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Abstract

In this thesis, a new technique of dead-zone compensation based on extremum seek-
ing is developed for reducing the steady-state vibration motion of unstable systems
with an input dead-zone. To optimally accomplish the dead-zone compensation in
real time, we extend the existing extremum seeking method to be able to treat the
periodic steady-state output.

The unstable system which we are concerned with is a series connection of
a linear time-invariant system and a dead-zone nonlinearity. Although the unsta-
ble system is usually stabilized by an appropriate output feedback controller, the
closed loop system mostly exhibits the steady-state vibration which is caused by
the dead-zone nonlinearity. To cancel the dead-zone nonlinearity, its right inverse
of the dead-zone nonlinearity can be used as dead-zone compensation. It is however
difficult to obtain the exact right inverse in general. Then, by using the extremum
seeking we try to find a probable dead-zone compensation parameter in the right
inverse. To this end, a sinusoidal perturbation signal is applied to the dead-zone
compensation parameter and the cost function evaluating the vibration of the sys-
tem is automatically minimized according to the gradient of the cost function. The
gradient can be estimated by moving average filter which is also called a mean-
over-perturbation-period (MOPP) filter and another sinusoidal perturbation signal.
Based on the estimated gradient, the dead-zone compensation parameter is adjusted
by an optimizer to obtain the optimal performance.

The effectiveness of the proposed method is illustrated by numerical simulations
where we use two models of the self-balancing robot which is a commercial prod-
uct called e-nuvo WHEEL. One is derived from physical equations of the robot.
The other is obtained by Multivariable Output Error type State-sPace Closed-Loop
(CL-MOESP) subspace model identification from experimental data of the stabi-
lized closed loop system. In the simulations, the dead-zone compensation param-
eter converges to the optimal value that minimizes the cost function evaluating the
vibration of the body angle of the self-balancing robot. In addition, the simulation
results show that the cost function quickly decreases and the vibration of the robot
body is rapidly eliminated.
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Chapter 1

Introduction

1.1 Motivations and Objectives

Most actuators have nonlinearities that deteriorate control system performance. One
of such typical nonlinearities is an input dead-zone property. The system with input
dead-zone is insensitive for small input signals. Dead-zone nonlinearities in actu-
ators causes not only instability since the feedback signal in closed-loop is ruined,
but also large overshoot, large setting time and vibration. For example, it can be
seen in a self-balancing robot as an inverted pendulum which is desired to be sta-
bilized motion and impedes balancing in both standing and moving then vibration
motion occurs.

Many works have been done for dead-zone compensation. The most generally
methods are adaptive scheme, e.g., adaptive control [24], the adaptive fuzzy scheme
[4], sliding mode control with adaptive fuzzy [3], neural network and fuzzy logic
[14] and FRIT [26].

In practical use, real time canceling the dead-zone is important. Therefore, we
extend a method to eliminate dead-zone to optimize control performance in real
time by using extremum seeking. The motivation of this work is to make automati-
cally tuning dead-zone compensation to cancel dead-zone in real time.

Extremum seeking control (ESC) is an adaptive control method which automat-
ically optimizes an unknown objective function of a performance measure in real
time. When we apply extremum seeking control, we do not need to know the de-
tailed relation between the plant dynamics and the objective, but we only observe
the performance measure of the plant [8]. Extremum seeking control commonly
uses a perturbation signal, a low-pass filter, a high-pass filter and an integrator [2],
[19], [23] (for the discrete-time case, see [6], [7], and for multi-variables, [1]).
So recently, extremum seeking control is developed to treat periodic steady-state,
which uses a moving average filter to estimate a gradient of the cost function, (see
[8], [9], [12]) but this extremum seeking control is limited in continuous-time con-
trol.

In this dissertation, we propose extremum seeking control by moving average
filter in discrete-time for periodic steady-state to tune dead-zone compensation that
optimize control performance in real time. Our extremum seeking control is based
on the result by Haring et al. The method is applied to two models of self-balancing
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robot. One is derived from physical equations of self-balancing robot commercial
product called e-nuvo WHEEL. The other is obtained by multi-variables Output-
Error type State-space Closed-loop subspace model identification (CL-MOESP)
from experimental data. This work is the first developing to reject dead-zone by
discrete-time extremum seeking for periodic steady-state. We choose extremum
seeking control to cancel dead-zone because extremum seeking control is simple
in theoretical mathematics (by Taylor expansion), simple in implementation (which
is extremum seeking control does not need complicated system, just perturbation
signal, filter and optimizer are used), simple to get gradient estimation by modu-
lation and demodulation perturbation signal, fast convergence and robust against
change of the cost. Extremum seeking control does not require the details of the
cost function to be minimized.

1.2 Overview of Previous and Related Researches

1.2.1 Dead-Zone Rejection
Works to rejection of dead-zone have become an interesting research for the con-
trol community for a long time. Adaptive schemes are popular methods to cancel
dead-zone which is the pioneered by Tao and Kokotović [24]. Tao and Kokotović
successfully developed to eliminate the dead-zone by using adaptive control strat-
egy for plants with unknown dead-zones which two sets of adjustable parameters
that are a dead-zone inverse and the other for a linear controller adaptively updated
to reduce the tracking error and to ensure boundedness of all closed-loop signals
[24]. Bessa et al. proposed adaptive fuzzy control [4] and sliding mode control with
adaptive fuzzy dead-zone compensation [3]. They developed a rejection dead-zone
method by proving the boundedness of all closed-loop signals and the convergence
properties of the tracking error for nonlinear systems subject to dead-zone input
based on Lyapunov stability theory and Barbalat’s lemma. An electro-hydraulic
servo-system as an application to reject dead-zone is used for illustrative example
[4], [3].

Moreover, neural network and fuzzy logic are used to cancel dead-zone by Jang
et al. [14]. The fuzzy logic system is applied for classification property and tuning
algorithm then the neural network is utilized for function approximation ability and
neural network weight to become adaptive the saturation and dead-zone compensa-
tion [14]. Rubio et al. have researched to eliminate dead-zone by using proportional
derivative control with inverse dead-zone for pendulum systems [20]. The other
method to cancel dead-zone is fictitious reference iterative tuning (FRIT) to tune
inverse dead-zone parameters and controller parameters by using one-shot closed-
loop experiment and covariance matrix adaptation evolution (CMA-ES) strategy for
optimization process of FRIT [26].

1.2.2 Extremum Seeking
The first proposed of extremum seeking was from the paper of Leblanc 1922 that
explains a new method for designing an ingenious engineering to keep maximum

2



Figure 1.1: Extremum seeking scheme by Krstic̀ [19]

power transfer from a transmission line to a tram car. However, any dynamical
model was not used for mathematical analysis and the Leblanc’s method is famous
for maximizing or minimizing unknown output functions for unknown stable dy-
namical systems [23], [21]. Many scientists and engineers tackled research on ex-
tremum seeking since the stability of the extremum seeking was proved by Krstic̀
and Wang [19],[23]. In the stability analysis for extremum seeking control, averag-
ing technique is utilized for treating the singular perturbation signal. The extremum
seeking scheme by Krstic̀ can be shown in Fig. 1.1. The parameter θ is tuned by
extremum seeking. The parameter θ is a sum of the signal θ̂ and a slow periodic
sinusoidal signal a sinωt as

θ(t) = θ̂(t) + a sinω t . (1.1)

The nonlinear model is given by

ẋ(t) = f (x(t), α(x, θ)) (1.2)
y(t) = h(x(t)) (1.3)

where x is the state and α(x, θ) is the feedback control law. Then, the output y comes
up to be a static map y = h(l(θ)). Afterward, the output y enters to the high-pass
filter

s
s + ωh

for clearing the DC component of y.

The output signal of the high-pass filter is multiplied by a sinω t. As a result, it
produces a signal in phase for θ̂ < θ∗ or out of phase for θ̂ > θ∗. Next, the multiplied
signal goes into the low-pass filter which produces a DC component ξ of the signal.

The DC componentξ enters into the integrator, and the output θ̂ =
k
s
ξ is used for

updating θ until it reaches the optimal value θ∗ [19].
The recent research developments in the field of real-time optimization meth-

ods for automatic gain tuning is extremum seeking control [2],[6]. Killingsworth
and Krstic̀ [15], [16] have developed PID tuning based on extremum seeking con-
trol. This method utilizes estimation of parameters by the gradient of the function
which is known initial parameters and gotten optimized performance. In Chan et
al. [5], they have extended a controller to an automatic gain tuning method by mod-
ified extremum seeking control and applied to a multi-joint robot. They developed

3



Figure 1.2: Estimation gradient by modified extremum seeking by Kong [18]

a modified extremum seeking control method which is automatic gain tuning by
using extremum seeking control with a peak filter to obtain a cost function. This
method uses nonlinear programming to minimize the cost function. Modified ex-
tremum seeking control has been proposed by Kong et al. as in Fig. 1.2 for gradient
estimation [5], [18]. This modified extremum seeking control automatically tunes
the gain by using a gradient and updating of parameters are optimized until the cost
function is minimized to be zero. But, this method still has drawbacks, if it is used
for a long time to get results that are not fixed on the gradient. To design extremum
seeking control to obtain better performance is gradient estimation that is how to
get appropriate filters (low-pass filter, high-pass filter, peak filter, band-pass filter)
and perturbation signal parameters then updating parameters of the controller to
be optimized. The extremum seeking is different from other optimal control tech-
niques based model free, constant steady-state and also involved explicit knowledge
of relation between the parameter and steady state output of the system.

The latest approach to extremum seeking for periodic steady-state was proposed
by Haring et al. They considered a plant excited by a periodic input disturbances. A
periodic steady-state output of the plant has same period with disturbances without
explicit knowledge. They designed a cost function which take output information
for one period or estimate the output of the plant since measured one period. For sta-
bility analysis, semi-global practical asymptotic stability is taken for performance
optimization. The extremum seeking for the periodic steady-state can be applied for
automated tuning of variable damping for a mass-spring damper system, actuator
tuning for (semi-)active suspension systems with periodic disturbance, imbalances
identification and compensation in rotary systems, tuning of tracking controllers
for repetitive motion tasks of industrial machines such as pick-and place machines,
wafer scanner. The extremum seeking for periodic steady-state scheme by Haring
is described in Fig. 1.3 [8], [9].

4



Figure 1.3: Extremum seeking scheme by Haring [8]

1.3 Outline of The Dissertation
This dissertation is organized as follows. Chapter 2 describes a problem formulation
that consist of dead-zone, dead-zone compensation and system input with dead-
zone.

Chapter 3 explains discrete-time extremum seeking for steady-state together
with its convergence, process signal, extremum seeking parameters influencing on
performance and stability analysis.

Chapter 4 represents extremum seeking for dead-zone compensation and its ap-
plication to two models of a self-balancing robot. There are derived from physical
equations and multi-variables Output-Error type State-space Closed-loop subspace
model identification (CL-MOESP).

In Chapter 5, the works in the thesis are summarized and related future works
are mentioned.

Appendix A describes modelling of equations of the self-balancing robot model
derived from physical equations. Appendix B represents a procedure of CL-MOESP
identification. Appendix C is about stability analysis theorems. Appendix D ex-
plains control blocks in simulink and MATLAB programs.
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Chapter 2

Dead-Zone Compensation

Dead-zone with a dead-zone interval [−δ, δ] (δ > 0) is modelled as a nonlinear
function described as

Dδ(u) =


u − δ if u > δ

0 if |u| ≤ δ
u + δ if u < −δ

(2.1)

The function can be illustrated as in Fig. 2.1. Since dead-zone eliminates small
signals which are applied to the system, it causes insensitivity of the system. To
eliminate the dead-zone nonlinearity, we introduce another nonlinear function de-
fined by

D̂δ(û) =


û + δ if û > 0

0 if û = 0
u − δ if û < 0

(2.2)

which is illustrated as in Fig. 2.2. This nonlinear function is right inverse of dead-
zone (2.1). That is,

Dδ ◦ D̂δ = 1, (2.3)

in other words,

Dδ(D̂δ(u)) = u. (2.4)

Figure 2.1: Dead-zone

7



Figure 2.2: Right inverse of dead-zone Dδ

Figure 2.3: Dead-zone compensation

Hence, when we replace D̂δ in front of Dδ as in Fig. 2.3, we can cancel the dead-
zone.

An example of the input dead-zone can be seen in the mechanism activated by
a motor. In this thesis, we will treat the dead-zone in the motor wheel mechanism
of a self-balancing robot as modeled an inverted pendulum. In Fig. 2.4, the angle
of the body θ of the self-balancing robot is shown for the case where dead-zone is
completely cancelled, and it is not cancelled at all. The angle of the body θ exhibits
vibration when the input dead-zone in the self-balancing robot is not cancelled.

In this thesis, we consider a single-input and multi-output system which consists
of a linear time-invariant part P and an input dead-zone Dδ as shown in (2.1). As
in [26], when we know the exact value of δ, we can completely eliminate the dead-
zone nonlinearity Dδ by using its right inverse.

We take into consideration a feedback control system to use D̂δ as depicted in
Fig. 2.6. In the control system, a feedback controller C is designed to stabilize
P. In Fig. 2.6, r is the reference input, u is the control input, y is the measured
output, respectively. Unlike the ideal case where the exact value of δ is available, it
is difficult to cancel Dδ by D̂δ completely in practical application. The cancelation
error causes the steady-state vibration in the control system when P is unstable.
Then, we need to determine an appropriate value δ in D̂δ to suppress the steady-
state periodic motion in the control system.

8



Figure 2.4: The response of the angle of the body of the self-balancing robot when
it has dead-zone and no dead-zone

Figure 2.5: A system with an input dead-zone

Figure 2.6: Configuration of a feedback control system with dead-zone compensa-
tion

9
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Chapter 3

Discrete-time Extremum Seeking
Control for Periodic Steady-states

3.1 Discrete-time Extremum Seeking
Extremum seeking control is known as a powerful adaptive method to optimize the
control performance in real time. It is mainly used to optimize the control system
with a constant steady-state output. In [8], an extremum seeking scheme for peri-
odic steady-state outputs was proposed in the non-equilibrium case. In this thesis,
we consider a discrete-time version of [8] which is summarized in Fig. 3.1. The fig-
ure shows the configuration of a feedback control system with a tuning parameter δ
connected with discrete-time extremum seeking control. We consider a plant as

x(k + 1) = f (x(k), δ(k)) (3.1)
y(k) = h(x(k)). (3.2)

The extremum seeking control aims to tune the parameter δ to minimize the cost
function of performance output [8] by given as

J(δ(k)) =

 1
N

k∑
i=k−N

y(i)2


1
2

(3.3)

where N is the period of the steady-state output y. The extremum seeking scheme
uses a perturbation (dither) signal

d1(k) = a cos
2π
L

k (3.4)

with the period L ∈ Z and an estimate δ̂ of an optimal value δ∗ by applying

δ(k) = δ̂(k) + d1(k) (3.5)

to the system. We denote the estimation error by

δ̃(k) = δ∗ − δ̂(k) (3.6)

11



Figure 3.1: Discrete-time ESC scheme

To use (3.5) and (3.6), we have

δ(k) = δ∗ − δ̃(k) + d1(k). (3.7)

This perturbed signal affects (3.3). By applying the Taylor series expansion to (3.3),
we have

J(δ(k)) = J(δ∗ − δ̃(k) + d1(k))

= J(δ∗) +
∂J
∂δ

(δ∗)[(δ∗ − δ̃(k) + d1(k)) − δ∗] + 1
2
∂2J
∂δ2 [(δ∗ − δ̃(k) + d1(k)) − δ∗]2

� J(δ∗) +
∂J
∂δ

(δ∗)(d2(k) − δ̃(k) +
1
2
∂2J
∂δ2 (δ∗)(d2(k) − δ̃(k))2, (3.8)

where d2(k) denotes the time delayed signal of d1(k) due to the dynamics in the
closed-loop system as

d2(k) = a cos
2π
L

(k − φ), φ ∈ Z. (3.9)

Since J(δ) is optimal at δ∗, ∂J
∂δ

(δ∗) = 0. Hence,

J(δ(k)) � J(δ∗) +
1
2
∂2J
∂δ2 (δ∗)(d2(k) − δ̃(k))2. (3.10)

This cost function is multiplied by the demodulation signal d2(k), and applied into
a moving-average filter, also called a mean-over-perturbation-period (MOPP) filter,
over the period of d2(k). Then, the output is

ξ(k) =
1
L

k∑
j=k−L

d2( j)
(
J(δ∗) +

1
2
∂2J
∂δ2 (δ∗)(d2(k) − δ̃(k))2

)
. (3.11)
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By simple calculation, we have

k∑
j=k−L

d2( j) = 0,
k∑

j=k−L

d2
2( j) =

a2L
2
,

k∑
j=k−L

d3
2( j) = 0. (3.12)

Hence, when we can assume that δ̃( j) is constant over the period L, we have

ξ(k) = −a2

2
∂2J
∂δ2 (δ∗)δ̃(k). (3.13)

The signal ξ(k) is used to generate the estimate δ̂ by using the optimizer (the discrete-
time integrator) as

δ̂(k) = −K
1

z − 1
ξ(k). (3.14)

Here z is the time-shift operator, that is zδ̂(k) = δ̂(k+1). Hence, (3.14) is equivalently

δ̂(k + 1) = δ̂(k) − Kξ(k). (3.15)

To use (3.5) and (3.11), we can rewrite (3.15) as

δ̃(k + 1) = δ̃(k) + Kξ(k)

=

(
1 − K

a2

2
∂2J
∂δ2 (δ∗)

)
δ̃(k). (3.16)

Hence, we have next theorem.
Theorem 1.
If ∣∣∣∣∣∣1 − K

a2

2
∂2J
∂δ2 (δ∗)

∣∣∣∣∣∣ < 1, (3.17)

then an estimate δ̂ converges to the optimal value δ∗ by extremum seeking. The con-
vergence rate to the optimal value depends on the amplitude a of the perturbation

signal d1 and d2, and the gain K of the optimizer. Since the Hessian
∂2J
∂δ2 (δ∗) of J is

unknown, we should start with small values for a and K to find appropriate values.
Moreover, the following underlying assumptions are also required [8], [12].

Assumption 1. For all fixed parameter δ over the range for tuning, the stabilized
closed-loop system has a unique globally asymptotically stable steady-state solu-
tion with a constant period.

Assumption 2. The cost function J(δ) has a unique global minimum at δ∗ for
steady-state performance.

We can illustrate the signals in discrete-time extremum seeking control in Fig. 3.2.
Firstly, (a) oscillation can be seen in the measured output signal y of the plant (b)
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Figure 3.2: Process signals in the discrete-time extremum seeking control

the cost function J (3.3) is calculated to use the output signal y. Secondly, (c) the
oscilation in the output y does not appear in the cost function J in the steady-state,
then (d) J is multiplied by the demodulation signal d2 (3.9). Thirdly, (e) the de-
modulated signal is filtered by (f) the MOPP filter to produce the output signal ξ
(g). Futhermore, the output signal ξ gets in (h) the optimizer then the estimation
of dead-zone compensation of the signal (i) add with the perturbation signal d1 (j).
Fourthly, the process signal of extremum seeking automatically updates the param-
eter (k) until we get the optimal value which achieves zero of the output signal of
MOPP filter and we can see reducing oscillation in the output measured y signal (ℓ).
So, this process indicates effectively and successfully extremum seeking control for
automatically tuning parameter to optimize the control performance.

3.2 Extremum Seeking Parameters Influence on Per-
formance

The summarized algorithm for tuning dead-zone compensation by discrete-time ex-
tremum seeking consists of
1. Design of a stabilizing controller for the closed-loop system,
2. Design of the cost function of the output measurement of the system,
3. Design parameters of extremum seeking such as frequency or period of pertur-
bation or dither signal, MOPP filter, gain optimizer which check :

• Period of the output y

• Output of the cost function signal with static or constant steady-state

14



• Assumption 1 and 2 are satisfied

• Convergence by Theorem 1

Futhermore, we can design and analyse how to choose properly parameters of ex-
tremum seeking to tune dead-zone compensation for good performance and fast
rejection dead-zone. The extent of the influence of parameters can be good perfor-
mance if the parameters of extremum seeking are enlarged and reduced that will be
further describe below.

• Gain of the optimizer K
Gain optimizer K adjusts the convergence speed and stability system.

• Phase of the perturbation signal φ
In [8], the phase of the perturbation signal selects the constant φ ∈ R≥0 which
is an estimate of the sum of the time-varying delay of the plant dynamics and
the performance measure of cost function for a good chosen.

• Period of the perturbation L
Period of the perturbation signal L should be chosen larger than period of
the cost function N. So, we check the output signal of cost function before
designing period of the perturbation signal.

• Period of MOPP Filter L
Period of the MOPP filter is same with the period of the perturbation signal.

• Amplitude of the perturbation signal a
For designing the amplitude of the perturbation signal, we select small value
which is smaller than cost function value in initial parameter without ex-
tremum seeking.

3.3 Stability analysis
The stability of extremum seeking was first analyzed by Wang and Krstic̀ [19]. They
proposed averaging and singular perturbation to derive stability conditions of an
extremum seeking feedback scheme [19] in which the averaging theorem adopted
theorem 8.3 in Khalil as detail see [17] and Appendix C. To guarantee practical
asymptotic stability, Teel et al. [25] proposed a generalized Lyapunov theorem.

Stability analysis of extremum seeking for periodic steady-state suggested by
Haring et.al [8]. To apply extremum seeking, we used a stabilized controller which
stabilize the plant of system which is a Discrete-Time Linear Quadratic Gaussian
(LQG) controller to stabilize the closed-loop system. Stability of the closed loop
system is ensured by appropriate state feedback gain and state estimation gain in
LQG.

15



16



Chapter 4

Extremum Seeking for Dead-zone
Compensation and Its Application to
a Self-Balancing Robot

4.1 Self-Balancing Robot
In this section, we use discrete-time extremum seeking control discussed in the pre-
vious chapter to optimize a dead-zone compensation for the self-balancing robot
which is a commercial product called e-nuvo WHEEL shown in Fig. 4.1. The feed-
back controller C for the self-balancing robot is initially designed to use the model
based on dynamic equations and the catalog parameters, and secondly done to use
the model obtained by closed loop identification.

4.2 Models of Self-Balancing Robot

4.2.1 Physical equation based model
The equation of motion of the self-balancing robot as an inverted pendulum can be
described as

[(M + m)r2
t + Jt + mlrt cos θ(t) + iJm]θ̈(t) − mlrt(sin θ(t))θ̇2(t) (4.1)
+[(M + m)r2

t + Jt + i2Jm]φ̈ + cφ̇ = η i kt u(t).
[(M + m)r2

t + Jt + 2mlrt cos θ(t) + ml2 + Jp + Jm]θ̈(t) − mlrt sin θ(t)θ̇2(t) (4.2)
−mgl sin θ(t) + [(M + m)r2

t + Jt + mlrt cos θ(t) + iJm]φ̈ = 0

where physical parameters are defined in Table 4.1. When we assume that

sin θ(t) ≈ θ, cos θ(t) ≈ 1, θ̇2(t) ≈ 0, (4.3)

(4.1) and (4.2) can be rewritten by

[(M + m)r2
t + Jt + iJm + mlrt]θ̈(t) (4.4)

+[(M + m)r2
t + Jt + i2Jm]φ̈(t) + cφ̇(t) = η i kt u(t)
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Figure 4.1: Modeling of the Self-balancing robot (ZMP Inc.)

[(M + m)r2
t + Jt + 2mlrt + ml2 + Jp + Jm]θ̈ (4.5)

−mglθ + [(M + m)r2
t + Jt + mlrt + iJm]φ̈ = 0

As in [27], the state space continuous-time model of the self-balancing robot P
in Fig. 4.1 can be derived from physical equations as

ẋ(t) = Acx(t) + Bcu(t) (4.6)
y(t) = Ccx(t) (4.7)

where x = [θ φ θ̇ φ̇]T consists of the angle of the body θ, the relative angle of the
wheel to the body φ, the angular velocity of the body θ̇ and the relative angular ve-
locity of the wheel to the body φ̇. The control input u is electrical current. Together
with Table 4.1 [27], [28], we have Ac, Bc as

Ac =

[
02×2 I2×2

−E−1G −E−1F

]
=


0 0 1 0
0 0 0 1

104.05 0 0 0.06
−341.64 0 0 −0.37

 ,

Bc =

[
02×2

−E−1ζ

]
=


0
0

37.8
−232.7

 ,
(4.8)

where

E =

[
e11 e12

e21 e22

]
+

(
(M + m)r2

t + Jt

)
I2,

F =

[
0 c
0 0

]
, G =

[
0 0
−mgl 0

]
, ζ =

[
η i Kt

0

]
(4.9)
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e11 =e22 = mlrt + iJm

e12 =i2Jm

e21 =2mlrt + ml2 + Jp + Jm

Since we measure φ and θ̇,

Cc =

[
0 1 0 0
0 0 1 0

]
.

Table 4.1: Parameters of Self-balancing robot

Mass of the cart (tire, draft shaft ,gear) [Kg] M 0.071
Mass of the body [Kg] m 0.5392

Moment of inertia of the body [Kg m2] Jp 2.160 × 10−3

Moment of inertia of the cart [Kg m2] Jt 8.632 × 10−5

Moment of inertia of motor rotor [Kg m2] Jm 1.30 × 10−7

Length between the wheel axle and gravity center of the body[m] l 0.1073
Radius of the wheel [m] rt 0.02485

Friction of the wheel axle [Kg m2 / s] c 1 × 10−4

Torque constant of the motor [N m /A] Kt 2.79 × 10−3

Reduction ratio of the gear i 30
Efficiency drive system η 0.75

4.2.2 Closed-loop Identification Model
We obtain measurement data of the self-balancing robot commercial product e-
nuvo WHEEL and identify the state space model form the measurement data by
MOESP-type closed-loop subspace model identification (CL-MOESP) [10], [11].
The obtained model is given by

A =


1.0033 −0.0298 0.0157 −0.0061 −0.0324
0.0079 0.9102 −0.2941 −0.0299 0.0013
−0.0030 0.1140 0.2547 −0.0970 0.0403
−0.0027 0.0123 −0.1012 1.0675 0.0177
0.0003 −0.0023 0.2437 0.0403 0.9341

 ,

B =


−1.2453
0.3671
−0.1786
0.0710
−0.0063

 , D =
[
−0.0108
0.0401

]
,

C =

[
−0.0796 −0.2888 −0.0025 0.0075 −0.2407
0.0148 −0.2744 −0.8751 −0.1124 0.2605

]
.
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Figure 4.2: Experiment e-nuvo WHEEL scheme

4.3 Design of a Stabilizing Controller
To discretize the continuous-time model (4.1) and (4.2) by zero-order hold, we ob-
tain the discrete-time model

x(k + 1) = A x(k) + B u(k) (4.10)
y(k) = C x(k) . (4.11)

When we use the sampling period Ts = 0.01 sec, we have

A =


1 0 0.01 0
−0.02 1 −0.0001 0.01
1.04 0 1 0
−3.42 0 −0.02 1

 , B =


0.002
−0.01
0.38
−2.32

 ,
C = Cc .

The discrete-time model is used to design the discrete-time LQG controller [13],
[22] in Fig. 4.3 which minimizes

E

 lim
τ→∞

1
τ

τ∑
k=0

xT (k)Qx(k) + uT (k)Ru(k)

 (4.12)

where Q and R are given constant weight matrices for which Q = QT ≥ 0, R =
RT > 0, under the existence of the process noise and the measurement noise. We
assumed weight matrices Q = I4, R = 1 and covariance of the process noise W = 1
and the measurement noise V = 0.012 I2 which means rms noise 1% on each sensor
channel. The feedback gain K is derived as

K = (BT S B + R)−1BT S A, (4.13)

and the solution S = S T ≥ 0 of the associated Riccati equation

AT S A − S − (AT S B + N)(BT S B + R)−1(BT S A + NT ) + Q = 0 . (4.14)
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Figure 4.3: Discrete-time Linear Quadratic Gaussian control

The optimal L minimizing E[x(k) − x̂(k)]T [x(k) − x̂(k)] is given by L = APCT (CPCT+

V)−1 where P = PT ≥ 0 is the unique positive-semidefinite solution of discrete al-
gebraic Riccati equation. The discrete-time linear quadratic Gaussian (LQG) con-
troller is given by connecting the discrete-time linear quadratic regulator (LQR) and
the discrete-time Kalman filter according to block diagram in Fig. 4.3.

4.4 Physical equation based Model

4.4.1 Dead-Zone Compensation

In the following, we set the actual dead-zone parameter δ = 2 for the numerical
simulations. When we do not use the dead-zone compensator (this corresponds to
δ̂ = 0 in D̂, the angle of the body θ shows periodic steady periodic steady-state
motion with amplitude 0.1 rad (5.7 degree) as shown in Fig. 4.4 (a). On the other
hand, when we use the dead-zone compensator D̂δ with δ̂ = 1, the amplitude of the
periodic steady-state motion of the angle of the body θ is 0.05 rad (2.8 degree) as
shown in Fig. 4.4 (b). Although the periodic steady-state motion is much reduced
by the dead-zone compensator, it still remains due to the gap between the actual δ
and δ̂ in the dead-zone compensator. Hence, it is important to tune δ̂ to suppress the
periodic steady-state motion completely.
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Figure 4.4: The angle of the body θ of the closed-loop system with dead-zone
Dδ(δ = 2) (a) with no dead-zone compensator, (b) with dead-zone compensator
D̂δ(δ̂ = 1)

4.4.2 Extremum Seeking for Tuning of Dead-Zone Parameter

For simplicity, we use y = θ for the output for extremum seeking control and the
cost function

J(k) =

 1
N

k∑
i=k−N

θ(i)2


1
2

whereas the output for feedback control is y = [φ θ̇]T . The parameters for ex-
tremum seeking control are as follows; the amplitude and the period of the pertur-
bation signal are a = 1/16 and L = 1800, the gain of the optimizer is K = 3, the
time delay of the perturbation signal in d2 is φ = 100, the period of cost function
is N = 180. The mean-over-perturbation-period can be implemented by a FIR fil-
ter. A simulation result where tuning dead-zone compensation by the discrete-time
ESC starts at t = 200 sec is shown in Fig. 4.5 where x[0] = [0.01 0 0 0]T as the
initial variable. The dead-zone compensation parameter δ̂ converges to δ = 2.06
as shown in Fig. 4.5 (a). Although this final value is not the actual value δ = 2,
the periodic steady-state motion in the body θ is sufficiently suppressed as shown
in Fig. 4.5 (b). Indeed, the cost function J decreases to sufficiently small value as
shown in Fig. 4.5 (c). This result shows that the small gap between the dead-zone
parameter compensation and the actual one is acceptable.
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Figure 4.5: A simulation result when extremum seeking is applied for tuning of
dead-zone compensator. (a) The tuned value of dead-zone compensator, (b) the
angle of the body, (c) the cost function.

4.5 Simulation Results by CL-MOESP Identification
Model

4.5.1 Dead-Zone Compensation

We applied the discrete-time LQG regulator to make stabilized unstabled plant from
the CL-MOESP identification model of the Self-balancing robot because tuning
by the discrete-time ESC was need stabilized plant. We utilized the discrete-time
Kalman filter to estimation state and the discrete-time LQR to search state feedback
gain. We used weight matrices Q = I4,R = 1 and covariance of process noise
W = 1 and measurement noise V = 0.012I2 which means rms noise 1% on each
sensor channel. Then we set dead-zone parameter δ = 2 and the initial state as by
x0 = [0.01 0 0 0]T . So, we achieved simulation result of the CL-MOESP model
of the closed-loop system without extremum seeking with dead-zone, dead-zone
compensator and the discrete-time LQG regulator controller. When we utilize dead-
zone Dδ = 2 and do not use the dead-zone compensator D̂δ = 0, the angle of the
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Figure 4.6: The angle of the body θ of CL-MOESP model of the closed-loop system
with dead-zone Dδ (δ = 2) (a) with no dead-zone compensator, (b) with dead-zone
compensator D̂δ (δ̂ = 1)

body θ shows periodic steady-state motion with amplitude 0.2 (11.46 degree) rad
as shown in Fig. 4.6 (a). When, we use the dead-zone compensator D̂δ with δ̂ = 1,
the amplitude of the periodic steady-state motion of the angle of the body θ reduces
to 0.05 rad (2.8 degree) as shown in Fig. 4.6 (b) for the CL-MOESP identification
model.

4.5.2 Extremum Seeking for Tuning of Dead-Zone Parameter
We take the discrete-time ESC to tuning dead-zone compensation for rejecting vi-
bration which is cost function from output θ by given

J(δ) =

 1
N

k∑
i=k−N

θ(i)2


1
2

.

Afterward, we set extremum seeking parameters that are same with the previous
setting of self-balancing robot derived physical equations model. Simulation result
of the CL-MOESP model for tuning dead-zone compensation by the discrete-time
ESC are shown in Fig. 4.7 with K = 3 and in Fig. 4.8 with K = 10 which are
represented cost function of the CL-MOESP model J in Fig. 4.7 (a) is decrease
to minimum, the angle of the body of the CL-MOESP model depict for rejection
dead-zone and stabilized moving self-balancing robot in Fig. 4.7 (b), estimation
dead-zone compensation δ̂ that is achieved 2 as fit as setting dead-zone it is shown
in Fig. 4.7 (c) the tuned value of dead-zone compensator, but it needs time starting
200 second and achieved the optimal value after 500 second for K = 3 and after
250 second for K = 10. It has fastly convergence to optimal performance for gain
optimizer K = 10 but it has negative value estimation delta around 210 second.
Afterthat, estimation ξ ( Fig. 4.7 (d) ) is zero. This indicates optimal performance.
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Figure 4.7: Extremum seeking result when K = 3 for CL-MOESP model. Time
response of (a) cost function (b) the angle of the body (c) tuned parameter (d) esti-
mated gradient of the cost function

4.5.3 Analysis of Extremum Seeking Parameters
In Chapter 3, extremum seeking consists of four parameters which analyze the influ-
ence of parameters can be good performance or not if the parameters of extremum
seeking are enlarged or reduced that will be further describe below.

• Optimizer gain K
The optimiser gain K influences on the performance of the system as shown
in Fig. 4.9 by the self-balancing robot CL-MOESP model. As results when
we changed choose K = 1, 3, 10, 20, and 30 we show the cost function J
in Fig. 4.10, output θ in Fig. 4.11, estimation delta δ̂ in Fig. 4.12 and ξ in
Fig. 4.13. The performance when we use K = 10 is fastest to get optimal
value about 50 second, but it has negative value around 210 second.

• Phase of perturbation signal φ
We select six phases of perturbation signal φ that are φ = 0.1, 1, 10, 30, 100
and 200. In Fig. 4.14, we show the simulation results for tuning dead-zone
compensation by the CL-MOESP model, there are no significantly differences
in the cost function J, estimation delta δ̂, ξ and the angle of the body θ in
Fig. 4.15.

• Period of perturbation signal L
Period L of the perturbation signal is chosen larger than period of the cost
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Figure 4.8: Extremum seeking result when K = 10 for CL-MOESP model. Time
response of (a) cost function (b) the angle of the body (c) tuned parameter (d) esti-
mated gradient of the cost function

function N. We select six variations of period of the perturbation signal
which is N = 180 that consist of L = 1N, 5N, 10N, 20N, 30N, and 100N
for analysis. It can be seen comparison period of perturbation signal L with
the optimizer gain K = 3 and phase φ = 100 for the CL-MOESP model in
Fig. 4.16. The output θ with variation period of perturbation signal L can be
shown in Fig. 4.17. The best performance for variation L of simulation results
of tuning dead-zone compensation by ES is L = 10N.

• Period of MOPP Filter L
For analysis of period of the MOPP filter, it has same with period of pertur-
bation signal.

• Amplitude of perturbation signal a
To design the amplitude of the perturbation signal, we select a value which is
smaller than the cost function value. For analysis, we choose the amplitude
of the perturbation as a = 0.1134 from the cost function J = 0.1134 when
the setting dead-zone d = 2 and without dead-zone compensation also with
the optimizer gain K = 3, period of the perturbation L = 1800 and phase
φ = 100. The variations of a for analysis are 0.1a, 0.3a, 0.5a, 0.55a, a and
10a. The simulation results of tuning dead-zone compensation by ES with
comparison the amplitude a of the perturbation signal for the CL-MOESP
model represented in Fig. 4.18 and Fig. 4.19. It can be seen in Fig. 4.18 that
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Figure 4.9: Comparison of optimizer gain K for performance system of CL-MOESP
model

it is not good result when we choose amplitude of perturbation signal with
high value 10a. Hence, we should choose a value less than 1a. The value
0.55a is best because the cost function after 500 second approaches zero as
in Fig. 4.20 and estimation δ̂ approaches an appropriate value around 550
second as in Fig. 4.21.
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Figure 4.10: Comparison of optimizer gain K for performance of cost function J of
CL-MOESP model

Figure 4.11: Comparison of optimizer gain K for performance of output θ of CL-
MOESP model
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Figure 4.12: Comparison gain optimizer K for performance of estimation delta δ̂ of
CL-MOESP model

Figure 4.13: Comparison gain optimizer K for performance of ξ of CL-MOESP
model
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Figure 4.14: Comparison of different phases of perturbation signal φ with the gain
optimizer K = 3, (P = φ)

Figure 4.15: Comparison of the angle of the body θ with respect to variation of
phase of the perturbation signal φ with gain optimizer K = 3, (P = φ)
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Figure 4.16: Comparison of the period L of the perturbation signal with phase φ =
100 and the gain optimizer K = 3

Figure 4.17: Comparison of the angle of the body θ with respect to the variation the
period L of perturbation signal with phase φ = 100 and the gain optimizer K = 3
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Figure 4.18: Comparison of the amplitude a of perturbation signal with period of
perturbation L = 1800, phase φ = 100 and the gain optimizer K = 3

Figure 4.19: Comparison of the angle of the body θ with respect to the variation of
the amplitude a of perturbation signal with period of perturbation L = 1800, phase
φ = 100 and the gain optimizer K = 3
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Figure 4.20: Comparison of the cost function J of amplitude a of the perturbation
signal

Figure 4.21: Comparison of estimation δ̂ of dead-zone parameter with respect to
amplitude a of the perturbation signal
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Chapter 5

Conclusions

This dissertation describes a new techniques to compensate the dead-zone prop-
erty in real time. Some conclusions as well as shortcomings and future works are
presented.

5.1 Concluding Remarks
We conclude the dissertation as follows:

• In this dissertation, we proposed discrete-time extremum seeking control by
the moving average filter to tune input dead-zone compensation in real time
and applied it to the stabilized self-balancing robot with the dead-zone com-
pensation.

• The effectiveness of the proposed method is illustrated by numerical sim-
ulations. In the simulations, the compensation parameter converges to the
optimal value minimizing the cost function of the performance output.

5.2 Future Works
We will evaluate the proposed discrete-time extremum seeking control for eliminat-
ing dead-zone by an experiment using e-nuvo WHEEL. However, it is not easy to
apply in real time by experiment because the running of experiment e-nuvo WHEEL
is quickly while the process of tuning dead-zone parameters by computer needs time
also transfer data from computer to e-nuvo WHEEL has time-delay. Therefore, we
need to develop a method to rapidly process tuning dead-zone parameters through
micro-controllerin e-nuvo WHEEL.
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Appendix A

Model of Self-balancing Robot
derived from physical equations

A.1 Modelling of Self-balancing Robot as Inverted
Pendulum

The equation of motion of the self-balancing robot as an inverted pendulum can be
described as

[(M + m)r2
t + Jt + mlrt cos θ(t) + iJm]θ̈(t) − mlrt(sin θ(t))θ̇2(t) (A.1)
+[(M + m)r2

t + Jt + i2Jm]φ̈ + cφ̇ = η i kt u(t).
[(M + m)r2

t + Jt + 2mlrt cos θ(t) + ml2 + Jp + Jm]θ̈(t) − mlrt sin θ(t)θ̇2(t) (A.2)
−mgl sin θ(t) + [(M + m)r2

t + Jt + mlrt cos θ(t) + iJm]φ̈ = 0

where physical parameters are defined in Table 4.1. When we assume that

sin θ(t) ≈ θ, cos θ(t) ≈ 1, θ̇2(t) ≈ 0, (A.3)

(A.1) and (A.2) can be rewritten by

[(M + m)r2
t + Jt + iJm + mlrt]θ̈(t) (A.4)

+[(M + m)r2
t + Jt + i2Jm]φ̈(t) + cφ̇(t) = η i kt u(t)

[(M + m)r2
t + Jt + 2mlrt + ml2 + Jp + Jm]θ̈ (A.5)

−mglθ + [(M + m)r2
t + Jt + mlrt + iJm]φ̈ = 0

These two equations are combined into

E
[
θ̈
φ̈

]
+ F

[
θ̇
φ̇

]
+G

[
θ
φ

]
= ζu, (A.6)

where

E =
[

e11 e12

e21 e22

]
+ ((M + m)r2

t + Jt)I2, F =
[

0 c
0 0

]
, G =

[
0 0
−mgl 0

]
, ζ =

[
η i kt

0

]
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Figure A.1: Modeling of the Self-balancing robot

e11 =e22 = mlrt + iJm (A.7)

e12 =i2Jm (A.8)

e21 =2mlrt + ml2 + Jp + Jm . (A.9)

From this second order differential equation, we have the state space model as

ẋ = Acx(t) + Bcu(t) (A.10)
y(t) = Ccx(t) (A.11)

where

Ac =

[
02×2 I2×2

−E−1G −E−1F

]
, x =


θ
φ
θ̇
φ̇

 , Bc =

[
02×2

E−1ζ

]

Cc =


θ
φ
θ̇
φ̇

 .
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Appendix B

CL-MOESP Identification

B.1 CL-MOESP Procedure

Subspace model identification based on Subspace Multivariable Output-Error type
State-sPace closed-loop subspace model identification (CL-MOESP)is a powerful
identification method to obtain a multi-input multi-output model. CL-MOESP was
proposed by Hiroshi Oku, 2008. In CL-MOESP external exitation signals are used,
and it provides a state-space model based on the one-shot QR factorization.

When we are given sampled data sequences {rt}N+2k−1
t=1 , {ut}N+2k−1

t=1 , {yt}N+2k−1
t=1 . A

closed-loop system to be identified is depicted as Fig. B.1. In Fig. B.1, P is a
discrete-time linear time-invariant system, K is a stabilizing feedback controller.
The external signal v is assumed to be unknown. In addition, r1 is assumed to
be an excitation signal with a sufficient persistence of excitation property, and r2

a constant reference signal. We design block Hankel. For a given sampled data
sequence ui, the block Hankel matrix of s block rows, Ui, j is defined as

Ui, j =


ui ui+1 ... ui+ j−1

ui+1 ui+2 ... ui+ j
...

...
...

ui+s−1 ui+s ... ui+ j+s−2

 ,

where the subscript i denotes the first element of the first column and the subscript
j represents the number of columns of Ui, j. The number of block row is specified
by a user so that u is greater than the orders of P and (I + KP)−1.

The procedure of CL-MOESP is given as follows.
1. Execute the QR factorization as


R1,N

Rk+1,N

U1,N

Uk+1,N

Yk+1,N

 =


L11

L21 L22

L31 L32 L33

L41 L42 L43 L44

L51 L52 L53 L54 L55




QT

1
QT

2
QT

3
QT

4
QT

5


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Figure B.1: A closed-loop system for CL-MOESP

2. By defining

L3 :=
[

L31 L32

]
L4 :=

[
LT

41
LT

42

]
L5 :=

[
L51 L52

]
,

compute Υ
1
2 as follows

Υ
1
2 = L5PT

(
PPT

)− 1
2

P := L3 − L3LT
4 (L4LT

41)−1L4 .

3. Execute SVD of Υ
1
2

Υ
1
2 =

[
U U⊥

] [ ∑ ∑̃ ] [
V

V⊥

]T

to estimate the extended observability matrix of P. The diagonal matrix Σ ∈ ℜn×n

has n dominant singular values as its diagonal entries , and n corresponds to the
order of P.

4. An estimate of the quadruple of (A, B,C,D) of a state-space representation of
P can be obtained as follows.
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(A,C) are estimated by

Â = U†(1 : (k − 1)ℓ, :)U(ℓ + 1 : kℓ, :)
Ĉ = U(1 : ℓ, :) .

To estimate (B,D), define

[α1 α2 ... αk] := (U⊥)T

[β1 β2 ... βk] := (U⊥)T L5LT
4 (L4LT

4 )−1

U1 := U(1 : (k − 1)ℓ, :)

[
B̂
D̂

]
=

[
0 U1

Iℓ 0

]† 
α1 α2 ... αk

α2 αk
... αk

αk 0


† 
β1

β2
...
βk

 .
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Appendix C

Stability Analysis Theorems

C.1 Averaging Theorem
The averaging theorem (Theorem 8.3 in Khalil [17]) is as follows.
Consider the singularly perturbed system

ẋ = f (t, x, z, ϵ)
ϵ ż = g(t, x, z, ϵ).

Assume that the following assumptions are satisfied for all (t, x, ϵ) ∈ [0,∞] × Br ×
[0, ϵ0] for some domain Br ⊂ Rn.

• f (t, 0, 0, ϵ) = 0 and g(t, 0, 0, ϵ) = 0. That is, (x, z) = (0, 0) is an equilibrium
point.

• The equation 0 = g(t, x, z, 0) has an isolated root z = h(t, x) satisfing h(t, 0) =
0.

• The functions f , g, and h and their partial derivatives up to order 2 are
bounded for z − h(t, x) ∈ Bρ.

• The origin of the reduced system

ẋ = f (t, x, h(t, x), 0)

is exponentially stable.

• The origin of the boundary-layer system

dy
dτ
= g(t, x, y + h(t, x), 0)

is exponentially stable uniformly in (t, x).

Then there exists ϵ∗ > 0 such that, for all ϵ∗ > ϵ > 0 , the origin of the singularly
perturbed system is exponentially stable.
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Appendix D

Control Blocks Simulink and
MATLAB Programs

D.1 Control Blocks Simulink of Two-Wheeled Robot
Model

Figure D.1: Closed-loop system with the LQG controller, the dead-zone and the
plant block

D.2 MATLAB Programs
We describe the MATLAB code to obtain the discrete-time LQG controller for de-
rived physical equations of the self-balancing robot model
clear all
clc
%Parameter enuvo wheel
%——————————————————–
m = 0.5392; M = 0.071; Jp = 2.160 ∗ 10−3; Jt = 8.632 ∗ 10−5;
Jm = 1.30 ∗ 10−7; l = 0.1073; rt = 0.02485; c = 1 ∗ 10−4;
I = 30; Kt = 2.79 ∗ 10−3; eta = 0.75; g = 9.80665;
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Figure D.2: Discrete-time extremum seeking control block

Mmrt2 = (M + m) ∗ rt2; mlrt = m ∗ l ∗ rt; Js = Jp + Jt + Jm;
%——————————————————–
%step1
atheta = Mmrt2 + mlrt + Jt + I ∗ Jm;
aphi = Mmrt2 + Jt + I2 ∗ Jm;
btheta = Mmrt2 + 2 ∗ mlrt + m ∗ l2 + Js;
bphi = Mmrt2 + mlrt + Jt + I ∗ Jm;
%——————————————————–
%step2
Mm = [atheta aphi; btheta bphi];
invMm = inv(Mm);
Dm = [0 c; 0 0];
Km = [0 0;−m ∗ g ∗ l 0];
%——————————————————–
%step3 State Space Model
A = [zeros(2, 2) eye(2);−invMm ∗ Km − invMm ∗ Dm];
B = [0; 0;−invMm ∗ [eta ∗ I ∗ Kt; 0]]
C = [0 1 0 0; 0 0 1 0];
D = [0; 0];
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G = ss(A, B,C,D);
% Discrete state space model
Gd = c2d(G, 0.01,′ zoh′);
%stabilizable
checkeigenGd = abs(eig(Gd));
% Retrieve the matrices
[Ad, Bd,Cd,Dd] = ssdata(Gd);
%———————————————————
%step 4
%Get discrete LQR Servo Controller
Q = eye(size(Gd.A));
R = 1;
[K,S,e] =dlqr(Ad, Bd, Q, R);
checkeigen K = abs(eig(Ad − Bd ∗ K));
%———————————————————
%step 5
% Compute the Kalman filter gains
% Assume rms noise of 1% on each sensor channel
Rv = 0.012 ∗ eye(2);
% Input Rw
Rw = 1;
sensors = [1, 2]; % d and y are sensed
known = [1]; % force u
P = ss(Ad, [Bd Bd],Cd, [Dd Dd], 0.01);
[Observer, Ko] = kalman(P, Rw, Rv, [], sensors, known);
%step 6
%————————————————————————
% Create the regulator and the closed-loop system
% lqgregulator = lqgreg(Observer,K)
f eedin = [1]; %force u
f eedout = [1, 2]; %d and y
Gcl = f eedback(Gd, lqgregulator, f eedin, f eedout,+1);
%————————————————————————-
% Compute and plot the initial condition response
% Set x1(0) = 0.1, all others to zero.
x0 = zeros(8, 1);
x0(1) = 0.1;
f igure(1), cl f ;
initial(Gcl, x0);
% Plot all states and compare actual values with Kalman estimates;
[y, t, x] = initial (Gcl, x0, 10);
figure(2), clf;
subplot(2, 2, 1), stairs(t, x(:, [15])), grid, legend(′x1 = theta′,′ x1hat′, 0);
title(’Response of states and predictive estimates to x1(0) = 0.1′);
xlabel(’Time (s)’);
subplot(2, 2, 2), stairs(t, x(:, [26])), grid, legend(′x2 = Phi′,′ x2hat′, 0);

47



xlabel(’Time (s)’);
subplot(2, 2, 3), stairs(t, x(:, [37])), grid, legend(′x3 = thetadot′,′ x3hat′, 0);
xlabel(’Time (s)’);
subplot(2, 2, 4), stairs(t, x(:, [48])), grid, legend(′x4 = Phidot′,′ x4hat′, 0);
xlabel(’Time (s)’);
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