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Abstract

In the last decade, there are serious outbreaks appeared in the human populations such
as SARS in 2003, avian flu (H5N1) in 2006, and swine flu (HIN1) in 2009. Among
these, only the HIN1 outbreak was officially declared as pandemic since the virus
spread worldwide in a few short weeks. Although the HIN1 virus is far less deadly
than the H5N1, it is capable of being transmitted easily from person to person. In
addition, because viruses are easily mutated, the next pandemic is unpredictable and
can be a tragedy. Therefore, the vaccine development is very important to prevent
human populations from future outbreaks.

Epitope identification is a non-trivial step in the vaccine development, since
epitopes play an important role in the activation of the immune response. Epitopes are
conventionally identified by synthesizing a large number of peptides and then con-
ducting immunological experiments. However, these processes are time-consuming
and laborious. The computational methods can be used to accelerate the process of the
vaccine development by performing epitope prediction. The most successful approach
for epitope prediction is the applications of machine learning techniques. Many
methods were proposed but most of them tend to overlook the interpretability which
respects to the binding potential. Consequently, they do not provide much insight into
the binding of epitopes to major histocompatibility complex molecules (MHCs).
Thus, the goal of this dissertation is to develop a novel epitope prediction method for
the vaccine development without losing the interpretability.

In this study, a novel epitope prediction method named EpicCapo and its variants,

+REF

EpicCapo” and EpicCapo were developed. Nonapeptides, peptides with nine
amino acids, were encoded numerically using a novel peptide-encoding scheme and
then input to the support vector machine (SVM). This scheme utilizing the infor-
mation of amino acid pairwise contact potentials (referred to as AAPPs throughout
this dissertation) and peptide-MHC (pMHC) contact sites. We found that the predic-

tive performance of EpicCapo* and EpicCapo* t"

outperformed other state-of-the-art
methods in many datasets. Interestingly, the most informative AAPPs estimated by
our study were those developed by Micheletti and Simons while previous studies

utilized two AAPPs developed by Miyazawa & Jernigan and Betancourt & Thiruma-



lai. Additionally, we found that all amino acid positions in nonapeptides could effect
on the performances of the predictive models including non-anchor positions such as

the positions 5 and 8. Furthermore, EpicCapo* t"

was applied to identify candidates
of promiscuous epitopes from four influenza strains: HIN1 (A/PR/8/34), H3N2
(A/Aichi/2/68), HIN1 (A/New York/4290/2009), and H5N1 (A/Hong Kong/483/97).
As a result, 67.1% of the predicted nonapeptides epitopes were consistent with
preceding studies based on immunological experiments. Some predicted promiscuous
epitopes have not been tested in any experiment yet. These epitopes can be considered
as potential candidates for the novel vaccine development.

Recent studies have demonstrated that predicted high affinity epitopes by epitope
prediction methods not always successfully activate T-cell responses. Additionally,
predicted low affinity epitopes not always result in low T-cell responses. Thus,
immunogenicity of peptides cannot be accurately inferred from the result of epitope
prediction. By these reasons, we developed novel T-cell reactivity predictor which we
call PAAQD. Nonapeptides were encoded numerically, using combining information
of AAPPs and quantum topological molecular similarity (QTMS) descriptors and then
input to the random forest (RF). Our numerical experiments suggested that the
predictive performance of PAAQD is at least comparable with POPISK, one of the
pioneering methods for T-cell reactivity prediction. In addition, we found that the
positions 1 and 8 of nonapeptides were the most important ones for T-cell responses.
Interestingly, the anchor positions identified by other previous studies, the positions 2,
3, and 7, were not important in T-cell reactivity prediction. These findings support
that epitope prediction and T-cell reactivity prediction are different and should not be
used interchangeably. Moreover, we found that PAAQD provided more predictive
stability than POPISK when using the test dataset that amino acids preference of
sequences differs from the training dataset.

From the results of our researches, we speculate that our techniques may be useful
in the development of new vaccines. The R implementation of EpicCapo™F is
available at http://pirun.ku.ac.th/~fsciiok/EpicCapoREF.zip. Datasets are available at
http://pirun.ku.ac.th/~fsciiok/Datasets.zip. The R implementation of PAAQD is

available at http://pirun.ku.ac.th/~fsciiok/PAAQD.rar.
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Chapter 1 Introduction

In this chapter, we first review the basic knowledge of the human immune system and
elucidate the need of the new vaccine development for human populations. Next, the
problems of the conventional vaccine developments and the way to apply machine
learning to solve these problems are described. Generally, machine learning was
used in epitope prediction which attempts to search for candidate peptides that are
potential for the novel vaccine development. However, recent works have found that
results of epitope prediction were not always reliable. Therefore, we introduced the T-
cell reactivity prediction which is another way to apply machine learning in the novel
vaccine development. Afterwards, we proposed the research objectives to accomplish
this dissertation. Finally, the main contributions of this thesis are clearly described

and the thesis organization is also presented.



1.1 Human immune system

The immune system is mechanisms of biological components that work together to
defend an organism from “foreign” invaders. All living organisms possess such
mechanisms and the human immune system is the most sophisticate one. The human
immune system is able to detect various pathogens such as bacteria, fungi, viruses,
and other infectious agents. This system consists of numerous types of cells and
proteins, each of which has a specific function in the defense system.

There are two major subdivisions of the immune system: the innate immune sys-
tem and the adaptive immune system. In humans, the immune system is layered lines
of defense. The first line of defense is the innate immune system which includes
physical barriers such as skin, various types of white blood cells, and proteins. If
pathogens successfully breach the innate immune system, they will engage with the
second line of defense, the adaptive immune system. Responses of the innate immune
system are immediate whereas responses of the adaptive immune system are slower.
However, responses of the adaptive immune system are more specific and superior.
This system also provides the immunological memory. This memory allows the
adaptive immune system to act faster and more effective when the memorized patho-
gen is encountered [1]. Although these two lines of defense function differently, there
are interactions between these systems. For examples, some components of the innate
immune system can activate or support the adaptive immune system and vice versa.

The ability of the immune system to distinguish between self and non-self is nec-
essary to protect our body from invading pathogens. In addition, the ability to detect
malfunction cells is also important since cells infected by the virus and cancer cells
can harm our body. In some cases, the immune system loses the ability to distinguish
between self and non-self. This causes the immune system to destroy normal cells

resulting in autoimmune diseases [2].
1.1.1 Innate immune system

Besides human, the innate immune system is found in all classes of plant and animal
life. The innate immune system is the first line of defense against invading pathogens
[1]. It recognizes and responds to pathogens in a generic way or non-specific manner.
This means responses are even in each time of engagement with pathogens. The

innate immune system immediately acts against infection. However, this immune



system differs from the adaptive immune system since there is no improvement or
long-term protection contributed by the innate immune system [3].
The innate immune system comprises of anatomical barriers, humoral compo-

nents, and cellular components.

Anatomical barriers

Anatomical barriers in the innate immune response include defense mechanisms in
the skin, gastrointestinal tracts, respiratory tracts, and eyes. Table 1-1 shows example
anatomical barriers in the human body. There are three protective factors in anatomi-
cal barriers. First, mechanical factor such as the desquamation of skin epithelium
which helps removing bacteria and other infectious agents attached to the epithelial
surfaces. In addition, movement of cilia or peristalsis helps clearing respiratory and
gastrointestinal tracts from pathogens. The flushing process by tears and saliva helps
protect eyes and mouth from infection, respectively. Moreover, mucus in respiratory
and gastrointestinal tracts is able to trap and immobilize microorganisms. Second,
chemical factors such as fatty acids in the sweat are able to inhibit the growth of
bacteria because of low pH. Lysozyme and phospholipase in tears, saliva, and nasal
secretions deteriorate bacterial cell walls and membranes. In addition, small cysteine-
rich cationic proteins called defensins found in lung and gastrointestinal tracts can
destroy pathogens. Moreover, the surfactants in lung promote the activity of white
blood cells to eliminate pathogen more effectively. Third, biological factors such as
the normal flora resides on the skin and gastrointestinal tract can prevent the coloniza-

tion of pathogenic bacteria by secreting toxin and competing for nutrients [4].

Table 1-1 Anatomical barriers in the innate immune system.

Anatomical barrier  Active cellular/biochemical component Protective mechanisms

Skin sweat, organic acids desquamation, flushing
Gastrointestinal tract gastric acid, bile acids, digestive enzyme,  peristalsis, flushing, low
thiocyanate, defensins, gut flora, colum-  pH

nar cells
Respiratory tracts and  tracheal cilia, surfactant, defensins mucociliary elevator
lung
Nasopharynx and eyes mucus, saliva, lysozyme, tears flushing




Humoral components

If pathogens can penetrate anatomical barriers, they will encounter with another
innate immune mechanism named acute inflammation. There are humoral compo-
nents that work together in inflammation. These components are found in serum or
formed at the place where the infection occurs.

The major humoral component of the innate immune system is the complement
system. The complement system is series of chemical reactions that promote the
ability of antibodies and phagocytic cells to eliminate pathogens. The complement
system consists of a number of small proteins which reside in blood circulation.
Generally, these proteins are inactive. Immediately after the infection, they will be
stimulated by one of several triggers [5]. Table 1-2 shows the basic functions of the
complement in overall immune system.

Besides the complement system, there are other humoral components such as lac-
toferrin, transferrin, interferon, lysozyme, and Interleukin-1 which play roles in the

innate immune system [5].

Table 1-2 Basic functions of the complement.

Function Description

Opsonization enhancing phagocytosis

Chemotaxis attracting macrophages and neutrophils
Cell lysis destroy membranes of pathogens

Cellular components

Leukocytes, certain type of white blood cells, are cellular components in the innate
immune system. Leukocytes are not strictly related to a specific organ or tissue and
are different from other cells in the body. Similar to single-cell organism, leukocytes
are independent and are able to move freely in our body. They can eliminate patho-
gens and capture foreign particles that they found throughout the body including the
blood and lymphatic system [6].

Leukocytes in the innate immune system include natural killer (NK) cells, mast
cells, eosinophils, basophils, and phagocytic cells. The phagocytic cells are macro-
phages, neutrophils, and dendritic cells. These cells kill pathogens by phagocytosis
which is the process of engulfing pathogens by the cell membrane to form an internal
phagosome. Afterwards, phagosome merges with either a lysosome or a granule and



then pathogens will be degraded [7]. Figure 1.1 and 1.2 shows different types of

leukocytes and phagocytosis process, respectively.

Neutrophil Eosinophil Basophil Macrophage

Figure 1.1 Leukocytes in the innate immune system.

\ Pathogen Phagocyte
I\
I Chemotaxis and adherence
' I of pathogen to phagocyte.
II Ingestion of pathogen to
h te.
m N Phagosome phagocyte
\ III Formation of phagosome.
LyS0SOme o . v
> c- Phagolysosomes
~~ 2.'.' %% SOy IV Fusion of phagosome with
. . (4 \ lysosome and form
Digestive hagol
Y phagolysosome.
enZy mes V ® e o
on 0
®o® Residual body V Digestion of pathogen.
Partially digested -
VI . .
pathogen ® :. VI Formation of residual body
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material.

Figure 1.2 Phagocytosis process.

1.1.2 Adaptive immune system

The adaptive or acquired immune system can learn to recognize specific types of
pathogens and maintain immunogenic memory for accelerating future responses. This
implies that the adaptive immune system is not able to work effectively in the first

encounter or primary response to a peculiar type of pathogen. The primary response is



slow and takes time up to three weeks to treat the infection. The learning from this
primary response constructs the memory to a specific type of pathogen. When the
memorized pathogen invades our body again, the secondary response will be faster
and more efficient. This secondary response is rapid enough to eliminate pathogens
before they can seriously harm our body. The immunogenic memory can confer long
time protection up to our lifetime.

The adaptive immune system comprises of lymphocytes which are a specific type
of white blood cells. Similar to leukocytes, lymphocytes can freely move around our
body via the blood and lymph system. The major lymphocytes in the adaptive im-
mune system are T and B cells which are produced by stem cells in the bone marrow
[5]. There are two subtypes of T cells: cytotoxic T-lymphocyte (CTL) and helper T-
lymphocyte (Th). CTL, Th, and B cells recognize pathogens via antigen recognition.

Antigen Recognition

The term “antigen” refers to the part of a pathogen recognizable by the adaptive
immune system. Generally, antigens are structural proteins such as part of bacterium
cell membranes and spike proteins of viruses. Antigenic molecules are large biologi-
cal polymers. These polymers introduce several surface and molecular features that
are the sites of interactions with CTLs, Th cells, B cells, and antibodies. Each feature
defines as an epitope. Since a single antigen usually presents several epitopes, it can
be recognized by several distinct antibodies.

Typically, T cell receptors (TCRs) of CTLs and Th cells recognize epitopes on the
surface of antigen-presenting cells (APCs) whereas B cell receptors (BCRS) recognize
epitopes of antigen in the extracellular fluid [1, 8]. APCs such as macrophages and
dendritic cells consume pathogen by phagocytosis and digest antigen into small
peptides. Some of these peptides are epitopes. These epitopes are transported to the
membrane of APCs and presented to T cells via major histocompatibility complex
molecules (MHCs). MHCs are classified into three main subclasses: class I, 1l, and
[11. MHC genes are highly polymorphic and have many variants. MHC class | (MHC-
I) found on all nucleated cells. MHC-I presents epitopes to CTLs. MHC class I
(MHC-II) presents epitopes to Th cells and normally found on professional APCs that
are macrophages, B cells, and dendritic cells. In humans, MHC is referred to as
human leukocyte antigen (HLA) [9].



Cytotoxic T-lymphocyte (CTL)
CTLs have a responsibility to eliminate cells infected with viruses or pathogens to
stop infection processes. In addition, CTLs also detect and destroy dysfunctional and
cancer cells. When CTLs are activated via antigen presentation on MHC-I, cytotoxins
are released to form pores on the membrane of target cells. These pores permit ions
and water to flow into the infected cells and lead to cell lysis. Moreover, CTLs also
release granzymes which are serine proteases to enter cells via pores and induce
programmed cell death (apoptosis) [5].

After the infection is cleared, most of CTLs are deceased. However, few will be
retained as memory cells. In the future encounters with the memorized antigen, the

response will be dramatically faster because of these memory cells.

Helper T-lymphocyte (Th)

Th cells are very important coordinators in the adaptive immune system. Although
these cells do not possess cytotoxic or phagocytic ability, they are the center media-
tors which manage other immune responses. Th cells recognized epitopes via MHC-II
of professional APCs. After their activation, Th cells send signals in the form of
cytokines to stimulate activities of other cells such as CTLs, macrophages, and B cells
[5]-

There are two types of Th cells: Thl and Th2. Thl cells release Interferon-y to
activate the bactericidal activities of macrophages and the opsonizing of complement-
fixing antibodies on B cells. Th2 cells release interleukin 4, 5, 6, 10, and 13 to acti-
vate antibody production of B cells. Antibodies are the most essential components in
humoral immunity. Regularly, Thl responses are effective against intracellular
pathogens whereas Th2 responses are effective against extracellular pathogens
including helminths and toxins [5].

Similar to CTLs, most of Th cells will be deceased after clearing the infection.

However, few will be retained as memory cells.

B cell
B cells play the main role in antibody production. Antibodies are the major compo-
nents of the humoral immunity. The term “antibody” and “immunoglobulin” (Ig) can

be used interchangeably. Antibodies are characterized as a Y-shaped protein (Figure



1.3). In humans, there are five types of antibodies: I1gA, IgD, IgE, IgG, and IgM. Each
type of antibody has distinct biological properties and can deal with different types of
antigens [10]. Antibodies function in the immune system in three ways. First, antibod-
ies bind to pathogens to block them from entering or damaging cells. Second,
pathogens coated with antibodies promote the phagocytosis activities of macrophages.
Since an antibody possesses two paratopes (see Figure 1.3), two pathogens can be
linked together. A number of antibodies can group many cells or particles of patho-
gens and cause them to be agglutinated. This helps macrophages in eliminating many
cells or particles of pathogens at the same time. Third, antibodies also trigger the
complement systems and other immune responses, leading to the ultimate destruction
of pathogens [11].

Before antibodies production, B cells must be activated and become plasma B
cells. There are two ways of B cells activation: T cell-dependent and -independent
activation. For T cell-dependent activation, Th2 cells release interleukin 4, 5, 6, 10,
and 13 to activate B-cells after antigen representation by professional APCs via
MHC-II. For T cell-independent activation, BCR will directly bind with antigens and
B-cells are then activated. Generated plasma B-cells stay for 2-3 days in our body.
About 10% of these plasma cells are retained to serve as long-term antigen specific
memory B cells. In the future encounters with memorized antigens, memory B cells
will rapidly differentiate to plasma B-cells and then produce antibodies [5].

It is fascinating about the cooperation between components in our immune sys-
tems. The innate immune system can stimulate the adaptive immune system and vice
versa. In addition, products of each immune system can promote other activities. For
example, Thl and Th2 cells send signal to activate macrophages and B cells, respec-

tively.
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Figure 1.3 Basic structure of immunoglobulin.
The structure consists of two large heavy chains and two small light chains. Five types of antibod-
ies are determined by difference of heavy chain. Antibodies possess two paratopes to interact with

epitopes.
1.2 Vaccines and immune system

The adaptive or acquired immune system is the main target for the vaccine develop-
ment since long-term protection can be established. Vaccines are agents that stimulate
the protective immunity against pathogens and the diseases they cause. This protec-
tive immunity is an established immunogenic memory ready for the future encounter
with the infectious pathogen. The term vaccine derives from Edward Jenner in 1796
when cowpox was inoculated into humans resulting in protection against smallpox.
The word “vacca” means cow in Latin [12].

Currently, several types of vaccines have been developed. The basic vaccine tech-
nology is to use killed pathogens. Pathogens are killed by chemicals, heat,
radioactivity, or antibiotics. The remains of pathogens such as cell membranes or
polymers can activate immune responses. This type of vaccine has been used to
prevent polio, hepatitis A, cholera, and rabies. Live attenuated-pathogens also have
been used as vaccines, but they are inactivated by cultivating under conditions that
disable their virulent properties. Examples of attenuated vaccines include yellow

fever, measles, rubella, mumps, and typhoid vaccines. Attenuated vaccines have some
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advantages over killed vaccines that the stronger protection can be induced. This is
because the transient growth of inactivated pathogens causes more intense immune
responses. However, killed vaccines are safer since attenuated viruses may change to
a virulent form and cause disease [13].

According to T and B cells, only antigen is important in the activation. Therefore,
antigens should be used instead of the entire cell of pathogens. This usage is called
subunit vaccines. Subunit vaccines can contain more than one antigen, and antigen
can be manufactured using recombinant DNA technology. Vaccines produced by this
approach are named “recombinant subunit vaccines” which was already developed for
the hepatitis B virus. Subunit vaccines are safer than attenuated vaccines since only
some parts of the pathogen are used [14, 15].

In addition, there are also other types of vaccines such as toxoid vaccines which
used inactive bacterial toxins to stimulate immune responses. Dangerous bacterial
toxins can be treated with formalin and become inactive. Inactive toxins are called
toxoids. Besides, conjugate vaccines were developed for some bacteria species that
have polysaccharides coat on their membranes. These polysaccharides make bacte-
rium cells difficult to be detected by the immune system. Therefore, polysaccharides
were conjugated with antigens or toxoids and cause them to be recognizable by the
immune system [16, 17]. Some other types of vaccines are currently in experimental
phase such as DNA vaccines, dendritic cell vaccines, recombinant vector vaccines,
and T-cell receptor peptide vaccines [18, 19].

The vaccine development is very essential for mankind. From many past decades
until now, vaccination saves countless life around the world and prevents suffering
from diseases and permanent disabilities. Therefore, researches of vaccines are
necessary and should be concerned by the governments as the top priority in the

public health plans.
1.3 T-cell vaccine development

T-cells are considered as a center mediators in the human immune response. T-cell
vaccines aim to stimulate immune responses of CTLs and Th cells via antigen presen-
tation on MHC-1 and -11, respectively. The activation of CTLs helps in terminating the

infection by destroying infected cells, and also helps in the elimination of cancer cells.
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The activation of Th cells is then further activate production of antibodies by B cells,
and also stimulates other potential immune responses.

Generally, epitope is a small peptide consists of 8-12 amino acids for MHC-I and
15-24 amino acids for MHC-I1. The complexes of peptide-MHC (pMHC) are shown
in Figure 1.4. Binding clefts of MHC-1 and Il consist of two o-helices and one (-
sheet, but both terminals of the MHC-I cleft are closed whereas those of the MHC-II
are open. Since the groove is closed, the length of epitopes is rather fixed for MHC-I.
In contrast, the length of epitopes bond with MHC-I1 is varying because of the opened
groove [20].

To develop T-cell vaccines, known epitopes are required. The identification of
epitope is a non-trivial task since it is possible that a large number of surface and
molecular features are presented on an antigen. The intensive physicochemical
experiments are required to identify epitopes. However, such approach is time-
consuming and laborious. Therefore, machine learning techniques have been applied
to search for epitopes [21]. Although epitopes identified by using machine learning
are not guaranteed to be 100% correct, these predicted epitopes are promising candi-

dates for immunological experiments.

Figure 1.4 Visualization of pMHC complexes.
(A) MHC-I (PDB entry 1DUZ [22]). (B) MHC-11 (PDB entry 1DLH [23]).
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1.4 Applications of machine learning in CTL epitope prediction

In this study, we focus on MHC-I on humans that is HLA-I. The presentation of
epitopes on HLA-1 mainly targets to stimulate CTLs responses. There are three
subdivisions of HLA-I: HLA-A, HLA-B, and HLA-C. Most of early epitope binding
prediction methods concentrated on the HLA-A*02:01 allele because it is the most
frequent allele of the A2 supertype in the Northeast Asian and Caucasian populations
[24]. In addition, peptides of length 9 known as nonapeptides have been popularly
studied.

The pioneering epitope prediction methods were based on allele-specific motifs
[25, 26]. The important positions of the motif were analyzed. For instance, positions 2
and 9 were the most important positions in the case of HLA-A*02:01 allele. The
residues at both positions were assigned as the classical anchor residues [27]. In
addition, positions 1, 3, and 7 also assigned as the secondary anchor residues [28-30].
In each anchor residue, an amino acid which frequently occurs from known epitopes
was defined. New or untested peptides which comprised of matched amino acids with
assigned anchor residues were identified as epitopes.

When more data of experimented epitopes are available, the matrix-based methods
have been introduced. Matrices were calculated using statistical techniques. These
matrices were used to estimate binding energy between HLA and peptides. The
examples of matrix-based methods are BIMAS [31], RANKPEP [32], Gibbs sampler
[33], ARB [34], SMM [35], and SMMPVEEC [36].

Recently, using machine learning algorithms in epitope prediction shows great
achievements. Examples of epitope prediction methods that based on machine learn-
ing techniques are NetMHC [20], NetMHCpan [37], NetCTL [38], NetCTLpan [39],
and SVRMHC [40]. The use of machine learning techniques usually requires a large
number of training data. In case of epitope prediction, a large number of training
peptides is recommended. Therefore, specific databases are needed. The most im-
portant database is the Immune Epitope Database (IEDB) [41] which is the largest
one. In addition, there are also other available databases such as SYFPEITHI [42],
FIMM [43], MHCPEP [44], MHCBN [45], and AntiJen [46].

The allele-specific motif methods, the matrix-based methods, and machine learn-
ing-based methods generally concern only sequence information. Detailed binding

mechanisms cannot be provided by these methods. Therefore, three-dimensional (3D)
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structure-based methods have been developed [47-49] to unveil MHC-epitope
binding mechanisms. Unfortunately, 3D structure-based methods require a number of
crystal structures of MHC-peptide complexes, which are still not available in a large
number. Besides, the performance of structure-based methods is currently lower than
machine learning-based methods [21].

Machine learning-based epitope prediction techniques significantly accelerate the
process of the vaccine development. However, the effectiveness of these techniques
depends on the amount of experimental data used for training. In some rare HLA
alleles, there are only small numbers of experimented epitopes available. Therefore,

the increase in experimental data will improve the accuracy of epitope prediction [50].
1.5 Epitope prediction versus T-cell reactivity prediction

Epitope prediction methods have been used to search for candidate peptides in the
vaccine development. Predicted peptides with high binding affinity to the MHC were
presumed to successfully activate T-cell responses. However, recent experiments
show that those peptides with high predicted binding affinity to the MHC did not
always activate T-cell responses [51]. In addition, other biological factors were more
strongly correlated to T-cell responses than MHC binding affinities [52]. Therefore,
immunogenicity of peptides cannot be accurately inferred from the result of epitope
prediction.

T-cell reactivity prediction is more sophisticate than epitope prediction since
many biological factors are needed to be concerned. This complication is difficult to
be learned by machine learning approaches [53-55]. Previous studies based on protein
crystal structures reveal that residues at positions 4, 6, and 8 of nonapeptides were
important in the binding of TCR to pMHC (TCR-pMHC) complex [56, 57]. These
important positions are different from those defined by epitope prediction. In fact, the
pMHC binding should directly contribute to TCR-pMHC binding. However, the
results of important positions are in conflict. Therefore, the prediction and characteri-
zation of T-cell reactivity are very essential for more understanding in the immune
system [55].

The first published method for T-cell reactivity prediction is POPI [58]. POPI
used physicochemical properties from the AAindex database [59] to encode peptides

to numerical vectors. These vectors are then input to the support vector machine
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(SVM). Afterwards, POPISK [55] was developed. POPISK simply used the SVM

with the string kernels.
1.6 Objectives

The vaccine development is very essential for mankind in order to establish an
effective protection against infectious pathogens. In the last decade, serious outbreaks
emerged and caused high mortality. The examples are the epidemics of severe acute
respiratory syndrome (SARS) in 2003 and influenza A viruses, HIN1 and H5NL1, in
2005-2009. Therefore, the development of new vaccines is necessary to prevent
future outbreaks.

The conventional vaccine developments are laborious and time-consuming [21].
Epitope prediction can accelerate the process of the vaccine development by provid-
ing promising candidate peptides for further immunological experiments. The uses of
machine learning techniques in epitope prediction have been actively studied and
many methods were proposed [20, 31-40]. However, most of existing methods tend
to overlook the interpretability which respects to the binding potential and thereby not
provide much insight into pMHC binding mechanisms. Thus, this study is aimed at
developing a novel epitope prediction method for the vaccine development. Substan-
tially, importance of peptide positions for the pMHC binding was also analyzed to
provide more understanding in pMHC binding mechanisms. The objectives of this
dissertation are described as follows.

To develop a novel epitope prediction method. First, nonapeptides sequences
were encoded to numerical data in order to input to machine learning algorithms. To
perform this task, we established the new peptide encoding scheme. This peptide
encoding scheme was created by combining information about the pMHC contact
sites [60] with amino acid pairwise contact potentials (AAPPs) [59]. After peptides
encoding, the support vector machine (SVM) was used for training and testing.
Benchmark datasets [61] were used for evaluation of our method performance and
then compared with other state of the art methods.

To analyze for important AAPPs in the pMHC binding mechanisms. For each
allele dataset, only AAPPs that led to the highest performance were used in the further
steps. Afterwards, we identified important positions of nonapeptide in pMHC binding.

In each encoded peptide data, each feature corresponding to one position of nonapep-
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tide. We employed the feature selection algorithm to rank the importance of features.
From the rank, we could identify important positions from significant features. From
these results, we selected only important AAPPs and positions of nonapeptide to
estimate the final predictive models.

To identify promiscuous epitopes from influenza A viruses. We used the pre-
dictive models that were created in the previous step to identify ‘promiscuous
epitopes’ from protein sequences of influenza A viral strains. The promiscuous
epitope is an epitope that binds to many HLA alleles. The use of promiscuous
epitopes in vaccine development will provide a high level of population coverage.
The identified epitopes by our predictive models were validated by cross-checking
with the publications of immunological experiments [62].

To develop a new T-cell reactivity prediction method. Recent studies showed
that predicted high affinity epitopes did not always result in activation of T-cell
responses. Therefore, we developed a novel T-cell reactivity prediction method by
combining information of AAPPs, pMHC contact sites, and quantum topological
molecular similarity (QTMS) descriptors [63]. The new peptide encoding scheme was
proposed by combining AAPPs and QTMS descriptors. Peptides were encoded and
then input to the random forest for training and testing. We compared the performance
of our method with previous T-cell reactivity predictors [55, 58].

To analyze for important AAPPs, QTMS descriptors, and positions of pep-
tide in TCR-pMHC binding mechanisms. We used our new T-cell reactivity
prediction method to identify for important AAPPs, QTMS descriptors, and positions
of peptide in TCR-pMHC binding mechanisms. The result of important positions in
T-cell reactivity prediction was compared with those in epitope prediction.

1.7 Contributions

The purpose of this research is to apply machine learning techniques in epitope and T-
cell reactivity prediction which are essential steps toward the vaccine development.
The ultimate goals are to develop the novel epitope and T-cell reactivity prediction
methods which are able to provide more insights in pMHC and TCR-pMHC binding
mechanisms, respectively. The main contributions of this thesis are summarized as

follows.
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Novel epitope prediction method. We developed a new epitope prediction meth-
od which we called EpicCapo and its variants, EpicCapo* and EpicCapo*"*". Peptides
were numerically encoded by using our proposed peptide encoding scheme. This
scheme is the combination of pMHC contact sites with AAPPs. Our method achieved
high performance and outperformed other methods in many datasets of HLA alleles.
In some datasets, although there are small numbers of training peptides, our method
still provided the high performance. Therefore, our method is a promising tool for the
development of new vaccines.

Identification of important AAPPs and peptide positions in pMHC binding
mechanisms. Based on our proposed method, we identified important AAPPs and
peptide positions in pMHC binding mechanisms. We found that two AAPPs were
very important in pMHC binding. In addition, we found that ten top-ranked features
correspond to positions 9 and 2 in most datasets, followed by positions 3, 1, or 7. This
finding is consistent with other studies which demonstrate that positions 9 and 2 are
primary anchor residues, and positions 1, 3, and 7 are secondary anchor residues in
the pMHC binding. However, when we identified for the optimal sets of features that
led to the highest performance, features from all nine positions were included. Hence,
we presumed that all nine positions are important in the pMHC binding and their
effects to the binding affinity are not independent.

New promiscuous epitopes for the development of influenza A vaccines. Our
proposed method was applied to identify promiscuous epitopes from four influenza A
viral strains: HIN1 (A/PR/8/34), H3N2 (A/Aichi/2/68), HIN1 (A/New
York/4290/2009), and H5N1 (A/Hong Kong/483/97). We found that many predicted
promiscuous epitopes were in agreement with previous immunological experiments.
This consistency indicates that our method has high accuracy in epitope prediction.
Some predicted promiscuous epitopes have not been tested in any experiment yet.
These epitopes can be considered as potential candidates for the novel vaccine devel-
opment.

Novel T-cell reactivity prediction method. We developed a new T-cell reactivity
prediction method which we called PAAQD. Peptides were numerically encoded by
using our proposed peptide encoding scheme which is similar to that in EpicCapo.
The performance of PAAQD is at least comparable with the previous high perfor-
mance T-cell reactivity prediction method. In addition, our method shows high

predictive stability when tested with the blinded dataset. Recent studies show that
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predicted binding affinities by epitope prediction methods were not strongly correlat-
ed to T-cell responses. This means that predicted epitopes are not guaranteed to
activate immune responses. Therefore, T-cell reactivity prediction should be used
rather than epitope prediction.

Identification of important AAPPs, QTMS descriptors, and peptide positions
in TCR-pMHC binding mechanisms. Based on our new T-cell reactivity prediction
method, we identified important AAPPs, QTMS descriptors, and peptide positions in
TCR-pMHC binding mechanisms. We found six important AAPPs. One of these is
also important in the pMHC binding. For QTMS descriptors, we found that all
descriptors were important. By using our method, peptide positions 1 and 8 were the
most important ones. This result is concordant with the previous study of T-cell
reactivity prediction. Interestingly, we found that positions 2, 3, and 7 were less
important than the others. These positions have been identified as anchor residues for
epitope prediction in other studies. Therefore, these findings support that epitope

prediction and T-cell reactivity prediction are considerably different.
1.8 Thesis organization

The thesis is divided into 5 chapters, including the current one. The first chapter
covers introductory materials, motivations, and contributions of researches presented
in this dissertation. The remaining chapters are organized as follows:

Chapter 2 reviews the uses of machine learning in immunoinformatics which is a
new field that focused on in silico analysis and modeling of immunological data and
problems. The major usages of machine learning algorithms in immunoinformatics
that are artificial neural network, support vector machine, and hidden Markov models
were described. Additionally, important immunoinformatics databases are also
addressed in this chapter.

Chapter 3 describes a novel epitope prediction method which named EpicCapo.
This method used our proposed peptide encoding scheme which is the combination of
structural and physicochemical information. The SVM was used to conduct classifica-
tion tasks after the data processing. The performance of our epitope prediction method
also evaluated and compared with other state of the art methods. Moreover, the
insights in pMHC binding are also shown in this chapter.
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Chapter 4 Introduces new T-cell reactivity prediction method which named
PAAQD. The peptide encoding scheme used in this method is the combination of
structural, physicochemical, and quantum topological information. The random forest
was used to conduct classification tasks after the data processing. The performance of
our epitope prediction method also evaluated and compared with other high perfor-
mance T-cell reactivity prediction methods. Furthermore, the insights in TCR-pMHC
binding are also shown in this chapter.

Chapter 5 summarizes the principal tasks of this dissertation, including the
achievements and contributions. Some limitations are also presented. In addition,

future works and directions also discussed in this chapter.
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Chapter 2 Review of machine learning in

immunoinformatics

In this chapter, we describe the uses of machine learning algorithms in immunoinfor-
matics. Immunoinformatics is a new branch of bioinformatics that focused on
computational analysis and modeling of immunological data and problems. We
introduce and give examples of commonly used algorithms in immunoinformatics that
are artificial neural network, support vector machine, and hidden Markov models. In

addition, remarkable immunoinformatics databases are also shown.
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2.1 The major usages of machine learning algorithms in im-

munoinformatics

The immune system is composed of many networks of interacting molecules. To
understand complicated mechanisms in the immune system, immunologists have been
using high throughput experimental techniques. By the use of these techniques, large
amount of data was generated. The development of new computational techniques is
required for collecting and analyzing these data. To date, many immunology-focused
resources and tools are available to help in uncovering the properties of the whole
immune system. This has given rise to a new field called immunoinformatics. Im-
munoinformatics is one branch of bioinformatics that focused on in silico analysis and
modeling of immunological data and problems [64, 65]. Figure 2.1 shows an over-
view of immunoinformatics research area.

Most immunoinformatics researches are related to prediction of potential B- and
T-cell epitopes. The outcomes help speeding up the new vaccine development. The
most successful B- and T-cell epitope prediction methods applied machine learning

algorithms. Hereby, the main streams of these researches are categorized as follows.
2.1.1 Artificial neural network

The artificial neural networks (ANNSs) are mathematical models inspired by biological
neural networks. ANNSs are capable of finding relationships and describing nonlinear
data [66]. Bioinformaticians frequently used ANN to solve many biological and
physiochemical problems. In case of epitope prediction, some methods used ANN to
learn input sequences of known epitopes and then generate the predictive models. The
improved model of neural network for T-cell epitope prediction was described in [33].
The high performance methods, NetMHC [20] and NetMHCpan [37], are based on
ANN and used position-specific scoring matrices. NetCTL [38] and NetCTLpan [39]
integrated the prediction of pMHC-I binding, proteasomal cleavage, and transporter
associated with antigen processing (TAP) together.

Most methods achieved high performance when predicting MHC-I epitopes.
However, medium to low performance was acquired when predicting MHC-II
epitopes. The prediction of MHC-II epitopes is more difficult because the lengths of
input peptide are highly variable.
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2.1.2  Support vector machine

The support vector machine (SVM) is a supervised learning method that has been
used for data analysis and pattern recognition. The SVM was first developed by
Vapnik [67]. The SVM is described as a non-probabilistic binary classifier and
belongs to the group of the kernel-based approaches [68]. A hyperplane or set of
hyperplanes in a high- or infinite-dimensional space was generated by the SVM for
using in classification or regression tasks. The hyperplane that cause the largest
distance from the nearest point belonging to another class is the favorable one.
Deriving such hyperplane should lead to optimal separation and the reliable predictive
model [69].

The SVM has been widely used in immunoinformatics. Most of published meth-
ods focused on epitope prediction. SVRMHC [40], the epitope predictor based on
support vector regression (SVR) used data from AntiJen and used LIBSVM [70] for
SVR-related implementation. This method can perform prediction on both MHC-I
and —I1. Nanni [71] used feature extraction based on BLOSUMS50 and then conducted
classification tasks using the SVM. TAPPred [72], the MHC-I epitope predictor is
based on the cascade SVM. Two layers of SVMs were used in this method and it
achieved remarkable performance. In case of proteasomes cleavage prediction,
Pcleavage [73] was developed to predict cleavage sites in antigenic proteins by using
the SVM.

For B-cell epitope prediction, COBEpro [74] was developed to predict continuous
B-cell epitopes. COBEpro consists of two-step. First, a fragment epitopic propensity
score was assigned to protein sequence fragments using the SVM. Second, the score
for each residue was calculated based on the previous score. By using the second
score, B-cell epitopes were determined. COBEpro has been incorporated into the
SCARTCH prediction suite [75].

2.1.3 Hidden Markov models

The hidden Markov models (HMMs) were described by Baum et al. [76]. HMMs
were used in speech recognition [77, 78]. In 1980, HMMs were firstly applied in the
analysis of biological sequences, especially DNA sequences [79]. To date, HMMs are
widely used in the bioinformatics field such as the prediction of protein secondary
structure [80], prediction of transmembrane regions [81], and protein homology
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analysis [82]. In addition, HMMs have been popularly used in sequence alignment
[83], phylogenetic tree analysis [84], and gene identification [85].

For immunoinformatics field, PredTAP [86], the method based on HMM was de-
veloped to predict peptide binding to TAP molecules. This method used second-order
HMM back propagation neural network. Mamitsuka [87] developed HMM based
models for prediction of pMHC binding affinity. However, the models were restricted
to HLA-A*02:01 and DR1 alleles. Afterwards, Udaka et al. [88] used Mamitsuka’s
approach to estimate predictive models for other MHC-1 alleles. Moreover, Brusic et
al. [89] developed HMM models to predict pMHC binding affinity of HLA-A2
alleles. In this method, only amino acids that interact with HLA molecules were used
to derive the predictive models.

Figure 2.1 Overview of immunoinformatics research [64].
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2.2 Immunoinformatics databases

Recently, because of advancement in high throughput technology, immunological
data have increased rapidly. There are many databases that store these data. Most of
them are related to T- or B-cell epitopes. Each database has specific features and
purposes. Some databases include 3D structures of MHC molecules or peptides and
also provide epitope prediction tools. Table 2-1 describes available immunoinformat-
ics databases.

In our researches, we mainly used data from IEDB [41]. This database provides

vast datasets including both T- and B-cell epitopes. In addition, analysis tools are

available in this database including state of the art epitope prediction methods.

Table 2-1 Available immunoinformatics databases [64].

Type Name URL Ref.
T-cell JenPep http://www.darrenflower.info/jenpep/ [90]
epitopes SYFPEITHI http://www.syfpeithi.de [42]
FRED http://www-bs.informatik.uni- [91]
tuebingen.de/Software/FRED
MHCBN http://www.imtech.res.in/raghava/mhcbn/ [45]
B-cell CED http://immunet.cn/ced/ [92]
epitopes Bcipep http://www.imtech.res.in/raghava/bcipep [93]
Epitome http://cubic.bioc.columbia.edu/services/epitome/ [94]
Both T-and IEDB http://www.iedb.org/ [41]
B- cell IMGT http://www.imgt.org/ [60]
epitopes MHCPEP http://wehih.wehi.edu.au/mhcpep/ [44]
AntiJen http://www.ddg- [46]
pharmfac.net/antijen/AntiJen/antijenhomepage.htm
Allergen Database of 1UIS http://www.allergen.org [95]
Allergen Pro http://www.niab.go.kr/nabic/ [96]
SDAP http://fermi.utmb.edu/SDAP/ [97]
Information  ImmTree http://bioinf.uta.fi/ImmTree [98]
related to Immunome http://bioinf.uta.fi/lmmunome/ [99]
molecular database
evolution of  ImmunomeBase http://bioinf.uta.fi/lmmunomeBase [100]
immune Immunome http://bioinf.uta.fi/IKB/ [101]
system Knowledge Base
components
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Chapter 3 EpicCapo: epitope prediction using
combined information of amino acid pairwise
contact potentials and HLA-peptide contact

site information

Epitope identification is an essential step toward synthetic vaccine development since
epitopes play an important role in activating immune responses. Classical experi-
mental approaches are laborious and time consuming, and therefore computational
methods for generating epitope candidates have been actively studied. Most of these
methods, however, are based on sophisticated nonlinear techniques for achieving
higher predictive performance. The use of these techniques tends to diminish their
interpretability with respect to binding potential: that is, they do not provide much
insight into binding mechanisms. We have developed a novel epitope prediction
method named EpicCapo and its variants, EpicCapo* and EpicCapo*™ 5. Nonapep-
tides were encoded numerically using a novel peptide-encoding scheme for machine
learning algorithms by utilizing 40 amino acid pairwise contact potentials. The
predictive performances of EpicCapo™ and EpicCapo* "t outperformed other state-
of-the-art methods without losing interpretability. In addition, we found that all amino
acid positions in nonapeptides could effect on the performances of the predictive

*REF was applied to identify

models including non-anchor positions. Finally, EpicCapo
candidates of promiscuous epitopes. As a result, 67.1% of the predicted nonapeptides
epitopes were consistent with preceding studies based on immunological experiments.

We speculate that our techniques may be useful in the development of new vaccines.
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3.1 Introduction

CTLs play an important role in the vertebrate immune system. They recognize
pathogens via peptide presentation on MHC. If the source of peptides is an infectious
virus, the CTL response could be stimulated, thus leading to the elimination of virus
infected cells [102]. As mentioned in the chapter 1, MHC-bound peptides are called
epitopes. Epitope identification is an essential step toward synthetic vaccine develop-
ment, since epitopes play an important role in the activation of the immune responses
[21]. Epitopes are traditionally identified by synthesizing a large number of nonapep-
tides and subsequently performing affinity assays. Those peptides with high binding
affinity to MHC proteins are considered as potential epitopes. However, the process
of developing a new vaccine is time-consuming and laborious when performed with
traditional methods. To avoid the problems of such bottlenecks, instead computational
methods can be effectively applied to search for candidate peptides and identify new
promising epitopes.

In human, MHC is referred to as HLA. There are three classes of HLAs: I, 1, and
I11. Epitopes presented on HLA class | molecules are recognized by CTLs. HLA class
| proteins can be categorized into three types according to their genes: HLA-A, HLA-
B, and HLA-C. A majority of previous studies have focused on the HLA-A*02:01
allele because it is the most frequent allele of the A2 supertype in the Northeast Asian
and Caucasian populations [24]. Typically, the HLA-A*02:01 epitope consists of 8-
10 amino acids, and many studies have focused on nonapeptides in particular: that is,
epitopes that are 9 residues long [103-105]. Figure 3.1 (A) shows the nonapeptide
epitope LLFGYPVYYV fitted inside the HLA-A*02:01 binding cleft, which consists of
two a-helices and one B-sheet (from PDB entry 1DUZ [22]). Figure 3.1 (B) shows the
conformation of the nonapeptide epitope LLFGYPVYV.

Early epitope binding prediction algorithms were based on allele-specific motifs
[25, 26]. For example, for the HLA-A*02:01 allele, positions 2 and 9 of nonapeptides
were the most important ones for binding. The residues at both positions were defined
as classical anchor residues typically occupied by leucine, valine, and isoleucine since
the MHC molecule forms hydrophobic sites for amino acids at these two positions
[27]. Additionally, the residues at positions 1, 3, and 7 were identified as secondary
anchor residues. Positions 1 and 3 were mainly preferred by tyrosine and phenylala-

nine [28, 29]. The residue at position 7 was suggested to be an amphipathic residue

25



suitable for amino acids with small hydrophobic side-chains such as valine and
alanine [30]. In this manner, unknown peptides that matched with such allele-specific
motifs were determined to be epitopes.

As more data became available, statistical methods could be applied to calculate a
positional scoring matrix. In the matrix, an element was defined individually for each
position and a specific amino acid, resulting in an L x 20 coefficient matrix where L is
the length of the peptide. In general, the matrix is used under the assumption that each
amino acid in a peptide sequence independently contributes a certain binding energy
according to an element included in the positional scoring matrix. Overall binding
energy is estimated from the summation of binding energies from all positions. There
are several methods based on such a positional scoring matrix: for example, BIMAS
[31], RANKPEP [32], Gibbs sampler [33], ARB [34], SMM [35], and SMM"MEEC
[36].

Currently, the most successful approach for epitope prediction utilizes machine
learning algorithms. These algorithms require large enough datasets for training in
order to obtain reliable results. Fortunately, the Immune Epitope Database (IEDB)
[41] provides more than 100,000 MHC binding data related to T-cell epitopes from
infectious pathogens, experimental pathogens, and self-antigens (autoantigens). IEDB
encompasses patent data from biotechnological and pharmaceutical companies, as
well as direct submissions from research programs and partners. As reliable experi-
mental data are provided, the volume promises a sufficient grounding for developing
good predictive models. Although IEDB is not the only database that provides such
information, it has more entries than other existing databases. Examples of other
databases are SYFPEITHI [42], FIMM [43], MHCPEP [44], MHCBN [45], and
AntiJen [46]. NetMHC [20], a predictor based on artificial neural networks, used data
from both IEDB and SYFPEITHI and performed very well. SVRMHC [40], a predic-
tor based on support vector regression (SVR) used data from AntiJen and used
LIBSVM [70] for SVR-related implementation. Moreover, there also exists an epitope

predictor based on a hidden Markov model [88].
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nonnapeptide B

Figure 3.1 Visualization of the HLA-nonapeptide complex.
(A) Crystal structure of the LLFGYPVYV-HLA-A*02:01 complex resolved by X-ray crystal dif-
fraction (PDB entry 1DUZ [22]). (B) Conformation of the nonapeptide extracted from the complex.

The allele-specific motif method, the positional scoring matrix method, and ma-
chine learning-based methods use only sequence information in general. Almost none
of these methods can provide a clear explanation about the effects of the physico-
chemical properties of amino acids on binding affinity. In some cases, there are not
enough peptides for training: e.g., when using data from rare alleles. Therefore, three-
dimensional (3D) structure-based methods have been developed [47-49] to uncover
binding mechanisms and address all forces related to binding affinity. However, such
methods are currently less reliable than data-driven methods [106]. The reason is that
3D structure-based methods usually require a number of crystal structures of MHC-
peptide complexes, which are still not available in large numbers.

Recently, more than 2,000 HLA alleles have been identified. Searching for
epitopes that bind to a large number of those alleles would be computationally ex-
haustive and time-consuming. Therefore, the concept of allele supertypes was
developed by clustering alleles into groups based on overlapping epitopes [107-111].
Within each supertype, most of the alleles should share the same epitopes. These
epitopes are called ‘promiscuous epitopes’, which show great promise for vaccine
development due to their potential for a high level of population coverage.

In this chapter, we would like to introduce our novel epitope prediction method
named EpicCapo. Peptides were encoded numerically by combining information on
the pMHC contact sites with AAPPs, accompanied by the SVM [112]. Our method’s

27



performance was evaluated by using benchmark datasets and then compared with
other high performance methods. In addition, identification of candidates of promis-
cuous CTL epitopes for influenza A viruses was demonstrated using the proposed
method.

The HIN1 or H5NL1 strain of influenza A virus caused a lethal flu in humans, as
seen during the epidemics of 2005-2009. Although inactivated influenza vaccination
is beneficial, the development of more effective vaccines is still needed, particularly
in elderly adults who are more susceptible to viral infections [113]. Identification of
promiscuous CTL epitopes might aid this issue by providing candidate peptides from

viral proteins for vaccine development.
3.2 Methods

3.2.1 Peptide data encoding

We propose a novel peptide-encoding scheme for machine learning algorithms. This
scheme utilized the information of pMHC contact sites retrieved from the internation-
al ImMunoGeneTics information system, IMGT [60], the allele-specific positional
scoring matrices developed by SMMPMBEC [36], and the AAPPs from AAindex [59].
The reference pMHC contact sites retrieved from IMGT were modified by adding
more MHC positions. The added MHC positions were determined by observing the
pPMHC contact sites of the selected 189 crystal structures of the HLA-nonapeptide
complex collected from IMGT entries specific to the MHC-I receptor type. If there
were new contact positions, the reference pMHC contact sites were modified by
adding those new positions. Therefore, more HLA-nonapeptide contact positions were
included in the modified pMHC contact site because the reference pMHC contact
sites resulted from the use of only 74 crystal structures of the HLA-nonapeptide
complex [60]. Utilizing the modified pMHC contact sites should provide more
reliable results during the prediction. Table 3-1 shows the references and added
PMHC contact sites positions. This information served as a binding template between
the peptide and MHC. In NetMHCpan [37], the reference pMHC contact sites were
used to extract a pseudo sequence representing the given MHC molecule. When
performing prediction, sequence information from both peptide and MHC was taken
into account. However, the pairs of amino acids between the MHC molecule and

peptide were not of concern. Therefore, to generate a more informative predictive
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model, we used information about the pairs of amino acids at the interface between an
MHC molecule and a nonapeptide, represented by AAPPs. In addition, the allele-

specific positional scoring matrices developed by SMMPVEEC

were used in our study.
These matrices provide information of how likely a given amino acid would be
preferred or avoided in a specific residue. Like NetMHCpan, SMM"BE did not use
AAPPs. Consequently, we proved that a proper selection of AAPPs could lead to
higher performance in the prediction. The encoded data could be further used in tasks
of classification or regression using machine learning algorithms. In this study, we
demonstrated the feasibility of the classification task by using the SVM implemented
in the R package kernlab [112].

Here, we propose a novel scheme for encoding nonapeptides into input vectors of
the SVM. Suppose E(a,, a,) is an AAPP for the amino acids a; and a,. If two or
more types of AAPPs are available, we denote k™ type of the AAPP by Ey(ay, a,).
Also, we denote the i™ amino acid of the nonapeptide n and the j™ amino acid of HLA
by ui and vj, respectively. In order to combine information of position-specific
amino acid scores of the nonapeptides with AAPPs, we define a score Sk,i(”) for the i

amino acid of the nonapeptide n under a k™ type of AAPP as follows:

L L
s = () > by () / S o).
j=1 j=1

where L is the length of the HLA protein, Ti(a) is the i position score of the amino
acid a for the nonapeptides described by SMMPMBEC and g is an indicator variable
that takes the value of 1 if the i amino acid of a nonapeptide and the j™ amino acid of
HLA contact each other, and 0 otherwise. Here, the positional scoring matrix T;(a) is
trained based on training data and multiplied by —1 to reverse the order of values (a
high positive value denotes high preference between an amino acid and the position)
and scaled into the range of 1 to 10 since we need to avoid loss of information when
Ti(a) equals zero. In fact, any range that does not include zero can be used; in this
study, it is the range of 1 to 10. The scaling of positional scoring matrices is shown in

Table 3-2. Note that $%_, &;; is the number of contact sites for the i amino acid of a

nonapeptide (see Table 3-1). Intuitively, this score represents average pair-potential of
contact sites, weighted by position-specific amino acid score for nonapeptides. Let K
be the number of AAPPs available, and M be the length of the peptide, set to 9
throughout this study. Using this scoring scheme, we transform a nonapeptide n into a
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M x K-dimensional numerical vector, whose (M(k-1) + i)™ element is S;". For
example, the encoded nonapeptides consist of 9 features if one AAPP is used and 360
features if 40 AAPPs are used. Figure 3.2 illustrates an example of the data-encoding
scheme for the first position of the nonapeptide.

Table 3-1 Reference and added pMHC contact sites for the HLA.

Reference HLA positions Added HLA positions

< 1 559626366163 167 171 79455867 164
S 2 792224344563666770 99 159
é 3 9799152 155 156 159 96667 70 160
@ 4 6566155 62 158
£ 5 70737497116 155156 6569 72 114 147 150 151 152
§ 6 666970737497 114151155 65 99 147 152 156
S 7 97114147150 152 155 59 63 116 133 146
Z 8 72737680146 77147

9 7780818495116 123124 143 147 26 33 55 58 97 142 146

Table 3-2 The positional scoring matrix of EpicCapo used in the experiment
that peptide-encoding schemes were compared.

Amino acid Nonapeptide position
1 2 3 4 5 6 7 8 9

A 6.053 4.651 5.843 5.812 5220 4.497 5.295 5.243 7.083
C 4474 1.000 4.359 4.272 6.514 6.112 4.928 5.263 5.066
D 2.093 5074 5.887 6.432 5417 5575 4.861 3.889 5.322
E 2.030 5.322 2958 6.692 4.146 4.726 4.936 5.784 5.322
F 8.630 5.220 6.617 5.082 6.286 6.680 7.071 5.993 3.289
G 5468 3.333 4.632 5.658 5579 3.862 3.349 6.088 4.841
H 4189 5.646 4.217 4.636 6.329 4.900 4.896 4.411 4.841

I 5650 7.336 5.883 5.425 6.021 7.158 6.550 4.612 8.295
K 6.704 6.676 2.950 5.437 4.213 3.388 2.303 5.263 5.236
L 5705 9.443 6.664 4.647 5.457 6.558 6.416 6.088 8.157
M 6.436 10.000 7.478 4.861 5.670 6.242 6.124 4.008 5.204
N 4604 1754 5086 5492 4.458 5.678 4.892 5.488 5.322
P 2457 5982 4525 5247 3.668 5.034 6.266 6.116 4.474
Q 5437 6.254 5405 4.793 5271 6.439 5.157 4.943 4.904
R 5239 2891 4418 4.813 4.261 3.451 3.211 5.200 3.436
S 5611 4.095 5729 5.863 4529 5149 5397 6.428 5.764
T 5425 5.611 4.486 5.492 4193 6.155 5.101 4.861 5512
\% 6.017 6.345 5382 5.622 5575 6.218 5.997 3.858 9.980
W 5871 4.497 7.020 5.168 6.621 3.487 7.351 6.246 2.271
Y 8.358 5.322 6.909 5.011 7.016 5.137 6.345 6.672 2.121
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Figure 3.2 Our peptide data-encoding scheme, using the first position of a nonapep-
tide as an example.

Our peptide-encoding scheme was compared with binary peptide-encoding and
with four amino acid descriptors, as shown in Table 3-3 using the dataset reported by
Bi and colleagues (supplementary information for Table S2 in [114]). This dataset
consists of 1,998 quantitative affinity-known HLA-A*02:01-restricted nonapeptides.
The dataset was randomly partitioned into a training set containing 1,500 nonapep-
tides for estimating predictive models using the SVM, and a test set containing 498
nonapeptides for validating the models. For our peptide-encoding scheme, the posi-
tional scoring matrix (Table 3-2) was trained based on the external dataset
downloaded from IEDB, consisting of 500 nonapeptides restricted to the HLA-
A*02:01 allele. These nonapeptides were included in neither training nor test sets. For
the binary peptide-encoding, each amino acid was encoded as a binary vector of
length 20, resulting in a vector of length 180 for a nonapeptide. In case of using amino
acid descriptors, the length of an encoded vector would be equal to M times larger

than the length of descriptor vectors. The performances of the data-encoding schemes
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were evaluated in classification tasks, using a 10-fold cross validation. Throughout
our experiments, the parameter C (cost of constraint violation) and the type of kernel
used for the SVM were 1 and the radial basis kernel, respectively. The class for each
nonapeptide was determined by using an ICs affinity cutoff at 500 nM. Nonapeptides
with an affinity less than 500 nM were considered to be binders and non-binders
otherwise. The study by Moutaftsi et al. [115] showed that 90% of epitopes that could
stimulate CTL responses bound to MHC with affinities lower than 500 nM. The
predictive performance is evaluated using five measures: overall accuracy (ACC),
sensitivity (sens), specificity (spec), F-score (F1), and area under receiver operating

characteristic curve (AUC). ACC, sens, spec, and F1 are defined as

TP+TN
ACC = ———,
TP+TN+FP+FN
ns = ——
Sens TP+FN’
spec = L
p FP+TN’
2xTP
Fl=—""+—7—¥—,
((2xTP)+FN+FP)

where TP, FP, TN, and FN are the numbers of overall true positives, false positives,

true negatives, and false negatives, respectively.

3.2.2 Validation of predictive models using benchmark datasets

The performance of EpicCapo was validated by using benchmark datasets of 34
MHC-I alleles provided by Peters et al. [61]. In this experiment, the positional scoring
matrices were trained based on training data according to the cross validation tech-
nique. 20 iterations of 5-fold cross validation were conducted to evaluate AUCs for
EpicCapo. We compared the results of our method with those of ARB, NetMHC,
SMM, and SMMP"MEEC,

EpicCapo was further developed as EpicCapo” by selecting AAPPs. Each en-
coded allele dataset was initially separated into 40 datasets according to the 40
AAPPs. The classification task was performed for each dataset to calculate AUC
using the SVM and the same parameters as EpicCapo. Then, 40 datasets were ranked
by AUC from highest to lowest. Next, the classification task was performed again by
adding the datasets of AAPPs one by one based on their rank. Finally, the optimal
subset of AAPPs that led to the highest AUC was identified for each allele. The
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average AUCs of all alleles as calculated from EpicCapo® were compared with those
from EpicCapo and other methods using paired t-tests (two-tailed). For each allele,
the AUCs from 20 iterations of 5-fold cross validation of EpicCapo and EpicCapo”
were compared with the maximum AUC among other methods by using t-tests (one-

tailed, significance level = 0.01).

3.2.3 Improving the performance of HLA-A-nonapeptide binding predictive

models

To increase the performance of our predictive models, the positional scoring matrices
used in this experiment were trained based on datasets containing larger number of
nonapeptides. These matrices are available at [116]. After encoding 14 HLA-A allele
datasets using the downloaded matrices, EpicCapo” was performed again to identify
optimal subsets of AAPPs therein. We used the Relief-F algorithm [117] implemented
in the machine learning software Weka [118] to perform the feature selection task,
ranking the features according to their importance in discriminating the MHC binder
peptides from the non-binder ones. The default parameters provided by Weka were
used, and a 5-fold cross validation was conducted for evaluating feature importance.
The best feature subsets were constructed by adding the features, one by one, from the
top-ranked feature to the last one in the classification task using the SVM. The AUC
gradually increased with the addition of features, until it reached the highest value.
Features after this point were considered irrelevant and ignored. We named this

method, accompanied with the Relief-F algorithm, EpicCapo™*?t".

3.2.4 ldentification of candidates of promiscuous epitopes

+REF

EpicCapo was further tested to identify candidates of promiscuous epitopes—i.e.,
nonapeptides that were predicted to be MHC binders for various HLA alleles—from
the protein sequences of four influenza A viral subtypes: HIN1 (A/PR/8/34), H3N2
(A/Aichi/2/68), HIN1 (A/New York/4290/2009), and H5N1 (A/Hong Kong/483/97).
These protein  sequences were downloaded from the NCBI website
(http://mwww.ncbi.nlm.nih.gov/). The nonapeptides were generated from these se-
guences by using a nonamer sliding window. Next, all of the generated nonapeptides

+REF

were used as inputs in EpicCapo predictive models. These models were estimated

by using 14 HLA-A allele datasets, and each model was specific for each allele type.
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The identified epitopes were validated by cross-checking with the results of immuno-

logical experiments.

3.3 Results and discussion

3.3.1 Comparison of peptide-encoding schemes

We compared our peptide-encoding scheme with binary peptide-encoding and with
four amino acid descriptors (Table 3-3). The results of the comparison of the peptide-
encoding schemes (Table 3-4) showed that EpicCapo performed better than others in
the classification tasks. It achieved the highest average area under the curve (AUC;
0.882), followed by binary encoding (0.879), DPPS (0.878), FASGAI (0.874), z-scale
(0.858), and ISA/ECI (0.796) schemes. All of standard deviations were less than 0.01.
A comparison of receiver operating characteristic (ROC) curves is shown in Figure
3.3.

Although EpicCapo used the largest number of features (M x K = 360)—higher
than binary encoding (180), DPPS (90), FASGAI (54), z-scale (45), and ISA/ECI
(18)—we confirmed that its high performance was not due to a larger number of
features. In our study, the training dataset was separated into 40 datasets correspond-
ing to 40 AAPPs. Each dataset consisted of 9 features. The classification functions
were fitted to these datasets, and after that the AAPPs were ranked by AUC. The
results, as shown in Table 3-4, suggested that even by using only three top-ranked
AAPPs (27 features in total), the classification performance values are comparable to
those obtained by using all AAPPs. These three top-ranked AAPPs were
MICC010101, SIMK990101, and SIMK990105 (see Appendix B). They have been
previously used in identifying native-like protein structures [119, 120], and were also

identified as important AAPPs in our accompanying experiments.

Table 3-3 Amino acid descriptors acknowledged in this study.

Descriptor Type Technique used # of vector  Ref.
DPPS physicochemical principal component 10 [103]
FASGAI  physicochemical factor analysis (FA) 6 [121]
z-scale physicochemical PCA and partial least 5 [122]
ISA/JECI  quantum-chemical - - 2 [123]
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Table 3-4 Classification result of peptide-encoding schemes.

Method # of 10-fold cross validation on training dataset only Holdout method using training dataset
features and testing dataset
sens spec F1 ACC AUC sens spec Fl1 ACC AUC
EpicCapo 360 0.883 + 0.792 + 0.886 + 0.841 0915+ 0.883 0.744 0.831 0.815 0.882
0.005 0.006 0.003 0.004 0.001
EpicCapo 27 0.876 £ 0.821 + 0.862 + 0.848 = 0916+ 0.855 0.777 0.828 0.817 0.878
(3 AAPPs*) 0.005 0.005 0.003 0.003 0.001
DPPS 90 0.865 0.760 0.834 0.816 + 0.888+ 0.868 0.697 0.807 0.785 0.878
0.005 0.007 0.004 0.004 0.001

FASGAI 54 0.847 + 0.761 = 0.825 + 0.801 0.882 0.840 0.730 0.803 0.787 0.874

0.004 0.004 0.003 0.003 0.001
z-scale 45 0.847 £ 0.732 £ 0.815 % 0.793 0.873 0.848 0.676 0.788 0.765 0.858
0.005 0.005 0.004 0.004 0.002

ISA/ECI 18 0.799 + 0.652 = 0.760 + 0.731 % 0797+ 0.829 0.643 0.766 0.739 0.796
0.005 0.005 0.003 0.003 0.001

Binary 180 0.883 0.721 + 0.831 % 0.807 + 0.883+ 0.887 0.705 0.820 0.799 0.879
encoding 0.005 0.006 0.003 0.003 0.002

Means and standard deviations were calculated by 20 iterations of 10-fold cross validation.

Underlined values represent the highest performance.

sens = sensitivity; spec = specificity; F1 = F-score; ACC = accuracy; AUC = area under the curve.
*These three top-ranked AAPPs were MICC010101, SIMK990101, and SIMK990105 (see Appendix B)
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Figure 3.3 ROC curves of peptide-encoding schemes evaluated on a test set.

3.3.2 Classification results of benchmark datasets

We applied EpicCapo to benchmark datasets of 34 MHC-I alleles [61]. As shown in
Table 3-5, NetMHC performed the best, ahead of ARB, SMM, and SMMMEEC_ For
EpicCapo, average AUCs were lower than in NetMHC (0.1%-3.4%) in 13 allele
datasets and were higher than those in NetMHC (0.1%-9.3%) in 21 allele datasets
when using all of the 40 AAPPs (360 features). Almost all of standard deviations
were low except several alleles with results of standard deviation larger than 0.01.
However, if more data are available, these standard deviations can be decreased. To
improve the performance of our method, we developed EpicCapo™ by selecting an
appropriate subset of AAPPs. As seen in Table 3-5, the performance of EpicCapo®
was higher than EpicCapo and comparable with NetMHC. The overall performance of
EpicCapo” is significantly higher than that of other methods according to a paired t-
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test (two-tailed) comparison of average AUCs from all alleles. The IDs of AAPPs

used for estimating the predictive models of EpicCapo” are shown in Table 3-6.

Table 3-5 Classification results of 34 allele datasets.

MHC # of peptides AUC

ARB SMM SMMPMBEC  NetMHC  EpicCapo EpicCapo*
HLA-A*01:01 1157 0.964 0.980 0.977 0.982  0.972+0.004 0.977 +0.003
HLA-A*02:01 3089 0.934 0.952 0.946 0.957  0.950+0.004 0.951 +0.004
HLA-A*02:02 1447 0.875 0.899 0.899 0.900  0.901+0.004 0.909 +0.004
HLA-A*02:03 1443 0.884 0.916 0.916 0.921  0.920 +0.003 0.923 + 0.003
HLA-A*02:06 1437 0.872 0.914 0.916 0.927  0.925+0.004 0.927 +0.004
HLA-A*03:01 2094 0.908 0.940 0.928 0.937  0.934+0.004 0.938 +0.003
HLA-A*11:01 1985 0.918 0.948 0.939 0.951  0.945+0.004 0.951+0.002
HLA-A*24:02 197 0.718 0.780 0.801 0.825  0.853+0.012 0.865+0.011
HLA-A*26:01 672 0.907 0.931 0.924 0.956  0.941+0.005 0.957 +0.007
HLA-A*29:02 160 0.755 0.911 0.916 0.935  0.944+0.008 0.945+0.010
HLA-A*31:01 1869 0.909 0.930 0.925 0.928  0.930+0.002 0.935 +0.003
HLA-A*33:01 1140 0.892 0.925 0.925 0915  0.926+0.004 0.934 +0.004
HLA-A*68:01 1141 0.840 0.885 0.885 0.883  0.891+0.003 0.899 +0.003
HLA-A*68:02 1434 0.865 0.898 0.889 0.899  0.901+0.005 0.907 +0.003
HLA-B*07:02 1262 0.952 0.964 0.960 0.965  0.960+0.004 0.964 +0.002
HLA-B*08:01 708 0.936 0.943 0.956 0.955  0.942+0.005 0.951 +0.004
HLA-B*15:01 978 0.900 0.952 0.940 0.941  0.940+0.006 0.950 + 0.005
HLA-B*18:01 118 0.573 0.853 0.880 0.838  0.886+0.013 0.911 +0.009
HLA-B*27:05 969 0.915 0.940 0.941 0.938  0.949+0.005 0.958 +0.003
HLA-B*35:01 736 0.851 0.889 0.889 0.875  0.900+0.004 0.907 +0.007
HLA-B*40:02 118 0.541 0.842 0.843 0.754  0.811+0.007 0.912+0.011
HLA-B*44:02 119 0.533 0.740 0.739 0.778  0.798+0.009 0.861+0.013
HLA-B*44:03 119 0.461 0.770 0.753 0.763  0.813+0.010 0.871+0.008
HLA-B*51:01 244 0.822 0.868 0.895 0.886  0.930+0.012 0.948 +0.015
HLA-B*53:01 254 0.871 0.882 0.885 0.899  0.916+0.008 0.940 +0.008
HLA-B*54:01 255 0.847 0.921 0.935 0.903  0.927 +0.008 0.938 +0.006
HLA-B*57:01 59 0.428 0.871 0.843 0.826  0.792%0.009 0.854 +0.010
HLA-B*58:01 988 0.889 0.964 0.945 0961  0.959+0.005 0.964 +0.004
H-2 Db 303 0.865 0.912 0.901 0.933  0.940+0.014 0.968 +0.006
H-2 Dd 85 0.696 0.853 0.837 0.925  0.956 +0.016 0.985 + 0.017
H-2 Kb 223 0.792 0.810 0.833 0.850  0.844+0.021 0.880 +0.017
H-2 Kd 176 0.798 0.936 0.931 0.939  0.950+0.015 0.966 +0.009
H-2 Kk 164 0.758 0.770 0.793 0.790  0.883+0.009 0.926 +0.008
H-2 Ld 102 0.551 0.924 0.942 0.977  0.984+0.012 0.992 +0.013
Average 0.801 0.895 0.895 0.900 0.912 0.931
t-test ARB NA 437E-5 3.69E-5 1.25E-5 5.21E-6 2.64E-6
t-testiSMM NA 8.61E-1 2.30E-1 8.28E-3 2.87E-5
t-test|SMMPVEEC NA 2.61E-1 3.50E-3 8.49E-6
t-testiNetMHC NA 8.57E-3 7.74E-5
t-test|EpicCapo NA 1.95E-5

For each dataset, AUCs were evaluated based on 5-fold cross validation. In the lower part, p-values of average AUCs were
calculated using paired t-tests (two-tailed).

Means and standard deviations were calculated by 20 iterations of 5-fold cross validation for EpicCapo and EpicCapo®.
Underlined values represent the highest performance among ARB, SMM, SMMPMEEC and NetMHC.

Values in bold represent significant improvements of EpicCapo or EpicCapo* AUCs from 20 iterations of 5-fold cross validation
over the underlined values according to t-tests (one-tailed, significance level = 0.01).
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Table 3-6 Optimal subsets of AAPPs identified by EpicCapo” using 34

benchmark datasets.

MHC IDs of AAPP used
HLA-A*01:01 11,14,20,24,28,33
HLA-A*02:01  9,11,14,24,26,28,31
HLA-A*02:02  14,24,28
HLA-A*02:03  3,9,11,14,19,24,25,26,28,29,31
HLA-A*02:06  9,11,13,14,19,21,22,24,25,26,28,31
HLA-A*03:01  9,11,14,20,24,26,28,33
HLA-A*11:01 11,14,26,28
HLA-A*24:02  11,14,20,24,28,31,33
HLA-A*26:01 14,28
HLA-A*29:02  5,9,11,14,19,20,22,24,26,28,33
HLA-A*31:01 1,9,11,14,20,24,26,28,31,33,38
HLA-A*33:01 1,11,14,20,24,26,28,33
HLA-A*68:01  11,14,20,26,28
HLA-A*68:02  1,2,9,11,14,19,20,22,24,26,28,33,34,39
HLA-B*07:02 1,9,11,14,20,24,26,28,33
HLA-B*08:01  4,14,18,20,40
HLA-B*15:01 14,24,26,28
HLA-B*18:01  3,14,20,24,26,28
HLA-B*27:05 9,14,20
HLA-B*35:01 14,28
HLA-B*40:02 11,14,24,28
HLA-B*44:02  9,14,20,28,32
HLA-B*44:03  13,14,20,28,33,38,39
HLA-B*51:01  6,11,14,20,24,26,33,36,38,39
HLA-B*53:01 11,14,20,24,28,33
HLA-B*54:01  1,9,11,14,20,24,26,28,33
HLA-B*57:01 5,6,8,12,22,23,24,25,27,31,37
HLA-B*58:01 14,28

H-2 Db 1,11,14,24,28

H-2 Dd 11,14,28

H-2 Kb 11,14,28

H-2 Kd 1,11,12,14,19,24,26,28,33

H-2 Kk 14,28

H-2 Ld 10,11,14,16,18,20,21,23,24,26,28,33
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3.3.3 Improved HLA-A-nonapeptide binding predictive models

In this experiment, EpicCapo® was further developed as EpicCapo ™"

to improve the
predictive performance and identify important positions of nonapeptides in pMHC
binding (Section 3.2.3). The IDs of AAPPs used in EpicCapo™ " are shown in Table
3-7 (for more details on AAPPs, see Appendix B). The most important AAPPs
identified by EpicCapo® were IDs 14 (MICC010101) and 28 (SIMK990105), which
were selected in 13 out of 14 alleles. IDs 11 (KES0980102) and 26 (SIMK990103)
were also considered to be important, because they were selected in 9 out of 14
alleles. From previous studies that used AAPPs in MHC-1 epitope prediction, AAPP
IDs 19 (M1YS960102) and 2 (BETM990101) proved to be important in peptide-MHC
binding prediction [104, 124, 125]. In our study, however, BETM990101 was not
selected for any allele dataset, and M1YS960102 was chosen for only two alleles
(A*02:03 and A*02:06). In a report by Schueler-Furman et al. [124], KES0980102
was also tested and compared with MIYS960102; however, there was no significant
improvement in the predictive performance. Therefore, it is interesting that
MICC010101, SIMK990105, KESO980102, and SIMK990103 were important for
generating better predictive models in our study.

Table 3-7 Optimal subsets of AAPPs and numbers of selected features identi-
fied by EpicCapo*™ " using 14 HLA-A allele datasets.

Allele AUC of EpicCapo™t"  1Ds of AAPP used # of features
selected
A*01:01 0.980 1,11,14,20,24,26,28,33 72
A*02:01 0.958 9,11,14,24,26,28,31 62
A*02:02 0.913 14,28 18
A*02:03 0.925 3,9,11,14,19,24,25,26,28,29,31,33 104
A*02:06 0.926 1,3,9,11,13,14,18,19,21,22,24,25,26,27 141
,28,31,34,38,39

A*03:01 0.946 11,14,20,24,26,28,33 58
A*11:01 0.956 11,14,26,28 35
A*24:02 0.877 5,6,14,24,28,31 31
A*26:01 0.960 14,28 18
A*29:02 0.955 5,8,9,20,33 23
A*31:01 0.940 11,14,20,26,28,33 46
A*33:01 0.940 14,28 17
A*68:01 0.904 11,14,20,26,28,33 40
A*68:02 0.913 1,9,11,14,20,22,24,26,28,33,39 79
Average 0.935
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We further investigated the generated features according to the selected subset of
AAPPs. In our peptide-encoding scheme, nine features were generated from one
AAPP, corresponding to the nine amino acid positions in the nonapeptide. Previous
studies have indicated that not all positions were important in pMHC binding [27-29,
103]. Therefore, some features corresponding to specific positions could be removed
to improve the predictive performance.

The Relief algorithm [117] was employed in our study to rank the features accord-
ing to their importance in separating the nonbinding peptides from the binding ones.
The ranking results showed that the ten top-ranked features correspond to positions 9
and 2 in most of the alleles, followed by positions 3, 1, or 7 (see Appendix C). As

indicated in Tables 3-5 and 3-7, the overall AUC value of EpicCapo*™t"

was higher
than that of EpicCapo”; however, it was still slightly lower than that of NetMHC in
the A*01:01 and A*02:06 alleles. In summary, EpicCapo*™ " performed better than
other methods, with an average AUC of 0.935. Table 3-7 also shows the number of
selected features after employing the Relief-F algorithm. These numbers were differ-
ent for specific alleles. For the A*01:01, A*02:02, and A*06:01 alleles, no features
were removed. However, for the A*02:06, A*24:02, A*29:02, and A*68:02 alleles,
20 or more features were removed. Interestingly, features corresponding to positions 5
and 8, which have previously been considered to not significantly contribute to HLA
binding potentials, were still included in some of the selected feature subsets. There-
fore, we assumed that features corresponding to different positions are not
independent, and that all features from all positions should be required input to

estimate the model with the highest-performance (see Appendix C).

3.3.4 Candidates of promiscuous epitopes for a development of influenza A viral
vaccines

+REF

Since EpicCapo performed better than the other existing methods when testing
with 14 HLA-A allele datasets, it was further used to find candidates of promiscuous
epitopes from influenza A viral sequences. Epitopes from protein sequences of HIN1
(A/PR/8/34), H3N2 (A/Aichi/2/68), HIN1 (A/New York/4290/2009), and H5N1
(A/Hong Kong/483/97) were identified using EpicCapo*™t". The prediction results of
all influenza A strains categorized into specific alleles are shown in Table 3-8. All 14
alleles were assigned to supertype groups using the supertype classification defined

by previous studies [107-110]. The A*01:01 and A*26:01 alleles were assigned to the
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Al group. The A*29:02 allele was assigned to an unidentified group. As shown in
Table 3-8, there are a small number of predicted positive peptides in the Al super-
type. For example, in case of HIN1 (A/PR/8/34), only one peptide was identified as
positive for the allele A*26:01. In contrast, there were quite high numbers of predict-
ed positive peptides in the A2, A24, and A3 supertypes. Even the A*29:02 allele,
which was assigned to an unidentified group, had a higher number of predicted
positive peptides than those in the Al group. Based on our findings, when promiscu-
ous epitopes were identified from the overlapping epitopes of four Influenza A viral
strains (Appendix D), the Al group rarely shared peptides with other groups. As
shown in Appendix D, the A*01:01 allele shared only one peptide (YSHGTGTGY)
with A*29:02, and the A*26:01 allele shared the peptide DTVNRTHQY with
A*29:02 and A*68:01. Moreover, the A*29:02 allele also shared peptides with the A2
and A3 groups: e.g., SMELPSFGV and QTYDWTLNR, respectively (Appendix D).
Therefore, A*29:02 can be considered as a special allele that links Al, A2, and A3
together. Furthermore, Doytchinova et al. [111] assigned A*29:02 to the A3 group.
However, we did not find overlapping epitopes from the four Influenza A viral strains
in the A*24:02 allele assigned to the A24 group. This suggested that A*24:02 itself is
different from other alleles considered here, and this might be the reason why most of
the previous studies assigned it separately to the A24 group [107-110]. As shown in
Appendix D, 51 peptides (67.1%) of the total 76 epitopes were immunologically
validated as positive, whereas 9 peptides (11.8%) were validated as negative. No
evidence of immunological validation could be obtained for 16 peptides (21.1%).
These results indicate that our newly developed method provides a markedly high
accuracy in epitope identification, given the fact that most of the identified epitopes
could be correlated with immunological evidence. However, even without such
evidence, those epitopes identified by our computational approach might be consid-
ered as candidates for new vaccine development.

Our results are in agreement with the study by Uchida [62], which identified pro-
miscuous epitopes from influenza A HIN1 (A/PR/8/34), H3N2 (A/Aichi/2/68), HIN1
(A/New York/4290/2009), and H5N1 (A/Hong Kong/483/97). Uchida found experi-
mentally confirmed CTL epitopes in the A2 group. In our results, the epitopes

+REF

identified by EpicCapo in the A2 group were consistent with them (Table 3-9). In
addition, we found promising candidates of promiscuous epitopes also for the Al and
A3 groups as shown in Appendix D.
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Table 3-8 Prediction results of EpicCapo™™ =" using four influenza A strains

categorized by specific alleles.

Allele # of predicted positive peptides Super type

H1N1 H5N1 H1N1 H3N2

New York/4290/2009 Hong Kong/483/97 PR/8/34  Aichi/2/68

A*01:01 14 13 6 5 Al
A*26:01 6 9 1 5 Al
A*29:02 103 134 61 161 ?
A*02:01 122 160 71 168 A2
A*02:02 302 370 162 391 A2
A*02:03 268 326 144 307 A2
A*02:06 200 250 105 264 A2
A*68:02 198 220 109 277 A2
A*24:02 90 108 50 150 A24
A*03:01 85 94 50 136 A3
A*11:01 162 176 91 229 A3
A*31:01 183 227 110 245 A3
A*33:01 96 117 62 110 A3
A*68:01 263 346 151 325 A3
Total 2092 2550 1173 2773

Although the overall performance of EpicCapo™ " was high, there are two limita-
tions in the use of this method. The first limitation is the length of input peptides must

be equal to 9. In the further study, we will improve EpicCapo* c"

to be applicable to
peptides with the length of 8-11. The second limitation is that input amino acids must
not be special or ambiguous ones. Examples of special amino acids are U (Selenocys-
teine) and O (Pyrrolysine). Also, examples of ambiguous amino acids are B
(Asparagine or aspartic acid), Z (Glutamine or glutamic acid), and J (Leucine or
Isoleucine). EpicCapo*™E"

included in AAPPs.

are not applicable with these amino acids since they are not
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Table 3-9 Comparison of epitopes identified by EpicCapo*™c" with the broad-
ly protective influenza A viral epitopes identified by Uchida [62].

+REF

Viral strain CTL epitopes identified by  Shared alleles identified by EpicCapo
[62]
H1N1 GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06
(A/PR/8/34) ILKANFSV A*02:01, A*02:02, A*02:03, A*02:06,
GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06
H3N2 GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06
(A/Aichi/2/68) VMLKANFSV A*02:01, A*02:02, A*02:03, A*02:06
GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06
HIN1 GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06
(A/NewY 0rk/4290/2009) |\/|_ K ANFSV A*02:01, A*02:02, A*02:06, A*68:02
GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06
H5N1 GILGFVFTL A*02:01, A*02:02, A*02:03, A*02:06
(A/Hong Kong/483/97) |1k ANFSV A*02:01, A*02:02, A*02:03, A*02:06,
GMFNMLSTV A*02:01, A*02:02, A*02:03, A*02:06

3.4 Conclusions

In this study, we have developed a novel method for epitope prediction. Peptides were
encoded numerically, combining information of pMHC contact sites and amino acid
pairwise contact potentials, accompanied by an SVM for estimating the predictive
model. Our method achieved high performance in testing with benchmark datasets. In
addition, our study identified a number of candidates of promiscuous CTL epitopes
from four influenza A viral strains, consistent with previously reported immunologi-
cal experiments. This consistency in results strongly supports the accuracy of our
method. We speculate that our techniques may be useful in identifying promising

candidates of promiscuous epitopes for the development of new vaccines.
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Chapter 4 PAAQD: Predicting immunogenicity of
MHC class I binding peptides using amino acid
pairwise contact potentials and quantum

topological molecular similarity descriptors

Prediction of peptide immunogenicity is a promising approach for novel vaccine
discovery. Conventionally, epitope prediction methods have been developed to
accelerate the process of vaccine production by searching for candidate peptides
from pathogenic proteins. However, recent studies revealed that peptides with high
binding affinity to major histocompatibility complex molecules (MHCs) do not always
result in high immunogenicity. Therefore, it is promising to predict the peptide
immunogenicity rather than epitopes in order to discover new vaccines effectively. To
this end, we developed a novel T-cell reactivity predictor which we call PAAQD.
Nonapeptides were encoded numerically, using combining information of amino acid
pairwise contact potentials (AAPPs) and quantum topological molecular similarity
(QTMS) descriptors. Encoded data were used in the construction of our classification
model. Our numerical experiments suggested that the predictive performance of
PAAQD is at least comparable with POPISK, one of the pioneering techniques for T-
cell reactivity prediction. Also, our experiment suggested that the first and eighth
positions of nonapeptides are the most important for immunogenicity and most of the
anchor residues in epitope prediction were not important in T-cell reactivity predic-
tion. The R implementation of PAAQD IS available at
http://pirun.ku.ac.th/~fsciiok/PAAQD.rar.
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4.1 Introduction

The immune system is one of the most complex mechanisms that defend an organism
from infections. After antigen presenting cells (APCs) have phagocytosed pathogens,
endogenous proteins from pathogens are cleaved into small peptides by a proteasome.
Cleaved peptides are then transported into the endoplasmic reticulum by transporter
associated with antigen processing (TAP) and selectively bound to MHCs which are
HLAs in humans. At this step, pPMHC complexes are translocated to the cell surface
and recognized by CTLs via TCRs. Peptides are considered to be immunogenic if an
immune response is successfully activated [126].

As mentioned in the chapters 1, 2, and 3, epitope prediction is extensively studied
in immunoinformatics for decades [21]. Recently, most of the successful methods for
the epitope prediction are applications of machine learning techniques. However, the
problem of peptide immunogenicity prediction for T-cell reactivity is still not widely
researched.

Prediction of peptide immunogenicity is a promising approach for the design of
novel vaccines [12, 127, 128]. Traditionally, the process of developing a new vaccine
is time-consuming and laborious. Computational methods for immunogenicity
prediction can be effectively applied to scanning for candidate peptides; thus they
have a potential to identify new promising vaccines. Conventionally, epitope predic-
tion methods have been used to search for candidate peptides from pathogenic
proteins. Predicted peptides with high binding affinity to the MHC-I were supposed to
be immunogenic peptides. However, recent studies revealed that predicted peptides
with high binding affinity to the MHC-1 molecules did not always result in high T-cell
reactivity [51, 129]. Conversely, predicted peptides with low binding affinity to the
MHC-I do not necessarily result in low immunogenicity [130]. In addition, other
factors such as the trimming mediated by the endoplasmic reticulum aminopeptidase
(ERAAP) were more strongly correlated to T-cell immune responses than MHC
binding affinities [52]. Therefore, immunogenicity could not be accurately determined
by existing epitope prediction methods.

Constructing a model for predicting peptide immunogenicity is more difficult than
predicting epitope. The immunogenicity does not only depend on the particular allele
of HLA and the type of TCR in host immune system but is also governed by negative

T-cell selection (central tolerance). The central tolerance is defined as the property of
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the whole proteome and cannot casually be learned by machine learning approaches
[53-55].

The studies of complex protein crystal structures have been conducted to uncover
TCR—pMHC binding mechanisms [56, 131, 132]. Positions 4, 6, and 8 of nonapep-
tides were reported to have an impact on TCR-pMHC binding. The substitution of
lysine to arginine at the position 4 led to a better fit of TCR-pMHC, whereas the
mutation at the position 6 increased dissociation rate of TCR—pMHC [56]. Additional-
ly, the side chain interaction at the position 8 was crucial in TCR-peptide binding and
a hydrogen bond was formed by the complementarity determining region (CDR) at
this position [57]. However, precise explanations of TCR—-pMHC binding mecha-
nisms for all HLA alleles are still not concrete. This because a large number of
resolved crystal structures are currently not available. Figure 4.1 shows the resolved
TCR-pMHC complex crystal structure (PDB ID: 2AK4).

The first predictor for T-cell reactivity is POPI [58]. POPI used 23 informative
physicochemical properties collected from the AAindex database [59] for encoding
peptides and applied the SVM as a classifier. The second predictor is POPISK [55].
POPISK used the SVM with string kernels. POPISK outperformed POPI. Besides, the
importance of amino acid positions of the peptides with length 9 was evaluated by
removing features corresponding to each position. The positions whose deletion
significantly decreased predictive performance were considered as important posi-
tions. POPISK identified six important positions (1, 4, 5, 6, 8, and 9) for T-cell
reactivity.

In this chapter, we introduced our novel T-cell reactivity predictor named
PAAQD. Peptides were encoded numerically, using combining information of AAPPs
[59] and QTMS descriptors [63]. Previous studies have used AAPPs in the MHC-I
epitope prediction [104, 124, 125]. Those studies focused on using the AAPPs of
Miyazawa and Jernigan (1996) [133] and Betancourt and Thirumalai (1999) [134]. In
our study, 40 AAPPs were applied, including the information from two AAPPS in
their reports. The QTMS descriptors were used in constructing the quantitative
structure-activity relationship (QSAR) model for predicting pMHC binding affinities.
The performance of using the QTMS descriptors was comparable with other methods
reported at that time [63]. The quantum chemistry methods were applied to study
variations in the electrostatic field of pMHC complexes. The analyzed data provide

more insights of the interactions between peptides and the MHC [135]. Therefore, the
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use of AAPPs and molecular quantum properties such as QTMS descriptors in T-cell
reactivity prediction is a promising approach to uncover TCR—pMHC binding mecha-

nisms. Simultaneously, new immunogenic peptides could be identified.

Figure 4.1 The structure of TCR—-pMHC complex (PDB ID: 2AK4).
(A) The LPEP peptide is fitted inside the MHC and TCR binding clefts. (B) A closer view of a
TCR-peptide and pMHC binding complex.

PAAQD's performance was evaluated by using the IMMAZ dataset published by
Tung et al. (2011) [55] and compared with the two existing T-cell reactivity predic-
tors, POPI and POPISK. We evaluated the importance of positions by removing
features corresponding to the specific position of nonapeptides. The importance of
AAPPs and QTMS descriptors was evaluated in the same manner by removing
features corresponding to specific AAPP or QTMS descriptor. The dataset of HLA-
A2 peptides collected from IEDB was used as the validation dataset to test for the
predictive stability of PAAQD. This dataset consists of immunogenic and non-
immunogenic peptides that have not been presented in the IMMAZ2 dataset. PAAQD
showed comparable performance to POPISK. Positions 1 and 8 were identified as
important positions in T-cell reactivity by using our method. This result was concord-
ant with a previous study [57] and the POPISK results that the positions 1 and 8 were
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crucial in the response of T-cell reactivity. We speculate that our method may be

useful in identifying immunogenic peptides for the development of new vaccines.

4.2 Materials and methods

4.2.1 Datasets

Two datasets were used in this study. The first dataset is called the IMMAZ2 dataset,
collected by Tung et al. (2011) [55]. This dataset consists of 558 immunogenic and
527 non-immunogenic nonapeptides associated with the HLA-A2 supertype (Appen-
dix E). All of nonapeptides were retrieved from three databases: MHCPEP [44],
SYFPEITHI [42], and IEDB [41]. The second dataset was collected from IEDB
database by selecting nonapeptides that were specific to the HLA-A2 supertype. The
second dataset consists of 278 immunogenic and 101 non-immunogenic nonapeptides
(Appendix F). All of these nonapeptides are not included in the IMMAZ2 dataset. The
sequence preference of the dataset we collected is different from the IMMAZ dataset.
This dataset was used for evaluation of the predictive stability for the difference of
datasets. We focused on IEDB since this database contains more entries than other
existing immunogenic peptide databases [136]. IEDB encompasses reliable data from
biotechnological and pharmaceutical companies, as well as direct submissions from
research programs and partners.

4.2.2 Peptide encoding

Peptides were encoded numerically using our peptide encoding scheme. The encoding
scheme was defined by utilizing the information of the pMHC contact sites retrieved
from the international ImMunoGeneTics information system, IMGT [60], AAPPs
from AAindex [59], and the QTMS descriptors [63].

The reference pMHC contact sites defined by Kaas and Lefranc (2005) [60] were
modified by adding more MHC positions as described in chapter 3.2.1. The references
and added pMHC contact sites positions were shown in Table 3-1. This information
served as a binding template between the peptide and MHC. Subsequently, the
AAPPs were used as a representative value for each amino acid pair, consisting of one
MHC amino acid and its adjacent nonapeptide amino acid. These amino acid pairs
were defined in the pMHC contact sites. In this study, 40 AAPPs were applied. The
Appendix B describes details of all AAPPs used.
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The used peptide encoding scheme was similar to the one used in chapter 3.2.1.
However, the positional scoring matrices T;(a) are not concerned in this study. We

define a score S,Ef? for the i*" amino acid of the nonapeptide n under a k" type of

AAPPs as follows:
L L
SIE,T? = Z(YijEk(ugn),vj)/z 6ijl
j=1 Jj=1

where L is the length of the HLA protein and §;; is an indicator variable that takes the
value of 1 if the i™ amino acid of a nonapeptide and the j™ amino acid of the MHC

contact each other, and 0 otherwise. Note that Z§=1 8;; is the number of contact sites

for the i amino acid of a nonapeptide (see Table 3-1). Intuitively, this score repre-
sents average pair-potential of contact sites. Let K be the number of pair-potential
types available, and M be the length of nonapeptides, which is set to 9 throughout this

study. Using this scoring scheme, we transform a nonapeptide n into a M x K -
dimensional numerical vector, whose (M (k — 1) + i)™ element is S,ET?. For example,

the encoded nonapeptides consist of 9 features if the number of pair-potential types is
1 and 360 features if the number is 40. Figure 4.2 illustrates an example of the data-
encoding scheme for the first position of a nonapeptide. Each encoded peptide was
then combined with the corresponding feature vector constructed from using QTMS
descriptors [63]. There are four types of QTMS descriptors used in this study (see
Table 4-1). When these descriptors were applied, the feature vector of length 189 was
produced for one nonapeptide. Therefore, the final feature vector for one nonapeptide
of length 549 was generated when combining feature vectors corresponding to AAPPs
and QTMS descriptors.

Table 4-1 QTMS descriptors used in this study.

Descriptor Description # of vector
CBFQ Common bonds factor analysis of QTMS 6
CDFQ Common bonds descriptor-based factor analysis 3
of QTMS
CUFQ Common bonds unfolded-data-based factor 5
analysis of QTMS
ADFQ All bonds descriptor-based factor analysis of 7
QTMS descriptors
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Figure 4.2 Our peptide data-encoding scheme for the first position of the nonapep-
tide.

4.2.3 Prediction of peptide immunogenicity using the IMMA 2 dataset

The proposed peptide-encoding scheme was applied to the IMMAZ2 dataset and input
to the random forest implemented in Weka [118]. The number of trees generated and
the number of features randomly sampled as candidates at each split were set to 200
and 10, respectively. The predictive performance is evaluated using three measures;
overall accuracy (ACC), Matthew’s correlation coefficient (MCC), and area under
receiver operating characteristic curve (AUC). ACC is defined in chapter 3.2.1 and
MCC are defined as

TPXTN-FPXFN ,
MCC = /(TP+FN)(TP+FP)(TN+FP)(TN+FN)

where TP, FP, TN, and FN are the number of overall true positives, false positives,
true negatives, and false negatives, respectively. The average and standard deviations
of ACC, MCC, and AUC were evaluated by repeating 10-fold cross validation 20
times, independently. We compared our method with POPI [58] and POPISK [55].
Additionally, the encoded data were separated into two datasets. The first dataset

includes 360 features corresponding to AAPPs. The second dataset includes 189
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features corresponding to QTMS descriptors. Each dataset was input to the random

forest to evaluate the performance using 20 iterations of 10-fold cross validation
4.2.4 Evaluation of positional importance

To uncover TCR-pMHC binding mechanisms in T-cell recognition, it is essential to
identify nonapeptide positions that have a significant impact on the binding force
field. Previous studies analyzed the importance of positions based on protein crystal
structures of TCR-pMHC complexes. However, the discovery was specific to a small
number of HLA alleles since the number of resolved crystal structures of TCR-
pMHC complexes are currently not enough [56, 57, 131, 132].

In this study, we assessed the importance of each position using the method de-
scribed in [55]. The decreases in the predictive performance arisen from removing
features corresponding to the specific position were evaluated. The position that led to
a significant decrease in the performance was considered as an important position. To
evaluate the positional importance of nonapeptides, nine datasets were generated from
encoded data by removing features corresponding to each position in nonapeptides.
The PAAQD performance was then evaluated by using 20 independent iterations of
10-fold cross validation in the same manner as used on original encoded data. We
compared our PAAQD with POPISK. To avoid the influence of the difference of
classifiers, we used the SVM, the same classifier as POPISK. The SVM implementa-
tion used in this experiment is the one in the R package kernlab [112].

4.2.5 Evaluation of the importance of AAPPs and QTMS descriptors

In our peptide-encoding scheme, 40 AAPPs were used. Some AAPPs or QTMS
descriptors might be redundant in TCR-pMHC binding mechanisms. Therefore,
features corresponding to the specific AAPP or QTMS descriptor were removed from
the encoded data. This generated 40 and 4 datasets when removing features corre-
sponding to the specific AAPP and QTMS descriptor, respectively. Afterwards, the
performance of PAAQD was evaluated on these reduced datasets using 20 independ-

ent iterations of 10-fold cross validation.
4.2.6 Prediction of peptide immunogenicity using the validation dataset

The final model for peptide immunogenic prediction was constructed based on the
IMMA 2 dataset. This model was used to predict immunogenicity of peptides in the

validation dataset. The evaluated performance indicates the predictive stability when
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peptides with different sequence preferences were input to the model. The PAAQD

performance was compared with POPISK.

4.3 Results and discussion

4.3.1 The predictive performance of PAAQD on the IMMA 2 dataset

To investigate effects of AAPPs and QTMS descriptors on the performance of
PAAQD, we conducted five experiments based on the IMMA 2 dataset. The first and
second experiments were conducted by using POPI-modified and POPISK respective-
ly. In the third experiment, the performance was evaluated on the dataset that contains
features corresponding to AAPPs only. In the fourth experiment, the performance was
evaluated on the dataset that contains features corresponding to QTMS descriptors
only. The fifth experiment was conducted by using PAAQD when the performance
was evaluated on the dataset that contains features corresponding to both AAPPs and
QTMS descriptors. Figure 4.3 shows the performance of five experiments based on
the IMMA 2 dataset. This result indicated the comparable performance of PAAQD
with POPISK. PAAQD provided 1% higher AUC than POPISK with significance
level 0.01 when performing one sample t-test of AUCs of PAAQD against the upper
bound AUCs of POPISK (0.744). Interestingly, using only encoded features from
AAPPs could lead to the highest AUC of 0.75, whereas MCC was 2% lower than
PAAQD. Although the performance of using encoded features from QTMS de-
scriptors only was lower than AAPPs in all three measurements, MCC increased by
2% with significance level 0.01 compared with using the combination of both encod-
ed features. Therefore, cooperation between physicochemical properties represented
by AAPPs and quantum topological properties represented by QTMS descriptors are

promising to provide more insights in TCR-pMHC binding mechanisms.
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Figure 4.3 Comparison of 20 independent iterations of the 10-fold cross validation
performance of POPI, POPISK, encoded features using AAPPs only, encoded features
using QTMS descriptors only, and PAAQD.

The symbol ** indicates significance level 0.01 of one sample t-test of PAAQD AUCs with upper
bound AUCs of POPISK (0.744). The symbol 17 indicates significance level 0.01 of two-sample t-test
between MCCs of PAAQD and using only AAPPs.

4.3.2 The positional importance in peptide immunogenicity

The result of important positions of nonapeptides in T-cell reactivity prediction was
shown in Figure 4.4. Removing features corresponding to one of the nine positions for
nonapeptides except the position 7 decreased the performance of PAAQD when
compared with the use of all positions. Removing features corresponding to the
position 7 reduced AUC, though this was not statistically significant. Obviously,
deletions of positions 1 and 8 led to more decrease in MCC and ACC than the other
seven positions. Previous studies based on the analysis of TCR-pMHC complex
crystal structures identified positions 4, 6, and 8 as significant positions in TCR-
pMHC binding mechanisms [56, 57]. For the position 1, there was no evidence of its
importance in peptide immunogenicity. However, the position 1 was identified as an
important position by POPISK [55]. For PAAQD, positions 2, 3, and 7 were less
important since small decreases in the performance were observed. These findings are
concordant with the result of POPISK.
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The positional importance suggested by PAAQD was partially inconsistent with
the result of POPISK, especially in positions 4 and 6. Therefore, we speculated that
the result could be affected by the type of classifier that we used. The repeated
experiments on encoded data using the SVM classifier were conducted to identify
important positions. The result is consistent with the positional importance result of
POPISK when positions 1, 4, 5, 6, 8, and 9 were strongly decreased the performance
(Figure 4.5). Therefore, there was a high possibility that the result of feature im-
portance was affected by the difference of the classifiers. In Figure 4.5, the
performance of PPAQD with the SVM when all positions were included was 0.67,
0.73, and 0.35 for ACC, AUC, and MCC, respectively. Standard deviations of ACC,
AUC, and MCC were less than 0.007. The cost parameter C used in the SVM was set
to 1 and the RBF kernel was used in the training and predicting processes.

Interestingly, both results from PAAQD and POPISK indicated that the position 2,
a primary anchor residue in pMHC binding [27], was the least importance in peptide
immunogenicity. Similarly, positions 3 and 7, secondary anchor residues in pMHC
binding [28, 29] did not strongly decrease the performance of the classification when
either position was removed from the dataset. Additionally, recent studies showed that
high binding affinity to MHC-1 molecules does not always result in high T-cell
reactivity [51, 129].

The principle of epitope prediction is based on pMHC binding mechanisms
whereas T-cell reactivity prediction is based on TCR-pMHC binding mechanisms.
The binding of peptide to MHC and TCR are definitely different. Therefore, both
techniques cannot be used interchangeably.
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Figure 4.4 The decrease in the performance of PAAQD evaluated on datasets with-
out features corresponding to specific positions of nonapeptides.

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by

comparing the performance between reduced datasets with the dataset including all positions.
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Figure 4.5 The decrease in the performance of PAAQD with the SVM evaluated on
datasets without features corresponding to specific positions of nonapeptides.

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by

comparing the performance between reduced datasets with the dataset including all positions.
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4.3.3 The importance of AAPP and QTMS descriptors in peptide immunogenicity

The importance of each AAPP was evaluated by removing features corresponding to
the specific AAPP and was observed for the decrease in the performance. Figure 4.6
shows the result of each AAPP importance. The horizontal axis represents AAPP 1Ds
(see Appendix B for more information) and the vertical axis represents the decrease in
performance. The most important AAPP IDs were 6, 21, 26, 27, 28, and 33 with
significance level 0.0001. In contrast, the least important AAPP IDs were 9, 11, 16,
24, 29, and 36. Table 4-2 shows more detail of the important AAPPs identified by
PAAQD. Surprisingly, four out of the six important AAPPs were related to distance
between amino acids (ID 6, 26, 27, and 28). Therefore, the distance between contact-
ing side chains of amino acids may be an essential factor that determines the binding
affinity of pMHC for TCR. This binding is a crucial step for T-cell responses.

The importance of QTMS descriptors is shown in Figure 4.7. Removing features
corresponding to any QTMS descriptor decreased ACC and MCC. Removing features
corresponding to the ADFQ descriptor was the least important one when compared to
the other three descriptors. However, the previous study found that the ADFQ de-
scriptor was the most important one in the HLA-peptide binding prediction [63].
Again, these findings indicate the difference between epitope prediction and T-cell
reactivity prediction in influence of features to the performance of the predictive
model. The QTMS descriptors were suggested to be essential in T-cell reactivity
prediction since their presences improved the performance from using AAPPs alone

(see Figure 4.3).

Table 4-2 Important AAPPs in T-cell reactivity prediction identified by using

our method.

ID Description Reference

6  Distances between centers of interacting side chains in the antipar- [137]
allel orientation

21 Quasichemical energy of transfer of amino acids from water to the [138]
protein environment

26  Distance-dependent statistical potential (contacts within 7.5-10 [120]
Angstroms)

27 Distance-dependent statistical potential (contacts within 10-12 [120]
Angstroms)

28 Distance-dependent statistical potential (contacts longer than 12 [120]
Angstroms)

33 Number of contacts between side chains derived from 25 X-ray [139]

protein structures
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Figure 4.6 The decrease in the performance of PAAQD evaluated on datasets with-
out features corresponding to the specific AAPP.

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by

comparing the performance between reduced datasets with the dataset including all positions.
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Figure 4.7 The decrease in the performance of PAAQD evaluated on datasets with-
out features corresponding to the specific QTMS descriptor.

The symbols ** and * indicate two-sample t-test significance level 0.01 and 0.05, respectively, by

comparing the performance between reduced datasets with the dataset including all positions.
4.3.4 Result of peptide immunogenicity prediction using the validation dataset

The result of peptide immunogenicity prediction using validation dataset is shown in
Figure 4.8. ACC and MCC of PAAQD were 0.72 and 0.37, respectively. ACC and
MCC of POPISK were 0.68 and 0.28, respectively. PAAQD significantly outper-
formed POPISK 4% and 9% in ACC and MCC, respectively. This result indicated
that PAAQD outperformed POPISK when peptides with different sequence prefer-
ences were input to the generated predictive model. We further examined the over-
and underrepresented amino acids in corresponding positions of the IMMA 2 dataset
and the validation dataset using the two-sample logos [140]. In the two-sample logos,
differences among amino acids were statistically significant with level 0.01 when
using the two-sample t-test. The two-sample logo of the IMMA 2 dataset (Figure 4.9)
showed many over- and underrepresented amino acids. However, the two-sample logo
of the validation dataset (Figure 4.10) showed underrepresentation of valine at the
position 2, isoleucine at the position 6, and aspartic acid at the position 8. From these
two-sample logos, both datasets are clearly different in preferences of amino acid
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sequences. This indicated that PAAQD provided more predictive stability than
POPISK when using the test dataset with sequence preferences different from the

training set.

u PAAQD m POPISK
0.8 -

0.72

ACC MCC

Figure 4.8 The result of peptide immunogenicity prediction evaluated on the valida-
tion dataset.
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Figure 4.9 Two-sample logo that represents over- and underrepresented amino acids
in the IMMA 2 dataset.
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Figure 4.10 Two-sample logo that represents over- and underrepresented amino ac-
ids in the validation dataset.

4.4 Conclusion

We developed a novel method for T-cell reactivity prediction which we call PAAQD.
Nonapeptides were encoded numerically, using combining information of amino acid
pairwise contact potentials (AAPPs) and quantum topological molecular similarity
(QTMS) descriptors. Encoded data were used in the construction of our classification
model. PAAQD achieved the comparable performance with POPISK which is a high-
performance T-cell reactivity predictor when testing with the IMMA 2 dataset.
Additionally, PAAQD outperformed POPISK when testing with the validation
dataset. This indicated that PAAQD provided more predictive stability when peptides
with different sequence preferences were input to the model. In this study, clear
differences between epitope prediction and peptide immunogenicity prediction were
demonstrated. The analysis of important positions showed that most of the anchor
residues in epitope prediction were not important in T-cell reactivity prediction. Both
of these two techniques are promising in vaccine development and can be used
complementary. We speculate that PAAQD may be useful in identifying immunogen-

ic peptides for the development of new vaccines.
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Chapter 5 Conclusions

Previous chapters described the development of new epitope and T-cell reactivity
prediction methods for advancement in the vaccine discovery. This final chapter

summarizes the contributions of this thesis and presents future research directions.
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5.1 Dissertation summary

Epitope is a part of an antigen recognized by the immune systems. Epitopes play the
important role in activating the immune systems and are the key components in the
vaccine development. The conventional vaccine development is time-consuming and
laborious. Computational methods can be applied to help in epitope identification and
speed up the vaccine production. From the last decade until now, many epitope
prediction methods were proposed and have been used to search for new epitopes.
However, recent studies found that some predicted epitopes with high binding affini-
ties not stimulated immune responses. In addition, predicted epitopes with low
binding affinities actually stimulated immune responses. Therefore, the result of
epitope prediction is not always correct. Consequently, T-cell reactivity prediction has
been introduced to search for immunogenic peptides instead of using epitope predic-
tion. Hereby, the objectives of this dissertation are: (1) to develop a new epitope
prediction method by using information of pMHC contact sites and AAPPs, (2) to
identify important AAPPs and positions of nonapeptide in the pMHC binding, (3) to
identify novel promiscuous epitopes from protein sequences of influenza A viral
strains, (4) to develop a new T-cell reactivity prediction method by using information
of AAPPs, pMHC contact sites, and QTMS descriptors, (5) to identify important
AAPPs, QTMS descriptors, and positions of nonapeptide in the TCR-pMHC binding.
The main contributions of the thesis can be summarized as follows.

Firstly, a new epitope prediction method named EpicCapo*""

was developed.
The combination of pMHC contact sites and AAPPs provided the better interpretabil-
ity for the further analysis than other methods. Our method achieved high
performance and outperformed other state of the art methods in many datasets. We
speculate that our method can be applied in the development of new vaccines.
Secondly, by using our method, we are able to identify important AAPPs and po-
sitions of nonapeptides in the pMHC binding. We found that two AAPPs were very
important in the pMHC binding. In addition, by ranking features in the dataset,
positions 9 and 2 were the most important ones follow by positions 3, 1, or 7. Interest-
ingly, when we remove features corresponded to one position, the performance of the
method was decreased. Therefore, we suggest that all nine positions are important in

the pMHC binding and their effects to the binding affinity are not independent.
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Thirdly, we used EpicCapo* c"

enza A viral strains: HIN1 (A/PR/8/34), H3N2 (A/Aichi/2/68), HIN1 (A/New
York/4290/2009), and H5N1 (A/Hong Kong/483/97). 67.1% of predicted epitopes

were consistent with previous immunological experiments. This consistency indicates

to identify promiscuous epitopes from four influ-

that our method has high accuracy in epitope prediction.

Fourthly, a new T-cell reactivity prediction method named PAAQD was devel-
oped. The performance of PAAQD is at least comparable with the previous high
performance T-cell reactivity prediction method. However, our method shows higher
predictive stability when tested with the blinded dataset.

Finally, by using PAAQD, we are able to identify important AAPPs, QTMS de-
scriptor, and positions of nonapeptides in the TCR-pMHC binding. We found that all
QTMS descriptors and six AAPPs were important. Surprisingly, positions 2, 3, and 7
were found as less important ones. However, these positions have been identified as
anchor residues for epitope prediction. We suppose that epitope prediction and T-cell
reactivity prediction are considerably different and should not be used interchangea-
bly. In addition we found that position 1 and 8 were the most important ones in the
TCR-pMHC binding.

5.2 Future works

As we have shown before, our methods for epitope and T-cell reactivity prediction are
very promising for the new vaccine development. However, there are limitations
when using our methods. First, an input peptide must be a nonapeptide which is a
peptide composed of 9 amino acids. Second, an input peptide must not contain special
or ambiguous amino acids: amino acids U (Selenocysteine), O (Pyrrolysine), B
(Asparagine or aspartic acid), Z (Glutamine or glutamic acid), J (Leucine or Isoleu-
cine), and X (unknown). Our methods are not applicable with these amino acids since
they are not included in AAPPs.

According to the above limitations, in our future researches, we will develop
epitope and T-cell reactivity predictors that are able to be used with various lengths of
peptides. However, there are small numbers of positive peptides or negative peptides
in some lengths. Therefore, oversampling techniques such as SMOTE [141] can be
used to generate more samples in the future study. For the problem of special or

ambiguous amino acids, we still search for the practical solution. Since there are only
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small numbers of peptides containing these amino acids, removing them may be the
best solution. In addition, there are several topics which we concerned as the future
studies:

The applications of our peptide encoding schemes in other problems. We de-
veloped the peptide encoding schemes for both epitope and T-cell reactivity
prediction. However, these schemes can be applied in other studies such as protein-
ligand binding, protein-protein interaction (PPI) prediction, and drug discovery.

The use of data curation. We observed that many records in the databases are not
reliable. For example, a peptide is reported as epitope in one record but not in another.
To solve this problem, we need to look into the detail of each record and then make
the decision to choose the correct one. However, this approach is time-consuming and
not practical if there are large numbers of peptides. Therefore, automatic data curation
needs to be developed to ease this problem.

The development of length independent epitope and T-cell reactivity predic-
tor. Most of existing epitope or T-cell reactivity predictors including our methods are
length dependent. The core algorithms required the input peptides to have the same
length. However, we have considered applying other algorithms such as string kernel
in the SVM and hidden Markov model. These applications will be useful in the new

vaccine development.
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Appendix A

The scaling of positional scoring matrices

In this study, the original and scaled positional scoring matrices are denoted by T and
T’. The (i, j)™ elements of T and 7~ represent preferences of amino acid i at position j
in nonapeptides, and are denoted by T;; and T’;;, respectively. We simply scale the

original matrix T into T’ as follows:

r_ (Ti.j_MIN)
Tij=9X% (MAX—MIN) +1

where MAX and MIN represent the maximum and minimum values in the matrix,

respectively. The example of matrix scaling is shown below.

Nonapeptide position

1 2 3 4 5 6 7 8 9

A 0185 -0.170 0132 0124 -0.026 -0.209 -0.007 -0.020 0446

C 0215 -1.095 -0.244 -0266 0302 0200 -0.100 -0.015 -0.065

D -0818 -0.063 0143 0281 0024 0064 -0.117 -0.363 0.000

T. . E -0834 0000 -0599 0347 -0298 -0.151 -0.098 0.I17  0.000

iLJj F 0838 -0.026 0328 -0061 0244 0344 0443 0170 -0515

G 0037 -0.504 -0.175 0085 0065 -0370 -0.500 0.194 -0.122

H -0287 0082 -0.280 -0.174 0255 -0.107 -0.108 -0.231 -0.122

I 0083 0510 0.142 0026 0177 0465 0311 -0.180 0.753

2 K 0350 0343 -0.601 0029 -0281 -0490 -0.765 -0.015 -0.022

S L 0097 1044 0340 -0171 0034 0313 0277 0194 0718

MAX = 1.185 S M 0282 LI8S 0546 0117 0083 0233 0203 -0333 -0030

. E N 0182 0904 -0060 0043 -0219 0090 -0109 0042  0.000

P 0726 0167 -0.202 -0.019 -0419 -0.073 0239 0201 -0.215

MIN = -1.095 Q 002 0236 0021 -0.134 -0.013 0283 -0.042 -0.09 -0.106

R -0021 -0.616 -0229 -0.129 -0269 -0474 -0.535 -0.031 -0478

S 0073 -0311 0103 0137 -0201 -0.044 0019 0280 0.112

T 0026 0073 -0212 0043 -0286 0211 -0.056 -0.117 0.048

V0176 0259 0015 0076 0064 0227 0171 0371 1.180

W 0139 0209 0430 -0.039 0329 -0465 0514 0234 -0.773

Y 0769 0000 0402 -0079 0429 -0.047 0259 0342 -08ll

Nonapeptide position

T! 1 2 3 1 3 3 7 B 9
L] A 6053 4651 5843 5812 5220 4497 5205 5243 7.083
C 4474 1000 435 4272 6514 6112 4928 5263 5.066
(T.; — MIN) D 2093 5074 5887 6432 5417 5575 4861  3.889 5322
gy~ T g E 2030 5322 2058 6692 4146 4726 4936 5784 5322
v (MAX — MIN) F 8630 5220 6617 5082 628 6680 7.071 5993 3289
G 5468 3333 4632 5658 5579  3.862 3349 6088 4841
H 418 5646 4217 4636 6320 4900 4896 4411 4841
T/ =9x (0.185 — (=1.095)) I 5650 7336 5883 5425 6021 7158 6550 4612 8295
L1 (1.185 — (—1.095)) T K 6704 6676 2950 5437 4213 3388 2303 5263 5236
— 6.053 2L 5705 9443 6664 4647 5457 6558 6416 6088 8157
=0 E M 6436 10000 7478 4861 5670 6242 6124 4008 5204
S N 4604 1754 5.086 5492 4458 5678 4802 5488 5322
T/ —9x ((=0.215) — (-1.095)) §1 P 2457 5982 4525 5247 3668 5034 6266 6116 4474
21 (1.185 — (—1.095)) Q 5437 6254 5405 4793 5271 6439 5157 49043 4904
R 5239 2891 4418 4813 4261 3451 3211 5200 3.436
=4.474 S 5611 4005 5720 5863 4520 5149 5397 6428 5764
T 5425 5611 4486 5492 6.155 5101 4861 5512
V6017 6345 5382 5.622 75 6218 5997 3858  9.980
W 5871 4497  7.020 5168  6.621 3487 7351 6246 2271
Y 8358 5322 6909 5011 7016  5.137 6345 6672 2121
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Appendix B

Amino acid pairwise contact potentials (AAPPs) used

in this study

(retrieved from http://www.genome.jp/aaindex/ [59])

ID Accession # Description

1 BASU010101 Optimization-based potential derived by the modified
perceptron criterion

2 BETM990101 Modified version of the Miyazawa-Jernigan transfer energy

3 BONMO030101 Quasichemical statistical potential for the antiparallel
orientation of interacting side groups

4 BONMO030102 Quasichemical statistical potential for the intermediate
orientation of interacting side groups

5 BONMO030103 Quasichemical statistical potential for the parallel orientation
of interacting side groups

6 BONMO030104 Distances between centers of interacting side chains in the
antiparallel orientation

7 BONMO030105 Distances between centers of interacting side chains in the
intermediate orientation

8 BONMO030106 Distances between centers of interacting side chains in the
parallel orientation

9 BRYS930101 Distance-dependent statistical potential (only energies of
contacts within 0-5 Angstroms are included)

10 KES0980101 Quasichemical transfer energy derived from interfacial
regions of protein-protein complexes

11 KES0980102 Quasichemical energy in an average protein environment
derived from interfacial regions of protein-protein complex-
es

12 KOLA930101 Statistical potential derived by the quasichemical approxima-
tion

13 LIWA970101 Modified version of the Miyazawa-Jernigan transfer energy

14 MICCO010101  Optimization-derived potential

15 MIRL960101  Statistical potential derived by the maximization of the
harmonic mean of Z scores

16 MIYS850102  Quasichemical energy of transfer of amino acids from water
to the protein environment

17 MIYS850103  Quasichemical energy of interactions in an average buried
environment

18 MIYS960101  Quasichemical energy of transfer of amino acids from water
to the protein environment

19 MIYS960102  Quasichemical energy of interactions in an average buried
environment

20 MIYS960103  Number of contacts between side chains derived from 1168
X-ray protein structures

21 MIYS990106  Quasichemical energy of transfer of amino acids from water

to the protein environment
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ID Accession # Description

22 MIYS990107  Quasichemical energy of interactions in an average buried
environment

23 MOO0G990101 Quasichemical potential derived from interfacial regions of
protein-protein complexes

24 SIMK990101  Distance-dependent statistical potential (contacts within 0-5
Angstroms)

25 SIMK990102  Distance-dependent statistical potential (contacts within 5—
7.5 Angstroms)

26 SIMK990103  Distance-dependent statistical potential (contacts within 7.5—
10 Angstroms)

27 SIMK990104  Distance-dependent statistical potential (contacts within 10—
12 Angstroms)

28 SIMK990105  Distance-dependent statistical potential (contacts longer than
12 Angstroms)

29 SKOJ000101  Statistical quasichemical potential with the partially compo-
sition-corrected pair scale

30 SKOJ000102  Statistical quasichemical potential with the composition-
corrected pair scale

31 SKO0J970101  Statistical potential derived by the quasichemical approxima-
tion

32 TANS760101  Statistical contact potential derived from 25 X-ray protein
structures

33 TANS760102  Number of contacts between side chains derived from 25 X-
ray protein structures

34 THOP960101  Mixed quasichemical and optimization-based protein contact
potential

35 TOBDO000101 Optimization-derived potential obtained for small set of
decoys

36 TOBDO000102 Optimization-derived potential obtained for large set of
decoys

37 VENMO980101 Statistical potential derived by the maximization of the
perceptron criterion

38 ZHACO000101 Environment-dependent residue contact energies (rows =
helix, cols = helix)

39 ZHACO000104 Environment-dependent residue contact energies (rows =
strand, cols = strand)

40 ZHACO000106 Environment-dependent residue contact energies (rows =

coil, cols = coil)
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Appendix C

Features selected by EpicCapo* =" separated in each allele

HLA-A # of Selected features ordered by the importance identi-
datasets selected fied by Relief-F algorithm

features
A*01.01 72 Pos9AAPP20 ,Pos9AAPP11 ,PosOAAPP33 ,POsOAAPP28

,POSOAAPP14 ,PosOAAPP24 ,PosOAAPP26 ,PosOAAPPL

,P0s2AAPP1 ,Pos2AAPP24 ,Pos2AAPP28 ,Pos3AAPP24
,P0s2AAPP33 ,Pos2AAPP14 ,Pos2AAPP20 ,Pos3AAPP28
,POS2AAPP11 ,Pos3AAPP14 ,Pos2AAPP26 ,Pos3SAAPP1

,POS3AAPP11 ,Pos3AAPP33 ,Pos3AAPP20 ,Pos1AAPP14
,P0s1AAPP11 ,Pos1AAPP28 ,Pos8AAPP24 ,Pos7AAPP20
,POs4AAPP26 ,Pos7AAPP33 ,Pos8AAPP26 ,PosSAAPP26
,POS1IAAPP1 ,Pos8BAAPP28 ,Pos7AAPP14 ,PosSAAPP28
,P0s1AAPP20 ,Pos8AAPP11 ,Pos6AAPP26 ,Pos1AAPP24
,POs7TAAPP28 ,Pos6AAPP1 ,Pos7AAPP11 ,PosBAAPP14
,POSIAAPP33 ,Pos7TAAPP1 ,Pos7AAPP26 ,PosSAAPP24
,POS4AAPP28 ,PosSAAPP14 ,PosSAAPP11 ,PosSAAPPL

,P0s1AAPP26 ,Pos6 AAPP20 ,Pos4AAPP33 ,Pos4AAPP14
,POS8AAPP1 ,Pos4AAPP24 ,Pos6AAPP33 ,Pos4AAPP11
,Pos7TAAPP24 ,Pos8BAAPP20 ,Pos6AAPP11 ,PosSAAPP20
,POsBAAPP33 ,Pos6 AAPP14 ,PosSAAPP33 ,Pos6AAPP28
,P0s4AAPP20 ,Pos6 AAPP24 ,Pos3AAPP26 ,Pos4AAPP1

A*02:01 62 Pos9AAPP26 ,PosOAAPP28 ,Pos9AAPP14 PosOSAAPP11
,P0SOAAPP24 Pos2AAPP9 ,Pos2AAPP31 ,Pos2AAPP14
,P0s2AAPP26 ,P0s2AAPP28 ,PosO9AAPPY ,Pos2AAPP11
,POSOAAPP31 ,Pos2AAPP24 ,Pos1AAPP28 ,Pos1AAPP26
,P0s1AAPP14 ,Pos1AAPPY ,Pos1AAPP11 ,Posl1AAPP24
,P0s1AAPP31 ,Pos3AAPP11 ,Pos7AAPP24 ,Pos7AAPP26
,P0s3AAPP14 ,Pos3AAPPY ,Pos3AAPP31 ,Pos3AAPP24
,P0S3AAPP28 ,Pos7AAPP28 ,Pos6AAPP28 ,Pos3AAPP26
,P0s7AAPP14 ,Pos7AAPP11 ,Pos7AAPP31 ,Pos6AAPP14
,P0s4AAPP14 ,Pos6 AAPP24 ,PosSAAPPY9 ,Pos4AAPP31
,POS7TAAPPY ,Pos6AAPP26 ,Pos6AAPP11 ,PosS5AAPP14
,POS5AAPP28 ,Pos4AAPP11 ,Pos4AAPP26 ,Pos6AAPP31
,P0sSAAPP11 ,Pos8AAPP14 ,PosSAAPP31 ,Pos4AAPPI
,POSBAAPP26 ,Pos4AAPP24 ,Pos6AAPP9 ,PosSAAPP24
,POS8AAPP28 ,Pos8AAPP31 ,Pos8AAPP24 ,Pos5AAPP26
,POsBAAPP11 ,Pos4AAPP28

A*02:02 18 Pos9AAPP14 ,PosOAAPP28 ,Pos2AAPP28 ,Pos2AAPP14
,POS1AAPP28 ,Pos1AAPP14 ,PosSAAPP14 ,Pos3AAPP14
,POSSAAPP28 ,Pos3AAPP28 ,Pos8AAPP14 ,Pos4AAPP28
,P0s6AAPP28 ,Pos8AAPP28 ,Pos6AAPP14 ,Pos4AAPP14
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HLA-A # of Selected features ordered by the importance identi-
datasets selected fied by Relief-F algorithm
features

,POSTAAPP14 ,Pos7TAAPP28

A*02:03 104 PosOAAPP25 ,Pos9AAPP26 ,PosOAAPP19 ,PosOAAPP31
,POS2AAPP9 ,PosOAAPP14 ,PosOAAPPY ,Pos2AAPP31
,POSOAAPP28 ,PosOAAPP24 ,Pos2AAPP29 ,PosOAAPP11
,POS1IAAPP33 ,Pos1AAPP28 ,Pos1AAPP24 ,Pos1AAPP26
,POS2AAPP3 ,Pos2AAPP14 ,Pos1AAPP14 ,Pos1AAPP11
,POSOAAPP3 ,Pos2AAPP28 ,Pos2AAPP26 ,Pos2AAPP11
,POS2AAPP25 ,Pos1AAPP19 ,Pos1AAPPY ,PosOAAPP29
,P0s3AAPP14 ,Pos3AAPP28 ,Pos2AAPP33 ,Pos1AAPP31
,POSOAAPP33 ,Pos6 AAPP28 ,Pos2AAPP24 ,Pos3AAPP11
,POs3AAPP24 ,Pos1AAPP25 ,Pos1AAPP3 ,Pos6AAPP11
,POS6AAPP3 ,Pos1AAPP29 ,Pos6AAPP14 ,Pos3AAPP33
,POS3AAPP19 ,Pos7AAPP14 ,Pos6AAPP24 ,Pos7AAPP3
,POS3AAPP26 ,Pos7AAPP28 ,Pos6 AAPP31 ,Pos3AAPPI
,POs7TAAPP29 ,Pos6 AAPP26 ,Pos6AAPP33 ,Pos6AAPP19
,Pos7TAAPP31 ,Pos6AAPP25 ,Pos3AAPP29 ,Pos3AAPP3
,POS2AAPP19 ,Pos6 AAPP29 ,Pos3AAPP31 ,Pos3AAPP25
,POs7TAAPP24 ,Pos7AAPP33 ,Pos6AAPP9 ,PosBAAPP19
,POsBAAPP28 ,Pos7AAPP25 ,Pos8AAPP14 ,Pos7AAPP11
,Pos7TAAPP26 ,Pos7AAPP19 ,Pos8AAPP29 ,Pos4AAPP29
,POsBAAPP25 ,Pos5AAPP33 ,Pos8AAPP33 ,PosSAAPP3
,POsBAAPP31 ,Pos8AAPPY ,PosSAAPP25 ,PosSAAPP31
,POS8AAPP24 ,PosSAAPP14 ,PosSAAPP24 ,PosSAAPP28
,POS8AAPP26 ,PosSAAPP19 ,PosSAAPP29 ,PosSAAPP26
,P0s4AAPP31 ,Pos5AAPPY ,Pos8AAPP11 ,PosSAAPP11
,POS4AAPP25 ,Pos4AAPP24 ,Pos7TAAPPY ,Pos4AAPP26
,POS8AAPP3 ,Pos4AAPP19 ,Pos4AAPP14 ,Pos4AAPP11

A*02:06 141 Pos9AAPP22 ,Pos1AAPP26 ,PosOAAPP19 ,PosOAAPP26
,P0s1AAPP28 ,P0sO9AAPP11 ,Pos1AAPP11 ,Pos1AAPP14
,POSOAAPP39 ,Pos9AAPP14 ,PosOAAPP24 ,PosOAAPP25
,POSOAAPP28 ,PosOAAPP27 ,Pos1IAAPPY ,PosOAAPP38
,P0s1AAPP1 ,Pos1AAPP24 ,PosS9AAPP34 ,PosOAAPP1
,POS3AAPP24 ,Pos1AAPP19 ,PosO9AAPP18 ,PosOAAPP13
,POSIAAPP22 ,Pos9AAPP21 ,Pos1AAPP31 ,Pos1AAPP38
,POSOAAPP31 ,Pos1AAPP25 ,Pos1AAPP39 ,Pos1AAPP27
,POSOAAPP9 ,Pos6AAPP39 ,Pos6AAPP18 ,Pos1AAPP18
,POS1AAPP13 ,Pos1AAPP21 ,Pos3AAPP39 ,Pos8AAPP1
,POs1AAPP3 ,Pos1AAPP34 ,Pos6AAPP24 ,Pos6AAPP38
,P0s3AAPP14 ,Pos6 AAPP13 ,Pos3AAPP11 ,Pos3AAPP28
,POS3AAPP13 ,Pos4AAPP1 ,Pos6AAPP28 ,Pos3AAPP38
,POS3AAPP26 ,Pos3AAPP9 ,Pos8AAPP27 ,Pos7AAPP26
,POs6AAPP21 ,Pos6 AAPP11 ,Pos8AAPP39 ,Pos6AAPP34
,P0s8AAPP26 ,Pos3AAPP34 ,Pos3AAPP22 ,Pos7AAPP22
,POS3AAPP19 ,Pos3AAPP18 ,Pos6AAPP3 ,Pos8AAPP14
,POS6AAPP14 ,Pos7AAPP24 ,Pos8AAPP24 ,PosBAAPP38
,P0s8AAPP11 ,Pos7AAPP19 ,Pos2AAPP9 ,Pos6AAPP26
,POS8AAPP28 ,Pos3AAPP3 ,Pos3AAPP27 ,Pos6AAPP31
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HLA-A # of Selected features ordered by the importance identi-
datasets selected fied by Relief-F algorithm
features

,POS3AAPP21 ,Pos3AAPP1 ,Pos8AAPP18 ,Pos7AAPP27
,Pos7AAPP38 ,Pos8AAPP21 ,Pos7AAPP39 ,Pos5AAPPI
,POS3AAPP31 ,Pos7TAAPP1 ,Pos8AAPP31 ,Pos6AAPPL
,POS8AAPP22 ,Pos8BAAPP25 ,PosSAAPP28 ,Pos8BAAPP13
,POS8AAPP19 ,Pos4AAPP31 ,Pos7TAAPP3 ,Pos7AAPP13
,Pos7TAAPP28 ,Pos8BAAPP34 ,Pos6AAPP22 ,Pos5AAPP24
,POSSAAPP38 ,Pos7TAAPP14 ,PosOAAPP3 ,PosSAAPP13
,POS6AAPP9 ,Pos6AAPP19 ,Pos2AAPP25 ,Pos7AAPP25
,POs4AAPP14 ,Pos7AAPP11 ,Pos7TAAPPY ,PosSAAPP3
,POSBAAPP3 ,Pos2AAPP22 ,Pos6AAPP25 ,PosSAAPP39
,Pos7TAAPP21 ,Pos7AAPP18 ,Pos2AAPP39 ,Pos7AAPP31
,P0s2AAPP26 ,Pos5AAPP14 ,Pos2AAPP27 ,Pos6AAPP27
,POs7TAAPP34 ,PosBAAPPY ,PosSAAPP34 ,PosSAAPP18
,POSSAAPP27 ,Pos4AAPP11 ,Pos4AAPP25 ,Pos2AAPP14
,POS2AAPP19 ,Pos2AAPP11 ,Pos3AAPP25 ,Pos2AAPP18
,P0s2AAPP21

A*03:01 58 Pos9AAPP28 ,PosO9AAPP14 ,PosOAAPP11 ,PosOAAPP33
,POSOAAPP20 ,Pos9AAPP26 ,POSOAAPP24 ,Pos2AAPP14
,P0s2AAPP26 ,P0s2AAPP28 ,Pos2AAPP24 ,Pos2AAPP11
,POs7TAAPP28 ,Pos1AAPP28 ,Pos7AAPP14 ,Pos7AAPP26
,POS1IAAPP26 ,Pos1AAPP14 ,Pos2AAPP20 ,Pos2AAPP33
,Pos7AAPP11 ,Pos1AAPP20 ,Pos3AAPP14 ,Pos1AAPP33
,P0s3AAPP28 ,Pos3AAPP26 ,Pos1AAPP11 ,Pos6AAPP11
,POS6AAPP14 ,Pos6 AAPP28 ,Pos3AAPP24 ,Pos6 AAPP26
,POS1AAPP24 ,Pos3AAPP33 ,Pos3AAPP20 ,Pos7AAPP24
,POs6AAPP24 ,Pos8AAPP14 ,Pos3AAPP11 ,PosBAAPP28
,P0s7AAPP20 ,Pos4dAAPP14 ,Pos6AAPP20 ,Pos4AAPP24
,P0os7TAAPP33 ,Pos8BAAPP20 ,Pos6 AAPP33 ,Pos4AAPP20
,P0s4AAPP26 ,Pos8AAPP24 ,Pos4AAPP28 ,PosSAAPP20
,P0s4AAPP33 ,Pos8AAPP33 ,Pos5AAPP11 ,PosSAAPP26
,POSSAAPP14 ,PosSAAPP24

A*11:01 35 Pos9AAPP11 ,Pos9AAPP28 ,Pos9AAPP14 PosOAAPP26
,P0s2AAPP26 ,Pos2AAPP14 ,Pos2AAPP28 ,Pos2AAPP11
,P0s1AAPP28 ,Pos3AAPP14 ,Pos1AAPP14 ,Pos3AAPP28
,P0S1AAPP26 ,Pos3AAPP26 ,Pos1AAPP11 ,Pos3AAPP11
,POs7AAPP28 ,Pos7AAPP26 ,Pos8AAPP14 ,Pos7AAPP11
,POs7TAAPP14 ,Pos8AAPP28 ,Pos4AAPP14 ,Pos6AAPP28
,POS8AAPP26 ,Pos8AAPP11 ,Pos6AAPP14 ,Pos6AAPP26
,POS6AAPP11 ,Pos5AAPP11 ,Pos5AAPP28 ,Pos5AAPP14
,P0s4AAPP28 ,Pos4dAAPP11 ,PosSAAPP26

A*24:02 31 Pos2AAPP6 ,Pos2AAPP31 ,Pos2AAPP28 ,Pos2AAPP24
,POS2AAPP5 ,Pos2AAPP14 ,Pos8AAPP28 ,PosOAAPP14
,P0sOAAPP28 ,Pos8AAPP24 ,Pos4AAPP5 ,PosBAAPP14
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HLA-A # of Selected features ordered by the importance identi-
datasets selected fied by Relief-F algorithm
features

,POSOAAPP24 ,Pos9AAPP31 ,Pos1AAPP28 ,PosSAAPPS
,POS1AAPP14 ,Pos4AAPP6 ,Pos7AAPP31 ,Pos1AAPP24
,POS3AAPP5 ,PosSAAPP6 ,PosB8AAPPS5 ,Pos7AAPP6
,POS8AAPP31 ,Pos4AAPP24 ,Pos3AAPP31 ,PosOAAPP6
,POSSAAPP28 ,PosSAAPP31 ,Pos6AAPP14

A*26:01 18 Pos2AAPP14 ,Pos9AAPP14 ,Pos2AAPP28 ,PosOAAPP28
,POS3AAPP28 ,Pos3AAPP14 ,Pos1AAPP14 ,Pos4AAPP14
,POS1AAPP28 ,Pos6AAPP28 ,PosSAAPP28 ,Pos8BAAPP28
,Pos7AAPP28 ,Pos8AAPP14 ,Pos6AAPP14 ,PosSAAPP14
,POs7TAAPP14 ,Pos4AAPP28

A*29:02 23 PosQAAPPS5 ,PosO9AAPP20 ,PosOAAPP33 ,PosOAAPPY
,POSOAAPP8 ,Pos2AAPP33 ,PosSAAPP5 ,Pos2AAPP20
,POSSAAPP9 ,Pos2AAPP5 Pos3AAPP8 ,Pos2AAPP9
,P0S2AAPP8 ,Pos1AAPPS ,Pos7TAAPP8 ,Pos1AAPP8
,POS3AAPP5 ,PosSAAPPY9 ,Pos1AAPP20 ,Pos1AAPP33
,POS7TAAPPS5 ,Pos5AAPP8 ,PosSBAAPPS

A*31:01 46 Pos9AAPP28 ,PosO9AAPP14 ,Pos9AAPP20 ,PosOAAPP33
,POSOAAPP11 ,PosOAAPP26 ,Pos2AAPP28 ,Pos2AAPP26
,P0s2AAPP14 ,Pos1AAPP20 ,Pos3AAPP14 ,Pos1AAPP28
,P0s1AAPP33 ,Pos3AAPP26 ,Pos3AAPP28 ,Pos1AAPP14
,POs1AAPP11 ,Pos3AAPP33 ,Pos3AAPP20 ,Pos2AAPP11
,P0S2AAPP33 ,Pos2AAPP20 ,Pos3AAPP11 ,Pos1AAPP26
,POs6AAPP28 ,Pos6 AAPP14 ,PosSAAPP11 ,PosSAAPP14
,POsSAAPP26 ,Pos8AAPP28 ,Pos8AAPP33 ,PosBAAPP20
,Pos7TAAPP26 ,Pos8BAAPP14 ,PosSAAPP28 ,Pos7AAPP33
,POS6AAPP33 ,Pos7AAPP14 ,Pos4dAAPP20 ,Pos7AAPP20
,P0s4AAPP26 ,Pos4dAAPP33 ,Pos8AAPP26 ,Pos6AAPP20
,POS6AAPP11 ,Pos6AAPP26

A*33:01 17 Pos9AAPP28 ,PosOAAPP14 ,Pos1AAPP14 Pos8AAPP28
,P0s1AAPP28 ,Pos3AAPP14 ,Pos7AAPP14 ,Pos7AAPP28
,P0S3AAPP28 ,Pos4AAPP28 ,Pos8AAPP14 ,Pos5AAPP14
,P0S4AAPP14 ,Pos5AAPP28 ,Pos6AAPP14 ,Pos6AAPP28
,P0s2AAPP14

A*68:01 40 Pos9AAPP14 ,PosOAAPP28 ,PosOAAPP20 ,PosOAAPP26
,POSO9AAPP33 ,Pos9AAPP11 ,Pos2AAPP14 ,Pos3AAPP28
,POS2AAPP26 ,Pos2AAPP28 ,Pos3AAPP14 ,Pos1AAPP33
,P0s1AAPP20 ,Pos3AAPP11 ,Pos1AAPP11 ,Pos1AAPP28
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HLA-A # of Selected features ordered by the importance identi-
datasets selected fied by Relief-F algorithm
features

,POS3AAPP26 ,Pos2AAPP11 ,Pos1AAPP14 ,Pos3AAPP33
,POs3AAPP20 ,Pos2AAPP20 ,Pos5AAPP33 ,Pos2AAPP33
,POS5AAPP28 ,Pos5AAPP14 ,Pos5AAPP20 ,Pos5AAPP11
,POs1AAPP26 ,Pos7AAPP33 ,Pos6AAPP11 ,Pos7AAPP20
,POSBAAPP33 ,Pos5AAPP26 ,Pos8BAAPP28 ,PosS8AAPP20
,POS8AAPP14 ,Pos6 AAPP33 ,Pos4AAPP33 ,Pos7TAAPP14

A*68:02 79 PosOAAPP26 ,PosO9AAPP22 ,PosOAAPP39 ,PosOIAAPP24
,POSO9AAPP11 ,PosOAAPP14 ,PosOAAPP28 ,Pos3AAPP14
,POs3AAPP28 ,Pos1AAPP33 ,Pos1AAPP14 ,Pos3AAPP24
,P0s1AAPP11 ,Pos1AAPP20 ,Pos3AAPP1 ,PosOAAPPI
,POSOAAPP1 ,Pos1AAPP24 ,Pos3AAPP39 ,Pos1AAPP28
,POS3AAPP22 ,Pos1AAPP1 ,Pos3AAPP11 ,PosOAAPP33
,P0sOAAPP20 ,Pos3AAPPY ,Pos1AAPP9 ,Pos3AAPP26
,POS7TAAPP1 ,Pos3AAPP20 ,Pos7AAPP14 ,Pos2AAPP22
,POS3AAPP33 ,PosSAAPP24 ,Pos7AAPP20 ,Pos8BAAPP24
,POsBAAPP1 ,Pos2AAPP20 ,Pos8AAPP26 ,Pos7AAPP28
,POs7TAAPP33 ,Pos1AAPP22 ,Pos1AAPP39 ,Pos2AAPP33
,POSTAAPPY ,Pos2AAPP26 ,Pos7AAPP24 ,Pos8BAAPP28
,POsBAAPP39 ,Pos5AAPP14 ,Pos2AAPP39 ,Pos7AAPP11
,P0s2AAPP24 ,Pos2AAPP14 ,PosSAAPP33 ,Pos6AAPP14
,POSSAAPP28 ,Pos2AAPP9 ,Pos2AAPP28 ,Pos7AAPP39
,POS6AAPP11 ,Pos7AAPP26 ,Pos6AAPP28 ,PosSAAPP39
,POs8AAPP11 ,Pos2AAPP11 ,PosSAAPP26 ,PosBAAPP14
,POS8AAPP22 ,PosSAAPP1 ,Pos6AAPP39 ,Pos6AAPP24
,POSSAAPP22 ,Pos8BAAPP33 ,Pos4AAPP14 ,Pos6 AAPP20
,P0s2AAPP1 ,Pos8AAPP20 ,Pos5AAPP20

* ‘Pos’ referred to ‘at peptide position’
‘AAPP’ referred to ‘at amino acid pairwise contact potential’
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Appendix D

Candidates of promiscuous epitopes identified from overlapping epitopes of influenza A
viral strains: HIN1 (A/New York/4290/2009), H5N1 (A/Hong Kong/483/97), H1N1
(A/PR/8/34), and H3N2 (A/Aichi/2/68).

Epitope Shared alleles T cell assay
QTYDWTLNR A*0301, A*1101, A*2902, A*3101, A*3301, A*6801 Positive
KFFPSSSYR A*0301, A*1101, A*2902, A*3101, A*3301, A*6801 Positive
MMMGMFNML A*0201, A*0202, A*0203, A*0206, A*6802 Positive
FVANFSMEL A*0201, A*0202, A*0203, A*0206, A*6802 Positive
LLTEVETYV A*0201, A*0202, A*0203, A*0206, A*6802 Positive
ALASCMGLI A*0201, A*0202, A*0203, A*0206, A*6802 Negative
IMFSNKMAR A*0301, A*1101, A*3101, A*3301, A*6801 Positive
RLFFKCIYR A*0301, A*1101, A*3101, A*3301, A*6801 Positive
AQTDCVLEA A*0201, A*0202, A*0203, A*0206 -
RLIDFLKDV A*0201, A*0202, A*0203, A*0206 Positive
GMFNMLSTV A*0201, A*0202, A*0203, A*0206 Positive
NMLSTVLGV A*0201, A*0202, A*0203, A*0206 Positive
AQMALQLFI A*0201, A*0202, A*0203, A*0206 -
KICSTIEEL A*0201, A*0202, A*0203, A*0206 Positive
AIVGEISPL A*0201, A*0202, A*0203, A*0206 Positive
GILGFVFTL A*0201, A*0202, A*0203, A*0206 Positive
SMELPSFGV A*0201, A*0202, A*0203, A*2902 Positive
GMMMGMFNM A*0201, A*0203, A*0206, A*2902 Negative
CVLEAMAFL A*0201, A*0203, A*0206, A*6802 Negative
MINNDLGPA A*0202, A*0203, A*0206, A*6802 Positive
YGFVANFSM A*0202, A*0206, A*2902, A*6802 Positive
MSIGVTVIK A*0301, A*1101, A*3101, A*6801 Positive
ATTHSWIPK A*0301, A*1101, A*3101, A*6801 Positive
MVLASTTAK A*0301, A*1101, A*3101, A*6801 Positive
FEFTSFFYR A*0301, A*2902, A*3101, A*6801 Positive
LANTIEVFR A*1101, A*3101, A*3301, A*6801 -
NTMTKDAER A*1101, A*3101, A*3301, A*6801 Positive
TTHSWIPKR A*1101, A*3101, A*3301, A*6801 Positive
KLANVVRKM A*0201, A*0202, A*0203 Positive
VLGVSILNL A*0201, A*0202, A*0203 Positive
VLASTTAKA A*0201, A*0202, A*0203 Negative
LQSSDDFAL A*0201, A*0202, A*0206 -
TALANTIEV A*0201, A*0206, A*6802 Positive
ILSPLTKGI A*0202, A*0203, A*0206 Positive
RMVLASTTA A*0202, A*0203, A*0206 Positive
KTRPILSPL A*0202, A*0203, A*3101 Negative
QLNPIDGPL A*0202, A*0203, A*6802 Positive
SSFQVDCFL A*0202, A*0206, A*6802 -
LTKGILGFV A*0203, A*0206, A*6802 Negative
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Epitope Shared alleles T cell assay
QMALQLFIK A*0301, A*1101, A*6801 Positive
SGRLIDFLK A*1101, A*3101, A*6801 -
RSILNTSQR A*1101, A*3101, A*6801 Positive
DTVNRTHQY A*2601, A*2902, A*6801 Positive
ITTHFQRKR A*3101, A*3301, A*6801 -
IATPGMQIR A*3101, A*3301, A*6801 -
QAGVDRFYR A*3101, A*3301, A*6801 Positive
HSWIPKRNR A*3101, A*3301, A*6801 -
YSHGTGTGY A*0101, A*2902 Positive
GILHLILWI A*0201, A*0206 Positive
MFSNKMARL A*0202, A*0203 Positive
NMSKKKSYI A*0202, A*0203 Positive
NLHIPEVCL A*0202, A*0203 Positive
ILGFVFTLT A*0202, A*0203 Positive
QMAGSSEQA A*0202, A*0203 Negative
QSSDDFALI A*0202, A*6802 Positive
SFFYRYGFV A*0202, A*6802 Positive
DMSIGVTVI A*0203, A*2902 Positive
YTMDTVNRT A*0203, A*6802 Positive
AVATTHSWI A*0203, A*6802 Positive
GTFEFTSFF A*0206, A*6801 Positive
TGAPQLNPI A*0206, A*6802 -
KMARLGKGY A*0301, A*2902 Positive
NLYNIRNLH A*0301, A*6801 -
NAISTTFPY A*1101, A*6801 Negative
VSILNLGQK A*1101, A*6801 Positive
TSFFYRYGF A*2902, A*6802 Positive
GYTMDTVNR A*3101, A*3301 Positive
HFQRKRRVR A*3101, A*3301 -
VSRARIDAR A*3101, A*3301 -
TTHFQRKRR A*3101, A*6801 Positive
LQLFIKDYR A*3101, A*6801 Positive
YRYTYRCHR A*3101, A*6801 Positive
FFPSSSYRR A*3101, A*6801 -
DAPFLDRLR A*3301, A*6801 -
NPLIRHENR A*3301, A*6801 Negative
TTAKAMEQM A*6801, A*6802 Positive
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Appendix E

The IMMAZ2 dataset

Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

AAAGFVFTA
AAGIGIIQI
AAGIGILTV
AALGFVFAA
AALGFVFTA
AFHHMAREL
AFHHVAREL
AIISGDSPV
AILALLPAL
AILGFVFTA
AILGFVFTL
AIMDKNIIL
ALADAVKVT
ALAYGIDKV
ALCRWGLLL
ALGLGLLPV
ALGRNSFEV
ALHVVVIGL
ALIHHNTHL
ALINDQLIM
ALLKHRFEI
ALLNIKVKL
ALLVLYSFA
ALMDKSLHV
ALMEQQHYV
ALMPLYACI
ALNTPKDHI
ALPHIIDEV
ALQDSGLEV
ALQPGTALL
ALSDHHIYL
ALSKFPRQL
ALSSGLYQC
ALSTGLIHL
ALSVMGVYV
ALVNAVNKL
ALVNFLRHL
ALVRCIPTL
ALWGFFPVL
ALYDVVSTL
AMSTTDLEA
ATTNILEHV
AVAGAAILV

+

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + + + + + + +

AAPTPAAPA
AlIGLCAYA
AIMEKNIML
AIYHPQQFV
ALAIPQCRL
ALATFTVNI
ALDPYNEVV
ALFFFDIDL
ALIIRSLL
ALKMTMASV
ALLSDWLPA
ALLSRFFNM
ALMAITKNV
ALMRRIAVV
ALSLAAVLV
ALSPVPPVV
ALSTGLIHI
ALVALVITI
ALVGACITL
ALVLLMLPV
ALWIPDLFM
AMFTAALNI
AMFTTMYNI
AMKADIQHV
AMLQDMAIL
AMLQLDPNA
AMTAFFGEL
AVLVVMACL
CLLQSLQQI
DLVPLTVSV
ETDDYMFFV
FAAELTIGV
FAGKDFDTV
FANSKFTLV
FAVQTIVFI
FIADIGIGV
FIDILLFVI
FIDSNEYEV
FIDTVSVYT
FIHGGILYA
FIIEVSNCV
FIISVISLV
FILHRLHEI
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

AVGIGIAVV
CINGVCWTV
CLAAGITYV
CLFKDWEEL
CLGGLITMV
CLGGLLTMV
CLQNALDIL
CLTSTVQLV
CQWGRLWQL
CVNGSCFTV
CVNGVCWTV
DLIFGLNAL
DLMGYIPLV
DMWEHAFYL
EILGFVFTL
ELVSEFSRM
ELVSEFSRV
EVKEKHEFL
FAFRDLCIV
FANHKFTLV
FANYKFTLV
FIAGLIAIV
FIDSYICQV
FIFDALAEV
FILGIITV
FIYAGSLSA
FLAEDLNTV
FLAKLNNTV
FLALIICNA
FLDEFMEGV
FLDPRPLTV
FLDQVPFSV
FLEESHPGI
FLEPGPVTA
FLFLRNFSL
FLGGTPVCL
FLIVSLCPT
FLKDVMESM
FLKEPVHGV
FLLIRYITT
FLLLADARV
FLLSLGIHL
FLLTRILTI
FLMDRHIIV
FLNISWFYI
FLNQTDETL
FLPATLTMV
FLQMNSLRV

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

FILIENIIV
FISSFLLPL
FIVVATAAV
FIYLLFASM
FIYSIMETI
FLARLHAAA
FLAVLSPTI
FLGAAGSTM
FLGARSPSL
FLGGGGAGI
FLHNYILYA
FLHYCNSYA
FLICHNLRA
FLIDLAFLI
FLIPKGFYA
FLISVIVLV
FLKDVMVEI
FLLLTSIPI
FLLPDAQSI
FLLPLTSLV
FLLRSIIVA
FLLSHDAAL
FLPATLTMT
FLRYLLFGI
FLSNVGHYV
FLSRLVLYA
FLSYISDTV
FLTGTFVTA
FLVIAINAM
FLWHVRKRV
FLYNVYPGA
FMKAVCVEV
FMMVLPGAA
FMYFCEQKL
FMYIESIKV
FQQPQFQYL
FTGITLFLL
FTLIDIWFL
FTLNHVLAL
FTLVAPVSI
FTNSQIFNI
FTSAVLLLV
FTSSFYNYV
FVARVFLGL
FVDFVIHGL
FVDTMSIYI
FVFILTAIL
FVFRSPFIV
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

FLSFASLFL
FLSLMSLSI
FLTSVINRV
FLVDAIVRV
FLVSQLFTF
FLWGPRALV
FLWGPRAYA
FLYDDNQRV
FLYGALLLA
FLYRLFSIL
FMPKVNFEV
FMVELVEGA
FMVFLQTHI
FMYMSLLGV
FMYSDFHFI
FQWDSNTQL
FVDYNFTIV
FVFLRNFSL
FVFYQLFVV
FVWLHYYSV
GAGIGVAVL
GAGIGVLTA
GALGFVFTL
GELGFVFTL
GFLGFVFTL
GGLGFVFTL
GIAGFVFTL
GIAGGLALL
GIGGFVFTL
GIGIGVLAA
GIKGFVFTL
GILGFVFAL
GILGFVFTA
GILGFVFTK
GILGFVFTL
GILGFVFTM
GILGFVETV
GILGKVFTL
GILKFVETL
GIMGFVFTL
GITFQVWDV
GIVGFVFTL
GKLGFVFTL
GLADTVVAC
GLCTLVAML
GLDCARLEI
GLDSYVRSL
GLDTYVRSL

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

FVESTSFYL
FVILYLLAV
FVVALIPLV
GFLTSMFPK
GIFCFRILL
GIGILTVIL
GILAFVFTL
GILGAVFTL
GILGFAFTL
GILGFKFTL
GILGFVATL
GILGFVFKL
GILGFVKTL
GILTVILGV
GIRPYEILA
GLADAFILL
GLDDLMSGL
GLFIYIPGT
GLFLTTEAV
GLHCDFACL
GLIACLIFV
GLIISIFL
GLILFVLAL
GLLDRLYDL
GLLGWSPQA
GLMTAVYLV
GLPDSLPSL
GLTSAVIDA
GLVDFVKHI
GLVRLNAFL
GLYGAQYDV
GLYLSQIAV
GLYPGLIWL
GLYRQWALA
GLYYLTTEV
GMANTTFHV
GMGWLTIGI
GTDGFPFKL
GTYAVNIHV
HLIFSYAFL
HLIKIPLLI
HLMFYTLPI
HLSLRGLPV
HTICDDYFV
IHAIVFVFI
IILFILFFA
IHLNGSLLT
IILVAIAVV
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

GLDVLTAKV
GLFDFVNFV
GLHCYEQLV
GLIEKNIEL
GLIMVLSFL
GLIQLVEGV
GLISLILQI
GLKAGVIAV
GLLGFVFTL
GLLGNVSTV
GLLGTLVQL
GLLHHAPSL
GLMKYIGEV
GLNDYLHSV
GLPVEYLQV
GLQDCTMLV
GLSGGTPSK
GLSRYVARL
GLSRYVPRL
GLVGLVTFL
GLYDGMEHL
GMFNMLSTV
GMGPSLIGL
GMLGFVFTL
GMSRIGMEV
GQLGFVFTL
GQTEPIAFV
GTLGFVFTL
GTLGIVCPI
GVALQTMKQ
GVLGFVFTL
GVPVDPSRV
HACWPAFTV
HIFYQLANV
HILLGVFML
HLGNVKYLV
HLSLRGLFV
HLSTAFARV
HLYQGCQVV
HMTEVVRHC
HMWNFISGI
HMWNFITGI
HMYFTFFDV
HVDGKILFV
IAGIGILAI
IISAVVGIL
ILAGYGAGV
ILAKFLHWL

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

IIMAINVFT
IISCTCPTV
IHSLWDQSL
IISTFHLSI
HSYIILFI
ILAADLEKL
ILAIIFLVL
ILDPKTGLV
ILDSFDPLR
ILFDGHDLL
ILFEPVHGV
ILFIMFMLI
ILFTFLHLA
ILGADPLRV
ILKEYVHGV
ILLPWFVDL
ILLSIARVV
ILMYPTTLL
ILPVIFLSI
ILQYDLWNV
ILSCIFAFI
ILSDDMLNI
ILSPFMPLL
ILSPLTKGI
ILTAILFFM
ILTLDIFYL
ILVCYILYI
ILVGYMSNL
ILWEPVHGV
ILYAAFLWL
ILYDNVVTL
ILYEPVHGV
ILYFIAFAL
IMEYHLLFA
IMFMLIFNV
IMFTCMDPL
IMYTYFSNT
ITNGYLISI
IVFVFILTA
IVQENNGAV
KIDSTSFSV
KINIFMAFL
KLFTDNNFL
KLFTHDIML
KLFYVYYNL
KLGNLLLLI
KLHLYSHPI
KLIGITAIM
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

ILALVQEKI
ILARNLVPM
ILDDIGHGV
ILDDNLYKV
ILDEERDKYV
ILDQVPFSV
ILDSFDPLV
ILGFVFTLT
ILHEPVHGV
ILHNGAYSL
ILIEHLYGL
ILKEPVHGV
ILKSPVHGV
ILLEPVHGV
ILLGSLSDL
ILLNKHIDA
ILLRDAGLV
ILPDPLKPT
ILPSKSLEV
ILQDMRNTI
ILSDENYLL
ILSLELMKL
ILSPFLPLL
ILTVILGVL
IMDQVPFSV
IMELATAGI
IMIGHLVGV
IMIGVLVGV
IMLCLIAAV
IMMGVLVGV
IMNDMPIYM
IMSSFEFQV
IMTSYQYLI
IMVLSFLFL
ITDQVPFSV
ITDQVPGSV
KASEKIFYV
KIDYYIPYV
KIFGSLAFL
KILGFVFTL
KILSVFFLA
KIMDQVQQA
KLAGGVAVI
KLAGGVAVL
KLDVGNAEV
KLEDENPWL
KLEDLERDL
KLGEFYNQM

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

KLITFLFVI
KLLKMVTSV
KLLLWFENYL
KLLWFLTGT
KLQAAPYIV
KLSCAVHLI
KLSDGVAVL
KLVSISNFI
KLWGLVDFV
KLYCSYEVA
KLYIALCKV
KLYLVDYGL
KLYTIVSTL
KMHDVIAPA

KMMLFYMDL

KMNIQFTAV
KMSVRETLV
KTLLSLALV
KTMAVTYEL
KVLSIMAFI
KVVSLVILA
KVYDKLFPV
LAALFMYYA
LAAVLVVMA
LIAGIILLI
LIALSVLAV
LIGDDVDSV
LILSLTCSV
LIMFEQYFI
LIMIYFFII
LIMYSVIGV
LIPETVPYI
LIQEIVHEV
LISIFLHLV
LITGRLAAL
LIVGIIFTA
LIVRYLIQV
LLAFTNPTV
LLAQFTSAI
LLARNSFEV
LLATLTMTV
LLDLFGPEV
LLFFLALSI
LLFILFYFA
LLFRFMRPL
LLGANSFEV
LLGLWGTAA
LLGRASFEV
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

KLGGYVSFV
KLIANNTRV
KLLGQINLV
KLLMVLMLA
KLLPEGYWV
KLLRYYTEI
KLMLDIHTV
KLMPNITLL
KLQDCTMLV
KLQELNYNL
KLQEQQSDL
KLSEQESLL
KLTEAITAA
KLTPLCVTL
KLTSCNTSV
KLTSLCNTV
KLVANNTRL
KLWCRHFCV
KLWESPQEI
KMSSAVGFV
KMVELVHFL
KTLPLCVTL
KTWGQYWQV
KVAEIVHFL
KVAELVHFL
KVAELVWFL
KVDDTFYYV
KVINYLVML
KVLEYVIKV
KVSPYLFNV
LAALPHSCL
LAARAIVAI
LAGIGLIAA
LALLLLDRL
LIEDFDIYV
LIFGHLPRV
LITGRLQSL
LIVIGILIL
LKLSGVVRL
LLCLIFLLV
LLCPAGHAV
LLCPSGHVV
LLCPTGHAV
LLDAHIPQL
LLDDEAGPL
LLDPRVRGL
LLDRFLATV
LLDVPTAAV

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

LLGRDSFEV
LLGRNAFEV
LLGRNSAEV
LLGRNSFAV
LLGRRSFEV
LLIHFLLSL
LLILSCIFA
LLLCGVSLV
LLLDYMTST
LLLEVEQEI
LLLFHETGV
LLLGLWGTA
LLLIALWNL
LLLIVTPVV
LLLNCLWSV
LLLWPLYVL
LLMMTLPSI
LLMTSLQYA
LLNATAIAV
LLNLLLWPL
LLNPCLINV
LLPENNVLS
LLPLGYPFV
LLQYWSQEL
LLSEFCRVL
LLSEIRFYI
LLSLALVGA
LLSLFSTLV
LLSLLVIWI
LLSQYLSRV
LLTEVETYV
LLVAPMPTA
LLVDLLWLL
LLVEPCARV
LLVQRVTSV
LLWFHISCL
LLWQDPVPA
LLYAHINAL
LLYILRYIV
LLYPTAVDL
LMDCIMFDA
LMDMITLSL
LMDSIFVST
LMIEYNLLT
LMIFISSFL
LMLPGMNGI
LMNNAFEWI
LMSTLLIYL
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

LLFGYPVYV
LLFLLLADA
LLGATCMEV
LLGNCLPTV
LLGRNSFEV
LLGTFTWTL
LLHTDFEQV
LLIDPTSGL
LLLAARAIV
LLLCLIFLL
LLLDRLNQL
LLLGPLGPL
LLLLTVLTV
LLMDCSGSI
LLMGTLGIV
LLNATDIAV
LLNCAVTKL
LLNQLQVNL
LLPRRGPRL
LLQAEAPRL
LLSAWILTA
LLTEVETPI
LLWAARPRL
LLWKGEGAV
LLWSYAMGV
LLWTLVVLL
LMDALKLSI
LMIGTAAAV
LMIIPLINV
LMNGQQIFL
LMVLMLAAL
LMWAKIGPV
LMWDNVGLV
LMWYELSKI
LMYDIINSV
LQLPQGTTL
LQTTIHDII
LTAGFLIFL
LVCGKDGVK
LVHFLLLKY
LVMAQLLRI
LVQENYLEY
LVVADLSFI
LVVLGLLAV
MIAVFLPIV
MINAYLDKL
MLDLQPETT
MLGTHTMEV

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

LTLDEQIFV
LTVILGVLL
LTYSQLMTL
LVITINYFL
LVYVNGVVV
MACLVPAAT
MALIGDSTV
MALLRLPLV
MAWGGSYIA
MIANALDAV
MIFISSFLL
MIYGLIACL
MLASTLTDA
MLDDFSAGA
MLGNAPSVV
MLLALVALV
MLLHVGIPL
MLLNVQTLI
MLMEVFPQL
MLMFIFTGI
MLNGIMYRL
MLQDMAILT
MMIDDFGTA
MMKTYIEFV
MMSCSSEAT
MMWYWGPSL
MQLIYDSSL
MTFGDIPLV
MTSCVSEQL
MVNTVLITV
NIAEGLRAL
NIAEYIAGL
NILQKIEKI
NISGYNFSL
NISTILYFT
NLATSIYTI
NLDDVYSYI
NLDLFMSHV
NLDTSPFEV
NLFDIPLLT
NLFPYLVSA
NLFTFLHEI
NLGKVIDTL
NLLLWPLYV
NLNESLIDL
NMISDTIFV
NMQTVKLFV
NVFKYLTSV
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

MLLALLYCL
MLLAVLYCL
MLNIPSINV
MLTNSCVKL
MLWGWREHV
MMLVPLITV
MTYAAPLFV
NAHQILPKYV
NLLKVNIHI
NLMEQPIKV
NLNDNAIHL
NLQSLTNLL
NLTISDVSV
NLVPMVATV
NLWNGIVPT
NMFTPYIGV
NMLSTVLGV
PLDGEYFTL
PLEEELPRL
PLKQHFQIV
QAGIGILLA
QLSLLMWIT
RIAECILGM
RIFAELEGV
RILGAVAKV
RLAEYQAYI
RLCCQLDPA
RLDSYVRSL
RLGRNSFEV
RLIDFLKDV
RLIGHISTL
RLLDRLVRL
RLLQETELV
RLLQTGIHV
RLMKQDFSV
RLMRTNFLI
RLNEVAKNL
RLNMFTPYI
RLNQLESKV
RLPLVLPAV
RLPRIFCSC
RLQGISPKI
RLSSCVPVA
RLTRFLSRV
RLVDDFLLV
RLVNGSLAL
RLVTLKDIV
RLWHYPCTA

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

NVIGLIVIL
NVLLYNRLL
PLLPIFFCL
PLSSSVPSQ
QIFEVYWYL
QUTLTAFV
QLAGYILTV
QLDHGVLLV
QLDPARDVL
QLFHLCLII
QLFKYVPSA
QLSDVIDRL
QLTPHTKAV
QLVWENFLA
QLWPEEIGV
QMLLALARL
QMWQARLTV
RALSLAAVL
RIEENLEGV
RILPYTEKI
RLFDFNKQA
RLFSYNFTT
RLGATIWQL
RLHLWLSDM
RLIQNSLTI
RLLDDTPEV
RLLGTFTWT
RLLSPTTIV
RLMIGTAAA
RLNDFLGLL
RLNKRSYLI
RLRDLNQAV
RLVDFFPDI
RLVSGLVGA
RLYDLTRYA
RMAWGGSYI
RMFAANLGV
RMILYLESV
RMPAVTDLV
RMQFSSFTV
RQIFIHYSV
RVFTSAVLL
SIFGFQAEV
SIHVTVSNV
SIMAFILGI
SIVCIVAAV
SIYECITFL
SLAGFVRML
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

RLWHYPCTF
RLWHYPCTI
RLWHYPCTL
RLWHYPCTV
RLYDYFTRV
RMFPNAPYL
RMPEAAPPV
RTLDKVLEV
RVIEVLQRA
RVYEALYYV
SILEGIANV
SILLRDAGL
SITEVECFL
SLDDYNHLV
SLDQSVVEL
SLEENIVIL
SLENFRAYV
SLFNTIATL
SLENTVATL
SLFPGKLEV
SLGGLLTMV
SLGSPVLGL
SLLLELEEV
SLLMWITQA
SLLMWITQC
SLLMWITQS
SLLMWITQV
SLLQHLIGL
SLLSEFCRV
SLMAFTAAV
SLMAFTASI
SLNQTVHSL
SLQALKVTV
SLQPEDFAL
SLQPEDFAT
SLRAEDTAV
SLREWLLRI
SLSAYIIRV
SLSEKTVLL
SLSKILDTV
SLSRFSWGA
SLVIVTTFV
SLYADSPSV
SLYFGGICV
SLYITVATL
SLYITVAVL
SLYKGVYEL
SLYNAVATL

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

SLALVGACI
SLDVINYLI
SLFSLLLVI
SLHVGTQCA
SLIYYQNEV
SLLEIGEGV
SLLPATLTV
SLLYLILFL
SLSLHPLYV
SLSVVRPMT
SLVENNFFT
SLVRLVYIL
SLVYVNGVV
SLYAVSPSV
SMDTLLFFL
SMIGLCACV
SMLGIWFFT
SMSSYDFST
SQYYFSMLV
SSVVNNVAR
STSFYLISI
SVIFYFISI
THALLFAL
TLAPFNFLV
TLARDIVLV
TLFLLFLEI
TLGLSAMST
TLIDIWFLA
TLLGLILFV
TLLVDLLWL
TLLYATVEV
TLLYPLFNL
TLSNVEVFM
TLSSPSPSA
TLTEDFFVV
TLVIPSWHV
TLYDFDYYI
TMLSIILVI
TMWCLTLFV
TTAEEAAGI
TVILGVLLL
TVLRFVPPL
TVQEFIFSA
VIDEILFKV
VIGDQYVKV
VIHDYICWL
VISVIFYFI
VIVIYIFTV
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

SLYNTIATL
SLYNTIAVL
SLYNTVATL
SLYNTVAVL
SMAGSSAMI
SMHFYGWSL
SMIEAESSV
SMMWMRFFV
SMNATLVQA
SMVGNWAKYV
SPEKHHCTV
SSKALQRPV
STAPPAHGV
STAPPVHNV
STPPPGTRV
SVASTITGV
SVFRENLFL
SVRDRLARL
SVYDFFVWL
TILLGIFFL
TIMAFRWVT
TINPQVSKT
TLDSQVMSL
TLEEFSAKL
TLEIGSHVV
TLFLQMNSL
TLGIVCPIC
TLHEYMLDL
TLLANVTAV
TLLNNCTRV
TLLNVIKSV
TLLVYLFSL
TLNAWVKVV
TLNDLETDV
TLTSCNTSV
TLVCGKDGV
TLWVDPYEV
TLYLQMNSL
TMYGGISLL
VCTEGKSKL
VDGIGILTI
VILGVLLLI
VIYQTMDDL
VIYQYMDDL
VLAELVKQI
VLAGLLGNV
VLAGVGFFI
VLCLRPVGA

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

VLADANETL
VLALYSPPL
VLDTTLYAV
VLGGCRHKL
VLGRLDQKL
VLIAGIILL
VLIALSVLA
VLKAAGVPV
VLKDAIKDL
VLLLDVTPL
VLLLVVVMM
VLLVSLGAI
VLMTETRNL
VLSPLPSQA
VLVVMACLV
VLYPVIFIT
VMKLFTISV
VMMSCSSEA
VMYAFTTPL
WAFSAIGNV
WIIKNSWTA
WIVQENNGA
WLGAAITLV
WLGETFHGL
WLIGFDFDV
WLLIDTSNA
WLLSVLAAV
WLTSILLSL
WLWYIKIFI
WMMAMKYPI
YATVEVPSL
YAYGWIPET
YFLEILWRL
YIIDWMVDI
YHKNTFENV
YIRVTTEL
YILCNMALL
YILYIVFCI
YINRALAQI
YIWIKNLET
YIYYFFIRL
YLAKLTALV
YLCCQLDPA
YLCTFEMIIT
YLDFLLLLL
YLDLALMSV
YLFGGFSTL
YLFNAIETM
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

VLDDLSMYL
VLDGLDVLL
VLEETSVML
VLFSSDFRI
VLGPISGHV
VLHDDLLEA
VLHKRTLGL
VLLCESTAV
VLLDYQGML
VLLPSLFLL
VLPDVFIRC
VLPFDIKKL
VLPHETRLL
VLQAGFFLL
VLQELNVTV
VLQWASLAV
VLSDFKTWL
VLVGGVLAA
VLVKSPNHV
VLYDEFVTI
VMACLVPAA
VVFLHVTYV
VVLGVVFGI
VVQELLWFL
WLDQVPFSV
WLGNHGFEV
WLNEVEFKL
WLQYFPNPV
WLSDCGEAL
WLSLLVPFV
WMNRLIAFA
YAIDLPVSV
YIGEVLVSV
YIGSGDSPV
YHIGDSPV
YIILGDSPV
Y1ISGDLPV
Y1ISGDSPL
Y1ISGDSWV
YIISGISPV
YILEETSVM
YIYGIPLSL
YLAGAATMV
YLCLRPVGA
YLDKVRATV
YLDPAQQNL
YLDQVPFSV
YLEPGPVTA

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + + + F + + + + A+ + + + + + + A+ + A+ + + +

YLFRIVSTV
YLGGCRHKL
YLGPRVCWL
YLILFLLFV
YLIPAVTSL
YLKEYIPKA
YLKIGTLLV
YLLALRYLA
YLLAVCGCI
YLLCCNYKL
YLLDDVLYT
YLLFGIKCI
YLLGDSDSV
YLLPGFVLT
YLMDEEVPA
YLMDELRYV
YLMDKLNLT
YLMKDKLNI
YLMPYSVYI
YLNMSRLFV
YLRLYIILA
YLSAKITTL
YLSEGDMAA
YLSIYGFGV
YLSKCTLAV
YLSSWTPVV
YLTAIQDFI
YLTVFTVYL
YLVSFGVWI
YLVSSLSEI
YLYALYSPL
YLYQPCDLL
YLYVHSPAL
YMFFVIKNL
YMMGIEYGL
YMNYYTTYI
YQLAGYILT
YQLFVVFGL
YQSFLFWFL
YQYVRLHEM
YTALHYYYL
YTFLYNFWT
YTIERIFNA
YTINCLLYI
YTQDELINV
YTYAFTKKV
YTYKWETFL
YVHGDTYSL
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

YLEPGPVTI
YLEPGPVTL
YLEPGPVTV
YLFKDWEEL
YLFSLVVLV
YLGEVIVSV
YLGEVLVSV
YLHDPEFNL
YLHKRTLGL
YLIELIDRV
YLIKLIEPV
YLISGDSPV
YLISIFLHL
YLKEPVHGV
YLKKIKNSL
YLKKIQNSL
YLLDGLRAQ
YLLDRGADI
YLLEMLWRL
YLMDTSGKV
YLNKIQNSL
YLPEVISTI
YLQOQNWWTL
YLSGANLNL
YLVAYQATV
YLVSIFLHL
YLVTRHADV
YMDDVVLGA
YMDGTMSQV
YMLAHVTGL
YMLDLQPET
YMNGTMSQV
YSSPTLQSV
YVDPVITSI
YVNAILYQI

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + o+

YVLLAVLFV
YVLLHLLVV
YVMTMILFL
YVPGYSITT
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Appendix F

The validation dataset

Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

AINGVMWTV
AISANIADI
AITEVECFL
ALEGSLQKR
ALENNYEVL
ALMLLNNYV
ALQAIELQL
ALQTGITLV
ALRCASPWL
ALSSSLGNV
ALTAVAEEV
ALWALPHAA
ALWDSKFFT
ALYDVVSKL
ALYDVVTKL
ALYEVVSKL
AMAQDPHSL
AMARDPHSL
AVGGAVASV
AVNGVLWTV
AVNGVMWTV
CINGLCWTV
CINGVCWSI
CINGVCWSV
CINGVMWTL
CISGVCWTV
CLGGLLYMV
CLTEYILWV
CMLGDPVPT
CTNGVCWTV
CVNGACWTV
DCLVFLAPA
DLLEEGNTL
DLMGYLPLV
DLPPPPPLL
DLSPGLPAA
DRFYKTLRA
EEYLQAFTY
ELFQDLSQL
ELSPLLLST

+

+ + 4+ + + + + + + + + + + + + + + + + + + + + + 4+ + + 4+ + + + + + + + + + + +

ALAAYCLST
ALAHGVRAL
ALVVGVVCA
ALYDVIQKL
ALYGVWPLL
ARNLVPMVA
ATATELNNA
AVCKVCLRL
CLSTGCVVI
CLVDYPYRL
CMSADLEVV
CVSGACWTV
DIWDWICEV
EVRTLQQLL
FISGIQYLA
FKDGIYFAA
FLARLIWWL
FLYNFWTNV
FVFADLRIV
FVSLLAPGA
GLLGASMDL
GLSPAITKY
GPGLSPGTL
IASPKGPVI
ILIYNGWYA
ILSPGALVV
IMSGEVPST
IMTCMSADL
IMVSEHFSL
ISVVLIFVV
KLFNKVPIV
KLLKDHFDL
KLMPQLPGI
KLYAAIFGV
KVCGAPPCV
KVLVLNPSV
LARGSPPSV
LDYQGMLPV
LIHLHQNIV
LLFDSNEPI
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

ERYLKDQQL
FFDLPLPWL
FFDLPLPWT
FIDNTDSVV
FISDKIKFL
FLAPAKAVV
FLDLPLPWL
FLDLPLPWT
FLGGTRVCL
FLHCIVFNV
FLLTRILTL
FLLVAHYAI
FLNTEPSQL
FLPRNIGNA
FLQDVMNIL
FLTKRGGQV
FLTKRGRQV
FLTKRSGQV
FLTKRSRQV
FLTRVEAQL
FLWEDQTLL
FLYALALLL
FLYNRPLNS
FMTSSWWGA
FMTSSWWRA
FTSAVLLLL
FTWAGKAVL
FTWAGQAVL
FVANFSMEL
FVEALARSI
FVSPSLVSA
GILGFVFLT
GIPPAPHGV
GIPPAPRGV
GLCEREDLL
GLCPHCINV
GLFPTQIQV
GLGTLGAAI
GLIYNRMGA
GLKGGPSTE
GLLNKLENI
GLPPPPPLL
GLPRYVARL
GLPRYVVCL
GLREREDLL

+

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + 4+ + + 4+ + + + + + + + 4+ + + 4+ + +

LLGCAANWI
LLGCIITSL
LLIPKSFTL
LLLFAGVDA
LLLIWFRPV
LLMMSVYAL
LLSCLTVPA
LLSKNTFYL
LVLQAGFFL
LVPMVATVQ
MCLRFLSKI
MLTDPSHIT
MMNWSPTTA
MVATVQGQN
MVGNWAKVL
NLPGCSFSI
NLSWLSLDV
PLIPTTAVI
PLLCPAGHA
QLLMGTCTI
QLLRIPQAI
QLRSVIRAL
QMWKCLIRL
RAYMNTPGL
RLCVQSTHV
RLLLLDEEA
RNLVPMVAT
RVGLHEYPV
SAIIGIYLL
TLFFFLLAL
TLHDLCQAL
TLHGPTPLL
TLKKCLNEI
TLPGNPAIA
TLQQLLMGT
TLREYILDL
TSICSLYQL
TVGDVMWTV
TVGGVIWTV
TVGGVTWTV
VLVLNPSVA
VLVVLLLFA
VPMVATVQG
VVLLLFAGV
VVTSTWVLV
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

GLTEEIDYV
GLWRHSPCA
GMWESNANV
GTMDCTHPL
GTMDCTHSL
GTWESNANV
GVFIQVYEV
HAVGIFRAA
HLAFQLSSI
HLFYSAVLL
HLWVKNMFL
HLWVKNVFL
HNFTLVASV
ILHSRTEFV
ILKSLGFKV
ILLMRTTWA
ILLNEVPYV
ILNPVASSL
ILPLHGPEA
ILSFLPWLV
ILVGRLRAA
ILYISFYFI
IMAIELAEL
IMIHDLCLA
IMIHDLCLV
KCQEVLAWL
KIQRNLRTL
KIQRNLWTL
KIYSENLKL
KIYSENLTL
KLAKLIIDL
KLCPVQLWV
KLEELHENV
KLQAPVQEL
KLQATVQEL
KLWEWLGYL
KLYSENLKL
KLYSENLTL
KMNVFDTNL
KTCPVQLWV
KTGECCLYM
LAGSSLNLV
LAGSSLNPV
LASEKVYAI
LASEKVYTI

+

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + 4+ + + 4+ + + + + + + + 4+ + + 4+ + +

WLLRDDWLL
WLRDIWDWI
WLVSNGSYL
WQASLALSY
WTVYHGQGT
WVLVGGVLA
YFDDVTAFL
YIEQGMMLA
YILDIQPQG
YIPLVGAPL
YLALDPDSV
YLDGQLARL
YLLEMIWRL
YLLYRMLKT
YMLGLKPEV
YMLILHPET
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

LIFDLGGGT
LIILPEDCL
LIISPLPRV
LIQETLLFV
LLDEGKQSL
LLLTLLATV
LLNGWRWRL
LLNLPVWVL
LLQEYNWEL
LLQMMQICL
LLQMMQVCL
LLQQYCLYL
LLSDEDVAL
LLSDEDVEL
LLSPLHCWA
LLVLFIVYV
LLWNGPMAV
LLYGGVPEV
LMDENTYAM
LMLLKNGTV
LNLPDKMFL
LQSRGYSSL
LQTHIFAEV
LVMAQLLRT
LVMLLVHYA
LVVSQLLRI
MLPSQPTLL
MLVALLGAM
MLVTLPVYS
MMLPSQPTL
MMLPSRPTL
MMMGMFNML
MMQICLHHL
MMQVCLHHL
MVWESGCTV
NCLKLLESL
NLLCHIYSL
NLLGRFELI
NLLKRWQFV
NVMLVTLPV
PILQERPPL
PLDGGVAAA
PLHCWAVLL
PLHCWWVVLL
PLPEAPLSL

+

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + 4+ + + 4+ + + + + + + + 4+ + + 4+ + +
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

QIAILVTTV
QLCAKVPLL
QLGAFLTNV
QLGRISLLL
QLPEATFMV
QLPPTAPPL
RAIEAQQHL
RAPPTTPAL
RCHELTVSL
RIGQRQETV
RLAGSSLNL
RLEIPAIEL
RLGVRATRK
RLLPLLALL
RLLPLWAAL
RLLSPLSPL
RLQREWHTL
RLQVPVEAV
RLRAPEVFL
RLRPLCCTA
RLSCPSPRA
RLSCSSPRA
RLTSTNPTM
RQAGDFHQV
RQVGDFHQV
RQVGDFHYV
RTGEVKWSV
SFTEVECFL
SILELLQFV
SINGVMWTV
SIQNYHPFA
SLASLLPHV
SLFKNVRLL
SLGIMAIEL
SLLNLPVWV
SLLSLPVWV
SLPPPGTRV
SLQPLALEG
SLQRMVQEL
SLQRTVQEL
SLQSMVQEL
SLQSTVQEL
SLTAISTTL
SLTTISTTL
SLWQLGAAV

+

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + 4+ + + 4+ + + + + + + + 4+ + + 4+ + +
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Peptide sequence  Immunogenicity Peptide sequence  Immunogenicity

SLWQLRAAV +
SMPQGTFPV
SMSKEAVAI
SMVGNMAKY
STLQGLTSV
SVASLLPHV
SVNGVMWTV
TIADFWQMV
TINGVLWTV
TIPTPLQPL
TLGQHLPTL
TLPPRPDHI
TLTTGEWAV
TLWGSFVDV
TMLDIQPED
TMLGRRAPI
TMLGRRPPI
TPQDLNTML
TQPGPLAPL
TQPGPLVPL
TTYQRTRAL
TVASRLGPV
TVNGVLWTV
TYLPTNASL
VIFCHPGQL
VIEDFLHCI
VILAGPCIL
VLASIEAEL
VLASIEPEL
VLATAVREL
VLAWTRAFV
VLDKVEETV
VLDSFKTWL
VLFGLLCLL
VLNSLASLL
VLNSVASLL
VLQAGFFIL
VLRDDLLEA
VLSDFKSWL
VLSDFRTWL
VLTDFKTWL
VLVEGSTRI
VLYSPNVSV
VVSDFKTWL
YIDDVVLGA

+ + 4+ + + + + + + + + + + + + + + + + + + + + + + + + 4+ + + 4+ + + + + + + + 4+ + + 4+ + +
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Peptide sequence

Immunogenicity

Peptide sequence

Immunogenicity

YILDLQPEN
YLGSYGFRL
YMDNNLFYV
YQGSYGFRL
YVDDVVLGA
YVFDRILKV
FLLRHLSSV
ILQEAEQMV
QLLDEGKEL
QLLESLAPL
SLYQLENYC
YLLEEIYTV
YLMQKLQNV

+

+ + 4+ + + 4+ + + + + + o+
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