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Abstract

Carbon nanomaterials have attracted much attention because they are candidates for post-silicon

materials. Since carbon nanotubes (CNTs) were detected and graphene was isolated from

graphite, comprehensive studies have been carried out with the aim of exploiting the properties

of these materials. In this study, by using first principles calculations, we study the interlayer

distance of the two-layer graphene and atomic hydrogen adsorption in graphenes and CNTs.

We first study layer distance of the two-layer graphene. We use a recently developed van der

Waals density functional theory (VDWDFT) as well as the local density approximation (LDA).

Both methods give successful results for graphite; i.e. the calculated interlayer distances are

comparable with the experimental value. We find that the interlayer distance of the two-layer

graphene is close to that of graphite. We also find that the AA stacking structure of the two-layer

graphene has higher energy than that of the AB stacking one and the layer distance of the AA

stacking is larger than that of the AB stacking. It is thus suggested that the interlayer distance

becomes somewhat large when the stacking deviates from the AB stacking.

Next, we study hydrogen monomers and dimers in graphene, the armchair edge (5, 5) carbon

nanotube (CNT), and the zigzag edge (10, 0) CNT because the presence of hydrogen atoms

could change the electronic properties of graphenes and CNTs, where those hydrogen atoms

are chemically attached. We find that the monomers in the above three carbon nanomaterials

have the magnetic moment of 1µB. In the case of the CNTs, the hydrogen atoms are located

on the outer side of the CNTs. In the most stable structures of the dimers in the above three

carbon materials, the two hydrogen atoms are bonded to host carbon atoms, which are nearest-

neighbors. In the case of graphene, the two atoms are located on opposite sides, whereas in the
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case of the armchair edge (5, 5) CNT and zigzag edge (10, 0) CNT, both hydrogen atoms are

located on the outer side. The electronic structures of the most stable geometries are found to be

nonmagnetic. However, when the two hydrogen atoms are bonded to second-nearest-neighbor

carbon atoms, the magnetic moment is found to be 2µB.
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Chapter 1

Introduction

1.1 Carbon Nano-Material

Carbon materials have various atomic structures (fullerenes, nanotubes, graphene and graphite)

as shown in Fig. 1.1. Experiments and computational simulations have been carried out for

revealing of their physical properties. They have been attracting much attention for the future

development of nanotechnology due to the light weight, high strength, and useful properties

of semiconductors [1], metals [1], half metals [2, 3, 4], superconductors [5, 6] and magnets

[7, 8, 9].

We are going to focus on carbon nanotubes (CNTs) and graphene. Since CNTs were de-

tected from graphite [10] in 1991, is one of the carbon allotropes withsp2 hybridization of

each carbon atom. There are two kinds of CNTs, i.e; metallic CNTs and semiconducting CNTs.

CNTs have a wide range of applications. Currently, CNTs can be applied in both atomistic level

and macroscopic level. In the atomistic level, CNTs have been used as atomic force microscope

(AFM) tip [11]. In macroscopic level, bulk CNT can be used as a composite. CNT improved

the mechanical properties of cotton fiber via the coating process [12]. Beside that, CNT also

has future applications. Electronic properties of the CNT can be tuned from metallic to semi-

conducting and vice versa. Therefore, CNTs can be used in semiconductor technology, for an

example, CNT is used in a field-effect transistor as a substitute of silicon.

1
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Figure 1.1: Carbon materials, (a) fullerenes, (b) nanotubes, (c) graphene and (d) graphite.

In 2004, long after the discovery of CNT, graphene [13] is isolated from graphite, a flat

mono-layer of carbon atoms tightly packed into a two-dimensional hexagonal lattice. It is easier

to obtain and cheaper in production. Graphene has been attracting a wide scientific interests

because of novel electronic properties. Graphene does not have a band gap and there is so called

Dirac cone at the zone bound points where the Fermi level is located. It has higher mobility than

other semiconductor materials like silicon as well as high charge carrier concentrations, which

makes graphene an interesting candidate for applications in electronic devices. The Nobel prize

in Physics for 2010 was awarded to A. K. Geim and K. S. Novoselov ”for ground breaking

experiments regarding the two-dimension material graphene”.

As mentioned above CNTs and graphenes are important materials for future electronic de-

vices. In this study, we first carry out calculations of two-layer graphene to investigate layer

distance. Next we focus on the calculations of atomic hydrogen adsorption in graphenes and

CNTs.
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1.2 Two-layer graphene layer distance

Two-layer graphene is one of the carbon materials as shown in Fig. 1.2. Nowadays, few-layer

graphenes (FLG) are technologically important in semiconductor applications, due to gate con-

trol of the transport properties. Recently FLG with less than ten layers each show a distinc-

Figure 1.2: Two-layer graphene having AB stacking (a) and AA stacking (b) structures.

tive band structure [14] . There is thus an increasing interest in the physics of FLGs, with or

without Bernal stacking [15, 16, 17] and their application in useful devices. The electronic

properties of the few-layer graphene are different from that of the single-layer graphene and

this difference raises scientific problems. In the case of the two-layer graphene, for an example,

electric field opening of the band gap was theoretically predicted and experimentally confirmed

[18, 19, 20, 21, 22, 23]. To study the electronic properties of few-layer graphenes, it is essential

to clarify the interlayer distance but the distance is still unclear.

1.3 Atomic hydrogen adsorption

As carbon nanotubes (CNTs) were detected [10] and graphene was isolated from graphite [13],

comprehensive studies have been carried out with the aim of exploiting the properties of these

materials. Among a variety of applications of carbon nanostructure, hydrogen storage is con-

sidered strong candidate. Hydrogen is a common impurity in carbon materials. Hydrogen has

a lower mass that makes more easily adsorbed and diffuses on the graphene layer which lower

activation energies. Whereas the hydrogen molecules are physisorbed on carbon materials, hy-

drogen atoms are chemisorbed. Chemisorption of the hydrogen atoms to the carbon atom in

graphene and CNT changes the hybridization of the carbon atoms fromsp2 to sp3. Therefore,
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this causes changing in atomic, electronic, and magnetic properties of the carbon material. This

is very interesting because we could obtain materials with different properties, which consist

of only hydrogen and carbon atoms. Thus, interactions between carbon material and hydrogen

show great interest due to widely future applications.

Under atomic hydrogen atmospheres, hydrogen atoms are chemisorbed on graphene and

CNTs [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Scanning tunneling

microscopy and photoluminescence spectroscopy showed that some hydrogen atoms are chemi-

cally adsorbed on carbon materials [36, 37, 38, 39, 40]. Then, first-principles calculations were

performed for chemisorbed hydrogen [24, 25, 26, 27, 41, 42, 43]. Duplock et al. [28] first

showed that upon adsorption of hydrogen on graphene a band gap can be opened. As a result,

it became clear that hydrogen significantly affects the physical properties of carbon nanoma-

terials. Hydrogen adsorption was found to affect the field emission of capped CNTs [44]. It

is already well understood that atomic hydrogen adsorption may be a promising way to create

magnetism [45, 46, 47]. This result indicated that the magnetism of carbon nanomaterials can

be controlled by hydrogen chemisorption.

The electronic structure of hydrogen monomers in graphene has been well theoretically

studied [24, 29, 48]. These theoretical studies showed that hydrogen is bonded to a host carbon

atom and has a magnetic moment of 1µB [24]. For dimers in graphene, the geometry where

the two hydrogen atoms are on the same side has been studied [24, 25, 33, 34]. However, as

mentioned later, we find in this study that this geometry is metastable. Details of the electronic

structures, including the magnetism of the monomers and dimers in the CNTs are still unclear.

1.4 Purposes of this research

As mentioned above, in section 1.2, we discuss that the layer distance of the two-layer graphene

is important in the field of carbon nanomaterials and also the nearest layer interaction is van

der Waals type. Therefore, in order to investigate layer distance of the two-layer graphene

VDWDFT is appropriate. Moreover, in section 1.3, we also discuss that chemisorption of
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hydrogen can change in atomic, electronic and magnetic properties of carbon materials. As

carbon-based materials attract much attention as candidates for the future electronic devices,

we study interlayer distance of the two-layer graphene and atomic hydrogen adsorption in car-

bon nano-materials by simulation. Material simulation is needed to reduce of error to make

a material device in the real life and also minimize enormous costs involved in any material

handling project.

First we concentrate our study to find out interlayer distance of the two-layer graphene.

Recently FLGs attract wide scientific interests but little is known for the interlayer distance.

The interaction between the nearest layer is a van der Waals type. As we know conventional

DFT (generalized gradient approximation (GGA)) is usually insufficient to include van der

Waals interaction. GGA cannot be used for systems in which the vdW interaction makes a large

contribution. We confirmed that GGA fails to reproduce interlayer distance. Therefore, van der

Waals density functional theory (VDWDFT) is important to investigate interlayer distance of

the two-layer graphene. Since layer distance is very fundamental physical quantity, we perform

first-principles calculations. We employ VDWDFT and local density approximation (LDA).

Next we study atomic hydrogen adsorption on carbon nanomaterials. Hydrogenation is

promising way to create magnetism. To understand the effect of hydrogen adsorption, the study

of monomers and dimers is necessary since they are fundamental hydrogen impurities in carbon

materials. There will be some difference between graphene and CNTs. To clarify the curvature

effect, we study armchair (5, 5) edges CNT, zigzag edges(10, 0) CNT as well as graphene

which is planar. The effects of hydrogenation in multi-layer graphenes are also considered. In

this study, we report details of electronic structures, including magnetism of the monomers and

dimers of graphenes and CNTs.

It is experimentally difficult to investigate the magnetic state in carbon nanomaterial by

atomic hydrogen adsorption. Thus, this work is very important and significant in the field

nanomaterials.
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1.5 Structure of the thesis

In this thesis, the executional theories are explained in the Chapter 2. In the chapter 3, we

reported our results by using a recently developed VDWDFT as well as the LDA. Both methods

give successful results for graphite; i.e., the calculated interlayer distances are comparable with

the experimental value. We find that the interlayer distance of the two-layer graphene is close

to that of graphite. In Chapter 4, we report the study of hydrogen monomers and dimers in

graphenes, the armchair edge (5, 5) carbon nanotube (CNT), and the zigzag edge (10, 0) CNT.

We find that the monomers in the above three carbon nanomaterials have a magnetic moment of

1µB. In the case of the CNTs, the hydrogen atoms are located on the outer side of the CNTs. In

the most stable structures of the dimers in the above three carbon materials, the two hydrogen

atoms are bonded to host carbon atoms, which are nearest-neighbors. In the case of graphene,

the two atoms are located on opposite sides, whereas in the case of the armchair edge (5, 5)

CNT and zigzag edge(10, 0) CNT, both hydrogen atoms are located on the outer side. However,

when the two hydrogen atoms are bonded to the second nearest carbon atoms, the magnetic

moment is found to be 2µB. We show spin density distributions occurred by monomers and

second-nearest-neighbor dimers. Finally, I summarize this work in Chapter 5.



Chapter 2

Theory and Calculational details

The results shown in this dissertation is based on the first-principles quantum-mechanical cal-

culations. It simply says that no empirical parameters are employed in simulations to compute

the electronic properties of a system, but only the atomic numbers and positions are inputs to

a calculation. Due to an increase in processing power of the computer in the past few decades,

it is possible to perform first-principles calculations on a larger and more realistic system. The

calculations acquire a degree of accuracy, which enables direct comparison to experiments.

In this chapter, a brief overview of the theoretical methods is explained. We use the PHASE

[49] calculation code. The PHASE is based on density functional theories (DFT), the pseu-

dopotentials, and plane wave basis set. We explain the theoretical background in section 2.1.

In section 2.2 density functional theory is denoted. The exchange and correlation functionals,

plane wave methods, and pseodopotentials are described in sections 2.3, 2.4 and 2.5, respec-

tively. We explain van der Waals density functional theory (VDWDFT) and calculational details

in section 2.6, and 2.7, respectively.

7
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2.1 Theoretical Background

The Hamiltonian of a fully interacting system consisting of many electrons and nuclei is

expressed as:

Ĥ = T̂e + T̂n + V̂ee + ˆVnn + ˆVext (2.1)

whereT̂e, T̂n, V̂ee, ˆVnn, and ˆVext are the many electron kinetic energy operator, many-nucleus

kinetic energy operator, the electron-electron interaction energy operator, many-nucleus kinetic

energy operator,and the electron-nucleus interaction energy operator, respectively.

They are expressed as following:

T̂e = −1
2

∑N
i ∇2

i (ri)

T̂n = −1
2

∑
j

1
Mj

∇2
i (Rj)

V̂ee =
1
2

∑
i̸=j

1
|ri−rj |

ˆVnn = 1
2

∑
i̸=j

ZiZj

|Ri−Rj |

ˆVext = −
∑

i,j
Zj

|Ri−Rj |

(2.2)

where theMi,Zi, andRi are the mass, atomic number and position of the nucleusi respectively.

The Schr̈odinger eigenvalue equation of this system is given by:

ĤΨ = EΨ, (2.3)

where the system wavefunctionΨ depends on all configuration variable which is expresses as:

Ψ = Ψ(r1,R1, r2,R2, .....). (2.4)

This equation is defined in3M+3N -parameter space, and it is too complex if not impossible

to solve for all but the simplest systems.

Considering the mass of a nucleus is far from that of an electron, we can assume that the

motion of the nuclei is negligible compared to that of the electrons and fix their positions. By

employing this, we can neglect̂Tn and ˆVnn and rewrite it as a problem of many electrons in an

external potential ˆVext generated by the stationary nuclei:
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Ĥ = T̂ + V̂ee + ˆVext, (2.5)

The Schr̈odinger equation of this system is expressed as:

ĤΨ =

[
−1

2

N∑
i

∇2 +
1

2

∑
i̸=j

1

|ri − rj|
−

∑
i,j

Zj

|Ri −Rj|

]
Ψ = EΨ, (2.6)

with Ψ now the many-electron wavefunction,

Ψ = Ψ(r1, r2, .....). (2.7)

This approximation method is called theBorn-Oppenheimer approximation and is em-

ployed in all systems that are more complex than the hydrogen atom.

We know that it is possible to find the total ground state solution if we are capable of finding

the ground state solutions for fixed nuclear configurations, our problem is reduced to finding

these electronic ground state solutions. For this, it is useful to introduce some additional ap-

proximations, such as variation principle and Hartree-Fock approximation. Before we explain

Hartree-Fock approximation, first we discuss the variation principle.

2.1.1 The variation Principle

To find any eigenfunction of the Hamiltonian operator is an impossible task, but we may con-

sider all the (many-body) eigenfunctionsϕi were known. Assuming that the set of these eigen-

functions is complete, we may expand any other wavefunctionsψ of the system with the same

number of electrons. We, therefore, write down the following expansion.

|Ψ⟩ =
∑
i

ci|ϕi⟩ (2.8)

whereci are the expansion coefficients. The eigenstates|ϕi⟩ are assumed to be orthonormal.

The wavefuntion is assume to be normalized, then the expectation value for the energy of the

wavefunction is given by:

E = ⟨Ψ|Ĥ|Ψ⟩ =
∑
i,j

c∗jci⟨ϕi|Ĥ|ϕj⟩ =
∑
i

|c2i |Ei ≥ E0

∑
i

|c2i | = E0 (2.9)
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with E0 the lowest eigenvalue of̂H , i.e. the ground state energy. The expectation value of

the energy of any wavefunctionψ is thus higher than or equal to the ground state energy. This

result is very important as this allows us to search for the ground state wavefunction and energy

by testing different ‘trial wavefunctions’. It also accepts the state corresponding to the lowest

energy as the best approximation of the true ground state.

Now the problem is to find out a good trial wavefunctions. In practice, the approximate

wavefunction is written in terms of one or more parameters:

Ψ = Ψ(p1, p2, ......, pN) (2.10)

So, the expectation value for the energy, E, is a function of these parameters and can be

minimized with respect to them by requiring that

∂E(p1, p2, ......, pN)

∂p1
=
∂E(p1, p2, ......, pN)

∂p2
= ............ =

∂E(p1, p2, ......, pN)

∂pn
= 0 (2.11)

Let us assume that the approximate wavefunction for a given system may be expanded in

terms of a particular set of plane waves. Because we cannot work with an infinitely many

numbers of plane waves, we truncate the sum and just consider the first N terms:

ϕ =
N∑
j

cj exp(−ik · rj) (2.12)

In order to get a good approximation ground state, we would like the above expansion to

satisfy the minimum condition, i.e:

∂

∂c∗j

⟨ϕ|Ĥ|ϕ⟩
⟨ϕ|ϕ⟩

= 0 (2.13)

for eachcj. In addition, we require the approximate wavefunction to remain normalized:

⟨ϕ|ϕ⟩ = 1 (2.14)

which then we can rewrite Eq.(2.13) as:

∂

∂c∗j
⟨ϕ|Ĥ|ϕ⟩ = 0 (2.15)
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for all cj. We can satisfy Eq.(2.14) and Eq.(2.15) by introducing a new quantity which is

expressed as:

K = ⟨ϕ|Ĥ|ϕ⟩ − λ [⟨ϕ|ϕ⟩ − 1] (2.16)

and extending the minimization property to include extra parameterλ,

∂K

∂c∗j
=
∂K

∂λ
= 0 (2.17)

hereλ is called theLagrange multipliers. Inserting the expansion in Eq.(2.12) into Eq.(2.17),

we get

∑
j

cj

(
⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩ − λ⟨exp(−ik · ri)|exp(−ik · rj)⟩

)
= 0 (2.18)

We can write in the form of a generalized eigenvalue equation,

∑
j

Hijcj = λδij (2.19)

whereHij = ⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩ andδij = ⟨exp(−ik · ri)|exp(−ik · rj)⟩. We can

solve these N equations (i = 1, 2, ........N ) by calculating the matrix elementHkj andδij. If

we use N basis functions to expand the trial functionϕ, Eq.(2.12) then gives N eigenvalues. By

multiplying Eq.(2.18) withc∗i and summing overi we get the following expression;

λ =

∑
i,j c

∗
i cj⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩∑

i,j c
∗
i cj⟨exp(−ik · ri)|exp(−ik · rj)⟩

(2.20)

Eq. (2.20) implies that each of the N eigenvectors correspond to a series of expansion coeffi-

cients yielding differentϕ and eachλ corresponds to a different expectation value. The eigen-

vector corresponds to the smallest eigenvalue then corresponds to the bestϕ and the smallest

eigenvalue itself is the closest approximation to the ground state energy.

2.1.2 The Hartree-Fock approximation

A major problem with trying to solve the many-body Schrödinger equation is the representation

of the many-body wavefunction. In 1920, Douglas Hartree [50] developed an approach named

after himself called the Hartree approximation. He simplified the problem of electron-electron
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interactions by expanding the many electron wavefunction into a product of single electron

wavefunction which is capable of solving the multi-electron Schrödinger equation of the wave-

function. With this hypothesis and the use of thevariation principle , need to be solved N

equations for an N single electrons system, with wavefunction,Ψ(ri):

ΨH(r1, r2, r3, .........rN) =
1√
N
ϕ(r1), ϕ(r2), ϕ(r3), .........ϕ(rN) (2.21)

whereΨ(ri) is composed of spatial wavefunctionϕ(ri).

However, the Hartree approximation does not account for exchange interaction as Eq.(2.21)

does not satisfyPauli’s exclusion principle. According toPauli’s exclusion principle it is

known that Hartree approximation fails as the Hartree product wavefunction is symmetric not

antisymmetric.

We need to establish such as a reasonable approximation which has good physical meaning.

Hartree and Fock introduce an approximation method that deals with electrons as distinguish

particle. In the Hartree-Fock scheme, the system with N-electron wave function is approximated

by antisymmetricfunction.

The Hartree-Fock scheme is always described asSlater Determinantsuch as:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN/2(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN/2(r2)

...
... · · · ...

ϕ1(rN) ϕ2(rN) · · · ϕN/2(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.22)

or in short:

ΨHF =
1√
N !
det

∣∣(r1)ϕ2(r2).......ϕN/2(rN)
∣∣ (2.23)

with additional orthonormal constraint

∫
ϕ∗
i (r)ϕi(r)dr = ⟨ϕi|ϕj⟩ = δij (2.24)

With the above Slater Determinant, we can be determined the HF energy by taking the expec-

tation value of the Hamitonian Eq.(2.6). It can be expressed by the given equation:

E = ⟨ΨHF |Ĥ|ΨHF ⟩ = 2

N/2∑
i

hi +

N/2∑
i

N/2∑
j

(2Ji,j −Ki,j) (2.25)
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the first term of the Eq. (2.25) indicates the kinetic energy of electrons and interaction between

electrons-nuclei, then the second term represents the interaction between two electrons called

Coulomb and exchange integrals, where: where

hi =

∫
ϕ∗
i (r1)ĥϕi(r1)dr1 (2.26)

Jij =

∫ ∫
ϕ∗
i (r1)ϕi(r1)

1

|r1 − r2|
ϕ∗
j(r2)ϕj(r2)dr1dr2 (2.27)

Kij =

∫ ∫
ϕ∗
i (r1)ϕj(r1)

1

|r1 − r2|
ϕ∗
j(r2)ϕi(r2)dr1dr2 (2.28)

The termJij are called Coulomb integrals, which are already present in the Hartree Approx-

imation. On the other hand, the exchange integralKij are represented something new. Mention

that it is not necessary to exclude the termi = j from the double summation in equation Eq.

(2.25), it is becauseJij = Kij.

In order to understand in a simple way about Coulomb and exchange in Eq. 2.25, we con-

siderVHF as Hartree-Fock potential. This potential describes the repulsive interaction between

one electron with others N-1 electrons averagely, consists Coulomb operatorĴ and exchange

operatorK̂.

Ĵϕ(r) =

∫
dr2

|ϕj (r2)|2

|r1 − r2|
ϕi(r1) (2.29)

K̂ϕ(r) =

∫
dr2

ϕ∗
j (r2)ϕi(r2)

|r1 − r2|
ϕj (r1) (2.30)

In the Eq. (2.29) is called thêJ is called the coulomb operator. In order to understand the

meaning of the Coulomb operator, suppose we have two electrons in different positionsr1 and

r2 in such spin orbitalϕi. These electrons will repel each other, which in Hartree-Fock scheme.

The repulsive force of the first electron due to second electron is weighted by the possibility of

the existence of the second electron itself at this spatial point. This Coulomb operator is called

local as its expectation value only depends on the spin orbital atr1.
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The termK̂ in the Eq.(2.30) is defined exchange operator. This operator comes out to avoid

the self-interaction in one electron. Of course, this is an important point as it is meaningless

if we had to calculate the Coulomb interaction between one electron with itself. We may call

exchange operator as non local because the result of the exchange operator on an orbital,ϕi,

depends on theϕi at every point in space. It is an important point that the non-local exchange

operatorK̂ highlighted when we operate its with spin orbital, ie.ϕi on spin: By puttingϕi(r) =

ϕi(r, σ) in Eq. (2.30) we can find that the exchange interaction only affects electrons with like

spins. The Hartree-Fock theory reduces the energy expectation value as electrons of like spin

are kept apart. The exchange energy is the difference between the Hartree and Hartree-Fock

values.

The Hartree-Fock theory does nothing to keep electrons with opposite spin away. Such

electrons can interact only through the average charge density appearing in coulomb operator.

There is no pairing interaction to make it disagreeable for electrons of opposite side come

together. This suggests that the ground-state energy calculated in Hartree-Fock theory is always

higher than the true ground-state energyEHF > E0.

The Hartree-Fock scheme is constructed based on the effective wavefunction and potential.

We guess the first set input of Slater determinant based on Pauli’s principle for the system, so

we have reasonable approximation wave function. Then we construct the potential operator

with emphasizing the electron’s interaction that taken account averagely and considering the

self-interaction in one electron. Next iteration is done based on the new orbitals from previous

calculation until we reach the threshold point. This technique is also known asself-consistent

field (SCF).

2.2 Density Functional Theory (DFT)

The Hartree-Fock equations deal with exchange exactly; however, the equations neglect more

detailed correlations due to many-body interactions. The effects of electronic correlations are

not negligible. The requirement for a computationally practicable scheme that successfully
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incorporates the effects of both exchange and correlation leads us to consider the conceptually

disarmingly simple and elegant density functional theory(DFT). Nowadays, DFT is an efficient

and practical method to describe ground state properties of materials due to high computational

efficiency and good accuracy. The idea of DFT is to describe interacting system via electron’s

density, not wave functions. DFT is totally based on two theorems stated by Hohenberg and

Kohn [51]. Here we explain the two theorems as following:

2.2.1 Hohenberg-Kohn Theorems

There are two important theorems that can be resumed from Hohenberg-Kohn work. The the-

orems support us for determining the Hamiltonian operator, and the properties of the system

based on electron density point of view. The electronic densityn(r) is expressed as:

n(r) = N
∑
s1

...
∑
sN

∫
...

∫
|Ψ(r, s1, r2, s2, .......rN, sN)|2dr2......drN (2.31)

∫
n(r)dr = N (2.32)

Theorem I. (Hohenberg-Kohn 1, 1964)The ground state densityn(r) of a many-body quan-

tum system in some external potentialVext(r) determines this potential uniquely.

Proof: Hohenberg-Kohn proved the first theorem byreducio ad absurdum. They assumed

another external potential,V ′
ext(r), that differed by a constant from first external potential but

give rise to the same densityn(r). Now, we have two Hamiltonian operator,̂H andĤ ′, that

give corresponding ground wave function (Ψ andΨ′) and energies (E0 andE ′
0). Obviously;

these two ground state energies are different. This condition gives us a chance to use theΨ′ for

calculating the expectation value ofĤ:

E0 < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ (2.33)

As the value of Hamiltonian are:̂H = T̂ + V̂ee + V̂ext andĤ = T̂ + V̂ee + V̂ ′
ext. We can get:

E0 < E ′
0 +

∫
n(r)[Vext − V ′

ext]dr (2.34)
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and (by changing the quantities)

E ′
0 < E0 +

∫
n(r)[Vext − V ′

ext]dr (2.35)

Then we add the Eq. (2.34) and Eq. (2.35), this summation will lead to inconsistency:

E0 + E ′
0 < E0 + E ′

0 (2.36)

Thus the theorem proved byreductio ad absurdum

Theorem II. (Hohenberg-Kohn 2, 1964)A universal functional for the energyE[n] in

terms of the densityn(r) can be defined, valid for any external potentialVext(r). For any

particular Vext(r), the exact ground state energy of the system is the global minimum value

of this functional, and the densityn(r) that minimizes the functional is the exact ground state

densityn0(r).

Proof: Since all properties such as the kinetic energy, etc., are uniquely determined ifn(r)

is specified, then each such property can be viewed as a functional ofn(r), including the total

energy functional:

EHK [n(r)] = T [n] + Eint[n] +

∫
vext(r)n(r)d

3r+ EII

= F [n(r)] +

∫
vext(r)n(r)d

3r+ EII (2.37)

whereEII is the interaction energy of nuclei andF [n(r)] is a universal functional of the charge

densityn(r) because the treatment of the kinetic and internal potential energies are the same

for all systems. In the ground state, the energy is defined by the unique ground state density,

n(1)(r),

E0 = E[n(1)] = ⟨Ψ|Ĥ|Ψ⟩ (2.38)

By the variational principle, a different density,n(2)r) will necessarily give a higher energy:

E0 = E[n(1)] = ⟨Ψ|Ĥ|Ψ⟩<⟨Ψ′|Ĥ|Ψ′⟩ = E
′

0 (2.39)

It follows that minimizing with respect ton(r) the total energy of the system written as

a functional ofn(r), one finds the total energy of the ground state. The correct density that
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minimizes the energy is then the ground state density. In this way, DFT exactly reduce the

N-body problem to the determination of a 3-dimensional functionn(r) which minimize the

functionalEHK [n(r)]. But unfortunately this is of little use asEHK [n(r)] is not known.

2.2.2 The Kohn-Sham equations

Kohn-Sham reformulated the problem in a more familiar form and opened the way to practical

applications of DFT. They continued to prove the theorem which states that the total energy of

the system depends only on the electron density of the system [52].

E = E[n(r)] (2.40)

An interacting electrons system is mapped in an auxiliary system of a non-interacting electrons

with the same ground state charge densityn(r).For a system of non-interacting electrons the

ground-state charge density is represented as a sum over one-electron orbitals.

n(r) = 2
N∑
i

|Ψi(r)|2, (2.41)

wherei runs from 1 toN/2 if we consider double occupancy of all states.

The electron density n(r ) can be varied by changing the wave functionΨ(r) of the system.

If the electron density n(r ) corresponds to the said wavefunction, then its total energy is the

minimized energy, and the whole system is in a ground state. The Kohn-Sham approach is to

replace interacting electron, which is difficult with non-interacting electrons, which move in an

effective potential [52]. The effective potential consists the external potential, and Coulomb

interaction between electrons, and its effect such as exchange and correlation interactions. By

solving the equations, we can get ground state density and energy. The accuracy of the solution

is limited to the approximation of exchange and correlation interactions. It is convenient to

write Kohn-Sham energy functional for the ground state including external potential is:

EKS = Ts[n(r)] + EH [n(r)] + EXC [n(r)] +

∫
drVext(r)n(r) (2.42)

The first term is the kinetic energy of non-interacting electrons:

Ts[n(r)] = − ℏ2

2m
2
∑
i

∫
Ψ∗

i (r)∇2Ψ∗
i (r)dr (2.43)
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The second term (called the Hartree energy) contains the electrostatic interaction between

cloud of charge:

EH [n(r)] =
e2

2

∫
n(r)n(r ′)
|r − r ′|

drdr′ (2.44)

All effects of exchange and correlation are grouped into exchange-correlation energyEXC .

If all the functionalEXC [n(r)] were known, we could obtain exact ground state density and

energy of the many body problem.

Kohn-Sham energy problem is a minimization problem with respect of the densityn(r).

Solution of this problem can be obtained by using functional derivative as below

δEKS

δΨ∗
i (r)

=
δT [n]

δΨ∗
i (r)

+

[
δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δEXC [n]

δn(r)

]
δn(r)
δΨ∗

i (r)

−
δ
(
λ
(∫

n(r)dr −N
))

δn(r)

[
δn(r)
δΨ∗

i (r)

]
= 0, (2.45)

whereλ is Lagrange multiplier and The exchange-correlation potential,VXC , is given formally

by the functional derivative

VXC =
δEXC [n]

δn(r)
(2.46)

δn(r)
δΨ∗

i (r)
= Ψi(r),

the last term is Lagrange multiplier for handling the constraints, so we can get non-trivial solu-

tion.

The first, second, and third terms of eq. (2.45) are

δT [n]

δΨ∗
i (r)

= − ℏ2

2m
2∇2Ψi(r) (2.47)

[
δEext[n]

δn(r)
+
δEH [n]

δn(r)
+
δEXC [n]

δn(r)

]
δn(r)
δΨ∗

i (r)
= 2(Vext(r) + VH(r) + VXC(r))Ψi(r),

δ
(
λ
(∫

n(r)dr −N
))

δn(r)

[
δn(r)
δΨ∗

i (r)

]
= 2εiΨi(r) (2.48)
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Inserting eq. (2.47), and (2.48) to eq. (2.45), we can obtain Kohn-Sham equation which satisfies

many body Schr̈odinger equation.(
−1

2
∇2 + VKS(r)

)
Ψi(r) = εiΨi(r) (2.49)

where

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.50)

or,

VKS(r) = Vext(r) +
e2

2

∫
n(r ′)
|r − r ′|

dr′ + VXC(r) (2.51)

If the virtual independent-particle system has the same ground state as the real interacting

system, then the many-electron problem reduces to one electron problem. Thus we can write:

VKS(r) = Veff (r) (2.52)

The kinetic energyTs[n(r)] is given by

Ts[n(r)] =
∑
i

εi −
∫
n(r)Veff (r)dr (2.53)

By substituting this formula in equation 2.42, the total energy is given by as follows:

EKS[n(r)] =
∑
i

εi +
1

2

∫ ∫
n(r)n(r ′)
|r − r ′|

drdr′ + Exc[n]−
∫
n(r)Veff (r))dr (2.54)

Since the Hartree term andVxc depend onn(r) , which depend onΨi, the problem of solving

the Kohn-Sham equation has to be done in a self-consistent (iterative) way. Usually one starts

with an initial guess forn(r), then calculates the correspondingVH andVxc solves the Kohn-

Sham equations for theΨi . From this one calculates a new density and starts again. This

procedure is then repeated until convergence is reached ( Fig. 2.1)

2.3 Exchange and Correlation Functional

The major problem with DFT is that the exact functionals for exchange and correlation are

not known except for the free-electron gas. In previous section, the many body problems are
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Figure 2.1: Self-consistent scheme of Kohn-Sham equation

rewritten to the effective one-electron problem by using the Kohn-Sham equation. But, the

Kohn-Sham equation cannot be solved since the derivativeEXC [n(r)] is not known. There-

fore, it is very important to have an accurate XC energy functionalEXC [n(r)] or potential

VXC(r) in order to give a satisfactory description of a realistic condensed-matter system. For

a homogeneous electron gas, this will only depend on the value of the electron density. For a

non-homogeneous system, the value of the exchange correlation potential at the pointr depend

not only on the value of density atr, but also the variation close tor.

2.3.1 Local Density Approximation (LDA)

As the functionalEXC [n(r)] is unknown one has to find a good approximation for it. A simple

approximation, which was already suggested by Hohenberg and Kohn, is the LDA or in the spin

polarized case the local-spin-density approximation (LSDA). The exchange-correlation energy

per particle by its homogeneous electron gas (HEG)eXC [n(r)] is expressed by:

ELDA
xc [n(r)] =

∫
n(r)ehomo

xc (n(r))dr

=

∫
n(r)

[
ehomo
x (n(r)) + ehomo

c (n(r))
]
dr (2.55)
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for spin polarized system

ELSDA
xc [n+(r), n−(r)] =

∫
n(r)ehomo

xc (n+(r), (n−(r))dr (2.56)

The exchange energyex(n(r)) is

eLDA
x (n(r)) = − 3

4π
kf (2.57)

where the Fermi wavevectorkf = (3π2n)
1
3 .

The expression of the correlation energy density of the HEG at high density limit has the

form:

ec = Aln(rs) +B + rs(Cln(rs) +D) (2.58)

and the density limit takes the form

ec =
1

2

(
g0
rs

+
g1

r
3/2
s

+ ..............

)
(2.59)

where where the Wigner-Seitz radiusrs is related to the density as

rs = (3/(4πn))
1
3 (2.60)

For spin polarized systems, the exchange energy functional is known exactly from the result

of spin-unpolarized functional:

Ex[n+(r), n−(r)] =
1

2
(Ex[2n+(r)] + Ex[2n−(r)]) (2.61)

The spin-dependence of the correlation energy density is approached by the relative spin-

polarization:

ξ(r) =
n+(r)− n−(r)

n+(r)n−(r)
(2.62)

The spin correlation energy densityec(n(r), ξ(r) is so constructed to interpolate extreme

valuesξ = 0,±1, corresponding to spin-unpolarized and ferromagnetic situations. The XC

potentialVXC(n(r)) in LDA is given by:

δEXC [n]

δn(r)
=

∫
dr

[
ϵxc + n

∂ϵxc
∂n

]
(2.63)

VXC(r) = ϵxc + n
∂ϵxc
∂n

, (2.64)
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EXC [n] =

∫
drn(r)ϵxc([n], r), (2.65)

whereϵxc([n], r) is the energy per electron that depends only on the densityn(r).

The LDA sometimes allows useful predictions of electron densities, atomic positions, and

vibration frequencies. However, The LDA also makes some errors: total energies of atoms are

less realistic than those of HF approximation, and binding energies are overestimated. LDA

also systematically underestimates the band gap.

2.3.2 Generalized Gradient Approximation (GGA)

The density of electron is not always homogeneous as we expected. In the case of inhomoge-

neous density, naturally, we have to carry out the expansion of electronic density in the term

of gradient and higher order derivatives, and they are usually termed as generalized gradient

approximation (GGA). GGAs are still local but also take into account the gradient of the den-

sity at the same coordinate. Three most widely used GGAs are the forms proposed by Becke

[53] (B88) , Perdew et al. [54, 55], and Perdew, Burke and Enzerhof [56] (PBE). The definition

of the exchange-correlation energy functional of GGA is the generalized form in Eq. (2.56)to

include corrections from density gradient∇n(r) as :

EGGA
xc [n+(r), n−(r)] =

∫
n(r)exc[n(r)FXC [n(r), |∇n+(r)|, |∇n−(r)|, .......]dr (2.66)

Here, FXC is the escalation factor that modifies the local density approximation (LDA)

expression according to the variation of density in the vicinity of the considered point, and it is

dimensionless [57]. The exchange energy expansion will introduce a term that proportional to

the squared gradient of the density. If we considered up to fourth order, the similar term also

appears proportional to the square of the density’s Laplacian. Recently, the general derivation

of the exchange gradient expansion has been up to sixth order by using second order density

response theory [58]. The lowest order (fourth order) terms in the expansion ofFx have been

calculated analytically [58, 59]. This term is given by the following:

FX(m,n) = 1 +
10

81
m+

146

2025
m2 − 73

405
nm+Dm2 +O(∇ρ6) (2.67)
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where

m =
|∇ρ|2

4(3π2)2/3ρ8/3
(2.68)

is the square of the reduced density gradient, and

n =
∇2ρ

4(3π2)2/3ρ5/3
(2.69)

is the reduced Laplacian of density.

These are the comparison of GGAs with LDA (LSDA)

1. It enhances the binding energies and atomic energies,

2. It enhances the bond length and bond angles,

3. It enhances the energetics, geometries, and dynamical properties of water, ice, and water

clusters,

4. Semiconductors are marginally better described within the LDA than in GGA, except for

binding energies,

5. For4d-5d transition metals, the improvement of GGA over LDA is not clear, depends on

how well the LDA does in each particular case,

6. Lattice constant of noble metals (Ag, Au, and Pt) are overestimated in GGA, and

7. There is some improvement in the gap energy; however, it is not substantial as this feature

related to the description of the screening of the exchange hole when one electron is

removed, and this point is not taken into account by GGA.

2.4 Plane Waves Method

Plane wave methods are much more efficient than all-electron ones to calculate the atomic

forces and hence to determine the equilibrium geometries. Plane waves are not centered at

the nuclei but extend throughout the complete space. They implicitly involve the concept of
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periodic boundary condition. Therefore, they enjoy great popularity in solid state physics for

which they are particularly adopted. The Kohn-Sham equation can be described by using plane

waves. As the arrangement of the atoms within the cell is periodic in the real space, so the wave

functions must satisfy Bloch’s theorem, which can be written by:

Ψi(r) = exp(ik · r)uk(r), (2.70)

whereuk(r) is periodic in space with the same periodicity with the cell which can be expanded

into a set of plane waves

ui(r) =
∑

G

ci,Gexp(iG · r) (2.71)

Combining eq. (2.70) and (2.71, each electronic wave function can be expressed as

Ψi(r) =
∑

G

ci,k+Gexp(i(k+G) · r) (2.72)

Kohn-Sham equation in eq. (2.49) is substitute in terms of reciprocal spacek as below:

∑
G’

[
1

2
|k+G|2δG,G′ + VKS(G-G’)

]
ci,k+G = εici,k+G (2.73)

Solution of the Kohn-Sham equation can be obtained by diagonalization of the Hamiltonian

matrix. The diagonal part is the kinetic term, otherwise are the potential term. To limit the

summation overG, cut off energy is applied to the kinetic term which is expressed by

Ecut =
1

2
|k+G|2 ≡ G2

cut (2.74)

The limitation of the energy is reasonable due to the fact that lower energy is more important.

2.5 Pseudopotential

The maximum number of plane waves is required to expand the tightly bonded core electrons

due to rapid oscillation near the nuclei. However, valence electrons greatly affect far more than

the core electrons of the electron structure of the material. The concept of a pseudopotential is
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the replacement of one problem with another. The primary application in electronic structure is

to replace the strong Coulomb potential of the nucleus and the effects of the tightly bound core

electrons by an effective ionic potential acting on the valence electrons. A pseudopotential can

be generated in an atomic calculation and then used to compute properties of valence electrons

in molecules or solids, since the core states remain almost unchanged. Furthermore, the fact

that pseudopotential are not unique allows the freedom to choose from that simplify the calcu-

lations and the interpretation of the resulting electron structure. There are two types of famous

pseudopotential, norm conserving pseudopotential and ultrasoft pseudopotential

2.5.1 Norm Conserving Pseudopotential

In this kind of pseudopotential, there are some requirements to be fulfilled [60]. Those re-

quirements are

1. All the electrons and pseudo valence eigenvalues are the same as the selected atomic

configuration.

ϵAE
i = ϵPS

i (2.75)

2. All the electrons and pseudo valence eigenvalues are in agreement in an external core

region.

ΨAE
i (r) = ΨPS

i (r), r ≥ Rc (2.76)

3. The logarithmic derivatives and their first energy derivative of real and pseudo wavefunc-

tions match at the cut-off radiusRc.

d

dr
lnΨAE

i (r) =
d

dr
lnΨPS

i (r) (2.77)

4. The total charge inside core radiusRc for each wave function must be same (norm con-

servation).

Rc∫
0

dr|ΨAE
i (r)|2 =

Rc∫
0

dr|ΨPS
i (r)|2 (2.78)
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5. The first energy derivative of the logarithmic derivatives of all-electron and pseudo wave

functions must be same forr ≥ Rc. This condition is implied by point 4.

2.5.2 Ultrasoft Pseudopotential

This pseudopotential releases norm conservation criteria to obtain smoother pseudo wave

functions [61]. The pseudo wave functions are divided into two parts:

1. Ultrasoft valence wave functions which omit norm conservation criteriaϕUS
i .

2. A core augmentation charge.

Qnm(r) = ΨAE∗
n (r)ΨAE

m (r)−ΨUS∗
n (r)ΨUS

m (r) (2.79)

The ultrasoft pseudopotential takes the form of

V US = Vloc(r)−
∑
nmI

D0
nm|βI

n⟩⟨βI
m| (2.80)

whereβ is projector function which is expressed by

|βn⟩ =
∑
m

|Xm⟩
⟨Xm|ϕn⟩

(2.81)

and they are strictly localized inside the cut-off region for the wave functions since theX -

functions are defined through

|Xn⟩ = (ϵn − T̂ − Vloc)|ϕn⟩ (2.82)

D0
nm = ⟨ϕn⟩|Xm⟩+ ϵmqnm (2.83)

The scattering properties of the pseudopotential can be improved by using more than oneβ

projector function per angular momentum channel.

It is necessary to use generalized eigen value formalism. For this case we introduce the

overlap operatorS

Ŝ = 1+
∑
nmI

qnm|βI
n⟩⟨βI

m| (2.84)
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where

qnm =

∫ rc

0

drQnm(r) (2.85)

Then the charge density is expressed by

n(r) =
∑
i

ϕ∗
i (r)Ŝϕi(r) (2.86)

=
∑
i

[
|ϕi(r)|2 +

∑
nmI

QI
nm(r)⟨ϕi|βI

n⟩⟨βI
m|ϕi⟩

]
,

2.6 van der Waals density functional theory (VDWDFT)

We employ van der Waals density functional theory [62, 63] VDWDFT) to investigate the layer

distance of two-layer graphene. In chapter 3, in the VDWDFT, we first perform self-consistent

calculation where only the GGA exchange potential is included in the many body potential.

Next we evaluate the total energy by using the following exchange-correlation energy:

EvdW−DF
xc = EGGA

ex + ELDA
c + Enl

c , (2.87)

whereEvdW−DF
xc , EGGA

ex , andELDA
c are the exchange-correlation energy in the VDWDFT,

GGA exchange energy, and the LDA correlation energy, respectively.Enl
c is the nonlocal cor-

relation energy which is expressed as

Enl
c =

1

2

∫
dridrkρ(ri)ϕ(ri, rk)ρ(rk), (2.88)

whereϕ(ri, rk) is a nonlocal function andρ is the electron density obtained from the above

mentioned self-consistence calculation.In appendixA, we will discuss details about VDWDFT.

2.7 Calculation details

In chapter3, we use the following method and conditions. In the calculation of graphite,

we use the rectangular lattice in which four atoms in each layer are contained. The maximum

kinetic energy of the plane waves is 36 rydberg and10 × 10 × 10 k-point mesh in the full
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Brillouin zone (BZ) is used. In the calculation of the two-layer graphene, we use the repeated

slab model where the length of the the vacuum region is 10.58Å and the k-point mesh in the

full Brillouin zone is10 × 10 × 1. We apply the least square fourth or fifth order polynomials

fitting to the function of the total energy over the interlayer distance. Based on the result of this

fitting, We determine the equilibrium interlayer distance and the interlayer binding energy (ϵ)

which is the difference between the energies for the equilibrium layer distance and the infinite

layer one.

In chapter 4, we use the calculation method which is in details as follows: We perform

spin-polarized GGA calculations by using PHASE software [49] in which the plane wave basis

set and pseudopotentials are used. The maximum kinetic energies of the plane waves and the

charge densities are 340 eV (25 Rydberg) and 3128 eV (230 Rydberg), respectively.

In the calculation of graphene, we use a repeated slab model where the spacing of the slab is

6.71Å, which is equal to the lattice constant of the c-axis of the graphite. When we increase the

spacing of the slab up to 10̊A, the binding energy variation of the hydrogen dimer is less than

10 meV. The two-dimensional supercell size is 17.04× 19.68Å2 and this supercell contains

128 carbon atoms. The2× 2 k-point mesh in the two-dimensional Brillouin zone (BZ) is used.

When we increase the numbers of k-points to8×8, the binding energy variation of the hydrogen

dimer is only 20 meV.

We also study the armchair edge (5,5) CNT and zigzag edge (10,0) CNT, which have diam-

eters of 7.1 and 7.9̊A, respectively. The one-dimensional cell lengths of the armchair edge (5,5)

CNT and zigzag edge (10,0) CNT are 13.2 and 11.6Å, respectively. The supercells of these

CNTs contain 120 carbon atoms. The k-point mesh in the one-dimensional BZ is 2. When we

increase the number of k-points to 8, the binding energy variation of the hydrogen dimer is only

40 meV.

Based on the result of the calculations, we determine the binding energy per hydrogen atom

Eb of the C-H bond, which is defined as [64]

Eb =
E(system) + nHEat(H)− Et(hydrogenated system)

nH

, (2.89)

whereE(system) is the total energy of the pristine system andEt(hydrogenated system) is
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that of the hydrogenated system.Eat(H) is the energy of a single hydrogen atom andnH is the

number of hydrogen atoms in the hydrogenated system. In the calculation ofEat(H), the same

corresponding unit cells of graphene and the CNTs are used.



Chapter 3

Layer distance of the two-layer graphene

In this chapter, we study interlayer distance of the two-layer graphene. Recently, few-layer

graphenes are technologically important in semiconductor applications, due to gate control of

the transport properties. The electronic properties of the few-layer graphene are different from

that of the single-layer graphene and this difference raises scientific problems. In the case of

the two-layer graphene, for an example, electric field opening of the band gap was theoretically

predicted and experimentally confirmed [18, 19, 20, 21, 22, 23]. To study the electronic prop-

erties of few-layer graphenes, it is essential to clarify the interlayer distance but the distance

is still unclear. It was reported from high resolution transmission electron microscopy (TEM)

observation that interlayer distances of double-layer graphitic carbon systems are up to 3.84Å,

[65] and inter shell distances of multiwalled carbon nanotubes are in the range from 3.59 to

3.62Å [66]. These observed distances are larger than the interlayer distance of graphite (3.35

Å). First principles calculations based on the generalized gradient approximation (GGA) indi-

cated that the interlayer distance of the two-layer graphene is larger than that of graphite [67].

This result seems to be consistent with the above mentioned experimental results. However, the

interaction between the nearest layer is a van der Waals type, so the validity of the GGA is un-

clear. Conventional DFT (local density approximation (LDA) and GGA) is usually insufficient

to include van der Waals interaction, which is prominent in weakly bonded materials such as

molecular crystal and many organic compounds [68, 69, 70].

30
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In this study, we perform first principles calculations based on the LDA, GGA and van der

Waals density functional theory (VDWDFT) [62, 63]. We find that the interlayer distance of the

two-layer graphene is close to that of graphite. We also find that the metastable AA stacking

structure has larger interlayer distance than that of the AB stacking structure. Therefore, the

deviation from the AB stacking is expected to enlarge the interlayer distance.

3.1 Results and Discussions

We first carry out LDA calculations of graphite having the AB stacking structure. Our calculated

interlayer distance is 3.35̊A; therefore, our calculation well reproduce the experimental value

(3.35 Å) [71]. We note that our calculated value is comparable with a previous calculation

based on the LDA (3.33̊A [72]. The energy of the AB stacking structure is 11.0 meV/atom

lower than that of the AA stacking structure (Table 3.1). The interlayer distance (3.60Å) of

the AA stacking structure is larger than the corresponding value of the AB stacking structure

(3.35 Å). Our results for the graphite are consistent with those of the past LDA calculations,

i.e., it was also shown that the AB stacking structure has a lower energy than that of the AA

stacking structure and that the interlayer distance of the AB stacking is smaller than that of the

AA stacking [73].

Next, we perform VDWDFT calculations to evaluate the interlayer distance of the graphite.

We find that the interlayer distance of the AB stacking structure is 3.50Å which is close to

previously calculated result based on the VDWDFT (3.59Å) [74]. Our result is somewhat larger

than that of the experimental value (3.35Å). This small overestimation seems to be reasonable

because it was reported that the VDWDFT tends to overestimate the equilibrium distance [75].

The energy of the AB stacking structure is 3.80 meV/atom lower than that of the AA stacking

structure (Table 3.1). As well as the LDA calculations, the VDWDFT calculations lead to the

conclusion that the interlayer distance of the AA stacking structure (3.65Å) is larger than that

of the AB stacking structure (3.50̊A).

Here we carry out first principles calculations of the two-layer graphene. First we use the
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Table 3.1: Calculated results of the graphite.dAB (dAA) represents the layer distance of the

AB (AA) stacking. ∆E is the difference between the energies of the AB and AA stacking

structures.ϵAB andϵAA are the interlayer binding energies of the AB stacking and AA stacking

structures, respectively.

dAB dAA ∆E/atom ϵAB ϵAA

(Å) (Å) (meV) (meV) (meV)

LDA 3.35 , 3.33a 3.60 11.0 30.5 19.5

VDWDFT 3.50 , 3.59b 3.65 3.80 31.0 27.2

Expt. 3.35c

a Ref. [72], b Ref. [74], and c Ref. [71].

LDA and find that the interlayer distance of the two-layer graphene of the AB stacking structure

(3.35Å) is the same as the corresponding value of the graphite. We also study the AA stacking

structure and find that its energy is 6.0 meV/atom higher than that of the AB stacking structure.

The calculated interlayer distance (3.60Å) is larger than that of the AB stacking (3.35̊A) as

shown in Table 3.2.

We next employ the VDWDFT in the calculation of the two-layer graphene. We find that

interlayer distance of the AB stacking structure (3.49Å) is close to than the corresponding value

of the graphite (3.50̊A). We also study the AA stacking structure and find that its energy is 3.0

meV/atom higher than that of the AB stacking structure. As well as the LDA calculation, the

VDWDFT calculation gives the result that the interlayer distance of the AA stacking ( 3.65Å)

is larger than that of the AB stacking (3.49Å) as shown in Table 3.2.

We here study the interlayer binding energy (ϵ) of the AB stacking structure of graphite.

The LDA and the VDWDFT give the energies of 30.5 and 31.0 meV/atom, respectively. Our

value based on the LDA is comparable with those of the previous LDA calculations (20-30

meV/ atom) [76, 77, 78, 79]. The estimated values based on the LDA (30.5 meV/atom) and

the VDWDFT (31.0 meV/atom) are close to previously experimental values (22-52 meV/atom)
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Table 3.2: Calculated results of the two-layer graphene.dAB (dAA) represents the layer distance

of the AB (AA) stacking.∆E is the difference between the energies of the AB and AA stacking

structures.ϵAB andϵAA are the interlayer binding energies of the AB stacking and AA stacking

structures, respectively.

dAB dAA ∆E/atom ϵAB ϵAA

(Å) (Å) (meV) (meV) (meV)

LDA 3.35 3.60 6.0 16.5 10.5

VDWDFT 3. 49 3.65 3.0 17.5 14.5

[80, 81] (Table 3.1) .

Next we study the interlayer binding energies of the two-layer graphene. The values based

on the LDA and the VDWDFT are 16.5 meV/atom and 17.5 meV/atom, respectively (Table II).

Therefore, we conclude that the interlayer binding energy of the two-layer graphene is smaller

than that of graphite.

As mentioned above, our LDA and VDWDFT calculations show that the interlayer distance

of the two-layer graphene having the AB stacking structure is very close to that of the graphite

having the same stacking. On the other hand, a previous GGA calculation showed that the

interlayer distance of the two layer graphene (3.58Å) is larger than that of the graphite (3.26

Å) [67]. We perform GGA calculations by using the primitive cell and18 × 18 × 1 k-point

mesh. These conditions are similar to those in the previous calculation [67]. We do not find

stable structure; i.e. the two-layer graphene is not bound. In any case, the GGA is not suitable

for calculations of van der Waals systems.

Based on the results of our LDA and VDWDFT calculations in this study, we conclude

that the interlayer distance of the metastable AA stacking structure of the two-layer graphene

is somewhat larger than that of the AB stacking structure. Therefore, it is suggested that the

interlayer distance becomes large when the stacking deviates from the AB stacking. We also

find that the interlayer distances of graphite and the two-layer graphene are very close. So, it
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is suggested that the deviation from the AB stacking in two-layer graphitic systems leads to the

layer distances which are larger than that of the graphite. This deviation from the AB stacking

is expected to occur in the case of double wall and multiwall carbon nanotubues since the two

nearest neighbor tubes have different radii.

3.2 Conclusion

In summary, we have carried out first principles DFT calculations using the LDA, GGA and the

VDWDFT to investigate the interlayer distance of the two-layer graphene. We found that the

interlayer distance is the same as that of the graphite. The binding energy of the graphite was

found to be larger than that of the two-layer graphene. The interlayer distance of the metastable

AA stacking structure of the two-layer graphene is larger than that of the AB stacking structure

. It is thus suggested that the interlayer distance becomes somewhat large when the stacking is

deviated from the AB stacking.



Chapter 4

Atomic hydrogen adsorption in graphenes

and CNTs

In this chapter, we study atomic hydrogen adsorption in graphenes and CNTs. Under atomic

hydrogen atmospheres, hydrogen atoms are chemisorbed on graphene and CNTs [24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Scanning tunneling microscopy and

photoluminescence spectroscopy showed that some hydrogen atoms are chemically adsorbed

on carbon materials [36, 37, 38, 39, 40]. Then, first-principles calculations were performed for

chemisorbed hydrogen [24, 25, 26, 27, 41, 42, 43]. As a result, it became clear that hydrogen

significantly affects the physical properties of carbon nanomaterials. Hydrogen adsorption was

found to affect the field emission of capped CNTs [44]. It was theoretically reported that some

partially hydrogenated graphenes show ferromagnetic properties [45]. This result indicated that

the magnetism of carbon nanomaterials can be controlled by hydrogen chemisorption.

To understand the effect of hydrogen adsorption, the study of monomers and dimers is

necessary since they are fundamental hydrogen impurities in carbon materials.The electronic

structure of hydrogen monomers in graphene has been well theoretically studied [24, 29, 48].

These theoretical studies showed that hydrogen is bonded to a host carbon atom and has a

magnetic moment of 1µB [24]. For dimers in graphene, the geometry where the two hydrogen

atoms are on the same side has been studied [24, 25, 33, 34]. However, as mentioned later, we

35
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find in this study that this geometry is metastable. Details of the electronic structures including

the magnetism of the monomers and dimers in the CNTs are still unclear.

In this study, we perform first-principles calculations based on the spin-polarized general-

ized gradient approximation (GGA) [54] on graphene. It is expected that there will be some

difference between graphene and CNTs because CNTs have curvature. To clarify the curvature

effect, we study the armchair edge (5, 5) CNT and zigzag edge (10, 0) CNT, whose radii are 3.5

and 4.0Å, respectively.

4.1 Graphene

4.1.1 GGA calculations

We first carry out spin-polarized GGA calculations of the monomer in graphene. The hydrogen

atom is bonded to one of the carbon atoms on graphene plane and C-H bond length is 1.14Å.

This bond length is close to that in a CH4 molecule (1.09Å), which is typical sp3 C-H bond

lenghth. The distance between the graphene plane and the C atoms bonded to the hydrogen

atoms is 0.37Å. The bond lengths between the first and second nearest carbon atoms is 1.49

Å, which is larger than the graphene bond length (1.42Å) and shorter than the diamond bond

length (1.54Å). The bond angle H-C1-C2 [Fig. 4.1] is 103.5◦ which is close to sp3 bond angle

(109.5◦). The most stable geometry is found to be spin-polarized and has a magnetic moment

of 1 µB. We show spin density distribution in Fig. 4.5(a). The binding energy Eq. (2.89) of the

geometry is 0.53 eV. The information on the binding energy and magnetic moment is tabulated

in Table 4.1.
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Figure 4.1: Geometrical configuration of the hydrogen monomer in graphene.

Next, we carry out calculations of the hydrogen dimer in graphene. In the most stable geom-

etry of the dimer, both hydrogen atoms are bonded to carbon atoms which are nearest-neighbors.

The two hydrogen atoms are located on opposite sides [Fig. 4.2(a)]. We find that the C1-C2

bond length [Fig. 4.2(a)] is 1.51̊A and the bond angle of H1-C1-C2 [Fig. 4.2(a)] is 107.8◦ .

The bond length is close to the sp3 bond length (1.54̊A) in diamond and the bond angle is close

to the sp3 bond angle (109.5◦). In the most stable geometry of the dimer, the distance between

the graphene plane and the C atoms bonded to the hydrogen atoms is 0.30Å. This distortion

of the carbon atoms is expected to be due to fact that the atoms have four surrounding atoms

including the hydrogen atoms, and therefore the C atoms favor sp3 hybridization. Since the sp3

bond angle is less than 120◦, the C atoms are displaced from the graphene plane. Previously the

geometry where the two hydrogen atoms are located on the same side [Fig. 4.2)] was studied,

[24] but we find that this geometry is metastable, i.e., its energy is 0.60 eV higher than that of the

most stable geometry. The calculated bond angle of H1-C1-C2 [Fig. 4.2(b)] in the metastable

geometry is 104.8◦, which somewhat deviates from the sp3 bond angle. As a result, the C1-C2

bond length (1.54̊A) is longer than that (1.51̊A) of the most stable geometry. Therefore, it is

expected that the higher energy of the metastable geometry is due to the deviation from the sp3

hybridization.
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Figure 4.2: Nearest-neighbor geometrical configurations of the hydrogen dimers in graphene.

A and B represent the A sublattice and B sublattice, respectively.

We show the charge densities of the most stable hydrogen dimer in Fig. 4.3(a) and those of

the metastable hydrogen dimer in Fig. 4.2(b). In both dimers, we find a covalent bond charge

between the hydrogen atom and its nearest carbon atom. These bonding charges are similar to

that of the CH4 molecule having the C-H sp3 bond. The distances between the two hydrogen

atoms are 3.07̊A [Fig. 4.3(a)] and 2.14̊A [Fig. 4.3(b)]. Since the distances are much larger

than the bond length of the hydrogen molecule (0.74Å), substantial charge density between the

hydrogen atoms does not appear [Figs. 4.3(a) and 4.3(b)].
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Figure 4.3: Charge densities of the hydrogen dimers where both of the hydrogen atoms are

located on opposite sides (a) and on the same side (b) of graphene. The isosurface value is 0.22

(a.u)−3.

The binding energy Eq. (2.89) per hydrogen atom of the most stable geometry of the dimer

is calculated to be 1.16 eV. This value is much bigger than the binding energy of hydrogen

monomer (0.53 eV). Therefore, the dimer is much more stable than the monomer. This stability

of the dimer is roughly explained as follows on the basis of the bond-counting model, which

has been used to analyze the stabilities of Si multivacancies and ultrathin Bi films [82, 83]. In

the case of the monomer, the hydrogen atom is bonded to one of the carbon atoms, and three

C-C bonds are strongly affected and weakened. The length of the C-C bond is 1.49Å, which is

longer than that of the pristine graphene (1.42Å). Meanwhile, five C-C bonds are weakened in

the case of the most stable dimer. Thus, the fact that the binding energy per atom of the dimer is

higher than that of the monomer is expected to be due to the difference between the number of

bonds weakened by the monomer and dimer, i.e., the number of weakened bonds per hydrogen

atom is 3 for the isolated hydrogen monomer and 2.5 for the dimer.

Next, we study the case that the two hydrogen atoms are bonded to second-nearest-neighbor

carbon atoms. The energy in the case that the two hydrogen atoms are located on opposite sides

[Fig. 4.4(a)] is 0.10 eV lower than that when the two hydrogen atoms are on the same side [Fig.
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4.4(b)] and 1.57 eV higher than that of the most stable geometry where the two hydrogen atoms

are bonded to nearest-neighbor carbon atoms [Fig. 4.2(a)]. The bond angle of H2-C3-C2 in Fig.

4.4(a) is 104.0◦, which is larger than that in Fig. 4.4(b) (102.4◦). Therefore, the former angle

is closer to the sp3 bond angle than the latter bond angle, which is expected to be the origin of

the energetic stability of the former geometry.

Figure 4.4: Second-nearest-neighbor geometrical configurations of the hydrogen dimers in

graphene. A and B represent the A sublattice and B sublattice, respectively.

Both geometries are found to be spin-polarized and have magnetic moments of 2µB. In the

monomer case, one hydrogen provides one electron, which gives a magnetic moment of 1µB.
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However, in the case of the hydrogen dimer, the two hydrogen atoms provide two electrons.

Therefore, when magnetization is realized, the magnetic moment is 2µB. The nonmagnetic

state of the geometry in Fig. 4.4(a) has 0.13 eV higher energy than that of the spin-polarized

state. As shown in Fig. 4.5(b), a large spin density is located at the hydrogen site and the

graphene sublattice, which is different from the sublattice to which the hydrogen is bonded.

This result indicated that the hydrogen s-orbital is hybridized with the wavefunction at the

Dirac cone point of graphene. The wavefunction having a nonzero amplitude at only one sub-

lattice originates from those of the Dirac points. Similar hybridization occurs for the hydrogen

monomer in graphene [Fig. 4.5(a)]. This spin distribution of the monomer was also previously

reported [24, 48] and explained on the basis of spin alternation [42]. Similar spin density of the

monomer was also found for the CNTs as discussed in sect. 4.2 and sect. 4.3. The reason for

the magnetization will be discussed in sect. 4.3 on the basis of the calculated density of states

(DOS).

We found that when the two hydrogen atoms are bonded to third-nearest-neighbor car-

bon atoms, the electronic structure is nonmagnetic. In the nearest-neighbor and third-nearest-

neighbor configurations, the two hydrogen atoms are bonded to different sublattices, i.e., the A

and B sublattices. In this case, no spin polarization arises and magnetization is not achieved.

On the other hand, when the two hydrogen atoms are bonded to the second-nearest-neighbor

carbon atoms, both hydrogen atoms are bonded to the same (A) sublattice and the majority spin

density appears at the B sublattices.
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Figure 4.5: Spin density distributions of the hydrogen monomer (a) and hydrogen dimer (b, c)

having second-nearest-neighbor geometry [Fig. 4.4(a)] in graphene. The isosurface value is

0.01(a.u)−3.

4.1.2 LDA calculations

Here we use the local spin density approximation (LSDA) treatment for exchange and

correlation as it more accurately describes the weak molecular H2-carbon interaction [84, 85].

We first perform calculations of mono hydrogen on graphene. The hydrogen atom is bonded to

one of the carbon atoms on graphene plane and C-H bond length is 1.14Å. This bond length is

close to that in a CH4 molecule (1.09Å), which is typical sp3 C-H bond lenghth. The distance

between the graphene plane and the C atoms bonded to the hydrogen atoms is 0.33Å. The bond

lengths between the first and second nearest carbon atoms is 1.49Å, which is larger than the

graphene bond length (1.42̊A) and shorter than the diamond bond length (1.54Å). The bond
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angle H-C1-C2[Fig. 4.6] is 102.3◦ which is close to sp3 bond angle (109.5◦). The most stable

geometry is found to be spin-polarized and has a magnetic moment of 1µB. The spin density is

located at hydrogen site and graphene subattices where the hydrogen atom is bonded. This spin

distribution is similar to that of GGA calculation in grahene [Fig. 4.5(a)].The binding energy

of the geometry is 1.11 eV [Table 4.2]. We note that our calculated value is comparable with

a previous calculation based on the LDA (1.32 eV) [35]. This binding energy is larger that of

GGA calculation (0.53eV) as LDA overestimates the binding energy.

Figure 4.6: Geometrical configuration of the hydrogen monomer (a) and spin density distribu-

tion (b) in the graphene. The isosurface value is 0.01(a.u)−3.

Next, we carry out calculations of the hydrogen dimer in graphene. In the most stable

geometry of the dimer, both hydrogen atoms are bonded to carbon atoms which are nearest-

neighbors. The two hydrogen atoms are located on opposite sides [Fig. 4.7(a)]. We find that

the C1-C2 bond length [Fig. 4.7(a)] is 1.51Åand the bond angle of H1-C1-C2 [Fig. 4.7(a)] is

106.3◦. The bond length is close to the sp3 bond length (1.54̊A) in diamond and the bond angle

is close to the sp3 bond angle (109.5◦). We find that the geometry where the two hydrogen

atoms are located on the same side [Fig. 4.7)(b)] has 0.65 eV higher energy than that of the

most stable geometry. This energy difference is close to (0.60 eV) that of GGA calculations as

described in sect. 4.1. The calculated bond angle of H1-C1-C2 [Fig. 4.7(b)] in the metastable
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geometry is 104.1◦, which somewhat deviates from the sp3 bond angle. As a result, the C1-C2

bond length (1.54̊A) is longer than that (1.51̊A) of the most stable geometry. Therefore, it is

expected that the higher energy of the metastable geometry is due to the deviation from the sp3

hybridization.

Figure 4.7: Geometrical configuration of the hydrogen dimer in graphene

The binding energy per hydrogen atom (Eb) Eq. (2.89) of the most stable geometry of the

dimer is calculated to be 1.95 eV [Table 4.2]. We calculate the binding energy (Eb) of monomer

to be 1.14 eV. This value is much smaller than the binding energy per hydrogen atom of the

most stable geometry of the dimer (1.95 eV). Thus, the dimer is much more stable than the

monomer. The same result also found for GGA calculations in sect. 4.1.

Next, we study the case that the two hydrogen atoms are bonded to second-nearest-neighbor

carbon atoms. The energy in the case that the two hydrogen atoms are located on opposite sides

[Fig. 4.8(a)] is 0.10 eV lower than that when the two hydrogen atoms are on the same side [Fig.

4.8(b)] and 1.70 eV higher than that of the most stable geometry where the two hydrogen atoms

are bonded to nearest-neighbor carbon atoms [Fig. 4.7(a)]. This energy difference is close to

that of GGA calculations 1.57 eV sect. 4.1. The bond angle of H2-C3-C2 in Fig. 4.8(a) is

102.3◦, which is larger than that in Fig. 4.8(b) (101.8◦). Therefore, the former angle is closer to

the sp3 bond angle than the latter bond angle, which is expected to be the origin of the energetic

stability of the former geometry.
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Figure 4.8: Second-nearest-neighbor geometrical configuration of the hydrogen dimer in

graphene.

Both geometries are found to be spin-polarized and have magnetic moments of 2µB. In the

monomer case, one hydrogen provides one electron, which gives a magnetic moment of 1µB.

However, in the case of the hydrogen dimer, the two hydrogen atoms provide two electrons.

Therefore, when magnetization is realized, the magnetic moment is 2µB. We show the spin

density distribution in Fig. 4.9 and we find that the spin density distribution is same as shown

in Fig. 4.5(b), a large spin density is located at the hydrogen site and the graphene sublattice,

which is different from the sublattice to which the hydrogen is bonded.
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Figure 4.9: Spin density distribution of the hydrogen dimer having second-nearest-neighbor

geometry [Fig. 4.8(b)] in the mono-layer graphene. The isosurface value is 0.01(a.u)−3.

As mentioned above in sections 4.1.1 and 4.1.2, we find that binding energies of hydrogen

monomer calculated by GGA and LDA are 0.53 eV and 1.11 eV, respectively. This overesti-

mation seems to be reasonable because it was reported that the binding energies are typically

overestimated, sometimes even by a factor of two [86] in LDA. Calculations perform by GGA

and LDA show that monomers are spin-polarized and have magnetic moment 1µB. The binding

energies per hydrogen atom of the most stable dimers calculated by GGA and LDA are 1.16 eV

and 1.95 eV, respectively and their electrons structures are nonmagnetic. However, in LDA we

find that the geometry where the two hydrogen atoms are located on the same side [Fig. 4.7(b)]

has 0.65 eV higher energy than that of the most stable geometry [Fig. 4.7(a)]. This energy

difference is close to (0.60 eV) that of GGA calculations as described in sect. 4.1. Both GGA

and LDA show that second-nearest-neighbor geometries are spin-polarized and have magnetic

moment 2µB.

4.2 Armchair edge (5, 5) carbon nanotube

We perform spin-polarized GGA calculations of the monomers and dimers in armchair edge

(5, 5) CNT. Before we study the dimer, the monomer is first investigated. In the most stable
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geometry, the hydrogen atom is located on the outer side of the armchair edge (5,5) CNT and

the atom is bonded to one carbon atom [Fig. 4.10(a)]. The geometry where the hydrogen atom

is located inside the CNT [Fig. 4.10(b)] has a negative binding energy (Table 4.1). The bond

angle of H1-C1-C3 [Fig. 4.10(a)] in the most stable geometry is 106.9◦ and that [Fig. 4.10(b)]

in the metastable geometry is 98.8◦. Therefore, the bond angle in the most stable geometry is

close to the sp3 bond angle. The bond length between the hydrogen atom and nearest-neighbor

carbon atom is 1.12̊A for the most stable structure and is close to that of the CH4 molecule

(1.09Å). The most stable geometry is found to be spin-polarized and has a magnetic moment

of 1 µB. As shown in Fig. 4.10(c), the spin density is located at the hydrogen site and at the

nearest and third-nearest-neighbors of the carbon atom where the hydrogen is bonded. This spin

distribution is similar to that of graphene [Fig. 4.5(a)].
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Figure 4.10: Geometrical configurations of the hydrogen monomer in the armchair edge (5,5)

CNT [(a) and (b)], and spin density distributions of the former hydrogen monomer (c). The

isosurface value is 0.01(a.u)−3.

The binding energy of the most stable geometry is calculated to be 1.13 eV [Table 4.1],
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which is much larger than that of the hydrogen monomer in graphene (0.53 eV). This result

implies that the CNT is easily hydrogenated compared with graphene. The bond lengths of

the pristine CNT are 1.44 and 1.45̊A [Fig. 4.11(a)], which are larger than that of graphene

(1.42 Å). Therefore, the rather weak bonds in the pristine CNT are expected to contribute to

its large binding energy. Furthermore, the average bond angles of H-C-C in the armchair edge

(5,5) CNT and graphene are 106.6 and 103.5◦, respectively. Thus, the bond angle in the CNT is

energetically favored since it is close to the sp3 bond angle.

Now we study the dimer in the armchair edge (5,5) CNT. It is found to be energetically

preferable that the two hydrogen atoms are on the outer side of the CNT. This is in contrast

to the case of graphene, where the two hydrogen atoms are located on the different sides. The

difference between graphene and the CNT is expected to originate from the fact that the CNT

has curvature. As was discussed for the monomer case of the CNT, the hydrogen-carbon bond

abgles are close to the sp3 bond angle when the hydrogen atoms are located on the outer side,

whereas the bond angles are small when the hydrogen atoms are located on the inner side. There

are two types of geometry where both hydrogen atoms are on the outer side and are bonded

to nearest-neighbor carbon atoms. In one geometry, the alignment of the two carbon atoms

bonded to hydrogen atoms is in the tube direction [Fig. 4.11(c)], and in the other geometry, the

alignment is tilted from the tube direction [Fig. 4.11(b)]. I find that the geometry in Fig. 4.11(b)

has 0.20 eV lower energy than that in Fig. 4.11(c). The lengths of the C-C bonds in the pristine

CNT are 1.44 and 1.45̊A in the cases of the tube direction and tilted direction, respectively.

Therefore, the latter C-C bond is weaker than the former bond. This weakness is expected to be

the origin of the energetic stability of the most stable geometry. The binding energy of the most

stable geometry is 1.65 eV, which is much larger than that in graphene (1.16 eV).
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Figure 4.11: Geometrical configurations of the pristine armchair edge (5,5) CNT (a) and the

hydrogen dimer in the armchair edge (5,5) CNT (b) and (c).

Next we study the case that the two hydrogen atoms are bonded to second-nearest-neighbor

carbon atoms. We find that the bond angle of H1-C1-C2 [Fig.4.12(a)] is 108.3◦ and this geome-

try has 0.87 eV higher energy than that of the most stable structure. The geometry is found to be

spin-polarized and has a magnetic moment of 2µB. The nonmagnetic state has 0.21 eV higher

energy than that of the spin-polarized state. As shown in Fig. 4.12(b1, b2), large spin densities

appear at the hydrogen site and CNT sublattices, which are different from the sublattices, where

the two hydrogen atoms are bonded.
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Figure 4.12: Geometrical configurations of the hydrogen dimer in the armchair edge (5,5) CNT

having the second-nearest-neighbor (a) and spin density distributions of the hydrogen dimer

(b1, b2). The isosurface value is 0.01(a.u)−3.

4.3 Zigzag edge (10, 0) carbon nanotube

Here we carry out spin-polarized GGA calculations of the monomers and dimers in zigzag edge

(10, 0) CNT. In the most stable structure of the monomer, the hydrogen atom is located outside
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the zigzag edge (10,0) CNT and the atom is bonded to one carbon atom [Fig. 4.13(a)]. This

geometry is similar to that of the armchair edge (5,5) CNT. The geometry where the hydrogen

atom is located inside the CNT [Fig. 4.13(b)] has 0.93 eV higher energy than that of the most

stable geometry [Fig. 4.13(a)]. In the most stable geometry [Fig. 4.13(a)], the bond angle of

H1-C1-C3 is 106.9◦ compare with 94.4◦ in the metastable structure [Fig. 4.13(b)]. Therefore,

the bond angle in the most stable geometry is close to the sp3 bond angle, which is expected

to be the origin of the energetic stability. The bond length between the hydrogen atom and

nearest-neighbor carbon atom is 1.12Å which is the same as that in the armchair edge (5,5)

CNT. The most stable and metastable geometries are found to be spin-polarized and have a

magnetic moment of 1µB. As shown in Fig. 4.13(c), the spin density is located at the hydrogen

site and at the nearest and third-nearest-neighbors of the carbon atom where the hydrogen is

bonded. This spin distribution is similar to that of the armchair edge (5,5) CNT [Fig. 4.12(b1,

b2)] and graphene [Fig. 4.5(a)].
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Figure 4.13: Geometrical configurations of the hydrogen monomer in the zigzag edge (10,0)

CNT [(a) and (b)] and spin density distributions of the former hydrogen monomer (c). The

isosurface value is 0.01(a.u)−3.

We show the DOS of the nonmagnetic state in Fig. 4.14(a). The sharp peak appears at the

Fermi energy and the corresponding band is half occupied. In the case of spin polarization [Fig.

4.14(b)], the peak in the nonmagnetic state splits into two, and only the majority spin band is

fully occupied. This split is expected to stabilize the spin-polarized state. Similar splits have

also been confirmed for graphene[48] and the armchair edge (5,5) CNT. Therefore, we expect

that the mechanisms of spin polarization are similar for graphene, the armchair edge (5,5) CNT,
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and the zigzag edge (10,0) CNT. Note that the spin densities of graphene and the armchair edge

(5,5) CNT are shown in Fig. 4.5(a) and Fig. 4.10(c), respectively.
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Figure 4.14: Density of states of the nonmagnetic electronic structure (a) and spin-polarized

electronic structure (b) of the hydrogen monomer on the zigzag edge (10,0) CNT. The energies

are measured from the Fermi energy. The lower and upper lines represent the majority and

minority spins, respectively.
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The binding energy of the most stable geometry is calculated to be 1.10 eV, which is much

larger than that of the hydrogen monomer in graphene (0.53 eV) and close to the binding energy

of the armchair edge (5,5) CNT (1.13 eV) (Table 4.1).
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Table 4.1: Hydrogen monomers and dimers in graphene, armchair edge (5,5) CNT, and zigzag

edge (10,0) CNT. NN and SN denote the nearest-neighbor and second-nearest-neighbor config-

urations, respectively.

Position Geometry C-H bond Avg. H-C-C Eb Magnetic moment

Figure number length (̊A) bond angle (◦) eV µB

Monomer 4.1 1.14 103.5 0.53 1

NN dimers 4.2(a) 1.13 107.8 1.16 0

Graphene 4.2(b) 1.12 104.8 0.86 0

SN dimers 4.4(a) 1.14 104.0 0.38 2

4.4(b) 1.15 102.4 0.33 2

Monomer 4.10(a) 1.12 106.6 1.13 1

Armchair 4.10(b) 1.14 98.8 -0.06 1

edge (5,5) NN dimers 4.11(b) 1.11 105.4 1.65 0

CNT 4.11(c) 1.11 102.4 1.54 0

SN dimers 4.12(a) 1.12 108.3 1.21 2

Monomer 4.13(a) 1.12 106.9 1.10 1

Zigzag 4.13(b) 1.15 94.4 0.17 1

edge (10,0) NN dimers 4.15(b) 1.11 105.9 1.60 0

CNT 15(c) 1.11 103.5 1.55 0

SN dimers 4.16(a) 1.12 106.9 1.09 2



CHAPTER 4. ATOMIC HYDROGEN ADSORPTION IN GRAPHENES AND CNTS 58

Next we carry out calculations for the dimer in the zigzag edge (10,0) CNT. It is found

to be energetically preferable that the two hydrogen atoms are on the outer side of the CNT.

There are two types of geometry where the two hydrogen atoms are located on the outer side

and are bonded to nearest-neighbor carbon atoms. In one geometry, the alignment of the two

carbon atoms bonded to hydrogen atoms is in the tube direction [Fig. 4.15(b)] and in the other

geometry the alignment is tilted from the tube direction [Fig. 4.15)]. We find that the geometry

in Fig. 4.15(b) has 0.07 eV lower energy than that in Fig. 4.15(c). The lengths of the C-C bonds

in the pristine CNT are 1.45 and 1.44̊A in the cases of the tube direction and tilted direction,

respectively. Therefore, the former bond is weaker than the latter bond, which is expected to be

the origin of the most stable geometry. The binding energy of the most stable geometry is 1.60

eV, which is close to that of the armchair edge (5,5) CNT (1.65 eV) and much larger than that

(1.16 eV) of graphene (Table 4.1).
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Figure 4.15: Geometrical configurations of the pristine zigzag edge (10,0) CNT (a) and the

hydrogen dimer in the zigzag edge (10,0) CNT (b) and (c).

Finally we study the case that the two hydrogen atoms are bonded to second-nearest-neighbor

carbon atoms. I find that the bond angle of H1-C1-C2 in Fig.4.16(a) is 106.9◦ and this geometry

has 1.0 eV higher energy than that of the most stable structure. The geometry is found to be

spin-polarized and has a magnetic moment of 2µB. The energy gained by spin polarization is

0.11 eV. As shown in Fig. 4.16(b), large spin densities appear at the hydrogen site and CNT

sublattice, which are different from the sublattice where the two hydrogen atoms are bonded.

Therefore, this spin distribution is similar to those of the armchair edge (5,5) CNT [Fig. 4.12(b)]
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and graphene [Fig. 4.5(b)].

Figure 4.16: Second-nearest-neighbor geometrical configurations of the hydrogen dimer in the

zigzag edge (10,0) CNT (a), and spin density distributions of the hydrogen dimer (b). The

isosurface value is 0.01(a.u)−3.
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Table 4.2: Hydrogen monomers and dimers in graphene. NN and SN denote the nearest-

neighbor and second-nearest-neighbor configurations, respectively.Eb is the binding energy

per hydrogen atom. These results are based on the LSDA calculations.

Position Geometry C-H bond Avg. H-C-C Eb Magnetic moment

Figure number length (̊A) bond angle (◦) eV µB

Monomer 4.6(a) 1.14 102.3 1.14 1

NN dimers 4.7(a) 1.13 106.3 1.95 0

Graphene 4.7(b) 1.12 104.05 1.62 0

SN dimers 4.8(a) 1.15 102.3 1.10 2

4.8(b) 1.15 101.8 1.05 2

4.4 Conclusions

By using first-principles calculations based on the spin-polarized GGA within the density func-

tional theory method, we studied hydrogen monomers and dimers in graphene, the armchair

edge (5,5) CNT, and the zigzag edge (10,0) CNT. We found that the monomers are spin-

polarized. The binding energies in the CNTs (1.13 and 1.10 eV) are found to be much larger

than that of graphene (0.53 eV). Therefore, the CNTs are easily hydrogenated compared with

graphene. In the most stable structures of the dimers in graphene and the CNTs, the two hy-

drogen atoms are bonded to the host carbon atoms which are nearest-neighbors. In the case of

graphene, the two atoms are located on opposite sides. In contrast, in the cases of the armchair

edge (5,5) CNT and zigzag edge (10,0) CNT, both hydrogen atoms are located on the outer side.

When the two hydrogen atoms are bonded to the same sublattice of the host materials, magnetic

moments of 2µB appear in graphene and the CNTs.

We also carried out LSDA calculations of hydrogen monomer and dimers in graphene. We

found that binding energies of monomer and most stable dimer calculated by LDA (GGA) are
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1.11 (0.53) eV and 1.95 (1.16) eV, respectively. These overestimation are reasonable as LDA

overestimates the binding energies. However magnetic properties are found to be same calcu-

lated by LDA and GGA i.e; monomers and second-nearest-neighbor dimers are spin-polarized.



Chapter 5

Summary

5.1 Conclusions

Carbon nanomaterials have attracted much attention because they are candidates for post-silicon

materials. Since carbon nanotubes (CNTs) were detected [10] and graphene was isolated from

graphite [13], comprehensive studies have been carried out with the aim of exploiting the prop-

erties of these materials. In this study, we study two subjects. One is interlayer distance of the

two-layer graphene and the other is atomic hydrogen adsorption in graphenes and CNTs.

In the study of first subject, we have carried out first principles DFT calculations using the

LDA, and the VDWDFT to investigate the interlayer distance of the two-layer graphene. We

found that the interlayer distance is the same as that of the graphite. The binding energy of the

graphite was found to be larger than that of the two-layer graphene. The interlayer distance of

the metastable AA stacking structure of the two-layer graphene is somewhat larger than that of

the AB stacking structure. It is thus suggested that the interlayer distance becomes somewhat

large when the stacking is deviated from the AB stacking. This deviation from the AB stacking

is expected to occur in the case of double wall and multiwall carbon nanotubues since the two

nearest neighbor tubes have different radii.

Nowadays, few layer graphenes are technologically important in semiconductor applica-

tions, due to gate control of the transport properties. Researchers have known that two-layer
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graphene acts more like a semiconductor when immersed in an electric field. Now we also

clarify layer distance by first-principles calculations. Therefore, our findings are very useful in

the field of carbon nanomaterials as it can be used in semiconductor devices.

In the second subject, we study hydrogenation of carbon nanomaterials since hydrogen is

a common impurity in graphenes and CNTs. We have performed first-principles calculations

based on the spin-polarized GGA within density functional theory method . We studied the

atomic hydrogen adsorption (monomers and dimers) in graphene, the armchair edge (5, 5) CNT,

and the zigzag edge (10, 0) CNT. We found that the monomers are spin-polarized and have the

magnetic moment of 1µB. In the case of CNTs, the hydrogen atoms are located on the outer

side of the CNTs. The binding energies in the CNTs (1.13 and 1.10 eV) are found to be much

larger than that of graphene (0.53 eV). Therefore, the CNTs are easily hydrogenated compared

with graphene.

In the most stable structures of the dimers in graphene and the CNTs, the two hydrogen

atoms are bonded to the host carbon atoms which are nearest-neighbors. In the case of graphene,

the two atoms are located on opposite sides. In contrast, in the cases of the armchair edge (5, 5)

CNT and zigzag edge (10, 0) CNT, both hydrogen atoms are located on the outer side. When

the two hydrogen atoms are bonded to the same sublattice of the host materials, the magnetic

moment is found to be 2µB in graphenes and the CNTs. We showed [in Figs. 4.5b and c] that

the two hydrogen atoms are bonded to the carbon atoms (at the A sublattices in the graphene)

which are the nearest-neighbor. The spin density appears at the hydrogen site and B sublattices.

This result indicated that the hydrogen s-orbital is hybridized with the wavefunction at the

Dirac cone. It is experimentally difficult to show the magnetic state in carbon nanomaterials

by atomic hydrogen adsorption. Thus, the above mention results are very important in the

field of carbon nanomaterial and hydrogenation of carbon materials is promising candidate of

post-silicon materials.

Both interlayer distance of the two-layer graphene and atomic hydrogen adsorption in graphenes

and CNTs are important in the field of carbon nanomaterials. Finally, we suggest that our find-

ings open new possibility of carbon materials in the field of electronic devices.
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5.2 Future Plan

We succeed to investigate the layer distance of the two-layer graphene. We clarify that the

layer distance is the same as that of graphite. Previously, GGA calculation was performed

on the graphite slabs in which small numbers of graphite sheets are stacked in ABAB fashion

[67]. In the case of the odd numbered graphite slab, they found that layer distances are close

to that of bulk graphite. On the other hand, in the case of even numbers of the slab, they

found layer distances are greater than that of graphite. However, the validity of GGA is still

questionable and layer distances of the few-layer graphenes are very important in the field of

carbon nanomaterials. Therefore, our study is still insufficient. In future, we would like to

investigate the layer distances of few-layer graphenes (up to seven slabs) by using VDWDFT.

In the case of atomic hydrogen adsorption in carbon material, we clarify most stable struc-

tures of monomers and dimers. However, most stable structures of trimmer, tetramer and so

on are still unclear. As hydrogenation in carbon material is promising way for hydrogen stor-

age, and it is very important in the field of nanomaterial. So, next we will clarify most stable

structures of graphene (multilayer-graphene) by atomic hydrogen adsorption by increasing the

number of hydrogen atoms. We will show the relation between the number of hydrogen atoms

and binding energies per hydrogen atom. We will also clarify STM images of those structures.

Our future study will be very important in the field of carbon materials. Moreover, we can

be able to predict the properties of the materials which do not exist in nature and design new

materials.



Appendix A

van Der Waals Density Functional theory

(VDWDFT)

PHASE [49] can calculate total energies and electronic states, including the van der Waals

(vdW) interaction. In this appendix, we explain the function used for the vdW term. The vdW

interaction is calculated by a nonempirical method. It is based on the VDWDFT given by Dion

et al. [62] As we know conventional DFT (LDA and GGA) is usually insufficient to include

van der Waals interaction, which is prominent in weakly bonded materials such as molecular

crystal and many organic compounds [68, 69, 70]. Since the layer interaction is of the van der

walls type, therefore, GGA cannot be used for systems in which the vdW interaction makes a

large contribution. As the function contains no experimental parameters; thus, it is appropriate

for any type of system.

Phase software can able to calculate the nonlocal correlation termEnl
c (i.e., the vdW term)

and the local correlation termELDA
c . The total exchange-correlation term, including the vdW

interaction, is obtained by adding the local and nonlocal terms to the GGA exchange term.

Thus, the total exchange-correlation energy is expressed by:

Exc = EGGA
x + ELDA

c + Enl
c (A.1)

The third term on the right hand side of Eq. (A.1) is the most difficult to calculate. This is
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what we call the van der Waals interaction; to calculate this term, we use the VDWDFT given

by Dion et al. [62]. They writeEnl
c as

Enl
c =

1

2

∫
drirkρ(ri)ϕ(ri, rk)ρ(ri) (A.2)

Equation A.2 contains two spatial variables:ri andrk. This means that Eq. A.2 considers

nonlocal interactions between electron densities at pointsri andrk. This is the main difference

between Eq. A.2 and the formula used in GGA and LDA. The function containing these two

variables,ϕ(ri, rk), is given by

ϕ(ri, rk) =
2

π2

∫ ∞

0

dadba2b2WT (A.3)

Here

W (a, b) =
2

a3b3
[(3− a2)bcosbsina+ (3− b2)acosasinb

+(a2 − b2 − 3)sinasinb− 3abcosacosb] (A.4)

and

T [xi(a), xi(b), xk(a), xk(b)]

=
1

2

[
1

xi(a) + xi(b)
+

1

xk(a) + xk(b)

]
×
[

1

(xi(a) + xk(a))(xi(b) + xk(b))
+

1

(xi(a) + xk(b))(xi(b) + xk(a))

]
(A.5)

The remaining variable is given by

xj(a) =
a2

2
× 1

1− exp
(
−4πa2

9d2j

) , (A.6)

where

dj = |ri − rk|q0(rj), (A.7)

where

q0(rj) = −4π

3
ϵLDA
xc ρ(rj)−

Zab

9

[
∇ρ(rj)

2kF (rj)ρ(rj)

]2
kF (rj) (A.8)
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where

k3F = 3π2ρ(rj), (j = i or k) (A.9)

The coefficientZab = −0.8491 is determined by a first-principle calculation, and it does not

change with a change in system. From these equations, we can see that the electron densityρ(r)

is the only input data to the functionalϕ(ri, rk). The quantityϵLDA
xc in Equ. A.8 is the exchange-

correlation energy density in LDA. These formulas are based on the plasmon-pole model, and

because of this, the vdW interaction can be obtained with a relatively low computational cost.



Appendix B

Hydrogen Adsorbed in Two-layer

graphene

B.1 Results and Discussions

We clarify hydrogen monomer and dimers in mono-layer graphene. However, hydrogena-

tion in multi-layer graphene is still not clear. In this appendix, we report hydrogen monomer

and dimers in two-layer and three-layer graphenes.

Here firsy we construct a two-layer graphene having AB stacked fashion where the layer

distance is 3.35̊A [Figs.B.1(a,c)]. Next we carry out calculations of hydrogen monomers on

upper layer of two-layer graphene (B stacking). In the most stable geometry the hydrogen atom

is located on the outer side of the two-layer graphene and the atom is bonded to one carbon

atom [Fig. B.1]. The geometry where the hydrogen atom is located inner side the two-layer

graphene.[Fig.B.1 (b)] has 0.05 eV higher energy than that of most stable geometry[Fig.B.1(a)].

In the most stable geometry [Fig. B.1(a,c)] the bond angle of H-C1-C2 is 101.3◦ compared with

99.4◦ in the metastable structure [Fig.B.1(b,c)] and this bond angle which is close to monomer

on graphene(102.3◦). Therefore, the bond angle in the most stable geometry is close to the sp3

bond angle. The bond length between the hydrogen atom and nearest-neighbor carbon atom for

most stable structure and metastable structures are 1.14Å and 1.16Å respectively. The most

69
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stable and metastable geometries are found to be spin-polarized and have a magnetic moment

of 1µB. As shown in Fig. B.2 the spin density appears at the same stacking where the hydrogen

atom is boned and the spin density is located at the hydrogen site and at the nearest and third-

nearest-neighbors of the carbon atom where the hydrogen is bonded. This spin distribution is

similar to that of the graphene [Fig. 4.5(a)]. No spin density appears at the A stacking in which

hydrogen atom is not boned. The binding energy of the most stable geometry is 1.11 eV.[Table

B.1] which is same as that of graphene [Table 4.2].

Figure B.1: Geometrical configuration of the hydrogen monomer in the two-layer graphene.
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Figure B.2: Spin density distribution of hydrogen monomer in the two-layer graphene [Fig.

B.1(a)]. The isosurface value is 0.005(a.u)−3.

Next, we carry out calculations of the hydrogen dimer in two-layer graphene. In the most

stable geometry of the dimer, both hydrogen atoms are bonded to carbon atoms which are

nearest-neighbors. The two hydrogen atoms are located on opposite sides [Fig. B.3(a)]. We

find that the C1-C2 bond length [Fig. B.3(a)] is 1.51Å and the bond angle of H1-C1-C2 [Fig.

4.2(a)] is 107.0◦ .These bond length and bond angle are close to dimer on graphene [sects. 4.1.1

and 4.1.2]. And also The bond length is close to the sp3 bond length (1.54̊A) in diamond and

the bond angle is close to the sp3 bond angle (109.5◦).
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Figure B.3: Nearest-neighbor geometrical configurations of the hydrogen dimers in two-layer

graphene

We find that the geometry where the two hydrogen atoms are located on the same side [Fig.

B.3b)] has 0.60 eV higher energy than that of the most stable geometry. This energy difference

is same as (0.60 eV) as described in sect. 4.1.1 and close to that of sect. 4.1.2. The calculated

bond angle of H1-C1-C2 [Fig. 4.2(b)] in the metastable geometry is 103.8◦, which somewhat

deviates from the sp3 bond angle. As a result, the C1-C2 bond length (1.54Å) is longer than

that (1.51Å) of the most stable geometry. Therefore, it is expected that the higher energy of the

metastable geometry is due to the deviation from the sp3 hybridization.

The binding energy per hydrogen atom (Eb) Eq. (2.89) of the most stable geometry of the

dimer is calculated to be 1.90 eV [Table B.1] which is close that of monolayer graphene [Table

4.2] and much bigger than that of monomer on graphene (1.14 eV) Table. 4.2, Therefore, the

every cases the dimer is much more stable than the monomer. The same result also found in

sect. 4.1.
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Figure B.4: Second-nearest-neighbor geometrical configuration of the hydrogen dimers in two-

layer graphene.
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Table B.1: Hydrogen monomers and dimers in two-layer graphene and three-layer graphene.

NN and SN denote the nearest-neighbor and second-nearest-neighbor configurations, respec-

tively. Eb is the bindining energy per hydrogen atom. These results are based on the LSDA

calculations.

Position Geometry C-H bond Avg. H-C-C Eb Magnetic moment

Figure number length (̊A) bond angle (◦) eV µB

Monomer B.1(a) 1.14 102.3 1.11 1

Two-layer B.1(b) 1.16 99.4 1.06 1

graphene NN dimers B.3(a) 1.13 107.03 1.90 0

B.3(b) 1.12 103.8 1.61 0

SN dimers B.4(a) 1.14 103.7 1.13 2

B.4(b) 1.15 102.2 1.07 2

Monomer – 1.14 101.12 1.16 1

Three-layer – 1.16 99.13 1.12 1

graphene NN dimers – 1.13 106.8 1.97 0

– 1.12 104.0 1.65 0

SN dimers – 1.14 103.1 1.13 2

– 1.15 103.1 1.09 2

Next, we study the case that the two hydrogen atoms are bonded to second-nearest-neighbor

carbon atoms. The energy in the case that the two hydrogen atoms are located on opposite sides

[Fig. B.4(a)] is 0.09 eV lower than that when the two hydrogen atoms are on the same side [Fig.

B.4(b)] and 1.54 eV higher than that of the most stable geometry where the two hydrogen atoms

are bonded to nearest-neighbor carbon atoms [Fig. B.3(a)]. This energy difference is close to

that of GGA calculations 1.57 eV sect. [4.1.1 and 4.1.2]. The bond angle of H2-C3-C2 in Fig.

B.4(a) is 103.6◦, which is larger than that in Fig. B.4(b) (102.2◦). Therefore, the former angle
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is closer to the sp3 bond angle than the latter bond angle, which is expected to be the origin of

the energetic stability of the former geometry.

Both geometries are found to be spin-polarized and have magnetic moments of 2µB. As

shown in Fig. B.5 the spin density appears at the same stacking where the hydrogen atom is

boned (B stacking) and the spin density is located at the hydrogen site and at the nearest and

third-nearest-neighbors of the carbon atom where the hydrogen is bonded. This spin distribu-

tion is similar to that of the graphene [Fig. 4.5(a)] and also monomer in two-layer graphene

[sect.B.2]. No spin density appears at the A stacking in which hydrogen atom is not boned. The

spin density distribution is same as shown in Fig. 4.5(b) and B.2, a large spin density is located

at the hydrogen site and the two-layer graphene sublattice, which is different from the sublattice

to which the hydrogen is bonded.

Figure B.5: Spin density distribution of hydrogen dimer having second-nearest-neighbor con-

figuration [Fig. B.4(b)]in the two-layer graphene. The isosurface value is -0.01(a.u)−3.

We also carry out calculations of hydrogen monomers and dimers in three-layer graphene.
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We find that the effect of hydrogenation is similar to that of mono-layer graphene. We tabulate

the information of binding energies, bond angles and magnetizations based on the LSDA in

Table B.1.

B.2 Conclusions

By using first-principles calculations based on the local spin Density approximation (LSDA)

within the density functional theory method, we studied hydrogen monomers and dimers in two-

layer graphene. We found that the monomers are spin-polarized and have magnetic moment 1

µB. The binding energies of the hydrogen monomer, and most stable dimer is 1.11 eV and 1.90

eV, respectively. Therefore, most stable dimer is much more stable than monomer. In the most

stable structures of the dimers in two-layer graphene, the two hydrogen atoms are bonded to

the host carbon atoms which are nearest-neighbors. Whereas, when the two hydrogen atoms

are bonded to the same sublattice of the host materials, magnetic moments of 2µB appear in

two-layer graphene. We found that when the two hydrogen atoms are bonded to third-nearest-

neighbor carbon atoms, the electronic structure is nonmagnetic.
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