
√

3
B′(π3 )

B(π3 )
+

2
√

3√
π

E(π3 )−D(π3 )

B(π3 )2

]
+O(

√
t), t→ 0.



Appendix F

Discrete Morse Flow Method

This appendix introduces a variational method known as the discrete Morse flow [61, 78],
that solves time-dependent problems by discretizing time and defining a sequence of min-
imization problems approximating the original problem. The corresponding minimizers
are then interpolated with respect to time and the discretization parameter taken to
zero.

We shall explain this idea on the heat equation. Consider the following problem:
ut(t, x) = ∆u(t, x), in QT = (0, T )× Ω

u(t, x) = 0, on (0, T )× ∂Ω

u(0, x) = ∆u0(x), in Ω.

Fix a natural number N > 0 and determine time step size h = T/K. We approximate
solution un at time t = nh by minimizer of the following functional in H1

0 (Ω)

Jn(u) =

∫
Ω

|u− un−1|2

2h
dx+

∫
Ω

|∇u|2

2
dx.

Note that the second term of the functional is lower-semicontinuous with respect to
sequentially weak convergence in H1(Ω) while the first term is continuous in L2(Ω). The
existence of the minimizers then follows immediately from the fact that the functionals
are bounded from below.

We define the approximate solutions uh(t, x) and uh(t, x) by interpolations of the mini-
mizers {un}Kn=0 in time as follows:

uh(t, x) =

{
u0(x), t = 0

un(x), t ∈ ((n− 1)h, nh], n = 1, . . . ,K,

and

uh(t, x) =


u0(x), t = 0

nh− t
h

un−1(x) +
t− (n− 1)h

h
un(x), t ∈ ((n− 1)h, nh], n = 1, ...,K.

135
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Since un minimizes Jn, then the first variation of Jn vanishes at un. Hence, for any
φ ∈ L2(0, T ;H1

0 (Ω)), ∫ T

0

∫
Ω

(
uht φ+∇uh · ∇φ

)
dx = 0.

Next, we want to take time step h to zero. To do so, we first establish the following
estimate ∫ t

0
‖uht ‖L2(Ω)dt+ ‖∇uh(t)‖L2(Ω) ≤ CE for a.e. t ∈ (0, T ),

where constant CE depends on H1-norm of the initial data, but is independent of h.
Thanks to this estimate, we can extract a subsequence of the approximate solutions such
that for some u ∈ H1(QT ), we have

∇uh ⇀ ∇u, in
(
L2(Qt)

)N
uht ⇀ ut, in L2(QT ).

Finally, passing the limit in h yields∫ T

0

∫
Ω

(utφ+∇u · ∇φ) dx = 0,

for any φ ∈ L2(0, T ;H1
0 (Ω)). Moreover, it can be shown that u satisfies the initial and

boundary conditions in the sense of traces. Thus, we have shown by discrete Morse flow
method that there exists a weak solution u ∈ H1(QT ) to the heat equation.



Appendix G

Multiphase MBO Method
considering Bulk Energies

This appendix presents our earlier work on the multiphase extension of MBO method
to approximate mean curvature motions considering space-dependent bulk energies ei.
In particular, we extend the results in [50, 94] to the multiphase case.

Consider the vector analogue of the scalar nonhomogenous heat equation considered in
[50, 94], as follows:

ut(t, x) = ∆u(t, x) +
w(x)√

4πt
(G.1)

where w is a term related to the prescribed phase energies. Following a similar argu-
ment as in Chapter 5, we apply the vector threshold dynamics [94] to the above partial
differential equation (see Algorithm G.1) and construct w so that a normal velocity
v = −κ− ei + ej is achieved at each interface γij .

τ

x = 0
γij

Q

x1

x2

η

τ

−τ

−τ

Pi

Pj

Figure G.1: Setting up interface γij in the new coordinate system.

For simplicity, consider N = 2. Fix x ∈ R2 on interface γij . Now, rotate and translate
the coordinate system so that x = 0 in the new coordinate system and the normal η
to γij pointing into Pj lies in the positive x2 direction (see Figure G.1). Choose τ > 0,
small enough so that Q := [−τ, τ ] × [−τ, τ ] contains only phases Pi and Pk. Assume
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138 Multiphase MBO Method considering Bulk Energies

Algorithm G.1 MBO Method for Multiphase MCF considering Bulk Energies

Given time step size ∆t > 0 and initial interface network Γ0 :=
⋃
{γij : i, j = 1, 2, . . . , k}

where each phase region Pi have prescribed energy density ei, we obtain an approxima-
tion of its multiphase mean curvature flow by generating a sequence of time discrete
interface networks {Γm}Mm=1 at times t = m∆t (m = 1, . . .M), as follows:

1. Initialization. Given phase regions Pi(i = 1, 2, 3) defined by the interface network
Γm−1, initialize

u0(x) = pi forx ∈ Pi.

2. Diffusion Step. With u0 as the initial condition, solve (G.1) until time ∆t.

3. Projection Step. For each x, identify the reference vector pi closest to the solution
u(∆t, x), that is,

pi · u(∆t, x) = max
j=1,2,...,k

pj · u(∆t, x). (G.2)

This redistribution of reference vectors determines the approximate new phase
regions after time ∆t, which in turn, defines the new interface network Γm.

that there exists a smooth function γ : R → R whose graph (x1, γ(x1)) describes the
interface γij inside the cube Q. Hence, if κ defines the curvature of the interface γij at
point x = (0, 0), then γ(0) = 0, γ′(0) = 0, and γ′′(0) = −κ.

Let u be the solution of the vector-type heat equation (G.1). For convenience, we will
write t instead of ∆t. Then, the normal velocity v of interface γij at point x = 0 obtained
from Algorithm G.1 can be found from the relation

0 = u(t, 0, vt) · (pi − pj)

=

∫
Q

+

∫
R2\Q

u0(x) · (pi − pj)Φt(x− z)dx

+

∫ t

0

(∫
Q

+

∫
R2\Q

)
w(x) · (pi − pj)√

4πs
Φt−s(x− z)dxds

=: IA + IIA + IB + IIB,

where z := (0, vt). We estimate the above integrals in the following claims.

Claim 1. IIA = O(e−
τ2

4t ), as t→ 0.
Indeed,

|IIA| ≤ C

∫
R

∫
R\(−τ,τ)

+

∫
R\(−τ,τ)

∫
R
ϕt(x1)ϕt(x2 − vt)dx2dx1

≤ C

[∫ ∞
τ−vt
2
√
t

+

∫ ∞
τ+vt
2
√
t

e−x
2
2dx2 + 2

∫ ∞
τ

2
√
t

e−x
2
1dx1

]

≤ Ce−
τ2

4t ,

which proves the claim.
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Claim 2. IA = −(1− pi · pj) (v + κ)
√
t√
π

+O(t
√
t), as t→ 0.

Indeed,

IA = M

∫ τ

−τ
ϕt(x1)

(∫ γ(x1)

−τ
−
∫ τ

γ(x1)

)
ϕt(x2 − vt)dx2dx1

= M

∫ ∞
−∞

ϕt(x1)

(∫ γ(x1)

−∞
−
∫ ∞
γ(x1)

)
ϕt(x2 − vt)dx2dx1 +O(e−

τ2

4t )

= 2M

∫ ∞
−∞

ϕt(x1)

∫ γ(x1)

0
ϕt(x2 − vt)dx2dx1 +O(e−

τ2

4t )

=
2M√
π

∫ ∞
−∞

ϕt(x1)

∫ γ(x1)−vt
2
√
t

0
e−x

2
2dx2dx1 +O(e−

τ2

4t ), (G.3)

where M := 1 − pi · pj > 0. We write out the Taylor expansion of γ around x1 = 0 to
obtain

γ(x1)− vt
2
√
t

=
1

2
√
t

[
γ(0) + γ′(0)x1 + 1

2γ
′′(0)x2

1 − vt+O(x3
1)
]

= −1
4 t
−1/2κx2

1 − 1
2v
√
t+O(t−1/2x3

1).

Recall that ∫ s

0
e−ξ

2
dξ = s+O(s3).

Also, note that ∫ ∞
−∞

ϕt(ξ)dξ = 1,

∫ ∞
−∞

ξ2ϕt(ξ)dξ = 2t,∫ ∞
−∞

ξ3ϕt(ξ)dξ = 0,

∫ ∞
−∞

ξ4ϕt(ξ)dξ = O(t2).

Then, (G.3) becomes

IA = −M
√
t√

π
(κ+ v) +O(t

√
t+ e−

τ2

4t ), (G.4)

which proves the claim.

Claim 3. IIB = O(t
√
te−

τ2

4t ), as t→ 0.
Indeed, if w(x) · (pi − pj) is bounded in R2, we have

|IIB| ≤ max
R2
|w(x) · (pi − pj)|

∫ t

0

1√
4πs

∫
R2\Q

Φt−s(x− z)dxds

≤ C

∫ t

0

1√
s
e
− τ2

4(t−s)ds

≤ C√
t

∫ ∞
τ2

4t

1

s2
e−sds

≤ Ct
√
t

∫ ∞
τ2

4t

e−sds = O(t
√
te−

τ2

4t ),

which proves the claim.
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Claim 4. IB = w(0) · (pi − pj)
√
t√
π

+O(t), as t→ 0.

Indeed,

IB =

∫ t

0

1√
4πs

∫ τ

−τ

∫ τ

−τ
w(x) · (pi − pj)Φt−s(x− z)dxds

=

∫ t

0

1√
4πs

∫ ∞
−∞

∫ ∞
−∞

(w(0) +O(x)) · (pi − pj)Φt−s(x− z)dxds+O(t
√
te−

τ2

4t )

=: I1 + I2 +O(t
√
te−

τ2

4t ).

Note that

I1 = w(0)·(pi−pj)

∫ t

0

1√
4πs

∫ ∞
−∞

ϕt−s(x1)

∫ ∞
−∞

ϕt−s(x2)dx2dx1ds

= w(0)·(pi−pj)

√
t√
π
.

and

|I2| ≤ C

∫ t

0

1√
4πs

∫ ∞
−∞

∫ ∞
−∞
|x · (pi − pj)|Φt−s(x− z)dxds

≤ C

∫ t

0

1√
4πs

∫ ∞
−∞

∫ ∞
−∞
|x1 + x2|ϕt−s(x1)ϕt−s(x2 − vt)dx2dx1ds

≤ C

∫ t

0

1√
4πs

(∫ ∞
0

x1ϕt−s(x1)

∫ ∞
−∞

ϕt−s(x2)

+

∫ ∞
−∞

ϕt−s(x1)

∫ ∞
−∞
|x2|ϕt−s(x2 − vt)

)
dx1dx2ds

≤ C

∫ t

0

1√
4πs

(√
t√
π

+

∫ ∞
0

(x2 + |v|t)ϕt−s(x2)dx2

)
ds

≤ C

∫ t

0

1√
4πs

(
2
√
t√
π

+ |v|t
)
ds

≤ C
(√

t+ t
)∫ t

0

ds√
s

= O(t),

which proves the claim.

Finally, combining all four claims yields

0 = −(1− pi · pj) (v + κ)

√
t√
π

+ w(0) · (pi − pj)

√
t√
π

+O(t).

Hence, Algorithm G.1 evolves interface γij with a normal velocity

v = −κ− ei + ej +O(
√
t),

if we choose

w(x) =


(ei − ej)(pi · pj − 1)

|pi − pj |2
(pi − pj), x ∈ Dω1,ω2

0, otherwise,
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where
Dω1,ω2 := {x ∈ Ω : dist(x, γij) < ω1, dist(x, Pr) > ω2 (∀r 6= i, j)},

for some ω1, ω1 > 0.

§ Numerical Example

In [89], we rewrote Algorithm G.1 in a variational scheme and added a volume penal-
ization term (analogous to Algorithm 5.1) to simulate a three-phase volume-preserving
mean curvature evolution of interfaces with prescribed contact angles and considering
bulk energies.

We consider a three-phase initial condition where P1 is the region below the horizontal
line at x = 0.15, phase region P2 is the interior of a partial ellipse (representing a gas
bubble), and the remaining region as external phase P3. Here, we set e1 = e2 = 0
and e3 = βy, where y denotes the coordinate direction of gravity and β = 150 is a
constant expressing buoyancy. The junction angle condition θ1−θ2−θ3 is prescribed
using nonsymmetric reference vectors, as follows:

p1 =

(
−θ

2
1θ

2
3 − 4A

θ1θ3
,
2
√
A

θ1θ3

)
, p2 =

(
−θ

2
2θ

2
3 − 4A

θ2θ3
,
2
√
A

θ2θ3

)
, p3 = (1, 0) ,

where θ1 + θ2 + θ3 = 2π and A = π(π− θ1)(π− θ2)(π− θ3). Here, θi (i = 1, 2, 3) denotes
interior angle measure of phase region Pi at the triple junction.

Figure G.2: Initial three-phase configuration (black in bold) and its volume-preserving
mean curvature evolution considering bulk energies e1 = e2 = 0 and e3 = 150y with
prescribed contact angles: 180◦−60◦−120◦ (left) and 180◦−120◦−60◦ (right) at different

times.

The domain Ω = [0, 1] × [0, 1] is triangulated into 12, 800 elements (with mesh size
∆x = 0.0125) and time step ∆t = 0.0050 is discretized into K = 30 DMF partitions.
Under the penalty parameter % = 10−5 and ω1 = ω2 = ∆x, we run our algorithm for
two prescribed junction angle conditions 180◦−60◦−120◦ and 180◦−120◦−60◦. The
evolution of the interface network at time intervals of 2∆t are shown in Figure G.2. The
resulting motion is a contest between the buoyant force f = 150y pushing the bubble
upwards and the surface tension force pressing the bubble towards the bottom phase (as
set by the contact angle conditions).





Appendix H

Notations and Preliminaries

The present appendix fixes notations and states some preliminary results utilized in
Chapter 7. For theories on elliptic partial differential equations of second order, we
mainly refer to Gilbarg and Trudinger’s book [49]. For results on measure theory, we
refer to Evans’ and Gariepy expository notes [38]. Other preliminaries not found in these
two reference texts are laid out in this appendix.

Let us start with familiar notations as follows.

N set of natural numbers

Q set of rational numbers

RN N -dimensional real Euclidean space, R = R1

∂S boundary of set S

S closure of set S, i.e. S = S ∪ ∂S
|S| N -dimensional Lebesgue measure of S ⊂ RN

B(x, r) open ball in RN with center x and radius r > 0, i.e. {y ∈ RN : |x− y| < r}

vol(N) volume of unit ball B(0, 1) in RN ,
πN/2

Γ(N2 + 1)

−
∫
S
f mean value of function f over S, defined by

1

|S|

∫
S
f(x)dx

Function Spaces.

C(S) class of continuous functions f : S → R. If f ∈ C(S) is bounded, we write

‖f‖C(S) := sup
x∈S
|f(x)|.

Ck(S) class of k-times continuously differentiable functions f : S → R (0 ≤ k <∞).
Here, C0(S) = C(S).

C∞(S) class of infinitely differentiable functions f : S → R
C0,1(S) class of Lipschitz continuous functions f : S → R, which by definition satisfy

|f(x)− f(y)| ≤ C|x− y|, x, y ∈ S,

for some constant C > 0.

C0,γ(S) class of Hölder continuous functions f : S → R with exponent γ ∈ (0, 1),
that is, for some constant C > 0, we have

|f(x)− f(y)| ≤ C|x− y|γ , x, y ∈ S.
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Ck,γ(S) Hölder space consisting of all functions f ∈ Ck(S) for which the norm

‖f‖Ck,γ(S) :=
∑
|α|≤k

‖Dαf‖C(S) +
∑
|α|=k

[Dαf ]C0,γ(S) <∞.

Lp(S) class of Lebesgue measure functions f : S → R such that ‖f‖Lp(S) < ∞
where 1 ≤ p <∞. Here, the Lp-norm is given by

‖f‖Lp(S) :=

(∫
S
|f |p

) 1
p

.

L∞(S) class of Lebesgue measure functions f : S → R such that ‖f‖L∞(S) :=
ess sup S |f | <∞

Hk(S) Sobolev space W k,2(S) consisting of all locally summable functions f : S → R
such that for each multiindex α with |α| ≤ k, Dαf exists in the weak sense
and belongs to L2(S). Here, the norm is defined by

‖f‖Hk(S) :=

∑
|α|≤k

∫
S
|Dαf |2

1/2

.

Ckloc(S), Lploc(S), etc. denotes those functions f : S → R such that for every compact
subset D of S, we have f ∈ Ck(D), Lp(D), etc. Equivalently, if x ∈ S, then we can find
a neighborhood Br := B(x, r) such that f ∈ Ck(Br), Lp(Br), etc.

Ck0 (S), Hk
0 (S), etc. denote those functions f : S → R in Ck(S), Hk(S), etc. with

compact support in S, written supp f ⊂ S.

Young’s inequality. For a, b ∈ R,

ab ≤ εa2 +
b2

4ε
, (ε > 0).

Hölder inequality. For f, g ∈ L2(S),∫
S
|fg| ≤ ‖f‖L2(S)‖g‖L2(S).

Definition H.1. Let X and Y be Banach spaces, X ⊂ Y . We say that X is compactly
embedded in Y , written

X ⊂⊂ Y,

provided

1. ‖u‖Y ≤ C‖u‖X (u ∈ X) for some constant C

2. each bounded sequence in X is precompact in Y . More precisely, if {uk} is a
sequence in X with supk ‖uk‖X < ∞, then some subsequence {ukj} ⊆ {uk} con-
verges in Y to some limit u:

lim
j→∞

‖ukj − u‖Y = 0.

Theorem H.2 (Rellich-Kondrachov Compactness Theorem). Let N ≥ 2. As-
sume a bounded open domain S ⊂ RN with Lipschitz continuous boundary. Suppose
1 ≤ p < N . Then,

W 1,p(S) ⊂⊂ Lq(S)
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for each 1 ≤ q < p∗ := pN
N−p .

Theorem H.3 (Poincaré-Wirtinger inequality). Let N ≥ 2. Assume a connected
bounded open domain S ⊂ RN with Lipschitz continuous boundary. Then, there exists a
constant CP > 0 such that for every f ∈ H1(S),∥∥∥∥f −−∫

S
f

∥∥∥∥
L2(S)

≤ CP ‖f‖H1(S).

Theorem H.4. Let N ≥ 2. Assume a connected bounded open domain S ⊂ RN with
Lipschitz continuous boundary. If {fn} is a sequence in H1(S) such that

fn ⇀ f weakly in H1(S),

then

fn → f strongly in L2(S).

Definition H.5 (Di Giorgi Class). We denote by B2(Ω,M, γ, δ, 1
q ), the class of func-

tions f ∈ H1(Ω) with essential max
Ω
|f | ≤ M such that for f and −f , the following

inequalities are valid in an arbitrary ball Br ⊂ Ω for arbitrary σ ∈ (0, 1):∫
Ak,r−σr

|∇f |2dx ≤ γ

(
1

σ2r
2(1−N

q
)

max
Ak,r
|f(x)− k|2 + 1

)
|Ak,r|1−

2
q ,

for k ≥ maxBr f(x)− δ. Here, Ak,r := {f > k} ∩Br and Br−σr is concentric with Br.

Lemma H.6. There exists a positive number s such that, for an arbitrary ball Br
belonging to Ω together with the ball B4r concentric with it and for an arbitrary f ∈
B2(Ω,M, γ, δ, 1

q ), at least one of the following two inequalities holds:

osc{f,Br} ≤ 2sR
1−N

q

osc{f,Br} ≤
(

1− 1

2s−1

)
osc{f,B4r}.

Theorem H.7. ([62, Chapter 2, Theorem 6.1]) Let f be an arbitrary function in the
class B2(Ω,M, γ, δ, 1

q ) and let BR ⊂ Ω be a ball of radius r ≤ 1. Then, for any ball Br
where r ≤ R that is concentric with BR, the oscillation of f in Br satisfies the inequality

osc{f,Br} ≤ c
( r
R

)α
,

where

α = min

{
− log4

(
1− 1

2s−1

)
, 1− N

q

}
,

c = 4α max
{

2M, 2sR
1−N

q

}
,

and the number s is taken from Lemma H.6
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