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Abstract

In this research, we study hyperbolic problem with volume preservation,
where a free boundary appears. This problem can be obtained by examining
the motion of a droplet on plane. In this phenomenon, the drop is divided
into two interacting parts: a film representing the surface of the drop, and
the fluid inside the film. The motion of the liquid is described by equation
of fluid dynamics (Euler equations). The film, which determines a (moving)
boundary for the liquid inside, is considered to be the graph of a scalar
function. Free boundary, volume constraint and contact angle are three main
features of the model of the film. The underlying surface, on which the
droplet rests, plays the role of an obstacle to the motion and gives rise to
free boundary. Moreover, the volume preservation constraint is obtained from
assumption that the volume of the drop does not change. Finally, there is a
positive contact angle on the boundary of the region where the drop touches
the surface. The hyperbolic free boundary problem with volume conservation
constraint is solved by discrete Morse flow method. Moreover, a model taking
into account both the surface and the liquid body is solved by combining
discrete Morse flow and smoothed particle hydrodynamics method.
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Chapter 1

Introduction

In this study, we develop a simple model for the motion of a droplet on a
plane, especially on an inclined plane. The hyperbolic free-boundary problem
under the volume conservation constraint plays an important role in this
model. The droplet consists of two parts: a film and liquid filling inside
the film. The film must have constant volume, i.e, the volume of the region
between the film and the underlying surface has to be constant in time.
Because of this point, we shall see that a complicated non-local term appears
in the model equation. Furthermore, the positive contact angle is the main
feature of the drop on plane. In the equilibrium case, the contact angle θ
of the droplet depends on the properties of the liquid and the material on
which the droplet is lying [19]. It is described by Young’s equation

γSG − γSL = γLG cos θ, (1.1)

where γSG is the solid surface tension, γLG is the liquid surface tension, and
γSL is the solid/liquid interfacial surface tension (Figure 1.1).

Figure 1.1: The equilibrium of droplet on plane.
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In our work, θ < 900 is consistently considered. Therefore, the shape of film
can be described as a scalar function

u : (0, T )× Ω −→ r,

where (0, T ) is the time interval and Ω is the domain where the motion is
considered. The set where the film touches the plane is referred as the free
boundary. The resulting problem for the membrane is a free boundary equa-
tion with a complicated nonlocal term. We shall obtain governing equation
in Chapter 2. It has the following form

χu>0σutt = γg∆u− ρguχu>0 −R2χ′ε(u) + λ. (1.2)

This equation with initial conditions and boundary condition can be solved
by the variational method, namely discrete Morse flow, which is explained in
details in Chapter 3.

For fluid inside the film, we consider the fluid flow following the Euler
equations

Dρ

Dt
+ ρ∇.v = 0, in ∪t∈(0,T ) Ωf (t)× {t},

Dv

Dt
= −1

ρ
∇P + g, in ∪t∈(0,T ) Ωf (t)× {t},

where v is the velocity, P is the pressure and g is the gravitation force.
These equations are solved by smooth particle hydrodynamic method. The
liquid and the membrane interact in the model via pressure forces, therefore
the outer force term plays an important roles in this case.

To continue this Chapter, Chapter 2 will present the model equation
for the surface of the droplet, introducing the discrete Morse flow method
which is described in details on the example of the hyperbolic equation in the
Chapter 3. Chapter 4 represents the basic of smooth particle hydrodynamic
method which uses to solve Euler equations. In Chapter 5, the discrete Morse
flow is use to construct an approximation solution of the hyperbolic equation.
Chapter 6 introduces the couple model which combines the above mentioned
hyperbolic equation for film and Euler equations for the fluid filling the film.
Chapter 7 draws important conclusions of the research and suggestions some
recommendations for further studies.

2



Notations

We provide a list of notations used in the thesis

N natural numbers,
Rm m dimensional real Euclidean space (R = R1),
Ω bounded domain in Rm with Lipschitz boundary, corresponding to

the spatial region, where the equation is solved,
∂Ω boundary of domain Ω,
|Ω| the Lebesgue measure of Ω,
Ω closure of the set Ω,
T a positive real value representing the final time,
QT the open time-space cylinder (0, T )× Ω,
V a positive real value representing the volume,
κ, κV sets of functions from certain spaces satisfying the volume con-

straint,
u unknown function,
ut partial derivative u respect to time t (= ∂u

∂t
),

∇u gradient of u with respect to spatial variables (=
(ux1, ux2, . . . , uxm)),

4u the Laplace operator respect to space (= ∂2u
∂x21

+ ∂2u
∂x22

+ . . .+ ∂2u
∂x2m

),

u|∂Ω the trace of u on ∂Ω,
u0, v0 initial data (shape and velocity, respectively),
λ Lagrange multiplier, nonlocal term originating in the volume con-

straint,
h positive real value, time step of the discretization in time,
a.e. means ”almost everywhere” or ”almost every”,
{u > 0} set of point (t,x) from QT , for which u(t, x) > 0,
χu>0 characteristic (or indicator) function of the set {u > 0},
C denotes a generic positive constant, independent of parameters in

equation,
Ωf the domain filled with fluid,
v the velocity of fluid,
r the position of fluid,
n the unit outer normal vector of the membrane,
g the gravitation force,
P the pressure of fluid,
ρ the density of fluid,

3



σ the area density of membrane,
m the mass of fluid,
D
Dt

material derivative
(

= ∂
∂t

+ v.∇
)
,

W the interpolating kernel,
c the sound speed,
C(Ω) continuous functions u : Ω −→ R
Ck(Ω) functions u : Ω −→ R that are k-times continuously differentiable,
C∞(Ω) functions u : Ω −→ R that are infinitely differentiable,
C∞0 (Ω) functions C∞(Ω) with compact support
Lp(Ω) functions u : Ω −→ R that are Lebesgue measurable and ‖u‖Lp(Ω) <

∞, where ‖u‖Lp(Ω) = (
∫

Ω
|u|pdx)

1
p ,

L∞(Ω) functions u : Ω −→ R that are Lebesgue measurable and
‖u‖L∞(Ω) <∞, where ‖u‖L∞(Ω) =ess supΩ|u|,

W k,p(Ω) locally summable functions u : Ω −→ R such that for each mul-
tiindex α with |α| ≤ k, Dαu exists in weak sense and belongs to
Lp(Ω). The norm is defined as follows:

‖u‖Wk,p(Ω) =

( ∑
|α|≤k

∫
Ω

|Dαu|pdx
) 1

p

,

‖u‖Wk,∞(Ω) =
∑
|α|≤k

ess supΩ|Dαu|,

Hk(Ω) = W k,2(Ω),
H1

0 (Ω) the closure of C∞0 (Ω) in H1(Ω),
Lp(0, T ;X) measurable functions u : [0, T ] −→ X with ‖u‖Lp(0,T ;X) <∞, where

‖u‖Lp(0,T ;X) = (
∫ T

0
‖u‖pXdt)

1
p ,

L∞(0, T ;X) measurable functions u : [0, T ] −→ X with ‖u‖L∞(0,T ;X) < ∞,
where ‖u‖L∞(0,T ;X) = ess sup0≤t≤T‖u‖X ,

W 1,p(0, T ;X) functions u ∈ Lp(0, T ;X) such that ut exists in the weak sense and
belongs to Lp(0, T ;X). The norm is

‖u‖W 1,p(0,T ;X) =

(∫ T

0

‖u(t)‖pX + ‖ut(t)‖pXdt
) 1

p

,
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W 1,∞(0, T ;X) functions u ∈ L∞(0, T ;X) such that ut exists in the weak sense and
belongs to L∞(0, T ;X). The norm is

‖u‖W 1,∞(0,T ;X) = ess sup0≤t≤T (‖u(t)‖X + ‖ut(t)‖X),

H1(0, T ;X) = W 1,2(0, T ;X),
C∞0 (Ω; Rm) function u : Ω→ Rm, with ui ∈ C∞0 (Ω), i = 1, 2, ..,m,
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Chapter 2

Modelling of the surface of a
droplet

Modelling of the motion of a droplet consists of two stages: deriving the
model of the film representing the surface of the drop and deriving the model
of the fluid inside the film. In this Chapter, we focus on the film model.

2.1 A droplet on the plane

In this case, we consider a droplet on a plane. For simplicity, we assume that
the area density of the surface of the drop is constant and that the surface
tension is homogeneous. In addition, the contact angle of θ < 90◦ is our
consistent consideration.

Examining the equilibrium shape of the droplet is our starting point.
From the assumption of the contact angle being less than 900 the surface of
the droplet can be described by the graph of scalar function below

u : Ω× (0, T ) −→ R,

where (0, T ) is the time interval and Ω ⊂ Rm(m ∈ N \ {0}) is the domain
where the motion is considered. The boundary ∂Ω is assumed to be Lipschitz
on which Dirichlet condition is prescribed. The film is assumed not to go
under the plane. Moreover, the volume preservation of the film is crucial
assumption ∫

Ω

uχu>0dx = V > 0.
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The surface energy of the stable droplet can be written as

E =

∫
Ω

γg
√

1 + |∇u|2χu>0dx+

∫
Ω

γsχu>0dx (2.1)

where γg = γLG, γs = γSL − γSG (Figure. 1.1).

If we assume that the minimizer exists and is smooth, we obtain the
following result (see [15]).

Lemma 1. Let the minimizer of (2.1) be smooth in {u > 0}. Then Young’s
equation

γs = −γg cos θ

hold on ∂{u > 0}.
Proof. We denote

uε = V
u+ εϕ

V + εΦ

where Φ =
∫

Ω
ϕdx. Then we have

0 = lim
ε→0

1

ε
(E(uε)− E(u))

= lim
ε→0

γg
ε

∫
Ω

(√
1 +
|∇u+ ε∇ϕ|2
(1 + εΦ/V )2

χuε>0 −
√

1 + |∇u|2χu>0

)
dx

+ lim
ε→0

1

ε

∫
Ω

γs(χuε>0 − χu>0)dx

= γg

∫
Ω

∇u∇ϕ− 1
V
|∇u|2Φ√

1 + |∇u|2
χu>0dx

= γg

∫
Ω

( ∇u∇ϕ√
1 + |∇u|2

− 1

V

|∇u|2√
1 + |∇u|2

Φ
)
χu>0dx

= γg

∫
Ω

( ∇u∇ϕ√
1 + |∇u|2

− λϕ
)
χu>0dx,

where λ = 1
V

∫
Ω

|∇u|2√
1+|∇u|2

dx.

Using Green’s theorem we have following form

γg

∫
Ω

(
∇.
( ∇u√

1 + |∇u|2
)

+ λ
)
ϕdx = 0, ∀ϕ ∈ C∞0 (Ω ∩ {u > 0}) (2.2)
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On the other hand, we can carry out the so-called inner variation of (2.1),
which uses the perturbation

uε =
V

Vε
u(τ−1

ε (x)),

where
τε(x) = x+ εη(x), η ∈ C∞0 (Ω,Rm)

with Jacobian
|Dτε| = 1 + ε(∇.η) + o(ε), ε→ 0,

and Vε is determined so that the perturbation preserves volume:

Vε =

∫
Ω

u(τ−1
ε (x))dx =

∫
Ω

u(y)|Dτε(y)|dy = V+ε

∫
Ω

u(∇.η)dx+o(ε), ε→ 0.

Noting that if we denote

yi(x) = xi + εηi(x)

then

∂yi
∂xj

(x) = δij + ε
∂ηi
∂xj

(x)

∂xj
∂yi

(y) = δji − ε
∂ηj
∂xi

(x) + o(ε), ε→ 0.

∂uε
∂yi

(y) =
V

Vε

∑
j

∂u

∂xj
(x)

∂xj
∂yi

(y)

=
V

Vε

∑
j

∂u

∂xj
(x)
(
δji −

∂ηj
∂xi

(x) + o(ε)
)
, ε→ 0

=
V

Vε

(
∂u

∂xi
(x)− ε

∑
j

∂u

∂xj

∂ηj
∂xi

(x)

)
+ o(ε), ε→ 0.

=
V

Vε

(
∂u

∂xi
(τ−1
ε (y))− ε

∑
j

∂u

∂xj

∂ηj
∂xi

(τ−1
ε (y))

)
+ o(ε), ε→ 0.
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and employing the substitution x = τ−1
ε (y), we have

0 = lim
ε→0

1

ε
(E(uε)− E(u))

= lim
ε→0

γg
ε

∫
Ω

(√
1 +

V 2

V 2
ε

∑
i

( ∂u
∂xi
− ε

∑
j

∂u

∂xj

∂ηj
∂xi

)2

(1 + ε∇.η)−
√

1 + |∇u|2
)
χu>0dx

+ lim
ε→0

1

ε

∫
Ω

(γs(τε)(1 + ε∇.η)− γs)χu>0dx

= lim
ε→0

γg
ε

∫
Ω

2ε∇.η + V 2

V 2
ε

(
|∇u|2 − 2ε

∑
i,j

∂u
∂xi

∂u
∂xj

∂ηj
∂xi

)
(1 + 2ε∇.η)− |∇u|2

2
√

1 + |∇u|2
χu>0dx

+

∫
Ω

(
γs(τε)− γs

ε
+ γs(τε)(∇.η)

)
χu>0dx

= γg

∫
{u>0}

(
(1 + |∇u|2)(∇.η)−∇uTDη∇u√

(1 + |∇u|2
− λu(∇.η)

)
dx+

∫
{u>0}

∇.(γsη)dx.

Using Green’s theorem, we have∫
{u>0}

u(∇.η)dx = −
∫
{u>0}

∇u.ηdx+

∫
∂{u>0}

u(η.ν)dS∫
{u>0}

∇.(γsη)dx = −0 +

∫
∂{u>0}

γs(η.ν)dx∫
{u>0}

(1 + |∇u|2)(∇.η)√
(1 + |∇u|2

dx = −
∫
{u>0}

∇uTD2uη√
1 + |∇u|2

dx+

∫
∂{u>0}

√
1 + |∇u|2(η.ν)dS∫

{u>0}

∇u√
(1 + |∇u|2

.∇(∇u.η)dx = −
∫
{u>0}

∇.

(
∇u√

1 + |∇u|2

)
(∇u.η)dx

+

∫
∂{u>0}

(∇u.η)

(
∇u.ν√

1 + |∇u|2

)
dS

On the other hand, we have∫
{u>0}

∇u√
1 + |∇u|2

.∇(∇u.η)dx =

∫
{u>0}

∇uTD2uη +∇uTDη∇u√
1 + |∇u|2

dx
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So we obtain∫
{u>0}

∇uTDη∇u√
1 + |∇u|2

dx = −
∫
{u>0}

∇uTD2uη√
1 + |∇u|2

dx−
∫
{u>0}

∇.

(
∇u√

1 + |∇u|2

)
(∇u.η)dx

+

∫
∂{u>0}

(∇u.η)

(
∇u.ν√

1 + |∇u|2

)
dS

where ν = − ∇u|∇u| is the unit outer normal to ∂{u > 0}.
From these results, we get

0 =γg

∫
{u>0}

[
∇.

(
∇u√

1 + |∇u|2

)
+ λ

]
(∇u.η)dx

+

∫
∂{u>0}

(
γg

(√
1 + |∇u|2 − |∇u|2√

1 + |∇u|2
)

+ γs

)
(η.ν)dS,

Using the result (2.2), which yields:

0 =

∫
∂{u>0}

(
γg

(√
1 + |∇u|2− |∇u|2√

1 + |∇u|2
)

+γs

)
(η.ν)dS, ∀η ∈ C∞0 (Ω,Rm).

We conclude that

γs = − 1√
1 + |∇u|2

γg on ∂{u > 0},

On the other the hand, we have tan θ = |∇u|, which yields

γs = −γg cos θ on ∂{u > 0}

We rewrite equation (2.1) as follows:

E =

∫
Ω

γg
√

1 + |∇u|2dx+

∫
Ω

(γg + γs)χu>0dx− γg|Ω|. (2.3)

Now suppose that the gradient of u remains small (i.e, the deformation of
the film is very small) then by Taylor expansion we have√

1 + |∇u|2 ' 1 +
1

2
|∇u|2

10



Thus, we can write the approximation of the surface energy (2.3) in the form

Ẽ =

∫
Ω

γg
2
|∇u|2dx+

∫
Ω

R2χu>0dx (2.4)

where R2 = γg + γs. Potential energy of fluid surrounded by the film is

ρg

∫
Ω

1

2
u2χu>0dx,

where ρ is the fluid density. On other hand, the kinetic energy of the vertical
movement of the film is given by∫

Ω

(σ
2
u2
tχu>0

)
dx,

where σ is the area density of the surface. Therefore, the Lagrangian for the
film can be written as

L(u, t) =

∫
Ω

(σ
2
u2
tχu>0 −

γg
2
|∇u|2 −R2χε(u)− 1

2
ρgu2χu>0

)
dx,

where χu>0 in equation (2.4) is replaced by a smoothing function χε ∈ C2(R)
satisfying

χε(s) =

{
1, if s ≥ ε,
0, if s ≤ 0

and |χ′ε(s)| ≤ C/ε for s ∈ (0, ε). The purpose of smoothing is to avoid the
presence of delta function in the equation [15].

The equation of motion within time interval (0, T ) can be defined by

J(u) =

∫ T

0

L(u, t)dt,

and the problem is determining the stationary point of functional J in the
suitable function space satisfying the given volume constraint V > 0.

Problem 1. Find the stationary state u of functional

J(u) =

∫ T

0

∫
Ω

(σ
2
u2
tχu>0 −

γg
2
|∇u|2 −R2χε(u)− 1

2
ρgu2χu>0

)
dxdt,

11



in the function space

K =
{
u ∈ H1(ΩT );u|∂Ω = 0,

∫
Ω

uχu>0 = V
}
,

where u0(x) is the initial shape and v0 is the initial velocity of the film.

Let u be a stationary point of J. We select an arbitrary function ϕ ∈
C∞0 ((0, T )× (Ω ∩ {u > 0})), and denote

Φ(t) =

∫
Ω

ϕ(t, x)dx.

uε = (u+ εϕ)
V

V + εΦ
.

If A is denoted by A = V
V+εΦ

then we obtain

lim
ε→0

A = 1,

lim
ε→0

At = lim
ε→0

εV Φt

(V − εΦ)2
= 0,

lim
ε→0

dA

dε
= lim

ε→0

V Φ

(V − εΦ)2
= −Φ

V
,

lim
ε→0

d

dε
At = −Φt

V
,

lim
ε→0

d

dε
A2 = −2Φ

V
,

lim
ε→0

d

dε
(AAt) = −Φt

V
,

lim
ε→0

d

dε
A2
t = 0.

(2.5)

Thanks to above relations we can calculate the first derivative of each term
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in functional J(u) :

lim
ε→0

d

dε

∫ T

0

∫
Ω

σ

2
[(uε)t]

2χu>0dxdt =

∫ T

0

∫
Ω

σ
[
utϕt −

1

V
ut(utΦ + uΦt)

]
χu>0dxdt

=

∫ T

0

∫
Ω

σ
[
− uttϕ−

1

V
ut(uΦ)t

]
χu>0dxdt

=

∫ T

0

∫
Ω

σ
[
− uttϕ+

1

V
uttuΦ

]
χu>0dxdt,

lim
ε→0

d

dε

∫ T

0

∫
Ω

γg
2
|∇uε|2dxdt =

∫ T

0

∫
Ω

γg

(
∇u∇ϕ− 1

V
(∇u)2Φ

)
dxdt

=

∫ T

0

∫
Ω

γg

(
−∆uϕ− 1

V
(∇u)2Φ

)
dxdt,

lim
ε→0

d

dε

∫ T

0

∫
Ω

R2χε(uε)dxdt =

∫ T

0

∫
Ω

R2χ′ε(u)
(
ϕ− 1

V
uΦ
)
dxdt,

lim
ε→0

d

dε

∫ T

0

∫
Ω

1

2
ρgu2

εχu>0dxdt =

∫ T

0

∫
Ω

ρg
(
uϕ− 1

V
u2Φ

)
χu>0dxdt

Since u is a stationary point, we have

0 =
dJ(uε)

dε

∣∣∣
ε=0

=

∫ T

0

∫
Ω

(
− σuttχu>0 + γg∆u−R2χ′ε(u)− ρguχu>0

)
ϕdxdt

+
1

V

∫ T

0

∫
Ω

(
σuuttχu>0 + γg(∇u)2 +R2uχ′ε(u) + ρgu2χu>0

)
Φdxdt

=

∫ T

0

∫
Ω

(
− σuttχu>0 + γg∆u−R2χ′ε(u)− ρguχu>0 + λ

)
ϕdxdt

where

λ =
1

V

∫
Ω

(
σuuttχu>0 + γg(∇u)2 +R2uχ′ε(u) + ρgu2χu>0

)
dx.

The strong version of the above formulation is as follows:

χu>0σutt = γg∆u− ρguχu>0 −R2χ′ε(u) + λ. (2.6)
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2.2 A droplet on inclined plane

In the case of a droplet on inclined plane with angle α above equation becomes

χu>0σutt = γg∆u− fχu>0 −R2χ′ε(u) + λ, (2.7)

where f = ρg(u cosα− x1 sinα), here x1 is the horizontal axis, and

λ =
1

V

∫
Ω

(
γg|∇u|2 + fuχu>0 +R2uχ′ε(u) + σuttuχu>0

)
dx.

14



Chapter 3

Discrete Morse Flow Method

This Chapter explains Discrete Morse Flow (DMF), the variational method
used in this study to solve the problem that dependent on time with dif-
ferential operators for space variables in divergence form. This method was
first introduced by N. Kikuchi to solve parabolic problems [1], and also used
to solve hyperbolic problems [2], [5]. One of the extensions of this method
was used to solve free-boundary problems [3], [4]. Solving volume-preserving
problems is the other extension of this method [6], [16]. Particularly, this
method can be naturally applied to the free boundary problem with volume
constraint in [14], [17].
In this case, we describe the details on the example of the hyperbolic equa-
tion. The content in this part is based on [15].

3.1 Mathematical formulation

We consider a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω, on which
homogeneous Dirichlet boundary condition is given. Then, with a fixed initial
position value u0 ∈, H1

0 (Ω), and initial velocity v0 ∈, H1
0 (Ω) , we consider the

problem:

utt(t, x) = ∆u(t, x), (t, x) ∈ ΩT = (0, T )× Ω, (3.1)

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (3.2)

u(0, x) = u0(x), x ∈ Ω, (3.3)

ut(0, x) = v0(x), x ∈ Ω. (3.4)

15



First, we fix a large number N > 0, determine the time step h = T/N. From
the initial conditions, we define u−1 using a backwards difference u−1 =
u0 − v0h. We then define un ∈ H1

0 (Ω) for n = 1, 2, .., N, to minimize the
functional

Jn(u) :=

∫
Ω

|u− 2un−1 + un−2|2

2h2
dx+

1

2

∫
Ω

|∇u|2dx (3.5)

In this functional, we see that the first term is continuous in L2(Ω) and the
second term is lower-semicontinuous with respect to sequentially weak con-
vergence in H1(Ω). The existence of minimizers then follows immediately
since the functional are bounded below for each n = 1, 2, .., N.

Next step, having obtained the existence of minimizers, we define their
piecewise linear time interpolant by

uh(t, x) =
t− (n− 1)h

h
un(x) +

nh− t
h

un−1(x) (3.6)

and a piecewise constant step function by

uh(t, x) = un(x) (3.7)

for (t, x) ∈ ((n− 1)h, nh]× Ω, n = 0, 1, .., N.

Figure 3.1: Interpolation of minimizers

Because un is a minimizer of Jn, the first variation of Jn at un vanishes.
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Therefore, for any ϕ ∈ H1
0 (Ω) we have

0 =
d

dε
Jn(un + εϕ)|ε=0 = lim

ε−→0

Jn(un + εϕ)− Jn(un)

ε

= lim
ε−→0

1

ε

∫
Ω

|un + εϕ− 2un−1 + un−2|2 − |un − 2un−1 + un−2|2

2h2
dx

+ lim
ε−→0

1

2ε

∫
Ω

(|∇un + ε∇ϕ|2 − |∇un|2)dx

= lim
ε−→0

∫
Ω

(2un + εϕ− 4un−1 + 2un−2)ϕ

2h2
+ lim

ε−→0

1

2

∫
Ω

(2∇un∇ϕ+ ε|∇ϕ|2)dx

=

∫
Ω

un − 2un−1 + un−2

h2
ϕdx+

∫
Ω

∇un∇ϕdx (3.8)

As we defined for uh and uh in equation (3.7) and (3.6) we obtain:∫
Ω

[uht (t)− uht (t− h)

h
ϕ+∇uh∇ϕ

]
dx = 0 for a.e. t ∈ (h, T ) ∀ϕ ∈ H1

0 (Ω).

(3.9)
This relation satisfies with any ϕ̃ ∈ C([0, T ]). Thus, we have:∫ T

h

∫
Ω

[uht (t)− uht (t− h)

h
ϕ+∇uh∇ϕ

]
dxdt = 0 ∀ϕ ∈ L2(0, T ;H1

0 (Ω)).

(3.10)
Now, we want to take limit of time step h to zero. However, we need some
more estimate. We state it in the following Lemma.

Lemma 2. Suppose Ω is a bounded domain with smooth boundary. Let
Jn, n = 2, 3, .., N, be the functionals defined by (3.5) and let un be corre-
sponding minimizers in H1

0 (Ω). Define functions uh and uh by (3.7),(3.6)
and assume h ≤ 1. Then the following estimate holds

‖uht (t)‖2
L2(Ω) + ‖∇uht (t)‖2

L2(Ω) ≤ CE for a.e. t ∈ (0, T ) (3.11)

where constant CE is defined in the proof and is independent of h.

Proof. We replace ϕ in (3.8)by ϕ := un − un−1. This yields∫
Ω

un − 2un−1 + un−2

h2
(un − un−1)dx+

∫
Ω

(∇un −∇un−1)∇undx = 0.
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Using the inequality

a2

2
− b2

2
≤ (a− b)a,∀a, b ∈ R

for two term of this, we get∫
Ω

[(un − un−1

h

)2 −
(un−1 − un−2

h

)2
+ |∇un|2 − |∇un−1|2

]
dx ≤ 0

∫
Ω

[(un − un−1

h

)2
+ |∇un|2

]
dx ≤

∫
Ω

[(un−1 − un−2

h

)2
+ |∇un−1|2

]
dx.

Since these inequalities are summed from n = 1 to k ≤ N. Thus, we obtain∫
Ω

[(uk − uk−1

h

)2
+ |∇uk|2

]
dx ≤

∫
Ω

[(u0 − u−1

h

)2
+ |∇u0|2

]
dx

=

∫
Ω

[
(v0)2 + |∇u0|2

]
dx

= ‖v0‖2
L2(Ω) + ‖∇u0‖2

L2(Ω).

We know uht (t) = uk−uk−1

h
and∇uk = ∇uht for t ∈ ((k−1)h, kh), k = 0, 1, .., N,

then we get the estimate (3.11).

Thanks to the estimate(3.11), we can apply the theorem by Eberlein and
Shmulyan to extract a subsequence {∇uhk}k∈N which converges weakly in

L2(QT ) to the function v. From the sequence {hkl}l∈N so that {uhklt }l∈N
converges weakly in L2(QT ) to a function U. In the sequence, we often use
this logic but we shall omit this lengthy explanation and subscripts, and
simply write

∇uht ⇀ v in (L2(QT ))m, (3.12)

uht ⇀ U in L2(QT ). (3.13)

We should now show that there is a function u ∈ L2(0, T ;H1
0 (Ω)) such that

v = ∇u and U = ut in L2(QT ). To this end, a more detailed analysis is
needed. First, we estimate the norm of the difference of the approximate
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functions uh and uh. Let t ∈ ((n− 1)h, nh). Then

‖uh(t)− uh(t)‖2
L2(Ω) =

∫
Ω

(uh − uh)2dx

=

∫
Ω

(
un −

t− (n− 1)h

h
un −

nh− t
h

un−1

)2
dx

=

∫
Ω

(nh− t
h

)2
(un − un−1)2dx

≤
∫

Ω

(un − un−1)2dx = h2

∫
Ω

(uht )
2dx

≤ C2
Eh

2.

This means that

‖uh − uh‖L2(Ω) ≤ Ch for a.e. t ∈ (0, T ).

We have further

‖uh‖2
L2(QT ) − ‖uh‖2

L2(QT ) =

∫ T

0

∫
Ω

(((uh)2 − uh)2)dxdt

=
N∑
n=1

∫ nh

(n−1)h

∫
Ω

[(t− (n− 1)h

h
un −

nh− t
h

un−1

)2 − u2
n

]
dxdt

=
N∑
n=1

∫
Ω

(
− 2h

3
u2
n +

h

3
unun−1 +

h

3
u2
n−1

)
dx

≤ h

6

N∑
n=1

∫
Ω

(−4u2
n + u2

n + u2
n−1 + 2u2

n−1)dx

=
h

2

N∑
n=1

∫
Ω

(−u2
n + u2

n−1)dx =
h

2

∫
Ω

(u2
0 − u2

N)dx

≤ h

2
‖u0‖2

L2(Ω).

In the same way we also get

‖∇uh‖2
L2(QT ) − ‖∇uh‖2

L2(QT ) ≤
h

2
‖∇u0‖2

L2(QT ).
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Finally, from Poincare’s inequality we know that there is a universal constant
CP so that

‖uh‖L2(QT ) ≤ CP‖∇uh‖L2(QT ) for all h ∈ (0, 1). (3.14)

We have obtained some results for future use. The results of the following
Lemma rely only on the interpolations (3.7) and (3.6). The results are also
independent of the problem under consideration and a fact frequently used
later on.

Lemma 3. Let uh and uh be defined by (3.7) and (3.6). Then the following
relations hold.

‖uh − uh‖L2(Ω) ≤ h‖uht ‖L2(Ω) for a.e. t ∈ (0, T ), (3.15)

‖uh‖2
L2(QT ) ≤ ‖uh‖2

L2(QT ) +
h

2
‖u0‖2

L2(Ω), (3.16)

‖∇uh‖2
L2(QT ) ≤ ‖∇uh‖2

L2(QT ) +
h

2
‖∇u0‖2

L2(Ω). (3.17)

Now, (3.11), (3.17) and (3.14) imply that uh is uniformly bounded in
H1(QT ). Therefore, there is a weakly convergent subseguence in H1(QT )
and, by Rellich theorem, a strongly converging subsequence in L2(QT ). Let
us denote the cluster function as u:

uh ⇀ u weakly in H1(QT ) (3.18)

Because of (3.13), U = ut holds almost everywhere. Moreover, from (3.12)
for any ϕ ∈ C∞0 (QT )∫ T

0

∫
Ω

(∂uh
∂xi
− ∂uh

∂xi

)
ϕdxdt→

∫ T

0

∫
Ω

(
vi −

∂uh

∂xi

)
ϕdxdt as h→ 0+,

while at the same time∫ T

0

∫
Ω

(∂uh
∂xi
− ∂uh

∂xi

)
ϕdxdt = −

∫ T

0

∫
Ω

(uh − uh) ∂ϕ
∂xi

dxdt→ 0 as h→ 0+,

by (3.15). This means that v = ∇u almost everywhere in QT .
We have shown in this way that there is a function u ∈ H1(QT ), such that

∇uh ⇀ ∇u in (L2(QT )m) (3.19)
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uht ⇀ ut in L2(QT ) (3.20)

Now, we can pass to limit in (3.10) as h→ 0 + . We shall, for the time being,
consider a test function ϕ belonging to C∞0 ([0, T ] × Ω). To begin with, we
have

lim
h−→0

∫ T

h

∫
Ω

∇uh∇ϕdxdt (3.21)

= lim
h−→0

∫ T

0

∫
Ω

∇uh∇ϕdxdt− lim
h−→0

∫ h

0

∫
Ω

∇uh∇ϕdxdt (3.22)

=

∫ T

0

∫
Ω

∇u∇ϕdxdt (3.23)

because the boundeness (3.11) of ∇uh:∣∣∣ ∫ h

0

∫
Ω

∇uh∇ϕdxdt
∣∣∣ ≤ ∫ h

0

(∫
Ω

|∇uh|2dx
)1/2(∫

Ω

|∇ϕ|2dx
)1/2

dt

≤
∫ h

0

√
CECdt = Ch −→ 0. as h→ 0 + .

Moreover, for the first part of (3.10) we have:∫ T

h

∫
Ω

uht (t)− uht (t− h)

h
ϕdxdt

=

∫ T

h

∫
Ω

uht (t)

h
ϕ(t)dxdt−

∫ T−h

0

∫
Ω

uht (t)

h
ϕ(t+ h)dxdt

=

∫ T

0

∫
Ω

−u
h
t (t)

h
(ϕ(t+ h)− ϕ(t))dxdt−

∫ h

0

∫
Ω

uht (t)

h
ϕ(t)dxdt

+

∫ T

T−h

∫
Ω

uht (t)

h
ϕ(t+ h)dxdt (3.24)

Such that for h −→ 0, by using integration by part, we obtain:

lim
h−→0

∫ T

h

∫
Ω

uht (t)− uht (t− h)

h
ϕdxdt =

∫ T

0

∫
Ω

−ut(t)ϕt(t)dxdt−
∫

Ω

v0ϕ(0)dx

(3.25)
The convergence is deduced from the following facts:

1. in the first term of (3.24), uht converges weakly and (ϕ(t)−ϕ(t+h))/h
converges strongly in L2(QT );
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2. in the second term, uht = (u1 − u0)/h = v0 for t ∈ (0, h);

3. in the third term, ϕ(t+ h) = 0 for t ∈ (T − h, T );

Finally, we get that:∫ T

0

∫
Ω

(−ut(t)ϕt(t)+∇u∇ϕ)dxdt−
∫

Ω

v0ϕ(0, x)dx = 0 ∀ϕ ∈ C∞0 ([0, T ]×Ω)

(3.26)
Noting that the space of functions from H1(QT ) with zero trace on ({0}×Ω)∪
([0, T ] × ∂Ω) is a closed linear subspace of H1(QT ) and, therefore, weakly
closed by Mazur’s theorem, we conclude by (3.18) that u belongs to this
space. Consequently, u satisfies boundary condition (3.2) and initial condi-
tion (3.3) in the sense of traces. We remark that the convergence of traces
follows also from the compactness of the trace operator T : H1(Ω)→ L2(∂Ω).
Moreover, from [8] it follow that u, as a function from H1(0, T ;L2(Ω)), be-
long to C([0, T ];L2(Ω)). Thus, the initial condition (3.3) is satisfied even in
the strong sense.
To summarize, we have proved by the discrete Morse flow method that there
exist a weak solution u ∈ H1(Qt) to problem (3.1)-(3.4) in the sense of (3.26),
satisfying boundary and initial condition (3.2),(3.3) in the sense of traces.

3.2 The extensions of the DMF method

The DMF method can be naturally applied to problems with volume-constraint
and free-boundary problems [15].
For hyperbolic problem with volume-constraint, we cite a result from [20]

Theorem 1. Let us consider the following hyperbolic problem:

utt(t, x) = ∆u(t, x) + λ(u), (t, x) ∈ ΩT = (0, T )× Ω, (3.27)

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (3.28)

u(0, x) = u0(x), x ∈ Ω, (3.29)

ut(0, x) = v0(x), x ∈ Ω. (3.30)

where λ(u) = 1
V

∫
Ω

(uttu+ |∇u|2)dx.
Let T > 0 and Ω be a bounded domain in Rm with Lipschitz continuous
boundary ∂Ω. We assume that g ∈ L2(∂Ω) but put here g = 0 for simplicity.
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Further u0, v0 belong to H1(Ω) satisfy the compatibility conditions u0(x) =
g(x), v0(x) = 0 for x ∈ ∂Ω and

∫
Ω
u0dx = V,

∫
Ω
v0dx = 0. Then there is a

weak solution u ∈ H1(0, T ;L2(Ω))∩L∞(0, T ;H1
0 (Ω)) satisfying the condition

of constant volume, u(0) = u0 and the following identity for all test function
ϕ ∈ C∞0 ([0, T ]× Ω) with Φ =

∫
Ω
ϕdx∫ T

0

∫
Ω

(−utϕt +∇u∇ϕ)dxdt−
∫

Ω

v0ϕ(0)dx

=
1

V

∫ T

0

∫
Ω

(−ut(uΦ)t + |∇u|2Φ)dxdt− 1

V

∫
Ω

u0v0Φ(0)dx.

For a volume-constrained free boundary hyperbolic equation in one space
dimension we cite a result from [17]

Theorem 2. Let us consider the following hyperbolic problem:

χu>0utt = ∆u− f(u) + λχu>0(u), (t, x) ∈ ΩT = (0, T )× Ω, (3.31)

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (3.32)

u(0, x) = u0(x), x ∈ Ω, (3.33)

ut(0, x) = v0(x), x ∈ Ω. (3.34)

where λ(u) = 1
V

∫
Ω

(uttu+ f(u)u+ |∇u|2)dx.
Let Ω ⊂ R be a domain with Lipschitz boundary and T > 0 a given final
time. Assume that f(t, x, u) is continuous in the variable u and satisfies
|f(t, x, u)| ≤ Cf (u) + Γ(t, x) for some small constant Cf and a nonnegative
Γ ∈ L2((0, T ) × Ω). Further, assume that initial data u0 and v0 belong to
H1

0 (Ω) satisfying the compatibility conditions
∫

Ω
u0dx = V,

∫
Ω
v0dx = 0. Then

there exists a weak solution in the following sense.
A function u ∈ H1(0, T ;L2(Ω))∩L∞(0, T ;H1

0 (Ω)) is called a weak solution if
u(0, x) = u0, if u = 0 outside {u > 0} and if the following identity holds for
all ϕ(t, x) ∈ C∞0 ([0, T ]×Ω∩{u > 0}) and an arbitrary ũ(t, x) ∈ C∞0 ([0, T ]×
Ω ∩ {u > 0}) satisfying

∫
Ω
ũ(t, x)dx = V :∫ T

0

∫
Ω

(−utϕt +∇u∇ϕ+ f(u)ϕ)dxdt−
∫

Ω

v0ϕ(0)dx

=
1

V

∫ T

0

∫
Ω

(−ut(ũΦ)t + (∇u∇ũ+ ũf(u)Φ)dxdt− 1

V

∫
Ω

ũ0v0Φ(0)dx.

where Φ(t) denotes
∫

Ω
ϕ(t, x)dx and ũ0 = ũ(0, x).
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Chapter 4

Smoothed particle
hydrodynamics method

4.1 Introduction

Smoothed particle hydrodynamics (SPH) was invented to simulate astro-
physical phenomena in astrophysics. This method has been widely studied
and extended for applications to problems of continuum in solid and fluid
mechanics [12]. The main feature of SPH method is to replace the equations
of fluid dynamics by equations for particles. In this chapter, we shall show
how a continuous field can be mapped on to a series of discrete particles.
Then, we show how derivatives may be calculated.

4.2 Fundamental formulation of SPH

In order to derive the formulation of SPH, we consider two steps. The first
step is the integral representation or kernel approximation of field functions.
The second one is the particle approximation.

4.2.1 Kernel approximation

To obtain kernel approximation of a (scalar) function f(r), the trivial identity
is considered the starting point

f(r) =

∫
Ω

f(r′)δ(r − r′)dr′, (4.1)
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f(r) denotes a function of position vector r, δ(r − r′) is the Dirac delta
function, and Ω is the volume of the integral that contain r.
If we replace Delta function by a smoothing function W (r−r′, h), the kernel
approximation of f(r) is given by

< f(r) >=

∫
Ω

f(r′)W (r − r′, h)dr′. (4.2)

The smoothing function W is usually chosen to be an even function. It
should satisfy a number conditions, such as

The normalization condition:∫
Ω

W (r − r′, h)dr′ = 1, (4.3)

Delta function property:

lim
h→0

W (r − r′, h)dr′ = δ(r − r′) (4.4)

Compact condition:
W (r − r′, h) = 0 (4.5)

when |r − r′| > κh where κ is a constant related to smoothing function
for point at r, and defines the effective (non-zero) area of the smoothing
function. This effective area is called the support domain for the smoothing
function of point r (or the support domain of that point).

Using the Taylor series expansion of f(r′) around r′, where f(r) is dif-
ferentiable, we obtain following relation [12]:

< f(r) >= f(r) +O((r′ − r)2) (4.6)

Thus, the kernel approximation of a function is of second order accuracy in
SPH method.

The gradient of a scalar function can be naturally calculated by taking
the spatial derivative of equation (4.2):

< ∇f(r) >=

∫
Ω

[
∇′f(r′)

]
W (r − r′, h)dr′. (4.7)
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where ∇ and ∇′ are gradients with respect to r and r′, respectively. When
we ignore the surface term, integrating by parts of (4.7) we obtain

< ∇f(r) >=

∫
Ω

f(r′)∇W (r − r′, h)dr′. (4.8)

Similarly, the kernel approximation of the derivative of a vector field f(r)
is given by

< ∇.f(r) >=

∫
Ω

f(r′).∇W (r − r′, h)dr′. (4.9)

4.2.2 Particle approximation

The continuous integral representations can be converted to discretized forms
of summation over all the particles in the support domain. This process is
carried out as follows.

At position j, we use the finite volume of the particle 4Vj to replace
the infinitesimal volume dr′, and mass of particle at this point is given by
mj = 4Vjρj where ρj is the density of particle j. Thus,

< f(r) > =

∫
Ω

f(r′)W (r − r′, h)dr′

'
∑
j

f(rj)W (r − rj, h)4Vj

=
∑
j

mj

ρj
f(rj)W (r − rj, h)

or
< f(r) >=

∑
j

mj

ρj
f(rj)W (r − rj, h) (4.10)

The particle approximation for a function at particle i can finally be
written as

< f(ri) >=
∑
j

mj

ρj
f(rj)Wij (4.11)

where
Wij = W (ri − rj, h)
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By using the same way, the particle approximation for the spatial deriva-
tive of the (scalar) function is

< ∇f(r) >=
∑
j

mj

ρj
f(rj)∇W (r − rj, h) (4.12)

To obtain higher accuracy, the particle approximation would be done by
writing [9]:

ρ∇A = ∇(ρA)− A∇ρ
In summary, the particle approximation for the spatial derivative of the

function at particle i can finally be written as

< ∇f(ri) >=
1

ρi

∑
j

mj[f(ri)− f(rj)]∇iWij (4.13)

where

∇iWij =
ri − rj
rij

∂Wij

∂rij
=

rij
rij

∂Wij

∂rij
In the case of vector field, the particle approximation for the spatial

derivative at particle i can be given by:

< ∇.f(ri) >=
1

ρi

∑
j

mj[f(ri)− f(rj)].∇iWij (4.14)

4.2.3 Smoothing Kernels

There are many different commonly used smoothing functions that have been
implemented in SPH method. In this study we use cubic spline kernel which
is defined as

W (r, h) =
1

πh3


1− 1.5x2 + 0.75x3, if 0 ≤ x < 1.

0.25(2− x)3, if 1 ≤ x ≤ 2
0, if 2 ≤ x

(4.15)

where x = r
h
.

The gradient of the kernel is well defined for all values of x, such that

∂W (r, h)

∂r
=

1

πh4


−3x+ 2.25x2, if 0 ≤ x < 1.
−0.75(2− x)2, if 1 ≤ x ≤ 2

0, if 2 ≤ x
(4.16)

∇W (r, h) =
r

r

∂W (r, h)

∂r
, r = |r|
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4.3 SPH Euler equations

In this study, The governing equations of the fluid are given as (Euler equa-
tions):

Momentum equation

Dv

Dt
= −1

ρ
∇P + g, (4.17)

Continuity equation
Dρ

Dt
= −ρ∇.v (4.18)

Equation of state
P = P (ρ, c, ρ0) (4.19)

where D
Dt

= ∂
∂t

+ v.∇ is material derivative, v is velocity, ρ is density, g is
gravitation. We assume that c and ρ0 are given.

In this section, we shall approximate density, velocity under particle form
based on above particle approximations.

4.3.1 The momentum equation

Using the equation (4.13), the pressure gradient could be estimated by using

ρi∇Pi =
∑
j

mj(Pi − Pj)∇iWij, (4.20)

and this has the disadvantage that the linear and angular momentum are
not conserved exactly. In this case, it is better to symmetrize the pressure
gradient term by rewriting ∇P/ρ according to [9]:

∇P
ρ

= ∇
(P
ρ

)
+
P

ρ2
∇ρ

The momentum equation for particle i becomes

Dvi
Dt

= −
∑
j

mj

(Pi
ρ2
i

+
Pj
ρ2
j

)
∇iWij + gi (4.21)
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In order to improve the numerical stability, an artificial viscosity was
proposed by Monaghan [11] and is given by

Πij =

{
−αµij ci+cjρi+ρj

, if (vi − vj)(ri − rj) < 0.

0, otherwise
(4.22)

where µij =
(vi−vj).(ri−rj)

|ri−rj |2+εh2
, ck is the speed of sound which also appears in the

state equation, ε = 0.01, α = 0.01

Thus, the stabilized discrete momentum equations is described

Dvi
Dt

= −
∑
j

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij

)
∇Wij + gi (4.23)

4.3.2 Conservation of Mass

From equation (4.14), the divergence of velocity can be approximated follow-
ing

ρ∇.vi =
∑
j

mjvij.∇Wij (4.24)

where vij = vi − vj.

Thus, the continuity equation can be replaced by

Dρi
Dt

=
∑
j

mjvij.∇Wij (4.25)

4.3.3 Particle positions

The governing equation of the position of a particle i at each time step is,

dri
dt

= ui,

where ri is the position of particle i. There is also XSPH variant which
consider artificial compressibility to incompresible flows. In the XSPH, the
particle move in the following way,

dri
dt

= ui − ε
∑
j

mj

ρj
uijWij,

where ε is a constant in the ranging 0 ≤ ε ≤ 1.0
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4.3.4 Equation of State

There are many forms that relate to density and pressure. In the present
implementation, the equation of state relates the pressure in fluids following

P = c2(ρ− ρ0),

where P is the pressure, c is artificial sound speed, and ρ0 is reference density.

4.3.5 Boundary conditions

For a boundary and fluid particle separated by a distance r = |r|, the force
per unit mass f(r) has the Lennard-Jones form [10]

f(r) =

{
D
[(

r0
r

)m − ( r0
r

)n] r
r2
, if r < r0,

0, otherwise
(4.26)

The constant m and n must satisfy the condition m > n. In this work, we
assign m = 4, n = 2 and r0 is taken to be the initial spacing between the
particles. For the last constant D, we chose D = 0.01.

4.3.6 Surface tension

Current surface tension models are commonly based on a color value ci. All
particles of a phase have the same color value and color values are interpolated
according to

ci =
∑
j

mj

ρj
Wij

The surface normal is calculated as

ni = ∇ci =
∑
j

mj

ρj
∇Wij

where |ni| > 0 only near and on the surface of the fluid.

The Gaussian curvature of the surface is measured following form

κ = −∇n
|n|

= −∇
2c

|n|
,
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where the negation is necessary to get a positive curvature for convex fluid
volume.

The surface tension traction, or external traction as opposed to internal
traction that concerns stress fields, is force per unit area acting on a given
location on the fluid’s surface. The surface traction is defined as

t = σκ
n

|n|
,

and it should only be distributed to particles near and on the surface. As |ni|
becomes smaller when particle i is away from the surface, we can multiply the
surface traction by a normalized scalar field δi = |ni|. This will guarantee
that the force density is spread to all potential particles, and ultimately
results in the surface tension force,

fsurface
i = δiti = σκini = −σ∇2ci

n

|n|
, (4.27)

The surface tension force only applies to particles located near or on the
liquid surface. This constraint is determined numerically as n

|n| , becomes

numerical unstable when |n| −→ 0. One way to prevent numerical problems

when evaluating (4.27) for particle i, is compute fsurface
i only when

|ni| ≥ l,

where l > 0 is some threshold relating to the particle concentration.

4.4 The Leap-Frog scheme

To simulate the fluid flow, each particle is advanced through time using a
global fixed time step ∆t. We have to compute the particle acceleration,
and the new position is obtained from integrating the acceleration numeri-
cally. In this work, we use the leap-frog integration which is described as [12]:

At the end of the first time step (t0), the change in density, and velocity
are used to advance the density, and velocity at half a time step, while the
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particle position are advanced in a full time step

t = t0 +4t

ρi(t0 +4t/2) = ρi(t0) +
4t
2
Dρi(t0)

vi(t0 +4t/2) = vi(t0) +
4t
2
Dvi(t0)

ri(t0 +4t) = ri(t0) +4tvi(t0 +4t/2)

At the start of each subsequent time step, we predict the density, and
velocity of each particle at half a time step.

ρi(t) = ρi(t−4t/2) +
4t
2
Dρi(t−4t)

vi(t) = vi(t−4t/2) +
4t
2
Dvi(t−4t)

At the end of the subsequent time step, the particle density, velocity and
position are advanced in the standard leap-drop scheme

t = t+4t
ρi(t+4t/2) = ρi(t−4t/2) +4tDρi(t)
vi(t+4t/2) = vi(t−4t/2) +4tDvi(t)

ri(t+4t) = ri(t) +4tvi(t+4t/2)
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Chapter 5

Numerical Computation

In this Chapter, we use finite element method to approximate functional
Jn(u). In order to find the minimizer of the functional, we use steepest de-
scend method and bisection method.

Now we describe the main scheme to find minimizing sequence {un}∞n=0 of
functional Jn(u). Generally, we consider hyperbolic with free boundary and
volume-constraint. Other cases are described in Appendix.C.

Strong form:

σuttχu>0 = γ∆u−R2χ′ε(u)− ρguχu>0 + λχu>0, in ΩT = (0, T )× Ω,

u(t, x, y) = 0, on (0, T )× ∂Ω,

u(0, x, y) = u0(x), in Ω,

ut(0, x, y) = v0(x), in Ω.

here λ =
∫

Ω
(σuttu+ γ|∇u|2 + χε(u) + ρgu2 +R2χε(u))dx

We consider the functional:

Jn(u) :=

∫
Ω

(
σ
|u− 2un−1 + un−2|2

2h2
χu>0dx+

γ

2
|∇u|2+

1

2
ρgu2χu>0+R2χε(u)

)
dx

(5.1)
in admissible set

K =
{
u ∈ H1(Ω), u|∂Ω = 0, u > 0

∫
Ω

uχu>0dx = V
}
,
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In order to get a minimizer un, n = 1, 2, .., N of functional Jn(u), we use
the following minimizing algorithm:

1. Given the initial condition u0 and v0, set u−1 = u0 − hv0.

2. For n = 0, 1, .., N, determine un+1 as follows:

(a) a1 = un

(b) For k = 1, 2, .., Kn (maximum number of iterations) repeat:

i. compute the gradient pk = ∇Jn(ak),

ii. search for the minimizer ãk+1 of Jn in the direction −pk,
iii. set ãk+1 = max(ãk+1, 0)

iv. project ak+1 onto the volume-constraint hyperplane:

ak+1 = Proj(ãk+1),

v. if convergence criterion is fulfilled, leave the cycle.

(c) un+1 = ak+1

In this algorithm, Jn(ak) is approximated using finite element method for
space discretization. Minimizers are determined by the steepest descent
method, combined with a bisection method (step ii).

We divide domain Ω intoNe triangles ei, i = 1, 2, .., Ne. Each triangle e has
three nodes numbered 1, 2, 3 with node coordinates (x1, y1), (x2, y2), (x3, y3),
and area A. In each triangle e, the terms are calculated following (see
Appendix.A for more detail):

1. The first term∫
e

|u− 2un−1 + un−2|2

2h2
dx = (a2

1 + a2
2 + a2

3 + a1a2 + a2a3 + a3a1)
A

6
,

here ai = u(xi, yi)− 2un−1(xi, yi) + un−2(xi, yi), i = 1, 2, 3

2. The third term
∫
e
|∇u|2dx is calculated by using (Appendix.A.3).

3. The fourth term∫
e

u2dx = (a2
1 + a2

2 + a2
3 + a1a2 + a2a3 + a3a1)

A

6
,

here ai = u(xi, yi), i = 1, 2, 3
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4. The final term ∫
e

χε(u)dx

This is the most complicated and important term. To calculate this one,
we have to divide the triangle e into smaller triangle(s) following some
rules (see Appendix.B for more details). Then this term is calculated
on these smaller triangle(s).

Finally, the functional Jn(u) can be approximated by

Jn(u) '
Ne∑
i

∫
ei

σ
|u− 2un−1 + un−2|2

2h2
χu>0dx+

Ne∑
i

∫
ei

1

2
ρgu2χu>0dx

+
γ

2

Ne∑
i

∫
ei

|∇u|2dx+R2

Ne∑
i

∫
ei

χε(u)dx

By using this main scheme and the others in Appendix.C, we present
some examples which are calculated under Dirichlet boundary condition.
In the first one, we consider the motion of a drop on plane (Figure. 5.1).
This motion appears when we impart an initial velocity to the drop. The
parameters in the equation (2.6) are given as

σ = 1, γ = 1, ρ = 1, R2 = 1.2, ε = 0.04, h = 7.5× 10−4

In the second example, we consider the behaviour of the film of a droplet
pinned by the solid surface (Figure.5.2). In this case, the parameters in the
equation (2.6) are given as

σ = 1, γ = 1, ρ = 1, R2 = 1.2, ε = 0.03, h = 7.5× 10−4
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t=0.0 t=0.075

t=0.15 t=0.3

t=0.6 t=∞

Figure 5.1: A droplet moving on plane by initial velocity.
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t=0.0 t=0.06

t=0.105 t=0.21

t=0.285 t=∞

Figure 5.2: A droplet hanging on the plane.
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Chapter 6

Couple problem

6.0.1 The model of fluid

In this part, we examine the motion of fluid inside the film. This motion
influences on the motion of the droplet as a whole. From the assumption,
the domain of fluid flow at time t is given as:

Ωf (t) = {(x, y, z) ∈ R3; (x, y) ∈ Ω, z ∈ (0, u(t, x, y))} (6.1)

In this domain, we propose the motion of fluid following the equations:
Conservation of mass

Dρ

Dt
+ ρ∇.v = 0, in ∪t∈(0,T ) Ωf (t)× {t}, (6.2)

Conservation of momentum

Dv

Dt
= −1

ρ
∇P + g, in ∪t∈(0,T ) Ωf (t)× {t}, (6.3)

where v is the velocity, P is the pressure and g is the gravitation field vector.
The pressure is determined by

P = c2(ρ− ρ0)

where c, ρ0 are given.
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6.0.2 The model of droplet motion

In order to achieve the model of the droplet motion, we consider an outer
force against the surface - the pressure force pushing the film from the inside.
The pressure force per unit area is written as Pn, where n is the unit outer
normal vector of the surface, which is defined by

n =
∇F
|∇F |

=
1√

1 + |∇u|2
(−ux,−uy, 1),

where F (x, y, z) = z − u(x, y).
Therefore, P (x, y, u, t) is the net force which is applied to the film [18]. In
this case, the motion of the film follows the equation

χu>0σutt = γg∆u+ P |z=uχu>0 −R2χ′ε(u) + λχu>0, (6.4)

where

λ =
1

V

∫
Ω

(
γg|∇u|2 − uP |z=u +R2uχ′ε(u) + σuttu

)
dx.

Thus, a model of the droplet motion is given as

χu>0σutt = γg∆u+ P |z=uχu>0 −R2χ′ε(u) + λχu>0, in Ω× (0, T ), (6.5)

Dρ

Dt
= −ρ∇.v, in ∪t∈(0,T ) Ωf (t)× {t}, (6.6)

Dv

Dt
= −1

ρ
∇P + g, in ∪t∈(0,T ) Ωf (t)× {t}, (6.7)

P = c2(ρ− ρ0), in ∪t∈(0,T ) Ωf (t)× {t}. (6.8)

Taking the characteristic length L, characteristic time t∗, density ρ0 and
velocity v∗, we obtain the following nondimensional form of the equations:

χu>0utt = Γ∆u+ ΣP |z=uχu>0 − Πχ′ε(u) + λχu>0, in Ω× (0, T ), (6.9)

Dρ

Dt
= −ρ∇ · v, in ∪t∈(0,T ) Ωf (t)× {t}, (6.10)

Dv

Dt
= −1

ρ
∇P + κg, in ∪t∈(0,T ) Ωf (t)× {t}, (6.11)

P = c2
s(ρ− 1), in ∪t∈(0,T ) Ωf (t)× {t}, (6.12)

where

Γ =
γgt

2
∗

σL2
,Σ =

ρ0L

σ
,Π =

R2t2∗
σL2

, κ =
t2∗
L
, cs =

c

v∗
.
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For the fluid flow, at z = 0 we impose the no-slip condition, v = 0. Then

∂P

∂z

∣∣∣
z=0

= κρg · ẑ,

where ẑ = (0, 0, 1).
At z = u(x, y) we impose the free-slip condition. We consider velocity v =
(ν1, ν2, ν3), and kinematic boundary condition is derived from DF/Dt = 0:

ut + ν1ux + ν2uy = ν3. (6.13)

Thus we obtain
v · n =

ut√
1 + |∇u|2

. (6.14)

From D2F/Dt2 = 0, we can derive the following:(
Dν3

Dt
− ux

Dν1

Dt
− uy

Dν2

Dt

)
=

Dut
Dt

+ ν1
Dux
Dt

+ ν2
Duy
Dt

.

Therefore,

n · Dv

Dt
=

1√
1 + |∇u|2

(
Dut
Dt

+ ν1
Dux
Dt

+ ν2
Duy
Dt

)
,

=
1√

1 + |∇u|2
(
utt + 2ν1uxt + 2ν2uyt + ν2

1uxx + 2ν1ν2uxy + ν2
2uyy

)
.

From (6.11) and the above relation, we have

∂P

∂n
= −ρn · Dv

Dt
+ κρg · n,

=
−ρ√

1 + |∇u|2
(
utt + 2ν1uxt + 2ν2uyt + ν2

1uxx + 2ν1ν2uxy + ν2
2uyy

)
+ κρg · n,

= − ρ√
1 + |∇u|2

(
Γ∆u+ ΣP |z=u − Πχ′ε(u) + λ

)
+ κρg · n

− ρ√
1 + |∇u|2

(
2(v · x̂)uxt + 2(v · ŷ)uyt + (v · x̂)2uxx + 2(v · x̂)(v · ŷ)uxy + (v · ŷ)2uyy

)
,

where x̂ = (1, 0, 0), ŷ = (0, 1, 0).
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In summary, a model of the droplet motion is given as

χu>0utt = Γ∆u+ ΣP |z=uχu>0 − Πχ′ε(u) + λχu>0, in Ω× (0, T ), (6.15)

Dρ

Dt
= −ρ∇ · v, in ∪t∈(0,T ) Ωf (t)× {t}, (6.16)

Dv

Dt
= −1

ρ
∇P + κg, in ∪t∈(0,T ) Ωf (t)× {t}, (6.17)

P = c2
s(ρ− 1), in ∪t∈(0,T ) Ωf (t)× {t}, (6.18)

v = 0,
∂P

∂z
= κρg · ẑ, at z = 0 (6.19)

v · n =
ut√

1 + |∇u|2
, at z = u (6.20)

∂P

∂n

∣∣∣
z=u

= − ρ√
1 + |∇u|2

(
Γ∆u+ ΣP |z=u − Πχ′ε(u) + λ

)
+ κρg · n

− ρ√
1 + |∇u|2

(
2(v · x̂)uxt + 2(v · ŷ)uyt + (v · x̂)2uxx

+2(v · x̂)(v · ŷ)uxy + (v · ŷ)2uyy

)
. (6.21)

The whole system is solved by combining the discrete Morse flow with the
SPH method. At each time level t = nh, we have the shape of the film un,
the positions and velocities of fluid particles {xmn }Mm=1, {vmn }Mm=1, from which
we can find the new shape un+1 of the film, the new positions and velocities
{xmn+1}Mm=1, {vmn+1}Mm=1 of the fluid particles as follows:

1. Predict the shape of the film u∗ using the discrete Morse flow method
without a pressure force.

2. Determine position xmn+1, velocity vmn+1, and pressure Pm
n+1 in the region

below u∗, using the SPH method.

3. Determine the new shape un+1 of the film, using the discrete Morse
flow method with the pressure force.

We use above procedure to simulate the motion of a droplet under inclined
plane with angle α = 20◦ (Figure. 6.1). The domain Ω = (0, 1) × (0, 0.6)
is divided into 80 × 48 squares with ∆x = 1/80 and each square is divided
into two triangle elements. In addition, the parameters of equation (6.15)
are given as

Γ = 1,Σ = 1,Π = 1.65, ε = 3.2∆x, h = 4× 10−4, κ = 0.1, cs =
√

5
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Figure 6.1: A droplet lying under inclined plane (experiment).

and the fluid inside the drop is represented by 1451 particles.

By observing the simulation results (Figure 6.2), it can be seen that the
shape of droplet oscillates and the volume is preserved within the discretiza-
tion error while the droplet moves. In addition, there are no particles moving
out of the film during the motion. In other words, the number of particles
representing the fluid is controlled well by the film during the motion. Judg-
ing from the obtained shapes of the droplet these results show a qualitative
agreement with observations from the real experiments.
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t=0.0 t=0.4

t=0.8 t=1.2

t=1.6 t=2.0

Figure 6.2: A droplet lying under inclined plane (simulation).
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Chapter 7

Conclusion

We have derived the hyperbolic free boundary problem with volume conser-
vation constraint based on examining the motion of the surface of a droplet
on plane or inclined plane. An approximation solution of this problem has
been designed using the discrete Morse flow method. This method induced
good numerical results, the droplet oscillates and its volume is precisely pre-
served. We have also presented a couple model for the moving droplet by
combining the above hyperbolic problem for the film with the Euler equa-
tions for fluid filling film. In this case, the film plays as the moving boundary
of the fluid and it always fills on role. Numerical result shows qualitative
agreement with observed fact. Our goal for future research is quantitative
comparison for this model.
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Appendix A

Finite element method

In the domain Ω ⊂ R2. we consider a triangle element e with node number
1, 2, 3. The node coordinates are (x1, y1), (x2, y2), (x3, y3). On this triangle, we
assume to have a planar variation ũ(x, y) :

ũ(x, y) = αx+ βy + γ

where α, β, γ are to be determined in terms of the values of ũ(x, y) at the
nodes (x1, y1), (x2, y2), (x3, y3). We denote ui = ũ(xi, yi), i = 1, 2, 3 :

ui = αxi + βyi + γ (i = 1, 2, 3)

We have the matrix form u1

u2

u3

 =

 x1 y1 1
x2 y2 1
x3 y3 1

 α
β
γ
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We denote

D :=

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
Because of D 6= 0 we can use Cramer’s rule and obtain

α =

∣∣∣∣∣∣
u1 y1 1
u2 y2 1
u3 y3 1

∣∣∣∣∣∣
D

, β =

∣∣∣∣∣∣
x1 u1 1
x2 u2 1
x3 u3 1

∣∣∣∣∣∣
D

, γ =

∣∣∣∣∣∣
x1 y1 u1

x2 y2 u2

x3 y3 u3

∣∣∣∣∣∣
D

If we denote, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) and

ai :=
yj − yk
D

, bi :=
xk − xj
D

, ci :=
xjyk − xkyj

D
(A.1)

then we get  α
β
γ

 =

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 u1

u2

u3


that is

α =
3∑
i=1

aiui, β =
3∑
i=1

biui, γ =
3∑
i=1

ciui,

Thus

ũ(x, y) =
3∑
i=1

(aix+ biy + ci)ui

We denote

λi(x, y) := aix+ biy + ci

then

ũ(x, y) =
3∑
i=1

λiui (A.2)
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here, λ1, λ2, λ3 called shape functions.
Form this formula, we can find gradient of ũ(x, y) following as

∂ũ

∂x
=

3∑
i=1

∂λi
∂x

ui =
3∑
i=1

aiui (A.3)

∂ũ

∂y
=

3∑
i=1

∂λi
∂y

ui =
3∑
i=1

biui (A.4)

We also get some properties of shape functions

1. λi(xj, yj) = δij

2. λ1 + λ2 + λ3 = 1,∀(x, y) ∈ e.

3.
∫
e
λ2
i dx = A

6
, i = 1, 2, 3 where A is the area of triangle element e.

4.
∫
e
λiλjdx = A

12
, i 6= j

1) In fact,

λ1(x1, y1) = a1x1 + b1y1 + c1 =
(y2 − y3)x1 + (x3 − x2)y1 + x2y3 − x3y2

D
= 1.

λ1(x2, y2) = a1x2 + b1y2 + c1 =
(y2 − y3)x2 + (x3 − x2)y2 + x2y3 − x3y2

D
= 0.

λ1(x3, y3) = a1x3 + b1y3 + c1 =
(y2 − y3)x3 + (x3 − x2)y3 + x2y3 − x3y2

D
= 0.

For λ2, λ3 we show the same way.

2) In fact,

λ1 + λ2 + λ3 = (a1 + a2 + a3)x+ (b1 + b2 + b3)y + (c1 + c2 + c3)

=
0.x+ 0.y + x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

D
= 1.

3) We consider a differential strip parallel to the side opposite node i in the
triangle e. and we denote b is the length of the side opposite to node i and
h is the height of the perpendicular from node i to the opposite side. If λi
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Figure A.1: Shape function.

change dλi, the width of strip is hdλi and the length of the strip is (1−λi)b,
(Figure A). So ∫

e

λ2
i dx =

∫ 1

0

λ2
i (1− λi)bhdλi =

bh

12
=
A

6

4) We have∫
e

(λ2
1 + λ1λ2 + λ1λ3)dx =

∫
e

λ1dx =

∫ 1

0

λ1(1− λ1)bhdλ1 =
bh

6
=
A

3

and ∫
e

λ2
1dx =

A

6

So ∫
e

(λ1λ2 + λ1λ3)dx =
A

6

Similarly, we also have ∫
e

(λ2λ1 + λ2λ3)dx =
A

6∫
e

(λ3λ1 + λ3λ2)dx =
A

6

Thus ∫
e

λiλjdx =
A

12
, i 6= j
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Using these results can approximate∫
e

udx = (u1 + u2 + u3)
A

3
.∫

e

u2dx =

∫
e

(λ1u1 + λ2u2 + λ3u3)2dx

=

∫
e

(λ2
1u

2
1 + λ2

2u
2
2 + λ2

3u
2
3 + 2λ1λ2u1u2 + 2λ2λ3u2u3 + 2λ3λ1u3u1)dx

= (
A

6
u2

1 +
A

6
u2

2 +
A

6
u2

3 + 2
A

12
u1u2 + 2

A

12
u2u3 + 2

A

12
u3u1)

= (u2
1 + u2

2 + u2
3 + u1u2 + u2u3 + u3u1)

A

6∫
e

|u− u∗|2dx =

∫
e

(λ1(u1 − u∗1) + λ2(u2 − u∗2 + λ3(u3 − u∗3))2dx

=

∫
e

(λ2
1a

2 + λ2
2b

2 + λ2
3c

2 + 2λ1λ2ab+ 2λ2λ3bc+ 2λ3λ1ca)dx

= (
A

6
a2 +

A

6
b2 +

A

6
c2 + 2

A

12
ab+ 2

A

12
bc+ 2

A

12
ca)

= (a2 + b2 + c2 + ab+ bc+ ca)
A

6

where a = u1 − u∗1, b = u2 − u∗2, c = u3 − u∗3.
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Appendix B

Characteristic function

This part we will explain how to calculate E =
∫
e
χε(u)dx by using finite

element method.

We assume a triangle element e with node coordinates (x1, y1), (x2, y2), (x3, y3),
and values of function u(x, y) at these nodes are

u1 = u(x1, y1), u2 = u(x2, y2), u3 = u(x3, y3).

We also denote A(ijk) is the area of triangle with three nodes i, j, k.
The main scheme is following the chart:

we arrange ui, i = 1, 2, 3 so that u1 ≤ u2 ≤ u3.

(a) (b) (c)

Figure B.1: Case 1, 2 and 3.

1. Case 1: If u3 ≤ 0 (Figure B (a)) then E = 0.

2. Case 2: If 0 ≤ u1 and u3 ≤ ε (B (b)) then E = (u1 + u2 + u3)A
3
.
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3. Case 3: If u1 ≥ ε (Figure B (c)) then E = A.

4. Case 4: If u1 ≥ 0 then we consider three cases u2 < ε, u2 = ε, and
u2 > ε,

(a) (b) (c)

Figure B.2: Case 4, 0 ≤ u1 ≤ u2 ≤ ε < u3, u1 < ε

(a) If u2 < ε then e is divided into three small triangles (Figure B.2
(a)). Thus

E =
u1 + u2 + u5

3
A(125) +

u1 + u4 + u5

3
A(145) + A(453)

(b) If u2 = ε then e is divided into two small triangles (Figure B.2
(b)). Thus

E =
u1 + u2 + u4

3
A(124) + A(423)

(c) If u2 > ε then we divide e to three small triangles (Figure B.2
(c)). Thus

E =
u1 + u4 + u5

3
A(145) + A(453) + A(423)

5. Case 5: If u1 < 0 then we consider three cases u2 ≤ 0, and u2 > 0,

(a) If u2 ≤ 0 then E =
∫

(243)
χε(u)dx (Figure B.3)

i. If u3 ≤ ε then we use case 2 (Figure B.3 (a) and (c)).

ii. If u3 > ε then we use case 4 (Figure B.3 (b) and (d)).

(b) If u2 > 0 then E =
∫

(423)
χε(u)dx+

∫
(453)

χε(u)dx (Figure B.4)

i. If u3 ≤ ε then we use case 2 (Figure B.4 (a)).

ii. If u3 > ε then we use case 4 (Figure B.4 (b),(c) and (d)).
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(a) (b)

(c) (d)

Figure B.3: Case 5, u1 < u2 ≤ 0 < u3.

(a) (b)

(c) (d)

Figure B.4: Case 5, u1 < 0 < u2 < u3.
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Appendix C

Main scheme to find the
minimizing sequence

In this part we consider four hyperbolic problems: Hyperbolic problem,
hyperbolic with volume-constraint problem, hyperbolic with free boundary
problem and hyperbolic with free boundary and volume-constraint problem.
Depend on each problems we have to find the minimizing sequence {un}∞n=0

of difference functional in difference admissible set K. Further, in our work
we just consider Dirichlet boundary.

C.1 Hyperbolic problem

Strong form:

utt(t, x, y) = ∆u(t, x, y), in ΩT = (0, T )× Ω,

u(t, x, y) = 0, on (0, T )× ∂Ω,

u(0, x, y) = u0(x), in Ω,

ut(0, x, y) = v0(x), in Ω.

The functional:

Jn(u) :=

∫
Ω

( |u− 2un−1 + un−2|2

2h2
dx+

1

2
|∇u|2

)
dx (C.1)

Admissible set
K =

{
u ∈ H1(Ω), u|∂Ω = 0

}
,
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1. Given the initial condition u0 and v0, set u−1 = u0 − hv0.

2. For n = 0, 1, .., N, determine un+1 as follows:

(a) a1 = un

(b) For k = 1, 2, .., Kn (maximum number of iterations) repeat:

i. compute the gradient pk = ∇Jn(ak),

ii. search for the minimizer ãk+1 of Jn in the direction −pk,
iii. if convergence criterion is fulfilled, leave the cycle.

(c) un+1 = ak+1

C.2 Hyperbolic with volume-constraint

Strong form:

utt(t, x, y) = ∆u(t, x, y) + λ(t), in ΩT = (0, T )× Ω,

u(t, x, y) = 0, on (0, T )× ∂Ω,

u(0, x, y) = u0(x), in Ω,

ut(0, x, y) = v0(x), in Ω.

here λ(t) =
∫

Ω
(uttu+ |∇u|2)dx The functional:

Jn(u) :=

∫
Ω

( |u− 2un−1 + un−2|2

2h2
dx+

1

2
|∇u|2

)
dx (C.2)

Admissible set

K =
{
u ∈ H1(Ω), u|∂Ω = 0,

∫
Ω

udx = V
}
,

The basic course of finding un is following chart

1. Given the initial condition u0 and v0, set u−1 = u0 − hv0.

2. For n = 0, 1, .., N, determine un+1 as follows:

(a) a1 = un

(b) For k = 1, 2, .., Kn (maximum number of iterations) repeat:
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i. compute the gradient pk = ∇Jn(ak),

ii. search for the minimizer ãk+1 of Jn in the direction −pk,
iii. project ak+1 onto the volume-constraint hyperplane:

ak+1 = Proj(ãk+1),

iv. if convergence criterion is fulfilled, leave the cycle.

(c) un+1 = ak+1

C.3 Hyperbolic with free boundary problem

Strong form:

χu>0utt(t, x, y) = ∆u(t, x, y) + χ′ε(u) + λ(t)χu>0, in ΩT = (0, T )× Ω,

u(t, x, y) = 0, on (0, T )× ∂Ω,

u(0, x, y) = u0(x), in Ω,

ut(0, x, y) = v0(x), in Ω.

here λ(t) =
∫

Ω
(uttu+ |∇u|2 + χε(u))dx The functional:

Jn(u) :=

∫
Ω

( |u− 2un−1 + un−2|2

2h2
χu>0dx+

1

2
|∇u|2 + χε(u)

)
dx (C.3)

Admissible set
K =

{
u ∈ H1(Ω), u|∂Ω = 0, u > ϕ

}
,

The basic course of finding un is following chart

1. Given the initial condition u0 and v0, set u−1 = u0 − hv0.

2. For n = 0, 1, .., N, determine un+1 as follows:

(a) a1 = un

(b) For k = 1, 2, .., Kn (maximum number of iterations) repeat:

i. compute the gradient pk = ∇Jn(ak),

ii. search for the minimizer ãk+1 of Jn in the direction −pk,
iii. set ãk+1 = max(ãk+1, ϕ)

iv. if convergence criterion is fulfilled, leave the cycle.

(c) un+1 = ak+1
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