
A Study of Encapsulation and Antioxidant
Properties of Genistein in Caseinate and
Liposome Systems

言語: eng

出版者: 

公開日: 2017-10-05

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/40545URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


 
A Study of Encapsulation and 
Antioxidant Properties of Genistein 
in Caseinate and Liposome Systems 
 
 
 
 
 
 
 
 
 
 
  

Gemala Anjani 
JULY 2014 

 



DISSERTATION 
 

A Study of Encapsulation and Antioxidant 
Properties of Genistein 
in Caseinate and Liposome Systems 

 
 
 
 

Graduate School of Natural Science & Technology 

Kanazawa University 

 
 

Division of Material Sciences 

Course of Material Information Analysis 

 

 

Student ID : 1123132316 

Name : Gemala Anjani 

Chief Supervisor : Assoc.Prof. Akio Ohta 



 
 

Contents 
 
Content                i 

1  GENERAL INTRODUCTION      1 

1.1 Background and Overview Research……………………………..  1 

1.2 References…………………………………………………………  7 

2 SOLUBILITY OF GENISTEIN IN CASEINATE SYSTEM   11 

2.1  Introduction………………………………………………………… 11 

2.2  Experimental………………………………………………………... 13 

 2.2.1 Materials………………………………………………….. 13 

 2.2.2 Sample preparation………………………………………. 13 

 2.2.3 Hydrophobicity test……………………………………… 14 

 2.2.4 Genistein solubility………………………………………. 14 

 2.2.5 Zeta Potential, Size and Morphology……………………. 15 

2.3  Result and Discussion……………………………………………… 17 

 2.3.1 Hydrophobicity of caseinate…………………………….. 17 

 2.3.2 Solubility of genistein in caseinate………………………. 20 

 2.3.3 Solubility of genistein in caseinate-calcium ion system…. 23 

 2.3.4 Size and morphology…………………………………….. 30 

2.4  References…………………………………………………………. 34 

 

i 
 



3  ANTIOXIDANT CAPACITY OF GENISTEIN IN CASEINATE  

AND LIPOSOME SYSTEMS     38 

3.1  Introduction………………………………………………………. 38 

3.2  Experimental……………………………………………………… 41 

 3.2.1 Materials…………………………………………………..... 41 

 3.2.2 Sample preparation…………………………………………. 42 

 3.2.3 Antioxidant capacity (TEAC Assay)………………………... 43 

3.3 Result and Discussion…………………………………………….. 46 

 3.3.1 Caseinate system……………………………………………. 46 

 3.3.2 Liposome system…………………………………………… 55 

3.4 References………………………………………………………… 67 

4 GENERAL CONCLUSION      71 

 ACKNOWLEDGMENT      74 

  

 

 

ii 
 



 

 

Chapter 1 
 

GENERAL INTRODUCTION 
 
1.1 BACKGROUND AND RESEARCH OVERVIEW 

Genistein is one of isoflavone present in soybean and soy-products. Genistein 

has well known has estrogen-like chemicals, or phytoestrogen. This estrogen-like 

has the same receptor to that the original, therefore it will replace the estrogen role 

in the body, without negative effect as increasing the hormone related cancer risk. 

Furthermore it also beneficial as its phytoestrogen properties affected to hormonal 

and metabolic changes [1] with prevention of hormone-dependent cancers as 

breast cancer [2] [3] and prostate cancer [3]. The positive effect of genistein also 

inferred from the demonstrated capacity of genistein to relieve menopausal 

symptoms and enhance bone mineral density in women [4].  

 In addition, genistein is important related to its antioxidant capacity. 

Genistein fulfills many of the structural requirements considered essential for 

effective radical scavenging by flavonoids and isoflavonoids. Similar to other 

phenolic antioxidants, genistein as an antioxidant would act by scavenging 

peroxyl radicals, thereby suppressing radical chain auto-oxidations [5]. 

Antioxidant actions of the soy isoflavone genistein are believed to contribute to its 

overall chemo-preventive activities [5]. Genistein has capability to prevent 
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oxidative damage in lipid [6]. Other than the application of genistein as a complex 

food, we prefer to use genistein in pure form to increase to applicability of it in 

the wider system.  

Genistein, as can be seen in Fig. 1 is structurally hydrophobic, consequently 

poorly soluble in water system. This hydrophobic property limits the wide range 

applicability of genistein. As the other researchers also try to solve this sub 

optimal property of genistein by considerable synthetic effort made towards 

“better genistein” or “more efficient pro-genistein” [7]. Furthermore other studies 

recommended attaching these materials to amphipilic chemicals; as Crupi, et al. 

who attached these materials to amphiphlic chemicals as β-cyclodextrins. [8]. 

 

 

 

 

Fig. 1 Genistein (4`,5,7-trihydroxyisoflavone, Gen) 

 

In this study, we used caseinate and liposome as encapsulate materials of 

genistein. Casein, the major protein found in milk, is inexpensive, nontoxic, and 

highly stable. Being a natural food product, it is generally recognized as safe 

protein and is biocompatible and biodegradable [9]. Furthermore, because of their 

structural and physicochemical properties, caseins are used to deliver medicines 

and nutraceuticals. The self-assembling capability of caseins is widely recognized, 

and has been exploited by previous researchers to encapsulate various 

nutraceuticals and medicines for many purposes. Native bovine caseins or 

caseinates, comprise mixtures of αs1-,αs2, β, and κ-caseins in the ratio 4:1:3.5:1.5 
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[10]. Extensive secondary structures and permanent, well-defined tertiary 

structures have not been reported in caseins [11]. All caseins are amphiphilic and 

have been described as rheomorphic or natively disordered, implying high 

adaptability. Native casein exists in micelle form. However, unlike typical micelle 

systems, casein micelles do not assemble with their hydrophilic heads exposed 

and their hydrophobic tails buried. Instead, the αs- and β-casein fractions 

assemble with calcium phosphate and the surface is stabilized by κ-casein [12].  

 

 

 

 

 

 

 

 

 

 

Fig.2 Energy-minimized casein asymmetric sub-micelle structure i.e. one κ-casein 
variant B, four αs1-casein, two β-casein variant A2 asymmetric dimers. Orthogonal 
view of ribboned backbone without side chains; κ-casein B cyan, αs1-casein red 
and green, β-casein variant A2 backbone without O and H atoms are magenta [13]. 
 

Kumosinski et al. proposed a computational study for sodium caseinate that 

constructed from κ-casein, αs1-casein and β-casein molecules as can be seen in 

Fig. 2 [13]. This model predicted sub-micelle and micelle formation structures 

were built from the various casein monomer structures previously refined via 
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energy minimization.  

The self-assembling capabilities of caseins have been demonstrated in 

numerous studies. Huppert et al. prepared microgel and nanogel particles from 

casein micelles [14]. Semo et al. exploited casein micelles as natural nanocapsular 

vehicles for delivering lipophilic nutraceutical vitamin D [15], while Sahu et al. 

proposed curcumin–casein micelles as drug nanocarriers to cancer cells [16]. 

β-casein assemblages have also been considered as nano-vehicles for hydrophobic 

bioactive molecules.  

  

 

 

 

 

 

 

 
Fig. 3 Best docked conformations of genistein attached to β casein. Amino acids 
residues are shown in red color and polyphenol in green color [17]. 

 

Bourassa et al. argued the model attachment of geinistein to individual caseins 

as can be seen in Fig. 3 [17]. Genistein binds to caseins in hydrophobic and 

hydrophilic interaction and at different binding site to α casein and to β casein. 

However, the free binding energy for genistein-β casein is -9.97 kcal/mol, higher 

than genistein-α casein that is -9.68 kcal/mol respected of the more hydrophobic 

property of β casein. 

Liposome, in the contrary, is derives from double-chained phospholipid that 
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driven into bilayers, and resulting lamellar structures form closed vesicles. 

Liposome has well known to be encapsulating nutrients and pharmaceuticals 

drugs because of its unique structure properties as it solubilized and delivered 

hydrophobic, hydrophilic and amphiphilic materials [18]. Amphiphilic and 

hydrophilic compounds are entrapped within aqueous interior of the liposome, 

while hydrophobic compound are attached within hydrophobic region of lipid 

bilayer [19]. Liposome entrapment has been shown to stabilize the encapsulated 

materials against a range of environmental and chemical changes, including 

enzymatic and chemical modification, as well as buffering against extreme pH 

and temperature [20]. Previous study has been verified the efficiency of 

encapsulation of liposome to antimicrobial [21] and antioxidant [22].   

In this study we used both DPPC and DOPC as materials encapsulation on 

genistein. DPPC, dipalmitoyl is neutral saturated phospholipid consisting two 

palmitic acids, while DOPC, 1,2-dioleyl phosphatidylcholin composed from two 

monounsaturated fatty acids. Saiz et al. said that, basically, the outermost layer of 

lipid bilayer consist perturbed water, which has a considerably lower dielectric 

constant that the bulk and is less capable of forming hydrogen bonds with 

approaching compounds. The second layer contains water, lipid headgroups and 

the upper path of acyl chain, as the hydrophilic/hydrophobic interface is smeared 

out over a significant depth. This layer is available for non-covalent interaction 

with drugs. The third layer consists of conformationally ordered acyl-chain 

segment, which impose an anisotropic potential on hydrophobic molecules 

penetrating the membrane. Finally, the innermost layer consists of the acyl chain 

termini and is as conformationally disordered as liquid for DOPC and gel form for 

DPPC at room temperature [23]. 
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We expected that by this study genistein was embedded in the protein-base, 

micelle-like protein system and small unilamellar vesicle liposome and was 

retained its primarily antioxidant capacity. In this doctoral thesis we divide the 

discussion to be two chapters. We start this thesis discussing about the genistein 

solubility in caseinate system with and without calcium ion [24]. In this part, we 

began our study by estimating the CAC, critical aggregation concentration of 

caseins with and without calcium ion. Then, the solubility of genistein in caseinate 

system was studied by HPLC. To get the description of size and morphology of 

genistein in this system, we observed zeta potential and the structure of particle 

were observed by AFM then were confirmed by cryo-TEM. 

In the next chapter, we focused on the antioxidant capacity measurement of 

genistein in caseinate system and we compared it in liposomal composed by 

saturated DPPC and unsaturated DOPC. The method that we applied in this study 

is TEAC (trolox equivalent antioxidant capacity) with ABTS* cation 

(ABTS:2,2`-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) as radical 

scavenger [25]. We compared antioxidant capacity of genistein in its minimum 

soluble solvent, phosphate buffer, and in ethanol. The estimating of TEAC valued 

was obtained by comparing the IC50 (concentration that provide 50% inhibition 

of the antioxidant) at 6 minutes after mixture to standard trolox. All of the 

discussions in this study were summarized in the last chapter in this doctoral 

thesis. 
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Chapter 2   
  

SOLUBILITY OF GENISTEIN IN 
CASEINATE SYSTEM 
 

2.1 INTRODUCTION 

In the current study, caseinate was investigated as a model casein solution for 

encapsulating gensitein. Caseinate comprises natural mixtures of milk caseins 

with their inorganic calcium and phosphate removed. According to the 

“sub-micelle” hypothesis [1], four casein proteins form small aggregates of tens of 

molecules, weighing a few hundred thousand Daltons. These assemblages are 

called the “core polymers” of casein micelles. They contain a mixture of αs and β 

caseins polymerized via hydrophobic interaction. Further aggregation, aided by 

calcium phosphate, constructs the super polymers known as casein micelles. 

Interactions among core polymers are surface-limited by κ-casein binding to the 

four aggregate surfaces. Alternative mechanisms of micelle formation include 

calcium phosphate nano-clustering proposed by Holt [2] and the dual binding 

model of Horne [3].   

As purposed by Kumosinski et al. sodium caseinate system that composed of 

one κ-casein, four αs1-casein and four β-casein molecules attached each other in 

the following interaction [4]. Primary, two hydrophobically dimers of αs1-casein 
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interact with β-sheet `legs` of κ-casein, thus preventing amyloid formation (a 4:1 

ratio); secondly, two dimers of β-casein, held together by their C-terminal 

peptides, interact at later time with κ- and αs1- complex [4]. However sodium 

caseinate might contain particles of different composition based upon mixed 

association of the casein in sedimentation velocity studies at elevated ionic 

strength [1]. 

Despite numerous studies and debate on the interior structures of caseins and 

their assembling process, native caseins and caseinate remain incompletely 

understood. Acharya et al. [5] suggested that resveratrol (a polyphenol) strongly 

binds to sodium caseinate through hydrogen bonding and hydrophobic 

interactions. Furthermore, Bourassa et al. proposed that genistein bound the 

individual casein as α- and β-casein in hydrophilic and hydrophobic interaction. 

This indicates a potential role for sodium caseinate as a carrier of oil and water 

insoluble nutraceuticals [6].  

In this experiment, genistein was applied as a model casein 

nano-encapsulation agent with and without calcium ions, to enhance its solubility 

in a buffer system. At certain concentrations, calcium ions are believed to 

influence the solubility of caseinate. Adding small quantities of ionic calcium to 

sodium caseinate may increases the aggregation of a particular protein 

composition that can remain in colloidal suspension [7]. 
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2.2 EXPERIMENTAL 

2.2.1  Materials 

The materials that used in this study can be described as followed. Sodium 

caseinate and genistein were bought from Sigma-Aldrich (St. Louis, US) and from 

the Tokyo Chemical Industry (Tokyo, Japan), respectively. The probe that used for 

binding to the hydrophobic site of casein 8-anilino-1-naphthalene sulfonic acid 

(ANS) was purchased from MP Biomedicals LLS, (CA, US). The caseinate 

solution was made by dissolving sodium caseinate powder in 1 mM phosphate 

buffer (pH 7.4) prepared by diluting phosphate buffer stock (0.1 M, pH 7.4, 

20 °C ) purchased from Nacalai Tesque (Kyoto, Japan). Furthermore, in the study 

of HPLC, we used HPLC-grade methanol and acetic acid solvent that obtained 

from Kanto Chemicals (Tokyo, Japan) and Nacalai Tesque (Kyoto, Japan), 

respectively. The caseins of molecular weight 100 kD (1 Da = 1.66 10-27 kg) was 

used. 

 

2.2.2  Sample preparation 

  The measuring of solubility of genistein in caseinate was accomplished by 

dissolving sodium caseinate in 1 mM phosphate buffer (pH 7.4) solution. The 

genistein-casein complex was prepared by mixing 0.5 mM genistein with various 

concentrations of caseinate in the buffer solution. This mixture was stirred in a 

water bath at 25 °C) until equilibrium reached (approximately 48 h). In addition, 

to investigate the influence of calcium in the complex system, genistein and 0.6 

mM of calcium chloride were added to the caseinate solution and stirred in water 

bath with the same condition as it without calcium until reached the equilibrium 
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state and filtrated before next assessments. 

 

2.2.3  Hydrophobicity test (ANS fluorescence) 

The hydrophobicity of caseinate with and without calcium ion was measured 

by attaching this chemical to ANS probe with following steps. A 1 mM ANS stock 

solution was prepared by dissolving ANS in ethanol. Furthermore, a 1 ml of ANS 

solution was evaporated and then dissolved in the phosphate buffer solution to 

obtain a final concentration of 10 µM. The caseinate (0-5 µM) were dissolved in 1 

mM phosphate buffer at pH 7.4 prior to luminescence spectrometry. Then, those 

mixed to 10 µM of ANS, and incubated for 60 min in the dark at room 

temperature (25°C). Fluorescence emission from ANS was measured using 10/10 

nm bandwidths in excitation/emission channels. Following excitation at 350 nm, 

the emission was measured from 345 nm to 620 nm. 

 

2.2.4  Genistein solubility  

The core of this study, that are solubility of genistein in caseinate and 

caseinate-calcium system was determined by HPLC (Hitachi L-6320; Japan) with 

a UV detector operating at 262 nm. This assessment was confirmed by 

fluorescence spectrophotometry (Hitachi F-1050; Japan) at excitation and 

emission wavelengths of 262 nm and 320 nm, respectively. The sample was 

extracted by a 100 μL syringe (SGE Analytical Science; Melbourne, Australia) 

and was applied to the HPLC column (Nucleosil 100-5 C18, 4.6 x 250 nm, GL 

Science Inc. Japan). Mobile phase was programmed during 17 min. At the first 3 

min we used 75 % acetic acid : 25%, followed by 100% methanol during 3 min 

until 11 min run and 75% acetic acid in water : 25% methanol from 11 min until 
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17 min run, with the flow rate 1 ml/min. 

Genistein and calcium ions were mixed with the caseinate solution of varying 

concentration in phosphate buffer (1 mM, pH 7.4), stirred in the water bath at 

25°C until equilibrium was reached at 48 h, then applied to the HPLC column. 

Two sizes of syringe filter were used. The 1 μm filter was used for lower caseinate 

concentrations (0-2 μM), while the 0.45 μm filter was used for higher caseinate 

concentrations (2-20 μM). The genistein concentration in the system was 

estimated from a genistein standard curve Y=41214 x, R2= 0.9995. 

 

2.2.5  Zeta potential, size and morphology 

Before measurement, the samples were filtered through 1.0 μm syringe filter.  

The average size and zeta potential of caseinate sub-micelles were measured by 

Nano Particle Analyzer SZ-100 (Horiba Scientific; Japan) with 100 μL 

disposable-cell featured by carbon-coated electrodes. The scattering angle applied 

was 173°. 

2.2.5.1 AFM (Atomic Force Microscopy) 

Atomic force microscopy studies were carried out on 2 μM of caseinate 

solution in phosphate buffer with and without genistein (0.5 mM). The caseins 

were immobilized on a mica surface. Caseinate imaging was performed by an SII 

SPA 400 microscope (Japan) operating in DFM mode at room temperature. 

Images in dry air were obtained from an Al coated probe (SI-DF20, SII; Japan).  

The probe had a nominal spring constant of 14 Nm-1, and a nominal tip radius of 

a curvature of 10 nm under an applied force of 0.5-2 nN. The face figure, height, 

and structure figure of the caseinate sub-micelles were measured by particle 

analysis implemented in the AFM software. 
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2.2.5.2 TEM (Transmission Electron Microscopy) 

The morphologies of caseinate and caseinate mixed to genistein were 

determined by cryo-TEM (JEM-3100FEF, JEOL Ltd.; Japan) under an 

accelerating voltage of 300 kV. The 10 μM caseinate and 0.5 mM genistein were 

mixed in 1 mM phosphate buffer (pH 7.4) and stirred for 48 h at 25 °C until 

equilibrium was reached, then was filtrated before examination. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Hydrophobicity of caseinate   

In this study we used ANS as a probe in assessing caseinate hydrophobicity. It 

is generally accepted that pre-existing hydrophobic surface (non-polar) of proteins 

can be attached by ANS anion primarily via aniline-naphthalene group. As a 

consequence, the ANS fluorescence intensity increases with the existing protein in 

the system. Furthermore, the binding of ANS probe to caseins result in blue shift 

in the ANS fluorescence spectrum, which can be seen clearly in Fig.1, Peak A. In 

this picture, the ANS alone at excitation wavelength of 350 nm shows 

fluorescence emission spectrum at 500 nm.  In comparison, 5 μM caseinate 

mixing to ANS induces fluorescence spectrum shifting to 487 nm. Semisotnov et 

al. mentioned that the strong affinity of ANS to proteins in the “molten globule” 

state is because of the lack of tertiary structure [8]. And because caseins is a kind 

of protein that lacks of a well-defined tertiary structure, therefore the spectrum of 

ANS should be blue shifted following to its binding [9]. Together with Peak A in 

Fig.1, we can see another peak at lower wavelength, 433 nm, and indicate it as 

Peak B. This peak looks like a shoulder in the lower caseinate concentrations. 

Because of this shoulder cannot be observed in the spectra of κ-casein, [10] [11] 

αs-, and β-casein [11]. Thus, we suggest that Peak B belong to caseinate or to 

ANS-caseinate complex spectrum. 

Both of these peaks, Peak A that belong to ANS and Peak B has the same 

tendency to increase as casein is added. We assume that more hydrophobic 

regions were bound to ANS in the presence of additional caseinate. In addition, 

the more caseinate is added, the more ANS-caseinate spectrum is blue shift, 
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indicating the more hydrophobic patches of caseinate are binding to ANS. 

However, the shoulder emission band (Peak B) is unaffected (remaining in the 

445-450 nm wavelength regions regardless of casein concentration). 

Alaimo et al. mentioned that hydrophobic interactions are important in the 

self-association of milk proteins. Caseins have a high content of hydrophobic 

amino acids. The high hydrophobicity and proline contents of caseins are 

considered to prevent the formation of globular structures in which the nonpolar 

groups are completely buried in the hydrophobic interior of the protein. Thus, a 

proportion of the hydrophobic amino acids in caseins are found on the outer 

molecular surface of the casein monomers [12]. Moreover, caseins are unique 

protein refers to unfolded structure under native conditions, brought about their 

high net charge and low intrinsic hydrophobicity [13]. These hydrophobic 

surfaces are essential in casein–casein interactions and may account for the 

self-associative properties that enable colloid formation [12]. 

The hydrophobicity assessment of caseinate brings to the determination of 

CAC (critical aggregation concentration) in this system. Figure 2 presents the 

plotting of caseinate against intensity of ANS fluorescence at 500 nm. As the 

caseinate concentration increases, two trends emerge in the graph. The changing 

of gradient in this graph occurs at 0.68 μM of caseinate as the caseins begin to 

aggregate (CAC is reached). In this point, the sharper gradient change to be more 

plateau that can be explain as follow. At higher caseinate concentrations, the 

hydrophobic surfaces of caseins attach to each other, forming aggregates. 

Consequently, fewer hydrophobic sites are exposed to ANS compare to free 

caseins in lower concentrations.  

In comparison, the critical micellar concentration (CMC) of β-casein is 0.5–2 
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mg/mL (0.021–0.083 mM), at pH approximately 7 and 25 °C [14]. The CMC of 

α-casein, measured by surface tension analysis, is approximately 0.14 mg/mL 

[15]. 
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Fig. 1 Fluorescence spectra of ANS at various concentration of caseinate at 25°C 
in 1 mM of phosphate buffer at pH=7.4. Peak A belong to ANS peak at around 
500 nm, without caseinate. Peak B belong to ANS with caseinate micelle at 
around 445 nm. 

 

 

19 
 



0

100

200

300

400

0 1 2 3 4 5 6

I 50
0 

nm
/a

.u
.

[Caseinate] / mM

Y : 45.868x + 99.969

Y : 105.57x + 58.672

 

Fig. 2 Fluorescence intensity of ANS at 500 nm in different concentration of 
caseinate systems. 

 

2.3.2 Solubility of genistein in caseinate 

The solubility of genistein in caseinate system was examined by HPLC. Prior 

to this assesment, we determined the maximum-intensity monitoring wavelength 

of genistein by spectrometer and got the result as 262 nm. In order to determine 

the genistein solubility, a fixed amount of genistein was dissolved in phosphate 

buffer containing various concentrations of caseinate, and then mixed it until 

equilibrium. The mixture was filtered to remove insoluble materials. The 

genistein–caseinate complex filtrates were directly injected into HPLC and read as 

a chromatogram.  

We decided the equilibrium phase by dissolving the different concentration of 

genistein in fixed caseinate, then mixed it and checked the genistein amount by 

spectrometer every 24 hours from 0-72 hours. The equilibrium state was 
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completed when the genistein amount reached steady state, which is 48 hours. 

The content of genistein dissolved in caseins was evaluated by measuring the 

area under the maximum emission peak. All chromatograms showed a single clear 

peak at approximately 10 min retention time. The concentration of soluble 

genisten was estimated from the standard curve of genistein in methanol that is:  

Y: 41214 X; Y is area under peak and X is genistein /μM. The number of genistein 

molecules in caseinate solution was calculated by comparing genistein 

concentration with caseinate concentration in the system. The MW of casein 

sub-micelle was assumed as 100 kDa.  

In this study, we found that low concentrations of genistein (below 25 μM) 

are soluble in phosphate buffer. This is probably because the 3- hydroxyl group of 

genistein enables to bind to a water-based system. However, the solubility of 

genistein in the evaluated system is increases with increasing caseinate 

concentration (Fig 3). Again, two slopes emerge; the gradient change occurs at 

approximately 0.83 µM, higher than that of Fig. 2 (0.68 µM). This result indicates 

that adding genistein to caseinate slightly increases the CAC of the system.  

The aggregation behavior of among caseins can be explained as follows. 

Caseins have unique open structure and hydrated despite of their high 

hydrophobic amino acid content. This protein also has regions of high net protein. 

The combination of electrostatic and hydrophobic properties forms large colloidal 

aggregates. However, caseins are low internal hydrophobic proteins. Thus, the 

number of hydrophobic amino acids residing on the outer molecular surfaces of 

casein monomers is largely responsible for the interaction and self-association 

properties of caseins [12].  

At low concentrations, casein monomers (α β, and κ) self-attach and form small 
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aggregates, known as sub-micelles. In this study, the term sub-micelle defines as 

casein monomers aggregating in response to caseinate dilution in the buffer 

system. The sub-micelles then form sub-micelle aggregates.  

In order to calculate the number of genistein molecules bound to caseins, total 

concentration genistein that dissolved in caseinate (μM) is compared to caseinate 

concentration (μM) in the system. We found that below CAC, in average 10 

molecules of genistein attach to 1 molecule of caseinate. As the caseinate 

concentration increases, fewer genistein molecules attach to a given casein 

molecule.  

0

10

20

30

40

50

60

0 5 10 15 20 25

[G
en

ist
ein

] /
 µ

M

[Caseinate] / µM  
Fig. 3 Solubility of genistein against caseinate concentration. Slope of the graph 
changes at 0.83 µM.  The slopes below and above CAC are 9.3 and 1.1 
respectively. 

 

At the caseinate concentrations exceeding CAC, only one molecule of 

genistein attach to single sub-micelle aggregate (Fig.3). This behavior can be 

explained that the available hydrophobic site of caseins reduced respected to the 
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casein casein binding to form bigger aggregate. Therefore the attachment site of 

caseins to that of genistein reduced. Structural analysis showed that genistein 

binds to casein via hydrophobic and hydrophilic interactions. The number of 

genistein molecules (n) bound to α-casein and β-casein is 1.42 and 1.27, 

respectively. Polyphenol binding disrupts the α-helical structure of casein, 

indicating partial protein destabilization [6].  

 

2.3.3 Solubility of genistein in caseinate-calcium ion system 

Some studies have demonstrated that calcium ions supplied at certain 

concentrations can assist casein molecules to aggregate and remain in the 

colloidal form without precipitating. The addition of sodium caseinate and low 

ionic calcium (insufficient to form calcium caseinate precipitates) encourages the 

aggregates of a particular protein composition that can remain in colloidal 

suspension [16]. In the present study, caseinate-calcium ion aggregates are 

expected to increase the binding capacity of genistein to casein.  

2.3.3.1 Hydrophobicity of caseinate-calcium ion 

Fluorescence spectrometry with the ANS probe was used to estimate the 

hydrophobicity of caseinate mixed to calcium ion at 0.01 mM, 0.05 mM, 0.1 mM 

and 0.6 mM. To establish an equilibrium state of caseinate-calcium ions, the 

calcium ions were mixed with caseinate in the buffer system for 48 h in a water 

bath at 25 °C, followed by incubation with 10 μM ANS for 60 min.  
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Fig. 4 Fluorescence intensity of ANS vs. caseinate mixed to various concentration 
of calcium ion. Obtained CAC values are 0.72 μM, 0.86 μM, 1.02 μM, and 1.52 
μM at 0.01 mM (A), 0.05 mM (B), 0.1 mM (C) and 0.6 mM (D) of calcium ion, 
respectively. 
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Fig. 5 Variation of CAC that are influenced by calcium ion addition in caseinate 
system. 

 

Figure 4, describes the fluorescence intensity at 500 nm against caseinate 

mixed to different calcium ion concentrations. These graphs show that 

fluorescence intensity increases as more calcium ions are added to the caseinate 

system. A sharply increasing of intensity is shown at the highest presence of 

calcium ions, 0.6 mM in caseinate system. This intensity results were obtained by 

use of the cutoff filter (390 nm), beyond which the emission spectrum becomes 

very intense. As the consequences of ANS-caseinate-calcium ion binding, calcium 

ion also induce a blue shift of the emission peak spectrum of fluorescence. As 

Philippe et al. [17] reported a protein hydrophobicity increase of 6.7% following 

the addition of 13.5 mmol kg−1 of calcium chloride to milk.  

Calcium ions might activate the binding site of caseins and ANS in the system. 
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ANS can interact with other molecules in two ways: (1) by hydrophobic binding 

via its naphthalene backbone or aniline ring or (2) through the negative charge on 

its sulfonate group [18]. In casein molecules, the phosphoserine residue and 

carboxylate groups bind calcium with strong and weak affinity, respectively [19]. 

Once calcium binds to caseins, fluorescence intensity might be enhanced by one 

of two binding possibilities to ANS. More specifically, calcium ions can bind to 

ANS anions, or ANS can hydrophobically bind to caseins. Calcium ions neutralize 

the casein anions and decrease the electrostatic repulsions. Consequently, the 

hydrophobic patches exposed to ANS in the system are increased, as reflected in 

the range of fluorescence intensity. 

2.3.3.2  Critical aggregation concentration of caseinate-calcium system 

The CAC estimation in the caseinate-calcium system can be acquired by 

plotting the emission peak intensity of ANS against a fixed calcium ion in 

caseinate system. The CAC at four calcium ion concentrations, namely, 0.01, 0.5, 

0.1, and 0.6 mM, were 0.72, 0.86, 1.02, and 1.52 µM, respectively (Fig. 4). As we 

mentioned before, the CAC of the caseinate system only without calcium ions is 

0.68 µM. It is widely accepted that CAC decreases as hydrophobicity increases. 

However, this study identifies an increasing tendency of CAC with increasing 

calcium ion concentration (Fig. 5). We suggest that different binding mechanisms 

control in the presence and absence of calcium ions. 

Casein molecules have tendency to bind each other and aggregates via 

varying interaction sites on caseins. Caseins contain phosphoserine cluster and 

hydrophobic sites through which protein–protein interactions can occur. The ANS 

assay suggests that calcium ions bind to casein molecules before they aggregate, 

as evidenced by the increasing hydrophobicity in the presence of calcium ions 
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below the CAC (Fig 4). The existence of calcium in the system would probably 

change the local environment and influence the binding capacity of caseins. If 

only the hydrophobic binding dominates and encourages aggregation among the 

caseinate molecules, the CAC should decrease by presence of calcium ions. 

However obtained result in this study was reversed contrary to expectation. 

In the absence of calcium ions, the phosphoserine sites on the caseins easily 

interact with the basic amino acid side-chains on the other caseins. Calcium ions 

on the surface of casein molecules may reduce the number of these available 

binding sites for casein–casein attachment and aggregation. Consequently, the 

CAC trends are inconsistent with the ANS hydrophobicity results. We would like 

to suggest that aggregation is driven by electrostatic interactions as well as by 

hydrophobic binding. 

2.3.3.3  Zeta potential of caseinate-calcium system 

In this experiment, calcium ions of varying concentration (0–30 mM) were 

added to caseinate at fixed concentration (20 μM). Figure 6 clearly displays the 

increasing zeta potential as the calcium ion concentration increases in the 

caseinate system. In the absence of calcium ions, the zeta potential is 

approximately −54 mV. Its gradual increase reflects the neutralization of 

electronegative charges and/or redistribution of charged amino acid chains, 

possibly the redistribution of phosphorylated amino acids at the casein surface, 

with possible changes in the overall thickness of the steric layer [20]. However, as 

shown in Fig. 6, the zeta potential remains negative (approximately −10 mV) until 

5 mM calcium has been introduced to the caseinate, implying that in this system, 

the formed colloids are highly stable. This results support the previous suggestion 

that calcium ions on the surface of casein molecules reduce some of available 
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binding sites on the caseinate. 

2.3.3.4  Solubility of genistein in the caseinate-calcium system 

The solubility of genistein in caseinate-calcium in the phosphate buffer 

system was measured by HPLC. Samples for this system were prepared in the 

same way to the study of genistein solubility in caseinate solution. Calcium ions 

of varying concentration were directly dissolved in 20 μM caseinate, then mixed 

with 0.5 mM genistein in the water bath for 48 h. Following incubation, the 

mixture was centrifuged to remove undissolved materials and filtered before 

application to HPLC. Low concentrations of calcium ions in caseinate solution 

were expected to encourage large aggregates and increase the binding capacity of 

genistein to casein. However, as shown in Fig. 7, genistein solubility in caseinate 

system independent of calcium ion concentration. Although hydrophobicity 

increases as calcium ions are added, the attachment of casein molecules to 

genistein is unaffected. 

As mentioned above, the driving force of casein aggregation is altered by 

calcium ions. Instead of hydrophobic binding, calcium ions on the casein surfaces 

induce electrostatic aggregations. This phenomenon explains the less hydrophobic 

caseinate surface, on where genistein molecule can be attached each other. Under 

these conditions, hydrophobic chemicals such as genistein are excluded from the 

calcium ion–casein aggregates. On the other hand, the addition of calcium ion 

increases the CAC, and then increases the number of caseinate monomer. The 

increase of caseinate monomer produces a gain of solubility of genistein.  

Therefore, genistein solubility in caseinate system might be independent of 

calcium concentration because the both effects may compensate. 
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Fig. 6 Zeta potential of 20 μM caseinate vs. calcium ion concentration plots. 
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Fig. 7 Effect of calcium ion concentration on the solubility of genistein in 20 μM 
of caseinate system. 
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2.3.4 Size and Morphology 

The morphology of caseinate sub-micelles was investigated by AFM. 

Samples of 2 μM caseinate and/or 0.5 mM genistein in caseinate solution were 

prepared under dry conditions on a mica surface. As revealed in Fig 8A and 8B, 

all of the immobilized casein sub-micelles are wider than their height. However, 

the diameters of casein sub-micelles are defined by height rather than by width, 

because the soft micelles can deform under surface tension, and become flattened 

along the observation direction (width). Consequently, their apparent diameters 

may be larger than their true diameters. 

In the presence of genistein, the sub-micelle diameters are twice those of 

caseinate alone (24 nm versus 12 nm; Figs. 8C and 8D), although the 

sub-micelles are of similar shape (Figs. 8A and 8B). In comparison, Pitkowski et 

al. [21] characterized soluble casein by light scattering, and concluded that casein 

forms small aggregates of approximately 15 molecules with radii of 

approximately 12 nm. Farrer and Lips modeled the self-assembly of sodium 

caseinate in the dilute, semi-dilute, and highly concentrated regimes [22]. They 

identified small-micellar building blocks of 4–5 molecules, aggregated into 

structures of approximately 11 nm in diameter. 

The phase image reveals contrasting dark and bright areas over a scale of 5 

μm. Figure 8E is a phase image of a dry caseinate sample in the absence of 

genistein, showing dark spots in the bright area. On the contrary, the phase image 

of casein with genistein (Fig. 8F) reveals bright spots on dark areas. The 

assignment of bright or dark contrast in phase images to hard or soft domains is 

not always straightforward [23]. However, in this study, dark and bright spots 

clearly indicate softer and more rigid materials, respectively. The more rigid 

30 
 



bright spots might signify genistein molecules attached to the surface or to the 

narrow part of the sub-micelle. 

The caseins structure was also observed by cryo-TEM. The cryo-TEM image 

shows the sub-micelles of caseins (mean diameter 20 nm) uniformly distributed in 

the phosphate buffer solution (Fig. 9A). Casein attached to genistein forms larger 

structures than casein alone (mean diameter 30 nm; Fig. 9B), consistent with the 

AFM measurements. The sub-micelles are not appreciably larger than those of 

pure casein, because few genistein molecules are bound to the sub-micelles. This 

microscopic observation was performed on 10 μM caseinate. From the genistein 

solubility measurement, we know that at this concentration, each caseinate in the 

sub-micelle will bind a single molecule of genistein. 
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Fig. 8 Atomic force microscope images of sub-micelle of caseinate (A,C, and E) 
and sub-micelle caseinate with genistein (B,D and F). A and B are stucture images, 
C and D show sub-micelle height indecaded in the structure images. While E and 
F are phase images of sub-micelle. The white arrow point to the sub-micelle. 
Samples were 2 μM of caseinate with/without 0.5 mM of genistein in 1 mM of 
phosphate buffer at pH=7.4. 
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Fig. 9 The cryo-TEM images of casein sub micelle (A) and genistein-sub micelle 
binding (B). The sample is a 10 μM caseinate or and 0.5 mM genistein in 1 mM 
phosphate buffer pH 7.4. The scale bar is 100 nm. 
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Chapter 3  
 

ANTIOXIDANT CAPACITY OF 
GENISTEIN IN CASEINATE AND 
LIPOSOME SYSTEMS 
 
3.1 INTRODUCTION 

As we have already mentioned before that genistein fulfill many of structural 

requirements considered essential for radical scavenging by flavonoids and 

isoflavonoids. Genistein would primarily act as scavenger peroxyl radicals, a 

chain-breaking antioxidant, thus suppressing radical chain autoxidation. Genistein 

has been proposed to react with peroxyl radicals by a single electron transfer  

followed by deprotonation [1]. Therefore in this study, we used single electron   

transfer method, TEAC (trolox equivalent antioxidant capacity) to estimate 

genistein antioxidant activity. ABTS* cation was used as radical that would be 

scavenged by genistein alone or in encapsulated system.   

In chapter 2, we have already discussed about the capability of caseins in 

dissolving genistein. Therefore we will discuss the effect of this encapsulation to 

the antioxidant capacity in this mixed system. Peptides generated from the 

digestion of milk proteins are reported to have anti-oxidative activities [2]. Then it 

is expected that genistein will has synergisms effect in antioxidant capacity with 
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caseinate, as it dissolved in the caseinate system. 

Liposomes have been well applied as encapsulation materials for drugs and 

nutriceuticals regarding its stability and safety in foods and drugs application [3]. 

The main constituents of liposome are phospholipids, which are amphiphilic 

molecules containing water soluble phosphate hydrophilic head section, and a 

lipid-soluble hydrophobic tail section.   

Amphiphilic lipids are poorly soluble in water as monomers, with low critical 

micelle concentration (CMC) typically between 10-8 – 10-12 M, depending on the 

hydrocarbon chain length. The double chain lipids usually tend to form bilayer 

and driven to be closed vesicles, i.e. liposome that can be distinguished in 

multilamellar vesicles (MLV, 0.1-10 μm) and small unilamellar vesicles (SUV, 

<100 nm), large unilamellar vesicles (LUV,100-500 nm) or giant unilamellar 

vesicles (GUV, ≥1 μm). We prepared small unilamellar liposome in order to get 

liposome with and without genistein in small size < 100 nm by disturbing MLV 

and MLV-genistein complex by sonication method. Sonication produces SUV 

with radii around 30-60 nm [4].  

The possibly binding of genistein in liposome system has been studied before 

by Pawlikowska-Pawleka et al. who studied about localization and interaction of 

genistein in DPPC liposomes [5] structure DOPC and DPhyPC membrane and 

their elasticity in mixture with genistein and daidzein studied by Raghunatan et al. 

[6]. The binding of daidzein to liposome was studied by Lehtonen et al. [7]. 

Maniewska et al. studied the interaction of genistein benzyl derivatives with lipid 

bilayer [8]. Interaction of quercetin, genistein and its derivatives in lipid bilayers 

was studied by Cieslik-Boczula et al. [9]. However, the most study about 

antioxidant on membrane mostly point out of the membrane protection against 
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liposomal destruction. Antioxidant of genistein in liposomal system was studied 

by Arora et al. [10].  

It is expected that after encapsulating process, genistein can retain and 

expectantly increase its primarily functional property as antioxidant in wide range 

medium. Hence in this chapter we will discuss our study about the influence 

protein base (caseinate) and lipid base (liposome) which are encapsulated 

materials to the antioxidant capacity of genistein compared to that of trolox. Each 

liposome was formed from saturated phospholipids (dipalmitoyl 

phosphatidylcholine/DPPC), and unsaturated phospholipids (dioleoyl 

phosphatidylcholine/ DOPC), respectively. 
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3.2 EXPERIMENTAL 

3.2.1 Materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Chemical structures of materials 

 

Sodium caseinate was obtained from Sigma-Aldrich (St. Louis, US). DOPC 

and DPPC were bought from NOF Corporation. Trolox was obtained from 

Sigma-Aldrich (St. Louis, US). ABTS was subscribed from Tokyo Chemical 

Industry (Tokyo, Japan). Potassium persulfate was purchased from Wako Pure 

Chemical Industry. 1 mM phosphate buffer (pH 7.4) was prepared by diluting phosphate 
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buffer stock (0.1 M, pH 7.4, 20 °C) in distilled water purchased from Nacalai Tesque 

(Kyoto, Japan). Genistein was purchased from the Tokyo Chemical Industry (Tokyo, 

Japan).  

Tabel 1. Chemical information of caseinate (Sigma Aldrich) 

Sub unit MW/kDa pI Phosphates/moles E1% (280 nm) 

α-s1 22-23.7 4.2-4.7 8.0-10.0 10.0-10.1 
α-s2 25 ---- 10.0-13.0 --- 
β 24 4.6-5.1 4.0-5.0 4.5-4.7 
κ 19 4.1-5.8 1 10.5 

 

The structure of the chemicals were used in this study can be seen in Fig. 1.  

Cappelletti et al. mentioned about the possible site of antioxidant chemistry of 

genistein structure that is ring B [11]. Bors et al. also revealed that genistein 

considered fulfill the structural requirement as effective radical scavenging 

because it has a C-2,3 double bond in conjugation with a 4-oxo function in C-ring, 

which together can participate in electron delocalization from the B ring, 

additionally the positions of its phenolic hydroxyl groups favor a high antioxidant 

activity [12].  

 

3.2.2 Sample preparation 

3.2.1.1 Preparation of caseinate solution 

The preparation of sample in this study is similar of it for solubility test. 

Sodium caseinate was dissolved in 1 mM phosphate buffer (pH 7.4). The 

genistein–casein complex was prepared by mixing genistein (0.1, 0.3, 0.5, and 1 

mM of final concentrations) with various concentrations of caseinate (0.5 mM, 1 

mM and 2 mM of final concentrations) in the buffer solution. The mixture was 
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stirred in a water bath at 25 °C until equilibrium was reached (approximately 48 

h). Then the samples were filtrated by 1 µm filter.  

3.2.1.2 Preparation of small unilamellar vesicles (SUV) 

The encapsulation of genistein in liposomes system can be prepared as 

followed. Genistein in methanol (0.1, 0.3, 0.5, and 1 mM of final concentrations) 

and DPPC/DOPC in methanol (10, 14, 20, 25 and 30 mM of final concentration) 

were mixed in a round bottom flask. Solvent was removed in reduced pressure by 

rotary evaporator at 45 °C and the resulting film was kept under high vacuum 

condition for 1 hour. The liposome film was dissolved with 2 ml distilled water by 

vigorous shaking at temperature above the main phase transition of DPPC (45°C) 

and producing homogenous white suspension of multilamellar liposome.  

Transition temperature of DPPC is 42 °C, while DOPC is -15°C. The lipid 

suspension then was sonicated for 10 min with a 40 kHz sonicator to get small 

unilamellar liposome and filtrated by 0.45 μm filter to remove undissolved 

materials. 

 

3.2.3 Antioxidant capacity (TEAC Assay) 

The radical scavenging activity of genistein in the caseinate and liposome 

system (DPPC and DOPC) was evaluated according to Re et al. [13] in phosphate 

buffer. The measurement of this method is based on the ability of antioxidant to 

scavenge the stable ABTS radical cation in a blue/green chromophore, in 

comparison to that of trolox (a water soluble α-tocopherol analogue). To get 

ABTS* cation, ABTS in water (7 mM) was mixed with potassium persulfate (2.45 

mM) (Fig. 2) and allowed in the dark condition at room temperature for 16 h 

before use. The ABTS radical cation solution was then diluted in 0.1 M phosphate 
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buffer solution at pH : 7.4 to get an absorbance of 0.70 (±0.02) at 732 nm and 

equilibrated at 30 °C. The 20 µl of trolox standard and samples were added to 

1980 µl of this ABTS radical cation and read exactly after 1 min mixing for 

caseinate and 2 min for the liposome (DPPC and DOPC) until the next 5 minutes.  

The extent of decolorisation was expressed as percentage inhibition of the ABTS 

radical cation absorbance and plotted as a function of concentration of 

antioxidants.  

Trolox equivalent antioxidant capacity (TEAC) of genistein in caseinate and 

liposome system were defined as IC50 (concentration is needed to reach the 50% 

inhibition against ABTS* cation) of trolox standard compared to IC50 of genistein 

in caseinate or liposome system. The final concentrations of trolox measured were 

0-15 µM, and genistein in ethanol were 0-10 µM. Genistein in caseinate and 

liposome system were 1,3,5, and 10 µM, while caseinate were 0.05, 0.1 and 0.2 

µM. Liposome (DPPC and DOPC) final concentrations were 0.10, 0.14, 0.20, 

0.25 and 0.30 mM in ABTS* cationic solution. The antioxidant activity analysis 

was performed by U-2900 Hitachi Spectrophotometer. 

The percent inhibition of antioxidant was calculated by equation as follow: 

% 𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∶ 𝐴𝐴−𝐵𝐵
𝐴𝐴

× 100%  

A : Abs ABTS* cation at 732 nm 
B : Abs ABTS* cation + Antioxidant 
 

While the trolox equivalent antioxidant capacity/TEAC can be calculated as: 

𝑇𝐸𝐴𝐶 ∶  
𝐼𝐼𝐶 50 𝑇𝑟𝑖𝑖𝑙𝑖𝑖𝑥

𝐼𝐼𝐶 50 𝐴𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑖𝑖𝑑𝑎𝐼𝐼𝑖𝑖
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Fig.2 The oxidation of ABTS by potassium persulfate to generate ABTS* cation 

and its reaction with antioxidant /AOH [14] 

 

 

 

 

  

Fig. 3 The oxidation of genistein by ABTS* cation generates genistein radical. 

The electrons transfer from genistein to ABTS* cation maybe occurred in B ring. 
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3.3 RESULTS AND DISCUSSION 

In this study, standard of trolox was prepared in ethanol stock solution and 

diluted until get the final concentrations of 0-15 µM in ABTS* cation solution.  

Trolox reaction against ABTS* cation in spectrophotometer was completed in 1 

minute. From this assay, we get the IC50 of trolox standard as 9.8 µM.   

 

3.3.1 CASEINATE SYSTEM 

  The antioxidant activity of genistein can be identified as absorbance decreasing 

in highest absorption spectrum, which is at 732 nm, that belong to wavelength of 

ABTS* absorpsion (Fig. 4). This reduction was observed as the decolorisation 

ABTS* cation from blue/green to be more transparent color as consequence of 

binding of active sites in genistein molecule to the ABTS* cation. We would like 

to show by this figure that the more reduction color from its original ABTS* 

cation, describes as more decreasing peak at 732 nm. This picture also displays 

how genistein mixed to caseinate has lowest peak absorbance and caseinate`s peak 

absorbance is lower than genistein. Therefore we can expect that in this system, 

caseinate has its own antioxidant activity, and its activity is higher than genistein.  

However the quantitative calculation will be discuss more in our next discussion.   

Figure 5 illustrates the duration of ABTS* cation interaction to genistein, 

caseinate and genistein that were dissolved in caseinate system. This result 

demonstrated that until 6 minute, the reaction of genistein in phosphate buffer 

alone almost complete as can be seen as plateau graphs compare to caseinate and 

the genistein mixing to caseinate.   

The latest system (genistein mixed to caseinate) performs the tendency of sharp 
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decreasing of the graphs. That specifies how caseinate have more active sites that 

bind ABTS*cation compare to genistein. The amount of genistein and genistein 

mixed to caseinate in the system also influence the decreasing tendency of the 

graphs. That refers to more active binding sites of the chemicals to the ABTS* 

cation. In this study, we designed 6 minutes reaction as the end point to compare 

the antioxidant activity among genistein in caseinate and liposome. The mixture 

was analyzed 6 min after mixing, because this is the time usually used for 

assessing TEAC [15].   

The inhibition concentration of 50% (IC50) of system can be simply acquired 

by plotting compounds concentration and % inhibition of antioxidant to ABTS* 

cation. The influence of genistein to the IC50 of it in caseinate system the system 

can be seen in Fig. 6. The IC50 of caseinate only is the highest of all system. By 

the increasing amount of genistein in caseinate system, the IC50 value is 

decreasing, shifting to the left. It is indicating the smaller amount of genistein in 

caseinate system needed to reach 50% inhibition against radical, means as 

stronger inhibitor. However, at 5 µM and 10 µM of genistein in the system have 

almost the same value of IC50, possibly because the number of genistein 

molecule that attached to caseinate reach saturation point. This figure also 

confirms the genistein capacity as radical scavenger against ABTS* cation.  

In the contrary, Fig.7 performs how caseinate influences the IC50 of genistein 

in the mixed system. The graph shows that genistein in phosphate buffer system 

has inhibition power against radical even though in a very weak value, therefore 

we have to make interpolation from linear equation in the graph. Our study before 

showed that about 25 μM genistein can be dissolved in phosphate buffer. The 

existence of caseinate in the system, increase dramatically the inhibition power 
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against ABTS* cation that shows by the shifting of the IC50 to the left side in the 

graph. Moreover, by the increasing caseinate concentration, the IC50 of the 

system decreases. Caseinate, which is an encapsulating material, has more 

powerful inhibition against radical scavengers in the system.  

In this study, the antioxidant capacity of genistein in encapsulating system was 

determined in trolox equivalent. Table 2 performs the comparison of IC50 and 

TEAC of various genistein in caseinate system. The higher concentration of 

genistein shows the more powerful antioxidant capacity of system. The increasing 

genistein concentration in the system increases the TEAC gradually, as can be 

confirmed by TEAC of genistein alone (Table 3). This result also confirm that 

genistein alone has weak antioxidant capacity respect to its low solubility in 

phosphate buffer system. Moreover, the antioxidant capacities of genistein in 

caseinate system that are at 5 µM addition to 10 µM are only increasing slightly, 

as also mentioned before, toward saturated binding of genistein in caseinate.  

The Fig. 8 illustrates clearly the synergistic effect of antioxidant capacity of 

caseinate to genistein in the system, especially in the higher concentration. The 

sum of TEAC of genistein and caseinate alone are less that the TEAC of genistein 

in caseinate system. We suggest that caseins attach to ABTS* cation in various 

possibility, by electrostatic, hydrophilic and hydrophobic bindings. Caseins are 

unique protein as it has unfolded structure under native conditions, brought about 

their high net charge and low intrinsic hydrophobicity [16]. All casein proteins 

have different hydrophobicity and hydrophilic regions along the protein chains. 

α-Casein is major protein containing 8-10 seryl phosphate groups, while β-casein 

contains about 5 phosphoserine residues and is more hydrophobic compare to 

α-casein and κ-casein [16]. The caseinate that defined by Sigma Aldrich that we 
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used in this study have phosphates compound/moles as follows; αs1 casein, αs2 

casein, β-casein and κ-casein are 8-10, 10-13, 4-5 and 1 respectively (Tabel 1).   

The negative charge of caseins as posphoserine plays an important role in 

attaching to the ABTS* cation via electrostatic binding. Caseins have polar 

domains that contain phosporylated serine residues and their characteristic 

sequences, -SerP-SerP-SerP-Glu-Glu, are effective cation chelators. Thus, 

phosphorylated casein and/ or their peptide in aqueous phase could be a source of 

natural chelators to control oxidation. However, free amino acids could not 

substitute for caseins as antioxidant respect to its primary structure of caseins 

[17].  

Suetsuna et al. isolated and identified free radical scavenging activity from 

peptic digest of caseins [18]. The hexa-peptide, Tyr-Phe-Tyr-Pro-Glu-Leu, was 

found to possess a potent superoxide anion radical scavenging activity. The 

C-terminal dipeptide Glu-Leu sequence proved to be important for the activity.   

On the other hand, Bourassa et al. showed that polyphenols bind casein via 

hydrophilic and hydrophobic sites. Genistein binds to α-casein at residues Arg-22 

hydrophilic, while Gln-30, Phe-23, Phe-24, Phe-28, Phe-32, Pro-29 and Val-31 are 

hydrophobic. The attaching site of it to β-casein is at Gly-203, Ile-208, Leu-191, 

Leu-192, Leu-198, Phe-190, Tyr-180, and Tyr-193 are hydrophobic, while Val-197 

and Val- 209 are hydrophilic [19]. Hence, we suggest that the binding of caseinate 

to genistein might alter the caseins conformation and provide more site to be 

attached by ABTS* cation.  

The binding affinity of polyphenol to protein is size dependent and increases 

with their molecular size [20]. The binding can affect the electron donation 

capacity of the polyphenols by reducing the number of hydroxyl groups available 

49 
 



in solution and altering antioxidant activity of polyphenol [20]. However, our 

study has showed that sub-micelles are not appreciably larger than pure caseins 

because only few genistein attach to caseins after aggregation.  

The data also confirmed how the existence of caseinate in the system will 

increase the antioxidant capacity sharply (Table 4 and Fig 9). In this system, 

antioxidant capacity of genistein in ethanol that is 4.36 μM TE/μM gen 

comparable with TEAC of genistein in 0.1 to 0.2 µM caseinate at around 2.88-8.2 

μM TE/μM gen. From this study, we understand that in respect to the low 

solubility of genistein, its antioxidant capacity also very weak. The caseinate 

encapsulation increasing slightly the solubility of genistein, however the 

antioxidant capacity increases sharply. The reason is because of its high 

antioxidant capacity of caseinate alone and the synergistic effect of genistein and 

caseinate in the mixing system. 
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Fig. 4 The absorbance spectra of ABTS* cation mixed to genistein, caseinate and 
genistein in caseinate 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The effect of time to the absorbance reduction of ABTS* cation mixed to 
caseinate with and without genistein 
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Fig. 6 Concentration that provide 50% inhibition against ABTS* cation (IC50) of 
various genistein in caseinate system (in µM caseinate). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Concentration that provide 50% inhibition against ABTS* cation (IC50) 
various caseinate that is bound to genistein (in µM genistein). 
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Tabel 2. IC50 and TEAC (Trolox equivalent of antioxidant capacity) of various 
genistein in caseinate in μmol TE/ mg caseinate 

AOX / μM IC 50 / μM cas TEAC / μmol TE/mg caseinate 
Cas / Gen 0  0.27 0.36 
Cas + Gen 1  0.21 0.47 
Cas + Gen 3  0.12 0.82 
Cas + Gen 5  0.08 1.23 
Cas + Gen 10  0.073 1.34 
   
Tabel 3. IC50 and TEAC of genistein eq. to caseinate  
Genistein / μM IC 50 / μM cas TEAC / μmol TE/mg caseinate*) 
Gen 1  - 0.015 
Gen 3  - 0.045 
Gen 5  - 0.075 
Gen 10  - 0.15 
MW Caseinate : 100 kDa ; IC 50 Trolox : 9.8 μmol/L 
*) : genistein eq. to caseinate 

 

 

 

 

 

 

 

 

 

 

 

    

    Fig. 8 The TEAC value of various genistein in caseinate system 
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Tabel 4. IC50 and TEAC (Trolox equivalent of antioxidant capacity) of various 
caseinate binding to genistein in μM TE/μM gen 

 

 

 
Fig. 9 The TEAC value of various caseinate binding to genistein 
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AOX / μM IC 50 / μM gen TEAC / μM TE/μM gen 
Gen in ethanol  2.25 4.36 
Gen in PB/Cas 0  24.01 0.41 
Gen + Cas 0.05  6.4 1.53 
Gen + Cas 0.1  3.4 2.88 
Gen + Cas 0.2  1.2 8.2 
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3.3.2 LIPOSOME SYSTEM 

Phosphatidylcoline is the most common phospholipid employed in liposome 

manufacture. In this study, the preparation of genistein in liposome system was 

accomplished by directly mixing it to DPPC/DOPC in the methanol solvent 

altogether to get SUV of liposome. Moreover, the SUV with approximate size 

particle as <100 nm, was acquired by sonicating process of the MLV of DPPC and 

DOPC, that usually have size particle as 0.1-10 μm [4]. 

3.3.2.1 Antioxidant activity in DPPC  

 The encapsulation effect of liposome as SUV composed of rigid membrane, 

DPPC, to antioxidant of genistein was examined by spectrophotometer. The 

absorbance spectrum of ABTS* cation with various DPPC concentration can be 

seen in Fig 12. This picture shows clearly how the ABTS* radical absorbance 

does not change after mixed to various amount of DPPC. DPPC liposome which 

is belong to saturated phospholipid group does not have any active site that is 

attached to ABTS* cation as no decreasing graphs and decolorization detected. 

However, we see a little bit increasing absorbance of graph in DPPC 0.3 mM 

respect to its turbidity in higher concentration.  

The antioxidant capacity of genistein in DPPC liposome system was 

measured in IC50 and TEAC. Figure 13 shows the plotting percent inhibition of 

genistein in various DPPC concentrations. We cannot see the trend of IC50 in this 

picture as also confirm at Fig. 14. The IC50 of that DPPC encapsulation at 0.10 

mM, 0.14 mM, 0.25 mM and at 0.30 mM to genistein are in the range of 3.0 μM 

to 3.6 μM. In consistent with this result, trolox equivalent antioxidant capacity 

/TEAC of this system does not perform any trend.   

The antioxidant activity of genistein is very low in phosphate buffer 

55 
 



compared to it in ethanol which respect to very low solubility of genistein in 

water-base system, which is 0.41 compared to 4.36 μM TE/μM gen respectively.  

As can be seen in Table 5, DPPC encapsulation increases the antioxidant capacity 

of genistein sharply. This might be because of the increasing solubility of 

genistein as hydrophobic compound is the DPPC liposome.  

The expected arrangement of genistein to DPPC was proposed by 

Pawlikowska-Pawlega et al. [5] as shown in Fig 10. They found the broad 

distribution of genistein in membranes with high tendency to polar head group 

zone and below the head group or lipid water interface. Because of its complex 

electrostatic and hydrogen-bonded structure, the membrane interface provides 

perfect environment for partially polar molecules as flavonoids. The FTIR 

analysis of their study showed that genistein incorporates into DPPC membranes 

via hydrogen bonding between the lipid polar head group in C-O-P-O-C segment 

and its hydroxyl groups [5].  

Once attached to liposome of DPPC, the genistein changes the property of the 

membrane, genistein as isoflavone restrict the motility in all the regions with the 

greatest activity on the part of genistein in the polar head group regions [5] as also 

supported by Arora et al. [21] that mentioned about how intercalation of genistein 

into hydrophobic core take places causing a decrease in lipid fluidity in this region 

of the membrane. 

The ABTS* cation introducing, probably attached in the free hydroxyl part of 

B ring, as purposed by Arora, et al. [1]. Their studied concluded that ring B of 

genistein is the principal site of antioxidant reaction of the flavonoids. [1]. As the 

binding site of genistein to DPPC and genistein to radical is different, most likely 

there was no competitive site in binding among the molecules (Fig 10).  
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However the antioxidant capacity of genistein in various DPPC is similar 

probably because of no interaction of DPPC liposome to the ABTS* cation, or the 

electron transfer from DPPC to ABTS* cation was not occurred. Then, we explain 

the similar result of antioxidant capacity of genistein in DPPC liposome as 

saturated solubility of genistein in DPPC liposome in the range of 0.10 mM until 

0.30 mM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 The possibly binding of genistein to DPPC. A is genistein and B is DPPC. 
Genistein molecule creates hydrogen bonds between oxygen from positions 7 and 
5 and segments of DPPC, the displayed hydrogen bond`s length is not in the real 
scale [5]. ABTS* cation possibly attach to OH in B-ring of genistein [1] 
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3.3.2.2 Antioxidant activity in DOPC 

Contrasting to liposome composed by saturated DPPC, liposome of DOPC 

shows the slightly decreasing peak at 732 nm as resulted binding to ABTS* cation 

(Fig. 15). Liposome composed from DOPC is a neutral lipid contains unsaturated 

phospholipid, then it is expected that this unilamellar liposome will has radical 

scavenging power against ABTS* cation.   

Figure 16 showed the % inhibition DOPC in various concentrations without 

genistein. We confirmed the capability of ABTS* cation in attaching DOPC. 

DOPC has one double bond in each tail fatty acid hydrocarbon area, as it is 

phospholipid bilayer, then it has 2 of double bond in total. It is suggested, 

therefore, that ABTS* cation attack the double bond in the tail part of DOPC. The 

IC 50 of DOPC liposome in this system was approximately 1.67 mM.  

The plotting data of various genistein concentrations in DOPC to its % 

inhibition against ABTS* cation at 6 minutes can be seen in Fig.17. This result 

displays that, at every point of genitein, the DOPC mixing to it reaches the 

similar % inhibition to that ABTS* cation, as also can be confirmed in Fig. 18. As 

a consequence, the antioxidant capacity that estimated by trolox equivalent are 

also similar. The one possibility is because genistein reach its maximum solubility 

in DOPC liposome or its reach the saturated binding. 

Genistein encapsulated by DOPC liposome performs a very good antioxidant 

activity as it has around 4.14 μM TE/μM gen compare to 4.36 μM TE/μM gen for 

genistein antioxidant activity in ethanol. We suggest that the DOPC binding site to 

genistein is similar to it of DPPC, as saturated analog phospholipid content of 

DOPC. That is between the lipid polar head group in C-O-P-O-C segment and its 

hydroxyl group via hydrogen bonding [5] as shown in Fig. 11. Tedeshi et al. 
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proposed that flavonoids insert in DOPC bilayer, positioning between the outer 

part of the hydrophobic core and the external hydrophilic layer [22].  

Furthermore, Raghunatan et al. showed that the genistein inserted into 

hydrocarbon region in DOPC near carbonyls of lipids and decreased the bilayer 

thickness. The long axes of this flavonoid were oriented nearly parallel to the 

plane of the bilayer with their carbonyl group (C=O) pointed toward the proximal 

surface [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 The possibly binding of genistein to DOPC. A is genistein and B is DOPC. 
Genistein molecule creates hydrogen bonds between oxygen from positions 7 and 
5 and segments of DPPC. The displayed hydrogen bond`s length is not in the real 
scale [5]. Since DOPC is analog structure of DPPC, we assumed that they have 
the similar binding site to genistein. ABTS* cation possibly attach to OH in 
B-ring of genistein [1] and also the double bound of DOPC. 
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3.3.2.3 Comparison of antioxidant activity of genistein in liposomes of DPPC 

and DOPC 

This study shows that genistein encapsulated in liposome of DPPC and 

DOPC, both, have good activity against ABTS* cation, as they have comparable 

value with genistein in ethanol solution (Table 5 and 6). However, the antioxidant 

capacity of it in DOPC liposome is higher than it in DPPC liposome. It might be 

because of the elasticity of acyl chain in DOPC to attach to active site of genistein 

in the system. Maherani et al. studies showed that fluidity values of liposome 

affected by double bound and degree of saturation in lipids. The presence of 

double bonds within acyl chain resulted in a decrease of packing density and 

chain ordering in lipid bilayers and consequently increasing the liposome fluidity 

and then elasticity [23]. The elasticity chain increase the capability to attach 

another molecule, then increasing the solubility of genistein in this DOPC 

liposome. 

In addition, ABTS* cation has more attaching site to DOPC liposome than 

to DPPC liposome, as can be seen in Figs. 10 and 11. Since DOPC has double 

bond site that can be attack by ABTS* cation. Therefore, the antioxidant capacity 

total of genistein in DOPC is the sum of antioxidant of DOPC itself and 

antioxidant of genistein after dissolving to DOPC liposome, even though the 

antioxidant capacity of the DOPC liposome alone is very weak. 
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Fig. 12 The absorbance spectra of ABTS* cation with various DPPC   
concentration 
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Fig. 13 % Inhibition of genistein in various DPPC liposomes 

 

 

 

 

 

 

 

 

 

 

 Fig. 14 IC 50 of genistein in various DPPC liposomes 
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Table 5. IC50 and TEAC (Trolox equivalent of antioxidant capacity) of genistein 
in DPPC  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AOX / μM IC 50 / μM gen TEAC / μM TE/μM gen 
Gen in ethanol  2.25 4.36 
Gen in PB/Cas 0  24.01 0.41 
Gen + DPPC 0.10 mM 3.0 3.27 
Gen + DPPC 0.14 mM 3.2 3.06 
Gen + DPPC 0.20 mM 3.6 2.72 
Gen + DPPC 0.25 mM 3.2 3.06 
Gen + DPPC 0.30 mM 3.2 3.06 
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Fig. 15 The absorbance spectra of ABTS* cation with various DOPC 
concentration 

 

 

 

 
 
 
 
 
 
 
 
 

 
       

 Fig. 16 The IC50 of DOPC against ABTS* cation  
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Fig. 17 % Inhibition of genistein in various DOPC liposomes 

  

 

 

 

 

 

 

 

 

 

 

 Fig. 18 IC 50 of genistein in various DOPC liposomes 
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Table 6. IC50 and TEAC (Trolox equivalent of antioxidant capacity) of genistein 
in DOPC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 μM IC 50 / μM gen TEAC / μM TE/μM gen 
Gen in ethanol  2.25 4.36 
Gen in PB/Cas 0  24.01 0.41 
Gen + DOPC 0.10 mM 2.35 4.17 
Gen + DOPC 0.14 mM 2.36 4.15 
Gen + DOPC 0.20 mM 2.33 4.20 
Gen + DOPC 0.25 mM 2.38 4.12 
Gen + DOPC 0.30 mM 2.40 4.08 
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Chapter 4 
 

GENERAL CONCLUSION 
 

In this doctoral thesis, we discussed about how the genistein encapsulation by 

caseinate and liposome affecting its primarily property as antioxidant. This 

discussion will be started by explaining the background and purpose of this study 

in chapter 1. 

Chapter 2 of this thesis focused on the measurement of genistein solubility in 

caseinate with and without calcium ion. The hydrophobicity measurement by 

ANS-fluorescence found out that the CAC of caseinate in phosphate buffer is 0.68 

μM. Moreover, the solubility test revealed that caseins increase the solubility of 

genistein in CAC-dependent. Below the CAC, approximately 10 molecules of 

genistein attach to one caseinate, whereas above the CAC, approximately a single 

genistein molecule attaches to one casein in the sub-micelle aggregate. However, 

calcium ions existences do not influence the binding capacity of genistein in the 

caseinate system.  

The structural observation of caseinate, with and without genistein by 

Cryo-TEM shows that solely caseins in buffer solution forms small sub-micelle 

aggregates of diameter 20 nm, and increasing to 30 nm when genistein molecules 

are bound. As a comparison, according to the AFM measurements, caseinate 

sub-micelles bound to genistein are doubled in diameter (from 12 nm to 24 nm), 
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even though no significant change in surface structure.  

Furthermore, we proposed the probability of how genistein attach to this 

caseins surface from the AFM observation. The attaching of caseinate 

sub-micelles to genistein apparent as bright spots in AFM phase images, implying 

that the particles become harder, probably because genistein attaches to the 

surface or to the narrow part of the sub-micelle. This argument was supported 

with the result study of genistein attachment behavior to caseinate. The surface 

area of caseinate sub-micelles is larger before than after aggregation, implying 

that fewer genistein molecules can attach to aggregated casein sub-micelles. 

In chapter 3 we discussed about how antioxidant capacity of genistein, as 

encapsulated materials to be attached, was affected by caseinate then compared to 

liposome system. The antioxidant capacities of genistein in caseinate and 

liposome were estimated by TEAC as µM TE/µM genistein. This result showed 

that the antioxidant capacity of genistein in caseinate increased with increasing 

caseinate concentration while that of genistein was independent to liposome 

concentration. On the other hand, DOPC shows a minor antioxidant capacity 

against ABTS* cation. 

The study in chapter 2 explained that genistein slightly soluble in caseinate.  

However, caseinate alone has antioxidant activity in respect to its peptides active 

site to scavenge free radical, and also the high net charge on caseins surface.  

Therefore, it is expected that the antioxidant capacity of genistein in caseinate is 

the sum of antioxidant activity of genistein and caseinate. Moreover, this study 

discovered that antioxidant activity in caseinate system is synergic.   

The last part of this chapter explored about the antioxidant capacity of 

genistein in liposome system. It was revealed that antioxidant capacity of 
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genistein in DPPC and DOPC liposome are comparable with it in ethanol system. 

Even though, the number of it DOPC liposome provide higher capacity than it in 

DPPC. 

Hence, in this study we suggest that both caseinate and liposome are good 

encapsulation materials for genistein, in the case of antioxidant capacity in 

different mechanism. Caseinate offer the synergistic effect in increasing 

antioxidant capacity of genistein, while liposome is a good dissolving agent to 

genistein to optimize its property as antioxidant.  

Finally, the discussion of this doctoral thesis was closed by summarizing it in 

chapter 4. 

 

 

 

 
 

73 
 



 
Acknowledgment 
 
 The author would like to express her biggest gratitude to Prof. Akio Ohta, as 

her chief supervisor for his kindly help, outstanding guidance, and advice in her 

study and also in daily life during her doctoral work in Kanazawa University. 

Furthermore, the author would like to thankful to Prof. Tsuyoshi Asakawa as the 

Chief of Surface Chemistry Laboratory for his support and guidance.  

 The author wishes to thank to Prof. Tomoki Ogoshi from Kanazawa 

University for AFM experiment and Prof Kazuma Yasuhara from NAIST for 

cryo-TEM measurement. She really appreciate and thankful for the kindly reviews, 

suggestions also advices from the board of the examiner in her final doctoral 

presentation who are Prof. Akio Ohta, Prof. Tsuyoshi Asakawa, Prof. Kuoki 

Kunimoto, Prof. Tomoki Ogoshi, and Prof. Teruya Maki. 

 She also express her thankful to her sponsorship, Indonesian Scholarship 

DIKTI under the KU-DIKTI Program Student 2011. During her study, the author 

also be supported and helped by International Affair and Graduate School of 

Natural Science and Technology office.  

 Special thanks also been expressed to all of the laboratory member, who give 

her really comfortable environment to study and `feels like home` feeling during 

her study in Japan. Thanks are due to Indonesian society PPI Ishikawa, the 

Berangs Group for best support and fun accompany. Finally, she wishes to thank 

sincerely to her lovely parents and brothers for outstanding loving and support.  

74 
 


