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Recently, conjugated polymers attracted much attention because of organic so-

lar cells (OSCs) applications due to their flexibility, low-cost fabrication and easy

processing. However, the efficiency of OSCs is still lower than that of the conven-

tional solar cells. To increase the efficiency of OSC, the low band gap of conjugated

polymer is needed. Polythiophene is one of the useful conjugated polymers. Pris-

tine polythiophene has a quite wide band gap [2 eV], which is unfavourable with

the respect to the efficiency of OSCs. Therefore, finding the low band gap of

polythiophene derivatives for OSC is necessary.

Polythiophene derivatives that we study in this work are poly(3-hexylthiophene)

(P3HT), poly(2-ethenylthiophene), polyisothianapthene, (PITN) and poly(2-ethenyl-

3-hexylthiophene). To calculate the band gaps of these polymers, we first calculate

the finite-size of oligomers. The HOMO-LUMO calculations of finite-size oligomers

are conducted by using hybrid density functional theory, with B3LYP/6-31G (d,p).

Next, we fitted the HOMO-LUMO energy gaps to the extrapolation scheme equa-

tion and then estimated the band gap of infinte-length polymers.

http://www.kanazawa-u.ac.jp
http://www.nst.kanazawa-u.ac.jp/eng
http://www.nst.kanazawa-u.ac.jp/eng
file:patricia@cphys.s.kanazawa-u.ac.jp


We find that the band gaps of polythiophene derivatives are in the range of 1.1

- 1.8 eV; therefore, we demonstrate that the band gaps can be controlled using

suitable derivatives. The present theoretical band gap calculations are in good

agreement with the band gaps of experimental values. The difference between

theory and experiment is the range of 0.1 -0.2 eV.

We also clarify the mechanisms of band gap decreases in polythiophene deriva-

tives. We conclude that the mechanism of the band gap decrease is caused by

the hexyl tail effect, the weak bond alternation and the increase of delocalized

of wavefunctions. Based on the mechanisms, we predict the band gap of poly(2-

ethenyl-3-hexylthiophene) is 1.39 eV. This analysis gives a new insight into the

band gap design of polythiophene derivatives. Therefore, further studies based on

the results of present work are expected for band gap design.
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Chapter 1

Introduction

1.1 Background

Nowadays, explorations of conjugated polymers are extensively carried out due

to the electronic and optical properties. Many potential applications of conju-

gated polymers are conducted, such as light emitting diode, photovoltaic devices,

field-effect transistors and elecro-magnetic shielding.[1–4] Fig.1.1 shows some well-

known conjugated polymers.

Figure 1.1: Some well-known conjugated polymers (a)polyacetylene,

(b)polyparaphenylene, (c)polypyrole, (d)polythiophene,

(e)polyparaphenylenevynilene

1
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Figure 1.2: Bonding and antibonding illustration

Conjugated polymers consist of alternating double and single bonds of organic

molecules. Conjugated polymers form sp2 hybridized and the sp2 bonds form three

strong σ-bonds with neighbouring atoms. The remaining pz-orbitals of the carbon

atoms form delocalized electrons through the formations of weaker π-bonds. The

π-electrons move from one bond to the other, which makes conjugated polymers

quasi-one-dimensional semiconductors.

The π system provides delocalized electron clouds below and above the molecular

plain. These π electrons play important roles in electrical and optical properties.

Moreover, conjugated polymers have advantages such as, low cost fabrication, easy

to synthesis, solubility.

The bands of organic semiconductors contain of highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO). The top of valence

band corresponds to the HOMO and the lowest of conduction band correspond to

the LUMO in conjugated polymers.

Conjugated polymers have useful electronic and optoelectronic properties and one

of the well-known application is organic solar cells (OSCs). The development of

conjugated polymers for organic solar cell (OSCs) is widely investigated. In this

chapter we overview the basic of organic solar cell.
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1.2 Organic Solar Cell

The idea of using organic molecules as organic photovoltaic originated from the

photosynthetic systems in the early of 1950’s. The plant absorbs the light and

convert the solar energy into useful chemical energy. In the early experiment, the

organic dyes such as phtalocyanines, chlorophylls, porphyrins were used and they

are located between the anode and cathode. The efficiency of OSC is less then 1%.

In 1990’s, Sariciftci et al. discovered the highly efficiency organic photovoltaic by

using the conjugated polymer and buckminster−fullerene (C60).[5–9] Until now,

the efficiency of OSC using conjugated polymer and C60−like reaches 10%.[10]

Figure 1.3: Organic solar cell scheme.

Figure 1.4: Organic solar cell mechanism:(a) light absorption (b) exciton dif-

fusion (c) exciton dissociation (d) charge transfer
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Organic solar cell consists of several layers, such as cathode layer, anode layer,

substrate, buffer layer and an active layer. The active layer contains conjugated

polymers. The active layer has function as donor and acceptor as shown in Fig.1.3.

The donor (D) part produces excitons and mainly holes transport. Meanwhile the

acceptor (A) part receives the electron charge.

The mechanism of photocurrents in OSC is shown in Fig.1.4.[6, 7, 9] When the

photon is absorbed in the active layer especially in donor layer, the excitons are

generated [Fig.1.4a]. Exciton is a bound state of an electron and a hole pair.[11, 12]

The exciton is less mobile than free charges, and exhibits a small diffusion length.

And then, due to the difference of concentration gradient, the excitons diffuse to

donor/acceptor interface as shown in Fig.1.4(b). Next, the exciton dissociate to

generate free charge carriers as shown in Fig.1.4(c). Finally, the free charge carrier

is transported to the buffer layer and cathode layer, as shown in Fig.1.4(d).

The power conversion efficiency (PCE),(η) of solar cell is defined as followed,

η =
Pout
Pin

=
Impp · Vmpp

Pin
=
FF · Isc · Voc

Pin
(1.1)

where Pout is the maximum power output, Pin is the incident power on the solar

cell. Isc is short circuit photocurrent, Voc is the voltage of open circuit and FF is

fill factor.[6, 9] The photocurrent Isc is proportional to the amount of light which

is absorbed in the active layer. The absorber layer should have a wide absorption

spectrum from the visible spectrum to near infra red spectrum. The Voc is related

to the built-in potential and Voc is proportional to the difference between the

energy of HOMO at the donor and the energy of the LUMO at the acceptor

Voc ∝ (1/e)(| EdonorHOMO | − | EacceptorLUMO |)− δ (1.2)

where δ is the energy loss. The energy loss (δ) is associated with the possible

polarization that is caused by the the exciton binding energy. Exciton is a bound

electron-hole pair, the binding energy is given
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V =
e2

4πεrε0r
(1.3)

where εr is the dielectric constant of the medium, ε0 is the permittivity vacuum,

e is the charge of an electron, and r is the distance of electron-hole separation. In

organic polymers, the εr is quite smaller (∼ 3 - 4) than those of inorganic materials

[εr silicon ≈ 12]. Therefore, small energy difference between the LUMO at donor

the LUMO at the acceptor is required to achieve an optimum charge transfer, the

energy difference is about 0.3−0.4eV .[11] Then, to increase the efficiency of OSC,

the short circuit photocurrent Isc, open circuit voltage Voc and fill factor should

be maximized simultaneously. To overcome this problem, we need a low band gap

of conjugated polymer; the band gap energy should be below 2 eV.[9]

1.3 The Purpose

Conjugated polymers are attractive materials for the OSC application because of

the electronic, optical and mechanical properties. One of the attractive conju-

gated polymers is polythiophene. Polythiophene is typically a stable conjugated

polymer due to aromatic structure. The advantages of polythiophene are solubil-

ity, possibility of modification and low cost fabrication. However, polythiophene

has quite wide band gap, which is around 2 eV. The wide band gap of polythio-

phene is an obstacle to increase the OSCs efficiency. Therefore, it is necessary

to find out polythiophene derivatives that have low band gaps. We studied some

polythiophene derivatives as shown in Fig.1.5.

The hybrid-DFT is used to calculate the HOMO-LUMO gap energies of the finite-

size oligomers. Then, we use the extrapolation scheme to predict the band gaps

of infinite-length polythiophene derivatives.

We also clarify the mechanism of band gap decreases in polythiophene derivatives.

The mechanism of band gap decreases can give new insight of low band gap design.
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Figure 1.5: Thiophene derivatives: (a) Polythiophene (P1), (b) P3HT (P2),
(c) Poly(2-ethenylthiophene) (P3), (d) PITN (P4), and (e) Poly(2-
ethenyl-3-hexylthiophene) (P5).

1.4 Outline of Dissertation

This dissertation consists of four chapters. In chapter 1, the basic concepts and

definition regarding the physical properties of organic polymer are introduced.

The band gap design for organic solar cell is needed to increase the efficiency of

organic solar cell. In chapter 2, we explain the fundamental concept of density

functional theory. The band gap calculations of polythiophene derivates using

extrapolation scheme is also explained in this chapter. The reliability of band gap

calculations is confirmed in this chapter. In chapter 3, we show the calculation

results of polythiophene derivatives. In this chapter, we also clarify the mechanism

of band gap decreases. Finally, in chapter 4, we give a summary and explain the

future scope.



Chapter 2

Theoretical Background

In this chapter, we explain the methods for calculation of the band gaps of poly-

thiophene derivatives. First, we explain the basic concept of density functional

theory and the parameters that we use in this calculation. Next, we confirm the

reliability of electronic structure calculation. Finally, we explain the extrapolation

scheme to calculate the band gap of infinite-size polymers.

2.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is used to solve Schrödinger equation for

more complex systems.[13] The Schrödinger equations is express as

ĤmolΨ(r1, r2, ...rN) = EΨ(r1, r2, ...rN) (2.1)

The Hamiltonian operator consists of the kinetic energy for electrons(T̂el), the ki-

netic energy for the nuclei (T̂nuc), the interaction between electron-electron (V̂el−el),

the interaction between nucleus-nucleus (V̂nuc−nuc) and the interaction between

electron nucleus (V̂el−nuc), which is given in the form

Ĥmol = T̂el + T̂nuc + V̂el−el + V̂nuc−nuc + V̂el−nuc (2.2)

7
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The kinetic energies are defined as

T̂el =
∑ p2j

2me

(2.3)

and

T̂nuc =
∑ P 2

j

2Mj

(2.4)

where me is the electron mass and Mj is the mass of the j-th nucleus, Nnuc is

number of atoms with nuclear charges Znuc, Rn is the cartesian position and Pn is

nuclear momentum. The momentum of the electron system is pn and rn is electron

coordinate. The interaction between particles is given by

V̂el−el =
1

2

∑
i 6=j

e2

|ri − rj|
(2.5)

V̂nuc−nuc =
1

2

∑
i 6=j

ZiZje
2

|Ri −Rj|
(2.6)

V̂el−nuc = −
∑
i,j

Zje
2

|ri −Rj|
, (2.7)

The Born-Oppenheimer approximation simplifies the Schrödinger equation with

the assumption that the electrons move in the electro-static field. This assumption

is due to the large mass difference between electrons and nuclei. Therefore, the

Hamiltonian representation is simplified as:

Ĥ(R) = T̂el + V̂el−el + V̂el−nuc, (2.8)

which depends on the nuclear coordinates (R).
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2.2 Density Functional Theory

Based on the density functional theory (DFT) we obtain an approximate solution

for the Shrodinger equation of a many-body system.[13] In a simple way, DFT

helps us to to investigate the structural, magnetic and electronic properties of

molecules, materials and defects. The DFT originates from statistical theory of

atoms that proposed by Thomas and Fermi in 1972. The kinetic energy of system

of electrons is approximated as an explicit functional of electron density. The

Thomas-Fermi approach neglected exchange and correlation among the electron

as shown in Eq. 2.9

ETF [n] = C1

∫
d3rn(r)5/3 +

∫
d3rVext(r)n(r) +

C2

∫
d3rn(r)4/3 +

1

2

∫
d3rd3r′

n(r)n(r′)

| r − r′ |
(2.9)

2.2.1 Basis of Density Functional Theory

DFT is based on the Hohenberg-Kohn theorem in 1964. Hohenberg-Kohn theorem

consists of two theorem as follow

1. In external potential of interacting particles for any system υext (r) , the

potential υext (r) is determined uniquely, except for a constant, by the ground

state particle density n0 (r)

Proof. Suppose that there were two different external potentials υ
(1)
ext (r)

and υ
(2)
ext (r) which differ by more that a constant and which lead to the

same ground state density n(r). The two external potentials lead to two

different Hamiltonian, Ĥ(1) and Ĥ(2), which have different ground state

wavefunction,ψ(1) and ψ(2), and hypothesized to have the same ground state

density n0 (r). Since ψ(2) is not the ground state of Ĥ(1), it follows that

E(1) =
〈
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

〉
<
〈
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

〉
(2.10)
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The strict inequality follows if the ground state is non-degenerate, which we

will assume here following the arguments of Hohenberg and Kohn. The last

term in Eq.(2.7) can be written

〈
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

〉
=

〈
ψ(2)

∣∣∣Ĥ(2)
∣∣∣ψ(2)

〉
+
〈
ψ(2)

∣∣∣Ĥ(1) − Ĥ(2)
∣∣∣ψ(2)

〉
= E(2) +

∫
d3r
[
υ
(1)
ext (r)− υ(2)ext (r)

]
n0 (r) (2.11)

then

E(1) < E(2) +

∫
d3r
[
υ
(1)
ext (r)− υ(2)ext (r)

]
n0 (r) , (2.12)

On other hand if we consider E(2) in exactly the same way, we find the same

equation by exchanging superscripts (1) and (2),

E(2) < E(1) +

∫
d3r
[
υ
(1)
ext (r)− υ(2)ext (r)

]
n0 (r) (2.13)

If we add Eq.(2.9) and Eq.(2.10) we arrive at the contradictory inequality

E(1) +E(2) < E(1) +E(2). This provides the favor result: there cannot be two

different external potentials differing by more than a constant which give

rise to the same non-degenerate ground state charge density. The density

uniquely resolves the external potential to within a constant.

Despite the demand of this result, it is clear from the analysis that no di-

rection has been given to solve the problem. At this level we have achieved

nothing : we are still confront with the initial problem of many interacting

electrons moving in the potential due to the nuclei.

2. A universal functional for the energy E [n] in terms of the density n (r) can

be represented, valid for any external potential υext (r). For any particular

υext (r), the exact ground state energy of the system is the global minimum

value of this functional, and the density n (r) that minimizes the functional

is the exact ground state density n0 (r)
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Proof. Since all properties such as the kinetic energy, etc., are uniquely

defined if n (r) is described, then each such property can be noticed as a

functional of n (r), along with the total energy functional

EHK [n] = T [n] + Eint [n] +

∫
υext (r)n (r) d3r + EII

= F [n] +

∫
υext (r)n (r) d3r + EII (2.14)

where EII is the interaction energy of nuclei and F [n] is a universal func-

tional because the analysis of the kinetic and internal potential energies are

the same for all systems.

Now consider a system with the ground state density n(1) (r) corresponding

to external potential υ
(1)
ext (r) .

E(1) = EHK
[
n(1)
]

=
〈
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

〉
(2.15)

Now consider a different density, say n(2) (r) , which necessarily corresponds

to a different wavefunction ψ(2). It follows immediately that the energy E(2)

of this state is greater that E(1), since

E(1) =
〈
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

〉
<

〈
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

〉
(2.16)

= E(2) (2.17)

It follows that minimizing with respect to n (r) the total energy of the system

written as a functional of n (r), one finds the total energy of the ground

state. The correct density that minimizes the energy is then the ground

state density
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2.2.2 Kohn-Sham Equation

While the Hohenberg-Kohn theorem shows it is possible to use the ground state

density to calculate properties of the system, it does not provide a way of finding

the ground state density. The Kohn-Sham equations provide the framework for

finding the exact density and energy of the ground state of a many-body electron

problem using standard independent-particle methods.

The original expression for the Kohn-Sham energy functional is given by Eq.(2.15)

E [n] = Ts [n] +

∫
υext (r)n (r) dr + υH [n] + Exc [n] (2.18)

where υext (r) is the external potential acting on the interacting system (at mini-

mum, for a molecular system, the electron-nuclei interaction EII) the independent-

particle kinetic energy Ts [n] is given by

Ts [n] =
N∑
i=1

ψ∗i (r)

(
− h̄2

2m
∇2

)
ψi (r) dr (2.19)

and we defined the classical Coulumb interaction energy of the electron density

n (r) interacting with itself (the Hartree energy)

υH [n] =
1

2

∫
n (r)n′ (r)

|r− r′|
d3r d3r′ (2.20)

and Exc [n] is the exchange-correlation energy. It contains all the unknown contri-

bution and is also the independent of the external potential

υxc =
δExc [n]

δn (r)
(2.21)

We can write the Schrodinger equation for one electron system as follows

[
− h̄2

2m
∇2 + υext + υH + υxc

]
ψi (r) = εiψi (r) (2.22)
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Since the Hartree term and υxc depend on n (r) , which depend on ψi, the problem

of solving the Kohn-Sham equation equation has to be done in a self-consistent

(iterative) way. Usually one starts with an initial guess for n (r), then calculates

the corresponding υH and υxc and solves the Kohn-Sham equations for the ψi .

From these one calculates a new density and starts again. This procedure is then

repeated until convergence is reached

2.3 Exchange and Correlation Functional

Density functional theory is the most widely used method today for electronic

structure calculations because of the success of practical, approximation function-

als. The crucial quantity in the Kohn-Sham approach is the exchange-correlation

energy which is expressed as a functional of the density Exc [n] . In physics the

most widely used approximation is the local-density approximation (LDA), where

the functional depends only on the density at the coordinate where the functional

is evaluated

ELDA
xc [n] =

∫
εxc (n)n (r) d3r (2.23)

The local spin-density approximation (LSDA) is a straightforward generalization

of the LDA to include electron spin:

ELDA
xc [n↑, n↓] =

∫
εxc (n↑, n↓)n (r) d3r (2.24)

Highly accurate formula for the exchange-correlation energy density εxc (n↑n↓) has

been constructed from quantum Monte Carlo simulations of Hellium. General-

ized gradient approximations (GGA) are still local but also take into account the

gradient of the density at the same coordinate

EGGA
xc [n↑, n↓] =

∫
εxc (n↑, n↓,∇n↑,∇n↓)n (r) d3r (2.25)
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Using the latter GGA is reliable results for molecular geometries and ground-state

energies have been achieved.

2.4 Hybrid-DFT

Density functional theory is a successful tool to calculate electronic structure

and properties of solid system. Nowadays more accurate and reliable exchange-

correlation energies have been deployed. The LDA exchange-correlation energy is

reliable for properties of lattice constants, bulk moduli, equilibrum geometries and

vibrational frequencies.[14]. However, the LDA over estimate bond energies and

cohesive energies and thus more reliable method is necessary.[15]

The GGA introduces an explicit dependence on the gradients of the density in the

the exchange-correlation functionals.[16] The GGA gives improves the overbind-

ing tendency of LDA, however it is still insufficient for the thermochemistry of

molecules. Then hybrid density functional theory is necessary.

The hybrid DFT first time was introduced by Becke. In principle the method

is characterized by admixture of Fock exchange energy and density functional

exchange energy. One of the famous of hybrid theory is Becke three parameter

Lee-Yang-Par (B3LYP) functional. The B3LYP functional firstly is introduced

by Axel Becke in 1993. The functional is developed to improve the ground state

description. The exchange-correlation energy is given as follows

a0E
X
HF + (1− a0)EX

LDA + aX(EX
GGA − EX

LDA) + (1− aC)EC
LDA + aCE

C
GGA (2.26)

where EX
HF is the Hartree-Fock exchange energy, a0 is 0.2, aX is 0.72 and aC is 0.81.

In the above expression EX
LDA and EC

LDA are the LDA exchange and correlation

energies respectively. The EX
GGA and EC

GGA are the GGA exchange and correlation

energies, respectively.[17]
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2.5 Basis Set

Among many different approximation methods to solve the Schrödinger equation,

one of the approximation method is basis set. Basis sets are sets of mathematical

functions. John. C. Slater proposed slater type orbitals (STOs)[18],

ψ = a1φ1 + a2φ2 + ...+ akφk (2.27)

where k is the size of basis set, φ1, φ2, ..., φk are the basis functions and a1, a2, ..., ak

are the normalizations constants. The solution of the Schrödinger equation for

the hydrogen atom and other one-electron ions gives atomic orbitals which are

a product of a radial functions depend on the distance of the electron from the

nucleus and a spherical harmonic, as shown in Table 2.1

Slater-type orbitals describe the real situation for the electron density in the va-

lence region and beyond. However Slater-type orbitals are not good for the near

nucleus region. The general expression for a basis function is given in Eq.??

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−1e−ζr (2.28)

Table 2.1: Radial and angular wavefunctions of orbitals. Here, r is the radius

in atomic units (1 Bohr radius = 52.9 p.m), z is the effective nuclear

charge for that orbital of the atom, e = 2.71828, π = 3.14159, n is

the principal quantum number and ρ = (2Zr)/n

No. Orbital Radial wavefunction Angular wavefunction

1. 1s 2× z3/2 × e−ρ/2 1× (π/4)1/2

2. 2s (
√

2/2)× (2− ρ)× z3/2 × e−ρ/2 1× (π/4)1/2

3. 2p (
√

6/2)× ρ)× z3/2 × e−ρ/2
√

3× (x/r)(π/4)1/2

4. 3s (
√

3/9)× (6− 6ρ+ ρ2)× z3/2 × e−ρ/2 1× (π/4)1/2

5. 3p (
√

6/9)× ρ(4− ρ)× z3/2 × e−ρ/2
√

3× (x/r)(π/4)1/2
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where N is a normalization constant and Ylm is spherical harmonic function. The

exponential depend on the distance between the nucleus and the electron mir-

ror. The n, l, and m are quantum numbers, angular momentum and magnetic,

respectively. STO is commonly used for atomic and diatomic systems where high

accuracy is required.

In the 1950s, Frank Boys suggested a modification of wavefunction by using Gaus-

sian type orbitals, which contain the exponetioal eβr
2
, rather than eαr of STOs.

GTOs consist of several combination in linear coefficient. The GTOs basis function

is expressed by

GTO(3G) = c1e
−β1r2 + c2e

−β2r2 + c3e
−β3r2 (2.29)

where the three values of c and β are fixed, and that number is included in the des-

ignation. The Gaussian type orbitals can be written in term of polar or cartesian

coordinates
χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−le−ζr

2

χζ,lx,ly ,lz()x, y, z) = Nxlxylyzlze−ζr
2

(2.30)

where the sum of lx, ly and lz determines the type of orbital. In Gaussian functions,

there are six possible d-type functions with the factor x2a, y
2
a, z

2
a, xaya, xaza and

yaza. These d-functions can be modified into five linear combinations, as xaya,

xaza ,yaz, x2a-y
2
a, and 3z2a-r

2
a to have the same angular behaviour as the real 3d

orbitals. Within the sixth possible combination x2a+y
2
a+z

2
a = r2a correspond to

s-orbital.

In term of computational efficiency, it is important to choose number of function

can be used. Basis set can be classified in to the following types.

1. Minimal basis sets

In the minimal basis set, one basis function should be choose for every atomic

orbital that is required to described the free atoms. For hydrogen, minimal

basis set is 1s orbital. For carbon, the minimal basis set consists of 1s and

2s orbitals and the full set of three 2p orbitals. Several basis sets have been

proposed for computational purpose, such as: STO−3G,STO−4G,STO−
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6G,STO− 3G∗ (a polarized version of STO-3G). The STO− nG basis sets

devised by John Pople and his groups are the most common basis set. The

STO − nG basis set is a minimal basis set, where each basis function is

contraction of n primitive Gaussians.

2. Pople basis sets

These basis set was developed by Pople and his groups to represent the split

valence type.[19] The basis set is represented as k − nlmG basis sets. The

k represent how many Pople Gaussian Type Orbitals (PGTOs) are used

for corresponding the core orbitals. The nlm indicate how many functions

the valence orbitals are split into and how many PGTOs are used for the

representation. If two values (nl) are used, it indicates a split valence. The

values before the Gaussian indicate the s− and p− functions. However in

the basis set, the values after Gaussian represent the polarization functions.

Several computation method using Pople basis sets are 3−21G, 6−31G, 6−
31G(d, p), 6− 311G, 6− 311G∗, etc.

3. Correlation consistent basis sets

The correlation consistent (cc) basis sets correspond to the correlation en-

ergy of the valence electrons. These basis sets include shells of polarization

(correlating) functions (d, f, g, etc) that can yield convergence of the elec-

tronic energy to the complete basis set limit. Several different sizes of cc

basis sets are known by their acronyms : cc-pVDZ (correlation consistent

valence double zeta), cc-pVTZ (correlation consistent valence triple zeta), cc-

pVQZ (correlation consistent valence quadruple zeta), cc-pV5Z (correlation

consistent valence quintuple zeta), etc.

4. Other split valence basis set

The split-valence (SV) basis sets use one function for orbitals that are not

in the valence shell and two functions for those in valence shell. There

are several split-valence basis sets, such as SVP (split-valence polarization),

DZV (double zeta valence), TZVPP (triple valence Zeta plus polarization),

QZVPP (quadruple-zeta plus polarization), etc.
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5. Double,triple and quadruple zeta basis sets

These basis sets are multiple basis functions that correspond to each atomic

orbitals. The most common is the D95 basis set of Dunning

6. Plane wave basis sets

Plane wave basis sets using a finite number of plane wavefunctions. The

specific cutoff energy is chosen for certain calculations.

2.6 Reliability of Electronic Structure Calcula-

tion

The reliability of band gap calculations is shown in the basis sets performance.

In this work, besides the 6-31G(d,p) basis set, we also try the band gap calcula-

tions using 6-311(d,p) and cc-pVQZ basis sets. We calculate polythiophene. The

hybrid-DFT is used to calculate the HOMO-LUMO gap energy of the finite-size

thiophene oligomers. We find that the band gap of the infinite-length polythio-

phene calculated by the 6-31G(d,p) basis set is close to those calculated using the

6-311(d,p) and cc-pVQZ basis sets. The energy difference is less than 23 meV

as shown in Table 2.2. Therefore, the basis set of 6-31G(d,p) is expected to be

reliable.

The reliability of our calculations for the bond angle and bond length is shown in

Tables 2.3 and 2.4. The bond length and bond angle, which are calculated for the

6-mer [Fig. 2.1], are close to experimental values.[20] The deviations for the bond

lengths are less than 0.002 Å [Table 2.3] and those for the bond angles are less

than 2o [Table 2.4]. Therefore, the present calculation is expected to be reliable

for geometries optimization.
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Table 2.2: Calculation of the band gap of polythiophene using several basis

sets.

Basis set Band gap (eV)

6-31G (d,p) 1.92

6-311G (d,p) 2.09

cc-pVQZ 1.86

Experiment 2.00

Figure 2.1: Molecular structure of polythiophene.
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2.7 Extrapolation Scheme for Estimation of Band

Gaps in Conjugated Polymers

2.7.1 Extrapolation Scheme

In this work, to calculate the band gaps of infinite-size of conjugated polymers,

we use extrapolation scheme method. First, we calculate the HOMO-LUMO gap

energy of finite-size oligomers of polythiophne derivatives. We use Gaussian 03

installed package program and B3LYP/6-31G(d,p) method.[21] Then, we fitted

the values of HOMO-LUMO gap energy using an extrapolation scheme [23],

Eg(Ni) = Eg +
a

Ni

, (2.31)

where Eg(Ni) corresponds to the HOMO-LUMO gap of oligomers and Ni is the

number of carbon atoms in the conjugated chain in an oligomer. a and Eg are

determined by fitting to the calculated values of Eg(Ni), and Eg corresponds to

the band gap of the infinite-length polymer, Eg(∞).

To predict the infinite-size of HOMO energy level and LUMO energy level of

conjugated polymers, we use derivation of the Eq.(2.31) and then we plot the

HOMO energy and LUMO energy by the following equation

Elevel(N) = blevel +
a

N
, (2.32)

where Elevel is the HOMO or LUMO energies of oligomers, and N is the number of

carbon atoms in a conjugated chain. blevel is the HOMO energy or LUMO energy

of the infinite-length polymers.
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2.7.2 Evaluation of Extrapolation Scheme Estimation

We also evaluate the reliability of the the extrapolation scheme using coefficient

of determination, R2, which is given by

R2 =

[
∑
i

(
1

Ni

−< 1

Ni

>)(Eg(Ni)−< Eg(Ni) >)]2∑
i

[
1

N i
−< 1

Ni

>]2
∑
i

[Eg(Ni)− < Eg(Ni) >]2
, (2.33)

where <> indicates the average over i. When the value of R2 is close to 1, the data

are well fitted to Eq. (2.31). The R2 results will be shown in the next chapter.



Chapter 3

Band Gap Design of Thiophene

Polymers

3.1 Introduction

Conjugated polymer is an attractive material for OSC application. Polythiophene

is one of the conjugated polymers that has attractive electronic properties. The

band gap of pristine polythiophene is 2 eV. However, to increase the efficiency of

OSC, the low band gap conjugated polymer is more favorable. Therefore, finding

the low band gap of conjugated polymers for OSC application is necessary.[22–27]

To find low band gap of conjugated polymers, we study several polythiophene

derivatives as shown in Fig.1.5. For this purpose the band gap calculation is an

essential tool.

The band gap calculations consist of some steps. The molecular orbital theory

calculation can be used to find the band gap for finite-size of conjugated polymer.

For infinite-size of conjugated polymers, the extrapolation scheme is one of the

powerful tool to predict the band gap.[3, 23, 30–33].

Here, we apply the extrapolation scheme to calculate the band gaps of some poly-

thiophene derivatives. In addition to polythiophene (P1), for the first time, we cal-

culate the band gaps of derivatives having hexyl bases, i.e., poly(3-hexylthiophene)

24
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[P3HT] (P2). The band gap of poly(2-ethenylthiophene) (P3) and PITN (P4) have

been studied previously, in this calculation, we make comparison of band gap val-

ues between previous calculations and present calculations. These polymers are

shown in Fig. 1.5. We obtain good agreement between theoretical and experimen-

tal band gaps of P1, P2, P3, and P4. Furthermore, we predict the band gap of

P5, which has not yet been determined. We find that calculated band gaps are

1.10 - 1.81 eV; therefore, we demonstrate that the band gaps can be controlled

using suitable derivatives. In this chapter, we analyze the HOMO and LUMO

of polythiophene and its derivatives for the first time and clarify the mechanism

underlying the decreases in the band gaps of the derivatives. This analysis gives

a new insight into the band gap design of polythiophene derivatives.

3.2 Results

3.2.1 Polythiophene (P1)

The band gap of infinite-size polythiophene carried out by using hybrid-DFT. The

calculations from monomer until 30-mer of thiophene [Fig. 1.5(a)]. After that, we

estimate the band gap of the infinite-size polymer using the extrapolation scheme.

As shown in Fig. 3.1, the calculated HOMO-LUMO gaps of the oligomers are well

fitted to Eq. (2.31).
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Figure 3.1: Calculation of P1 oligomers (a) Band gap and (b) HOMO and

LUMO energy level.

The calculations of the oligomers are well fitted, since R2 is close to 1. Therefore,

we successfully determine the band gap of the infinite-size polythiophene: the

estimated value is 1.92 eV [Table 3.1], which is close to the experimental value

(2.0 eV)[22].

Table 3.1: Band gaps of polythiophene derivatives calculated using the ex-

trapolation scheme. Nmax is the number of carbon atoms in the

conjugated chain for the maximum oligomer used in the calcula-

tions.

System HOMO (eV) LUMO (eV) Eg (eV) Eg (Exp.) (eV) R2 Nmax

P1 -4.52 -2.6 1.92 2 [22] 0.9964 120

P2 -4.09 -2.28 1.81 1.8 [3] 0.9948 52

P3 -4.41 -2.80 1.61 1.8 [28] 0.9955 66

P4 -4.02 -2.92 1.10 1.1 [3] 0.9953 120

P5 -4.08 -2.69 1.39 - 0.9936 106
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Table 3.2: Calculated HOMO-LUMO gaps of thiophene derivatives

monomers.

System HOMO (eV) LUMO (eV) HOMO-LUMO gap (eV)

P1 -6.35 -0.23 6.12

P2 -6.15 -0.04 6.11

P3 -5.76 -1.02 4.74

P4 -5.62 -0.89 4.73

P5 -5.39 -1.38 4.01

As shown in Fig. 3.1(b), the calculated energies of HOMO and LUMO are well

fitted to Eq. (2.32). In the case of the monomer, the HOMO and LUMO energies

are -6.35 and -0.23 eV, respectively; therefore, the HOMO-LUMO gap is 6.12

eV, as shown in Table 3.2. We estimate that the energies of HOMO and LUMO

in the infinite-size polymer are -4.52 and -2.60 eV, respectively. Therefore, the

HOMO-LUMO gap of the polymer is 4.20 eV lower than that of the monomer.

The HOMO has bonding phases for the double bonds in the conjugated chain [Fig.

3.2(a)], whereas the LUMO has bonding phases for the single bonds [Fig. 3.2(b)].

Both HOMO and LUMO consist of the carbon p orbitals, which are perpendicular

to the molecular plane.

Figure 3.2: P1 wavefunction. The isovalue is 0.002 atomic unit: (a) HOMO

wavefunction and (b) LUMO wavefunction.
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In the monomer, the lengths of the double bond and single bond are 1.367 and

1.430 Å, respectively. In the 10-mer, the double-bond and single-bond lengths

at the edges are 1.367 and 1.422 Å, respectively, which are close to those of the

monomer. In contrast, the lengths of the double and single bonds at the center

are 1.382 and 1.412 Å, respectively, as shown in Fig. 3.3. Therefore, the bond

length alternation at the center in the 10-mer is weaker than in the monomer. In

the case of the 30-mer, the lengths of the short bonds (1.382 Å) and long bonds

(1.413 Å) at the center are close to those of the 10-mer. Therefore, we expect

that these values are close to those of the infinite-length polymers. These results

suggest that the bond alternation in the infinite-length polymer is expected to be

weaker than that in the monomer. This weak bond alternation in the polymer

is expected to contribute to the decrease in band gap compared with that in the

monomer.[24, 25]

Figure 3.3: Bond lengths of the π bond chain in P1 10-mer: (a) Double-bond

lengths in thiophene backbone from an end of the oligomer and

(b) Single-bond lengths in thiophene backbone from an end of the

oligomer.
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3.2.2 P3HT (P2)

The band gap calculation of thiophene derivatives with alkyl based using extrap-

olation scheme for the first time is calculated. P2 consists of thiophene and hexyl

[Fig. 1.5(b)]. We calculate P2 using hybrid-DFT from the monomer to the 13-

mer. Next, the HOMO-LUMO gap energies of the P2 oligomers are fitted to the

extrapolation scheme. Fig. 3.4(a) shows the HOMO-LUMO gap values are fitted

well to find out the infinite band gap. The HOMO energy level and LUMO energy

level of infinite-size polymer are also fitted appropriately as shown in Fig. 3.4(b).

We estimate the band gap of the infinite-size polymer to be 1.81 eV, which is

close to the experimental value (1.8 eV)[3]. The band gap of P2 is 0.11 eV lower

than that of P1. We estimate that the energies of HOMO and LUMO in the

infinite-length polymer are -4.09 and -2.28 eV, respectively, as shown in Table 3.1.

Therefore, the energy of the HOMO of P2 is 0.43 eV higher than that of P1, and

the energy of LUMO of P2 is 0.32 eV higher than that of P1. Thus, the energy

increase of the HOMO is 0.11 eV larger than that of the LUMO. This is the reason

why the band gap of P2 is 0.11 eV lower than that of P1.
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Figure 3.4: Calculation of P2 (a) Band gap and (b) HOMO and LUMO energy

level.

Figure 3.5: P2 wavefunction. The isovalue is 0.002 atomic unit: (a) HOMO

wavefunction and (b) LUMO wavefunction.
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The above-mentioned low band gap of this system is expected to originate from

the interaction between the hexyl of the thiophene backbone [which is indicated

by A in Fig. 3.5(a)] and the double bond of the thiophene backbone without the

hexyl [which is indicated by B in Fig. 3.5(a)]. This interaction leads to the large

increase in HOMO energy since the HOMO has the bonding phase for the double

bond in the conjugated chain [Fig. 3.5(a)]. The effect of the interaction on the

LUMO is weak, as Fig. 3.5(b) shows, which causes a small increase in LUMO

energy.

Although the band gap of P2 is lower than that of P1, the HOMO-LUMO gap of

the monomer of P2 (6.11 eV) is very similar to that of P1(6.12 eV) [Table 3.2].

This similarity in energy is due to the fact that there is no interaction between

the hexyl and the double bond in P1 in the case of the monomer of P2.

The interaction between the double bond and hexyl affects the bond length. We

show the results for the 10-mer in Fig. 3.6(a). We find that the lengths of the

double bonds in the thiophene backbone of P2 osccilate at the center.
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Figure 3.6: Bond lengths of the π bond chains of the 10-mer of P2 and P1:

(a) Double-bond lengths in thiophene backbone from an end of

the oligomer and (b) Single-bond lengths in thiophene backbone

from an end of the oligomer.

Here, the length of thiophene double bond (A) which is near the hexyl is 1.394

Å and is larger than that of double bond (B), which is far from the hexyl (1.384

Å)[(A) and (B) are shown in Fig. 3.6(a)]. The former bond length is substantially

larger than that of P1 whereas the latter bond length is close to that of thiophene.

The former large bond length is expected to originate from the interaction between

the hexyl and the thiophene backbone. On the other hand, the lengths of single

bonds in the thiophene backbone of P2 show no oscillation at the center. The

single bonds are found to be somewhat longer than those of P1, as shown in Fig.

3.6(b).
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Figure 3.7: Molecular structure of P2.

3.2.3 Poly(2-ethenylthiophene)(P3)

We study the band gap of P3 [Fig. 1.5(c)]. We carry out hybrid-DFT calcu-

lations from the monomer to the 11-mer. Then, we estimate the band gap of

the infinite-size polymer using the extrapolation scheme. The fitting is shown in

Fig.3.8(a). The HOMO energy and LUMO energy of infinite-size polymer are

shown in Fig.3.8(b).
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Figure 3.8: Calculation of P3 (a) Band gap and (b) HOMO and LUMO energy

level.

The estimated band gap of P2 is 1.61 eV. The calculated energy of the HOMO in

the infinite-size polymer is 0.11 eV higher than that in P1, and the energy of the

LUMO in the infinite-size polymer is 0.20 eV lower than that of P1. As a result,

the band gap of P3 is 0.31 eV lower than that in P1, as shown in Table 3.1.

Figure 3.9: P3 wavefunction. The isovalue is 0.002 atomic unit: (a) HOMO

wavefunction and (b) LUMO wavefunction.
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The HOMO has amplitudes in the ethenyl part [which is indicated by A in Fig.

3.9(a)] as well as the thiophene part. These results indicate that both the thio-

phene and ethenyl parts form the π bond network, i.e., the bond alternating chain

consists of the thiophene and ethenyl parts. The HOMO has the bonding and anti-

bonding phases in the single-bond and double-bond regions, respectively, and vice

versa in the case of the LUMO [Fig. 3.9(b)]. Because of the insertion of ethenyl,

the π bond network of this system is quite different from that of thiophene. This

difference is expected to be the reason for the low band gap of the present system.

In the case of P1, the length of the single bond [which is indicated by A in Fig. 3.10]

is 1.414 Å and the length of the double bond [which is indicated by B in Fig. 2.1] is

1.381 Å. On the other hand, in poly(2-ethenylthiophene), the corresponding bond

lengths are 1.407 Å and 1.389 Å, respectively, as shown in Fig. 3.11. Therefore,

the bond alternation becomes weak, which contributes to the lowering of the band

gap of P3, as shown in Fig. 3.11.

Figure 3.10: Molecular structure of P1.
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Figure 3.11: Molecular structure of P3.

Fig.3.12 (a) shows the weak bond alternation affects to the bond lengths with

10-mer thiophene. We find that the lengths of double bonds in the thiophene

backbone of P3 is longer at the center than that of P1. On the other hand, the

lengths of single bonds in the thiophene backbone of P3 show shorter at the center

than that of P1 as shown in Fig.3.12(b). Therefore, the weak bond alternation

contributes to the band gap decreases.

Figure 3.12: Bond length of P1 and P3 in 10 mer of thiophene. (a) Double

bond length, (b) Single bond length.
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3.2.4 PITN (P4)

P4 consists of thiophene and a benzene ring, as shown in Fig. 1.5(d). We carry

out hybrid-DFT calculations from the monomer to the 15-mer. Next, we estimate

the band gap of the infinite-length polymer using the extrapolation scheme. Fig.

3.13(a) shows the HOMO-LUMO gap values which are fitted well to find out the

infinite band gap. The HOMO energy and LUMO energy of infinite-size polymer

are also fitted appropriately as shown in Fig. 3.13(b).

The estimated band gap of PITN is 1.1 eV, which is consistent with the experi-

mental value (1.1 eV)[3]. The calculated energy of the HOMO of PITN is 0.50 eV

higher than that of polythiophene, and the energy of the LUMO of PITN is 0.32

eV lower than that of polythiophene. As a result, the band gap of PITN is 0.82

eV lower than that of polythiophene, as shown in Table 3.1.

Figure 3.13: Calculation of P4 oligomers (a) Band gap and (b) HOMO and

LUMO energy level.
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Figure 3.14: P4 wavefunction. The isovalue is 0.002 atomic unit: (a) HOMO

wavefunction and (b) LUMO wavefunction.

The HOMO and LUMO have significant amplitudes not only in thiophene but

also in the benzene ring. The amplitudes of the HOMO [Fig. 3.14(a)] and LUMO

[Fig. 3.14(b)] are large in both the benzene ring and thiophene part. These results

indicate that the π bond network is not restricted within the chain and is extended

to the benzene ring. This extension of the π bond network is the origin of the

low band gap of this polymer. Indeed, the HOMO and LUMO also have large

amplitudes in the benzene ring and thiophene in the case of the monomer, and as

a result, the HOMO-LUMO gap of the monomer (4.01 eV) is lower than that of

the thiophene monomer (6.12 eV), as shown in Table 3.2.
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Figure 3.15: Molecular structure of P4.

As shown in Fig. 3.15, the geometry of the PITN is nonplanar. This is due to

the fact that the double bond in the thiophene backbone of P4 (1.408 Å) is longer

than that of P1 (1.381 Å) as shown in Fig. 3.10; i.e., the property of the double

bond is weak in P4. Although this system is nonplanar, the HOMO and LUMO

are delocalized in the polymer.

Fig. 3.16 (a) shows that the present polymer (P4) has longer bond length than

the polythiophene (P1).

Figure 3.16: Bond length of P1 and P4 in 10 mer of thiophene. (a) Double

bond length, (b) Single bond length.
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3.2.5 Poly(2-ethenyl-3-hexylthiophene)(P5)

P5 consists of 3-hexylthiophene and ethenyl, as shown in Fig. 1.5(e). There is

no experimental band gap data for this P5; therefore, we predict the band gap

of this system. We carry out hybrid-DFT calculations up to the 17-mer. Then,

we estimate the band gap of the infinite-length polymer using the extrapolation

scheme. Fig. 3.17(a) shows the HOMO-LUMO gap values which are fitted well to

find out the infinite band gap. The HOMO energy level and LUMO energy level

of infinite-size polymer are also fitted appropriately as shown in Fig. 3.17(b).

The estimated band gap of P4 is 1.39 eV. Therefore, the band gap of P4 is 0.22

eV lower than that of P2. We evaluate the energies of the HOMO and LUMO in

this polymer, as shown in Table 3.1. The energy of the HOMO in this polymer is

0.33 eV higher than that of P2, and the energy of the LUMO is 0.11 eV higher

than that of P2. As a result, the band gap of P4 is 0.22 eV lower than that of P2,

as shown in Table 3.1.

Figure 3.17: Calculation of P5 oligomers (a) Band gap and (b) HOMO and

LUMO energy level.
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Figure 3.18: P5 wavefunction. The isovalue is 0.002 atomic unit: (a) HOMO

wavefunction and (b) LUMO wavefunction.

The above-mentioned low band gap of this system is expected to originate from

the interaction between the hexyl of the thiophene backbone [which is indicated

by A in Fig. 3.18(a)] and the double bond of the ethenyl part [which is indicated

by B in Fig. 3.18(a)]. This interaction leads to the fact that the large increase

in HOMO energy since the HOMO has the bonding phase for the double bond in

the conjugated chain [Fig. 3.18(a)]. The effect of the interaction on the LUMO is

weak, as Fig. 3.18(a) shows, which leads to a small increase in LUMO energy.

Although the band gap of P5 is lower than that of P3, the HOMO-LUMO gap of

the monomer of P5 (4.73 eV) is very similar to that of P3 (4.74 eV) (Table 3.2).

This similarity in energy is due to the fact that there is no interaction between

hexyl and the double bond in the ethenyl part in the case of the monomer of P5.



Chapter 3. Band gap design of thiophene polymers 42

Figure 3.19: Bond length of P1, P3 and P5 in 10 mer of thiophene. (a) Double

bond length, (b) Single bond length.

The interaction between hexyl of the thiophene backbone and the double bond of

the ethenyl part affects to the bond lengths. We show the results for the 10-mer

in Fig. 3.19(a). We find that the lengths of the double bonds in the thiophene

backbone of P5 osccilate at the center. The double bond of P5 is longer than those

of P1. However, some of the double bond of P5 are slightly longer than those of

P3. On the other hand, the single bond of P5 is the longest compare to those of

P1 and P3 as shown in Fig.3.19(b). Due to the interaction of the double bond and

hexyl, the molecular structure of P5 is not as planar as P2 as shown in Fig. 3.20,

especially in the hexyl tails.
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Figure 3.20: Molecular structure of P5.

3.3 Discussion

3.3.1 Comparison Between Results of Present and Past

Calculations

We use the extrapolation scheme to estimate the band gaps of infinite-length

polymers. The R2 value of all polymers are close to 1, as shown in Table 3.1,

which indicates that fitting to Eq. (2.31) is successful. The calculated band

gaps are close to the experimental values, as shown in Table 3.1: The differences

between the band gaps obtained theoretically and experimentally are 0.1 - 0.2 eV.

Therefore, the present calculation scheme, in which the extrapolation scheme and

hybrid-DFT [B3LYP/6-31G(d,p)] are used, is reliable for predicting band gaps.
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The band gaps of P1 have been calculated using the extrapolation scheme and

hybrid-DFT.[3, 23, 30–33] First, Salzner et al.[32] used the B3P86/CEP-31G∗

method and obtained a band gap value of 2.30 eV. Later, Yang et al.[23] optimized

the geometry by the semiempirical (PM3) method and estimated the band gap

using B3LYP. They obtained a band gap value of 1.93 eV. Zade and Bendikov[33]

used the B3LYP/6-31G(d) method and obtained a band gap value of 1.81 eV. They

also use the periodic boundary condition instead of the extrapolation method and

obtained a band gap value of 2.06 eV. Torras et al.[31] used the B3LYP/6-31G(d)

method and obtained a band gap value of 1.88 eV. As mentioned above, the

estimated band gaps in past studies are 1.81 - 2.30 eV and are comparable to the

present value (1.92 eV).

Yang et al.[3, 23] also estimated the band gaps of P3 and P4 to be 1.52 and 1.44

eV, respectively. These values are close to the present values (1.61 and 1.1 eV).

Therefore, the present band gaps are comparable to those of past studies.[3, 23, 30–

33]

3.3.2 Mechanism of Band Gap Decreases

Our finding of the decrease in band gap by modifying polythiophene indicates

that the band gap of polythiophene can be suitably modified using polythiophene

derivatives. Therefore, a theoretical design based on first-principles calculations is

important. We discuss the mechanisms underlying the decrease in the band gaps

in thiophene derivatives in previous sections. Here, we summarize the mechanisms.

(A) Hexyl effect

The calculated band gap of P2 is 0.11 eV lower than that of P1 and the band

gap of P5 is 0.22 eV lower than that of P3. The decreases in the band gaps in

the above-mentioned two polymers cases are due to the hexyl effect: there is

interaction between the hexyl and the double bond in the conjugated chain

as mentioned in Sects. 3.2.2 and 3.2.5. The decrease (0.22 eV) in the band

gap of P5 is larger than the decrease (0.11 eV) that of P2. This difference

is expected to originate from the fact that the ethenyl double bond and the
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thiophene double bond are affected by the hexyl in the former and later

cases, respectively.

(B) Ethenyl effect

The band gap of P3 is 0.31 eV lower than that of P1. The difference in

band gap between these two polymers is due to the difference between the π

bond chain in the two systems: the conjugated chain consists of thiophene

and ethenyl in the case of P3 and the chain consists of only thiophene in the

case of P1. The weak bond alternation in P3 contributes to the decreases in

band gap.

(C) Extension of the π bond network

The band gap of P4 is 0.82 eV lower than that of P1. In the case of P4, its

HOMO [Fig. 3.14(e)] and LUMO [Fig. 3.14(e)] have amplitudes not only

in thiophene but also in the benzene ring. This extension of the π bond

network in P4 is the origin of the decreases in band gap.

As mentioned above, we discuss the three mechanisms underlying the band

gap decreases in polythiophene derivative. These findings are helpful in the

design of new derivatives having low band gaps. Actually, we predict that

P5 has a low band gap (1.39 eV) due to the ethenyl and hexyl effects.



Chapter 4

Summary

4.1 Conclusion

We successfully calculate the band gap of polythiophene derivatives. We have car-

ried out hybrid-DFT calculations for finite-size of polythiophene derivatives and

estimate the band gaps of the infinite-length of polythiophene derivatives using

an extrapolation scheme. The calculated band gaps of polythiophene (P1), P3HT

(P2), poly(2-ethenylthiophene) (P3), and PITN (P4) are close to the experimen-

tal values. The difference of the present band gap calculation and experiment

values are quite small , which is 0.1 - 0.2 eV. Therefore, the present theoretical

method is found to be reliable. We also predict the band gaps of poly(2-ethenyl-

3-hexylthiophene) (P5). The calculated band gaps of polythiophene derivatives

studied in this paper are 1.10 - 1.81 eV; therefore, we have demonstrated that the

band gaps can be controlled using suitable of polythiophene derivatives.

We clarify the mechanisms of the band gap decreases by analyzing the HOMO

and LUMO as summarized in Sect. 3.3.2. These findings are expected to be

useful for band gap design. In particular, we find that the attachment of the

hexyl decreases the band gap. With the correspond to this mechanism, we design

poly(2-ethenyl-3-hexylthiophene) (P5). We estimate that the band gap of poly(2-

ethenyl-3-hexylthiophene) (P5) has low band gap (1.39 eV).

46
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4.2 Future Scope

In this study, we successfully predict the band gaps of polythiophene derivatives.

We also clarify the mechanism the decreases of band gaps. Therefore, the low

band gap of conjugated polymers can be designed.

However, for OSC besides the low band gap of conjugated polymers, we also need

to achieve the low HOMO energy level. The HOMO energy level is associated

to Voc as shown in Eq. 1.2. The Voc contributes to charge transfer. Therefore,

to control the HOMO energy level, we need to design a push and pull units that

allow internal charge transfer process along the conjugated chain.[34] These push

pull units can be designed through the donor-acceptor(D/A) copolymers. D/A

conjugated polymers consist of electron rich conjugated polymers and electron

acceptor conjugated polymers as acceptors [Fig.4.1].

For furhter study, based on the band gap calculations and the mechanism of band

gap decreases in polythiophene derivatives, we would like to design low band gaps

polymers and the low HOMO energy level using combination of donor/acceptor

(D/A) copolymer. These D/A copolymer gives future hope to control the band gap

of conjugated polymers, and finally we can find the suitable conjugated polymers

for OSC application.

Figure 4.1: The band gap scheme of donor-acceptor copolymer.
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