鋼中の炭化物による水素トラップ状態の解析と

粒界水素量予測への応用

川上 和人

2013年 7月

博士論文

鋼中の炭化物による水素トラップ状態の解析と 粒界水素量予測への応用

金沢大学大学院自然科学研究科

システム創成科学専攻

次世代鉄鋼総合科学講座

学籍番号 1123122202

氏 名 川上 和人

主任指導教員名 松宮 徹

目次

第1章	序詞	論	
1.	1	鉄鋼と水素脆化・・・・・・・・・・・・・・・・・・・・・・	1
1.	2	本研究の背景 ・・・・・・・・・・・・・・・・・・・	2
1.	3	本研究の目的 ・・・・・・・・・・・・・・・・・・・・・・	7
1.	4	本論文の構成 ・・・・・・・・・・・・・・・・・・・・	8
第2章	水	素トラップ状態の計算方法	
2.	1	第一原理計算 ・・・・・・・・・・・・・・・・・・・	9
2,	2	界面の計算 ・・・・・・・・・・・・・・・・ 1	1
2.	3	鋼中炭化物の周りの弾性歪状態の計算・・・・・・・・ 1	5
2.	4	Nudged Elastic Band 法 ・・・・・・・・・・・ 16	3
2.	5	零点振動補正 ・・・・・・・・・・・・・・・・ 1	9
第3章	Na	aCl 型炭化物による水素トラップ状態	
3.	1	bcc-Fe 中の NaCl 型炭化物 ・・・・・・・・・・ 2	1
3.	2	炭化物周りの歪場による水素トラップ状態・・・・・・ 2	2
3.	3	炭化物中の水素トラップ状態・・・・・・・・・・ 3	0
3.	4	炭化物/bcc-Fe 界面の水素トラップ状態 ・・・・・・ 3	4
3.	5	第3章の考察 ・・・・・・・・・・・・・・・ 3	9
第4章	セ	メンタイトによる水素トラップ状態	
4.	1	bcc-Fe 中のセメンタイト ・・・・・・・・・ 44	ŀ
4.	2	セメンタイト中の水素トラップ状態・・・・・・・・ 4	6
4.	3	セメンタイト/bcc-Fe 界面の水素トラップ状態 ・・・・ 5	1
4.	4	第4章の考察 ・・・・・・・・・・・・・・ 5	6
第5章	鎁	中の水素分布状態	
5.	1	計算方法 ・・・・・・・・・・・・・ 5	9
5.	2	複合欠陥トラップ状態の局所平衡モデル	
		と速度論モデルの比較 ・・・・・・・・・・・・・ 6	0
5.	3	欠陥の不均一分布の影響の評価・・・・・・・・・・ 6	6
5.	4	第5章の考察 ・・・・・・・・・・・・・・・・ 7	0
第6章	結		
6.	1	本論文の成果 ・・・・・・・・・・・・・・・ 7	1
6.	2	今後の課題 ・・・・・・・・・・・・・・ 72	2
参考文書	伏	· · · · · · · · · · · · · · · · · 7	3

付録	А	TDA 測定	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	75
付録	В	3 DAP 測定	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	77
謝辞			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78

1. 序論

1.1 鉄鋼と水素脆化

鉄鋼は構造用金属材料として最も広く使われている。これは、地球上で最 も多い金属元素であり、安価であることもあるが、高温から温度を降下させ た際に、液相、bcc相、fcc相、bcc相と多くの変態を伴うと共に、安価で拡 散の速い炭素を含有することで、多種の炭化物相が現れ、様々な特性を持つ 組織が現れることによる。この様々な組織を制御することで、その用途に合 わせて、様々な強度や延性といった特性の材料が開発されてきている。近年 は、省エネの観点から、自動車用材料では軽量化が求められ、また、巨大構 造物でも、その自重を支えるために必要な材料が巨大であるほど加速度的に 増大するため、軽量化が求められている。現在では、1,000MPa 級超の強度 の鉄鋼が開発され、その実用化がすすめられている。しかしながら、溶接時 に空気中や油分等から混入する水素によって、施工時の冷却過程や冷却後に 破断してしまう遅れ破壊が起こるため、通常、付加的に予熱処理を施して、 侵入した水素を外部に放出させて、これを回避している。予熱処理はコスト や作業効率の観点で無駄であり、予熱処理が不要な材料やプロセスが求めら れている。

さらに、構造材料として使用中に繰り返し付加される応力によって生じる 疲労破壊や低加重の応力が掛り続けて生じるクリープ破断も、環境から侵入 する水素によって、著しく破断に至る時間(寿命)を短縮してしまうことが 知られており、寿命を長くする材料の開発も進められている。

Fig. 1.1.1 に、様々な鋼材について、水中で 100 時間保持した後の引張強度と元の引張強度との関係を示す。この図から分かるように、1,000GPa 以上の高強度材では顕著に劣化しており、水素脆化は高強度材に共通する問題であり、用途拡大の妨げとなっていることが分かる。

Fig. 1.1.1 Relation between the tensile strength of the steels and the delayed fracture strength of them after 100 hours in water. $^{1)}$

1.2 本研究の背景

前節で述べたように、水素脆化の問題は古くから知られており、その研究 がなされてきた。Fig. 1.2.1 に、1,450MPaの引張強度を持つ焼き戻しマル テンサイト鋼に水素チャージした切欠き丸棒の引張強度の水素チャージ量 依存性を示す。チャージした水素量が増えると、破断強度が急速に減少する が、水素が多くなると破断強度が飽和する傾向にあることが分かる。また、 同じ材質であれば、切欠き部の局率が異なり、破断応力が違っても、切欠き 内部の局所応力集中部での水素量と最大局所応力の関係をプロットすれば、 一致する。これらの破断面は Fig. 1.2.2 に示すように、粒界破断面となって いる。これは、高強度鋼材の水素遅れ破壊における破断面の特徴となってい る。より強度が低い鋼材の場合には、侵入水素量が少ないと擬へき開面が現 れ、侵入水素量が増すと粒界破断面へ変化する。さらに低強度になると、侵 入水素量が多いと、擬へき開面となり、少ないと延性的破面となる。

Fig. 1.2.1 Relation between peak value of maximum principal stress and peak value of locally accumulated diffusible hydrogen concentration. The maximum principal stress was calculated by FEM. The locally accumulated diffusible hydrogen concentration was estimated from average concentration and the maximum principal stress. ²⁾

Fig. 1.2.2 Fracture surface of notch tensile test of circular bar in which hydrogen is charged $^{2)}$

鋼中には水素が固溶し難く、かつ拡散が速いため、実験的に捉えることが 困難なため、水素チャージした試料を加熱した際の水素放出量を測定する昇 温脱離水素分析法(TDA: Thermal Desorption Analysis)や、板状試料の 表面から水素をチャージし、裏面での水素透過量を測定する水素透過法など の平均的な水素状態の測定が多くなされていた。水素がどこに分布している かを観測する実験も行われている。水素チャージした試料表面の元素分布を 走査型二次イオン質量分析器(SIMS: Secondary Ion Mass Spectrum)で 測定する方法、表面に臭化銀を塗布して、表面に拡散してきた水素との反応 によって銀を析出させる「水素マイクロプリント法」、放射性のトリチウム を水素の変わりにチャージして、その放射線を検出する「トリチウムオート ラジオグラフ」などが使用されている。しかしながら、これらの方法は、nm 以下の空間分解能がないことや、前の二つの方法では水素の分布ではなく、 表面への水素の放出量の表面分布を観測していることのために、炭化物のど こに水素が分布しているのかを検証できていない。

三次元アトムプローブ(3DAP: Three Dimensional Atom Prove)はnm 以下の空間分解能を持つものの、試料サイズが小さくて、容易に水素が抜け てしまうために、トラップされた水素の観察は困難であった。近年、高橋ら により、重水素を針試料にチャージ後、超急冷却することで、トラップされ た水素の直接観察が可能となった。^{3),4)}

鋼中の水素は、bcc-Fe中では格子間位置に固溶しており、気体の水素の状態のエネルギーが低いため、固溶しにくい。空孔、転位、粒界、析出物といった欠陥は、一般に水素をトラップすることが知られている。このため、鋼材内部に侵入した水素の量が同じであっても、内在する組織や欠陥の状態によって、水素の分布が異なる。その結果、実効的な水素の固溶度は材料の組織によって大きく異なる。

鋼中の水素の拡散係数については、Fig. 1.2.3(b) に示すように、フェライト(bcc-Fe)中の水素の拡散係数がオーステナイト(fcc-Fe)中の拡散係数よりもはるかに大きいことが特徴である。また、内在する欠陥にトラップされたり、欠陥からデトラップしながら、拡散するために、欠陥が多かったり、欠陥へのトラップエネルギーが大きいと、実効的な拡散係数は減少する。したがって、Fig.1.1.3(a) に示すように、試料によって、実効的な拡散係数は 大きくばらついている。

 $\mathbf{5}$

Fig. 1.2.3 Diffusion constant of hydrogen in iron

(a) Shadowed area shows the region of many results obtained experimentally $^{5)}\,$

(b) Diffusivity of hydrogen in ferrite(α -Fe), austenite(γ -Fe) and stainless steel (γ SS). The effect of hydrogen trapping by defects can be neglected in all samples. ⁶⁾

水素脆化について様々な脆化機構が提案されているが、未だにコンセンサ スは得られていない。大きく分ければ、水素によって塑性変形が助長される HELPモデル⁷、水素によって空孔濃度が増して、ボイドが形成しやすくな る水素助長歪誘起モデル⁸⁾、粒界に偏析した水素が粒界強度を減少させる表 面エネルギー低下モデル⁹⁾がある。水素脆化による破断面は、軟鋼では擬へ き開であるが、高強度鋼での水素脆化の破断面は、粒界破断であるという実 験事実と、山口ら¹⁰による最近の第一原理計算に基づく理論的解析結果から、 次のような破断機構が提案されている。即ち、粒界に水素がトラップされる と粒界破断エネルギーが減少するが、さらに、応力の掛った粒界では、粒界 の微小亀裂によって新たに生じた偏析サイトに、周囲の水素が拡散してトラ ップされ、さらに粒界強度が弱まるという機構である。これは、速い変形で は水素脆化が起こりにくいという実験事実とも合っている。

標準的な TDA 測定で、100℃から 200℃でピークを持つように放出され る水素を拡散性水素と呼び、室温で放置すると1日程度で放出される。拡散 性水素量は水素脆化の度合いと比較的良い相関を持つために、水素脆化の指 標となっている。この水素は、空孔、転位や一部の粒界などの浅いエネルギ ーでトラップされていた水素であり、実効的拡散係数にも影響を与える。こ れらの欠陥にトラップされた水素は、固溶状態を介して、他の欠陥にもトラ ップされるため、粒界に偏析した水素量の変化を知るには、これらの複数の 欠陥への水素の分配の変化を知る必要がある。しかしながら、実用鋼での水 素の分配状態をシミュレーションする技術は未だ確立されておらず、このシ ミュレーション技術確立が、水素脆化を回避する技術や安全性を予測する技 術を進展させる基本的ツールとなるために、期待されている。

1.3 研究の目的

このように、水素脆化を回避するには、侵入する水素量を減らすのが根本 的な対策ではあるが、溶接時に混入する水素や腐食により侵入する水素など は避けることが容易ではないため、水素が侵入しても水素脆化し難い鋼材が 求められている。さらに、鋼材の強度を保証するには、どの程度まで水素が 侵入しても良いか、あるいは、侵入した水素量に応じて、強度がどこまで低 下するのかといった評価指標や予測手法が求められている。

空孔、転位、粒界などの水素トラップ状態は、最近の実験技術および計算 技術の進歩により、詳細に分かりつつある。一方、実用鋼材中に存在する炭 化物による水素トラップ状態は、明らかではない。そこで、本研究では、第 一原理計算を軸にした理論計算により、代表的炭化物の NaCl 型炭化物とセ メンタイトの水素トラップ状態を解析するとともに、実用鋼で問題となる不 均一に欠陥が分布する場合の水素分布計算モデルを提案し、抽出した計算上 の課題について研究した。

1.4 本論文の構成

本論文では、第2章において本研究で用いた計算方法を述べ、第3章で NaCl型炭化物の水素トラップ状態の解析結果、第4章でセメンタイトの水 素トラップ状態の解析結果、第5章で不均一に欠陥が分布する場合の水素分 布の解析結果を述べ、最後に第6章で、まとめと今後の展開について述べる。 なお、本研究に深く関連する実験手法について、付録で解説した。

第2章 計算方法

2.1 第一原理計算方法

第一原理計算は、原子の種類と原子の位置を入力として、電子系のシュ レディンガー方程式を満たす波動関数を数値計算により求めた系の電子状 態に基づき、系の形成エネルギーや原子に働く力等を求める手法である。電 子の反応を伴わない安定構造の計算などの場合は、時間依存ではないシュレ ディンガー方程式が用いられる。固体において、電子はアボガドロ数個のオ ーダーの数があるが、電子の多体効果を簡便に取り扱うため、電子系の多体 ポテンシャルを局所的な電子密度だけの汎関数として与えて、一電子近似的 にシュレディンガー方程式を解くことが行われている。このポテンシャルの 取り扱いを局所密度近似(Local Density Approximation)¹¹⁾と呼び、基底状態 においては、系の物理量が電子密度の汎関数で表現できるという密度汎関数 理論(Density Functional Theory)¹²⁾に基づいている。局所密度汎関数自体の 正しい関数形は未だ知られてはいないが、均一濃度の電子から求められた関 数は様々な系に適用され、多くの系について定量的に実験と一致する結果を 得ている。さらに磁性を持つ系に対しては、アップスピンとダウンスピンの 電子を別々に取り扱い、局所の電子スピン密度の汎関数を用いる局所スピン 密度近似(Local Spin Density Approximation)として多体ポテンシャルを 扱う方法に拡張され、多くの系で実験を良く再現した。しかしながら、いく つかの系では定性的にも実験と一致しない場合があり、ポテンシャルの改良 が進められてきている。本論文で扱う Fe 結晶もその一つで、局所密度とと もに局所の密度勾配にもポテンシャルが依存する GGA (Generalized Gradient Approximation)¹³⁾が開発され、Fe 単結晶のうち bcc が一番安定と なる計算結果14)が得られるようになった。

シュレディンガー方程式を数値的に解くため、通常は固有関数を基底関数 の線形和として扱い、ハミルトニアンを行列で表し、その固有関数と固有値 を求める。

その固有値が電子軌道の固有エネルギーとなり、電子がフェルミ分布する ように低エネルギー側から軌道を埋め、埋まった電子軌道から電子の空間分 布が求まる。さらに、この電子密度分布あるいは電子スピン密度分布から、 局所密度(スピン)汎関数近似に基づいた多体ポテンシャルを決定し、新た なハミルトニアン行列を得る。以下この手順を収束するまで繰り返しことで、 電子の基底状態を求めることできる。求めた電子状態から、原子に働く力を 求めることができ、その力に基づいて原子位置を変化させる。そして、再び 同様に電子系の繰り返し計算によって求めた電子状態から、原子に働く力を 求める。このようにして、原子位置が変化しなくなるまで、少しずつ移動さ せることにより、原子の安定配置あるいは準安定配置を求めることができる。 このようにして得られる原子の安定位置は実験と良く一致しており、計算か ら得られる格子定数も実験値との違いは通常は数%以下である。

元素の違いにより、原子核の電荷量と含まれる電子数が異なる。原子間の 相互作用を主に担う電子軌道は、最外殻の価電子であり、多くの内殻電子は 原子周辺の変化に鈍感であることを利用して、第一原理計算では、外殻電子 のみを計算することが多い。この場合、電子が外殻電子以外に感じるポテン シャルは、内殻電子に遮蔽された原子核のポテンシャルであり、元素毎に異 なる実効的なポテンシャルとして取り扱う。

固体で用いる平面波基底は、周期境界条件を自動的に満足することと、基 底関数の非局在性のために原子に働く力の計算が容易であるという長所を 有している。一方、電子の波動関数は、原子核位置の深いポテンシャルの特 異性があることと、外殻軌道の電子が内殻電子軌道と直交する必要性から、 原子核近傍で大きく変動するため、固有関数やポテンシャルを線形和で表現 するのに、大きな波数まで平面波を必要とする。基底関数が多いとそれだけ 計算コストがかさむ為、原子核から一定の半径 R だけ離れれば、正しい波動 関数となるが、その半径 R 内では、変動が小さい波動関数を固有関数として 持つノルム保存型擬ポテンシャル 15)が開発され、平面波の数を縮小するこ とができた。しかし、半径R内の電荷量が正しい電荷量と一致するという制 限のため、平面波の数の縮小に限界があった。そこで、このノルム保存とい う制限を外したウルトラソフト擬ポテンシャル 16)が開発され、ノルム非保存 の補正という余分な計算が加わるものの、平面波の数を減らすことで、高速 な計算がきるようになった。さらに、原子核近傍の内殻ポテンシャルを反映 しつつ、ノルム保存で、ウルトラソフト擬ポテンシャル並みに基底関数が少 なくて済む PAW (Projector Augmented Wave) ポテンシャル ¹⁷⁾が開発さ れ、計算コストと正確さを両立できるようになった。

本論文で行った第一原理計算は、ウィーン大学で開発された VASP (Vienna Ab initio Simulation Package)¹⁸⁾を使用した。VASP は平面波 基底を使用した周期境界条件を満たす系の第一原理計算パッケージであり、 GGA の局所スピン密度汎関数の PAW ポテンシャルを用いた計算が可能で ある。

固体の平面波基底の第一原理計算の精度は、用いる擬ポテンシャルの質以 外に、ポテンシャルおよび基底関数を平面波展開する場合のカットオフエネ ルギーの大きさおよび固有関数を指定する波数ベクトルの数に左右される。 周期境界条件を満たすポテンシャルは、フーリエ展開できるが、その逆格子 ベクトルの大きさの最大値をカットオフエネルギーで規定する。周期系の固 有関数はバンドと波数ベクトルkで区別される。kベクトルは波数空間のブ リルアンゾーン内に連続しているが、数値計算をするために、代表点を均一 にサンプリングする。このサンプリング数も、すでに述べたように計算精度 に影響を与える。本論文で行った各系の第一原理計算を行う前に、カットオ フエネルギーおよびk点の数を変えて、系のエネルギーが0.01eV以下の幅 で収束するような条件を定めて、計算精度を保障した。

2,2 界面の計算方法

前節で示したような周期境界条件の範囲内で炭化物と母相との界面構造 の計算をするために、図 2.2.1 に示すような炭化物層と母相のフェライト層 を交互に並べた超格子を用いる。本論文で用いた計算機の制約から、単位格 子当たりの原子数が 100 個程度に制限される。通常、界面から三原子層程度 離れると界面の影響が微小であるため、ユニットセル中の総原子数が 100 個を大幅に超えない範囲で、各層数が5層以上になるようにした。また、半 整合界面や非整合界面の計算は、擬似的モデルであっても 100 個を大幅に超 えてしまうために、セメンタイトの非整合界面は整合界面として扱った。

界面を含む場合、二相の間の原子間距離が自明ではないので、界面に垂直 な方向のセル長さ c に対するエネルギー変化を計算し、そのエネルギーが最 小となるようなセル長さ c を決定した。水素を含む計算でも、そのセル長さ c は水素を含まない場合の長さと同じとした。

Fig. 2.2.1 Superlattice used for carbide/ferrite interface

炭化物中や炭化物/フェライト界面での水素トラップエネルギーを見積も るために、Fig. 2.2.2 に示す計算セルを用いた。周期境界条件で、水素のよ うな点欠陥を含む計算を行うと、周期的に点欠陥を含む計算になるので、点 欠陥間の相互作用が計算結果に含まれ、孤立した点欠陥のエネルギーが求め られない。点欠陥間の相互作用を厳密に評価することは困難であるので、一 般にはセルサイズを大きくすることで、その影響を小さく抑えるが、本研究 では、計算機の制約上、セルサイズが大きくできない。そこで、このような セル形状効果を抑えるために、下記の式で、自然長の歪まないフェライト中 の固溶水素に対する炭化物によるトラップエネルギー*Etrap*を見積もった。

 $Etrap = (Elt - Elf) + (Esf - Euf) \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (1)$

ここで、*Elt*:炭化物に水素を含む超格子のエネルギー、Elf:フェライトに 水素を含む超格子のエネルギー、*Esf*:超格子中のフェライトと同じ歪み状 態のフェライトが水素を含む場合のエネルギー、*Euf*:水素を含み歪んでい ないフェライトのエネルギーである。なお、(*Esf – Euf*)は整合界面極近傍 の歪による水素トラップエネルギーに対応する。

Fig. 2.2.2 Schematic diagram of cells used to estimate trap energy in carbide

White squares, gray squares enclosed by a broken line and a gray square enclosed by a solid line are carbide, strained ferrite and unstrained ferrite respectively. *Elt, Elf, Esf* and *Euf* are formation energy of superlattice containing a hydrogen in carbide layer, that of superlattice containing a hydrogen in ferrite layer, that of strained ferrite containing a hydrogen and that of unstrained ferrite contains a hydrogen. 非整合界面の場合、Fig. 2.2.3 に示すように、周期境界条件が成立しない。 そこで、本研究では、フェライト側を歪ませた整合界面を仮定し、同様に Fig. 2.2.2 に示した計算セルを用い、前式を使って、非整合界面を有する炭 化物によるトラップエネルギーEtrap を見積もった。非整合界面の場合には、 界面の状態は正しい構造ではないので、界面でのトラップエネルギーを直接 評価することはできない。

Fig. 2.2.3 Schematic diagram of incoherent interface

White squares and gray squares are unit cell of carbide and that of ferrite respectively.

2.3 鋼中炭化物の周りの弾性歪状態の計算

鋼中の水素の固溶エネルギーは歪場によって変化する。 金場が大きくない 場合は、主に格子間を拡大する体積歪量が固溶エネルギーを支配している。 鋼中炭化物の整合歪場の水素トラップエネルギーを解析するために、弾性歪 分布を FEM で計算し、その体積歪量から歪場によるトラップエネルギーを 見積もった。

FEM 計算は汎用の FEM 計算プログラム"FlexPDE"¹⁹⁾を用いた。簡単の ために、析出物は薄い円柱形状とした。格子ミスマッチ整合性を表すために、 母相中の直径 D_{Fe}厚さ t_{Fe} の円柱状ボイドに対して、直径 D_{MC}厚さ t_{MC} の円 柱を図 2.3.1 に示すように埋め込み計算を行った。母相と炭化物の弾性率は 等方的な文献値を用いた。計算領域は、領域の大きさを倍にしても、炭化物 周辺の歪の変化が1%以下となるようにした。格子ミスマッチの大きさをる とすると、各直径の関係式は次式で与えられる。

$$D_{MC} = (1 + \delta) D_{Fe} \qquad \cdots \qquad (2)$$

t_{MC}は、観測結果から D_{MC}の 1/10 とした。一方、**t**_{Fe}は、炭化物成長時に取り込まれる空孔の量に左右されるため、一意には決められない。そこで、厚み方向も同じ割合で炭化物の方が大きい場合と両者の厚みが同じ場合を計算した。

完全な円柱とするとエッジ部分に特異性が生じるために、エッジ部が丸く なるように、次式で現される形状とした。

$$\left\{ \left(\frac{x}{A}\right)^2 + \left(\frac{y}{A}\right)^2 \right\}^n + \left(\frac{z}{C}\right)^{2n} = 1 \qquad (3)$$

ここで、Aは半径、Cは厚み、エッジ部の調整パラメータnは6とした。

Fig 2.3.1 Schematic diagram of the method to calculate the strain field around a carbide in ferrite matrix

歪みによる水素の固溶エネルギーの変化は、主に体積歪みなので、格子定 数を等方的に変化させたときの固溶エネルギーの変化を第一原理計算で求 め、その関係を決定した。

2. 4 Nudged Elastic Band 法

第一原理計算では2.1節で述べたように、第一原理計算によって求めら れた各原子に働く力に基づいて、最も安定な原子配置とそのエネルギーを求 めるが、そのままでは原子が拡散する際の障壁の高さを求めることはできな い。このようなエネルギー障壁を求める手法の一つに Nudged Elastic Band 法という手法がある。この方法の手順は以下のとおりである。 始状態の原子位置(I)と終状態の原子位置(F)を決める

(I) と(F)の間を適当に補完するN個の原子位置((1)~(N))を決め、
 それぞれの原子配置のイメージをFig. 2.4.1のように作成する。通常は、原
 子位置を線形補完して、初期のイメージを配置する。そして、初期状態配置
 (I)と終状態配置(F)を固定して(1)から(N)のイメージ全体のエネルギ

ーを最小となるように、原子を移動させる。このとき、(I) と(1)、(2) と(3)、…(N) と(F)の対象とする原子間を仮想的なゴムひもで結合することにより、すべてのイメージが極小の配置に落ち込まず、かつ最も拡散障壁の低い経路を求めることができる。

イメージの数 N が多いほど細かく経路を決定できるが、本研究では、拡 散距離に応じて N は 5 から 7 とした。

Fig. 2.4.1 Conceptual diagram of NEB method

Total energy surface for an atom diffusing in two dimensional space and created images of each position. I and F mean initial and final respectively. $1, 2, \dots N$ mean created images.

2.5 零点振動補正

水素の原子量は1と軽いため、常温付近でも零点振動を無視できない。水 素に対するポテンシャルエネルギーをより正確に求めるには、零点振動の補 正が必要である。安定な原子配置に対して、各原子位置を3方向に微小変位 させた時の各原子に働く力を第一原理計算で求め、各原子は安定位置で調和 振動していると仮定する振動解析により、対象とする系のユニットセル中の 基準振動を求めることができる。水素原子が主に振動する3個の基準振動の 角振動数*ω*₁, *ω*₂, *ω*₃から、零点振動のエネルギーを次式で求めることが できる。

$$\frac{\hbar}{2}(\omega_1 + \omega_2 + \omega_3) \qquad \cdots \qquad \cdots \qquad (4)$$

ただし、*h* はプランク定数 h/2πである。

また、前節の方法で求めた移動の活性化エネルギーを零点補正するには、鞍 点での零点補正が必要となる。上記と同様に水素原子を鞍点に置いて、振動 解析を行うと、水素原子が主に振動する基準振動の内、二つは実数の角振動 数 ω₁、ω₂を持ち、一つは虚数の基準振動ω₃を持つ。虚数の基準振動は水 素原子の拡散経路の山に相当するので、鞍点での零点振動のエネルギーは、 正の角振動数のみを用いて

$$\frac{\hbar}{2}(\omega_1 + \omega_2) \qquad \cdots \qquad (5)$$

で得ることができる。

第3章 NaCl型炭化物による水素トラップ状態

3.1 bcc-Fe 中の NaCl 型炭化物

Ti、V、Nb等の炭化物は、NaCl型の結晶構造であり、bcc-Fe中では、そのサイズが小さい時には、Table 3.1.1 に示すような板状で析出する。板状析出物の広い界面は(100)面で、母相のbcc-Feの(100)面と並行で、炭化物の<100>方位とbcc-Feの<110>方位が一致するように整合析出する。 析出物の周囲には整合歪が観察される。析出物が大きくなると、整合界面に ミスフィット転位が導入され、半整合界面となる。さらに析出物サイズが大 きくなると、球状に形態が変化するとともに、非整合界面となる。母相の bcc-Fe とのミスフィットの大きさを Table 3.1.1 に示した。ミスフィットが 大きいほど整合歪は大きくなるが、整合から半整合に遷移する臨界サイズは 小さくなる。

Table 3.1.1 lattice constants of TiC, V_4C_3 and bcc-Fe and misfits between carbides and bcc-Fe matrix

	TiC	V_4C_3	bcc-Fe
lattice constant /nm	0.432	0.417	0.286
misfit	0.067	0.029	-

これらの析出物は、水素をトラップすることが知られおり、そのトラップ 状態について研究がなされてきた。Bernstein ら²¹⁾は、水素透過実験の結果 から、整合界面を有する微細な TiC 析出物も非整合界面を有する大きい TiC 析出物も水素の強いトラップサイトを持つと報告している。Lee ら²²⁾は TDA 測定の結果から 28.1kJ/mol の深さで脱離の活性化エネルギーが 86.9 k J/mol のトラップサイトが TiC の非整合界面にあり、サイズによりそのトラ ップエネルギーが変化すると結論している。Wei ら²³⁾は TiC 炭化物の水素 トラップ状態について、TDA 測定結果と TEM 像の解析結果から、半整合 面上に存在するミスフィット転位が 46-59 kJ/mol のトラップエネルギーを持 っと結論づけた。土田ら²⁴⁾は、V 添加鋼の TDA 測定結果と TEM 観察から、 NaCl 型 V 炭化物の周りの整合歪み場が 29.2 k J/mol のトラップエネルギー を持つとしている。Asahi ら²⁵⁾は、V 添加鋼の TDA 測定結果から VC 析出 物は 33-35kJ/mol の脱離の活性化エネルギーを有すると結論している。

このように、NaCl 型炭化物は、整合歪み、整合面、半整合面、非整合面 がトラップサイトとして提案されている。他にも、炭化物の中の C 空孔や、 整合界面の側面は、厚み方向に対して非整合となっており、別種のトラップ サイトの可能性がある。これらのトラップの可能性のあるサイトの模式図を Fig. 3.1.1 にまとめた。

Fig. 3.1.1 Trap sites of NaCl type carbide

3.2 炭化物周りの歪場による水素トラップ状態

炭化物周りの歪場によるトラップエネルギーを2.3節で示した計算法に 基づいて見積もった。炭化物、フェライトと共に立方対称性の弾性定数 を持つが、多結晶の実験で得られている等方的弾性定数²⁶⁾を計算に用い た。その値をTable 3.2.1 に示す。炭化物は母相のフェライトに比べて、 剛性率が倍程度と硬く、ポアッソン比が 2/3 程度と小さい。

 TiC
 V₄C₃
 bcc-Fe

 Young's modulus (GPa)
 457
 415
 211

 Poisson ratio
 0.183
 0.190
 0.29

 Table 3.2.1
 Elastic constant used for FEM calculation ²⁶⁾

まず、FEM 計算の妥当性と炭化物の形状に違いを見るために、球形、回 転楕円体、円柱状の各々の場合について、等方的に大きい V4C3 が挿入され た場合と一方向(図 3.2.1 から図 3.2.3 の z 軸方向)以外の方向に大きな V4C3 が挿入された場合について、歪み分布を計算した。計算で得られた体積歪み 分布を、図 3.2.1 から図 3.2.3 に示す。回転楕円体の内部では、歪み分布が 一様であり、理論と一致しており、計算の妥当性を示している。

最大の体積歪み量は、球形<回転楕円体<円柱の関係にあり、等方的 V4C3 <高さが同じ V4C3という関係にある。また、体積歪み量が最大となるのが、 回転楕円体と z 軸に水平な方向にのみ大きい円柱の場合はでは回転中心上、 等方的に大きな円柱ではエッジ上であることが分かる。また、側面部は圧縮 歪みとなっており、特に高さが同じ場合はより大きな圧縮歪みとなっている。

22

Fig. 3.2.1 Volumetric strain field around spherical void

(a) V_4C_3 isotropically larger than void (b) V_4C_3 whose vertical diameter is the same as that of void and whose horizontal diameter is larger than that of void. Black circles are maximum points

Fig. 3.2.1 Volumetric strain field around spherical void

(a) V₄C₃ isotropically larger than void
(b) V₄C₃ whose vertical diameter is the same as that of void and whose horizontal diameter is larger than that of void. Black circles are maximum points.

Fig. 3.2.3 Volumetric strain field around spherical void

(a) V_4C_3 isotropically larger than void (b) V_4C_3 whose vertical diameter is the same as that of void and whose horizontal diameter is larger than that of void. Black circles are maximum points.

次に、体積歪みに対する水素の固溶エネルギーの変化を第一原理計算で求 めた。

まず、bcc-Fe中の固溶水素の状態を Fe 原子 54 個からなる bcc-Fe中に水 素を置き、格子緩和させた。その結果、Fig. 3.2.4 中の白球で示す Fe 原子 4 個で囲まれた T サイトが安定サイトとなった。これは、同じ格子間原子の炭 素や窒素が O サイトであることと異なり、従来の結果と一致している。こ のときの(100)断面における電子濃度を Fig. 3.2.5 に示す。水素原子が鉄原子 に及ぼす影響を見やすくするために、Fig. 3.2.6 に水素原子を挿入した場合 と入れない場合との電子密度の(100)断面上での差を示した。水素の周りの 鉄原子の電子が減少していることが分かる。Fig. 3.2.7 に示した電子状態密 度から分かるように、水素の 1s 軌道のエネルギーは鉄原子の荷電子のエネ ルギーより低いために、水素の空いている 1s 軌道に電子が一個分だけ、周 囲の鉄の荷電子帯から移動しているためと考えられる。水素はマイナス側に 荷電した負イオンのようになっていることになるが、周囲の電子でスクリー ニングされるために、長距離まで影響を及ぼしてはいないと考えられる。

Fig. 3.2.4 T sites and O sites in bcc-Fe

Fig. 3.2.5 Contour of electron density on (100) plane of bcc-Fe containing a hydrogen atom on it. Blue area is with lower density and red area is with higher density.

Fig. 3.2.6 Difference of electron density on (100) plane of bcc-Fe between a hydrogen atom on it and no hydrogen. Light blue area is zero level. Red and green area correspond to the region that the density in the case with a hydrogen is higher, and dark blue area corresponds to the opposite region.

Fig. 3.2.7 Partial density of states of bcc-Fe containing a hydrogen at T site. *Ef* is a Fermi energy level.

水素を含む bcc-Fe 結晶と水素を含まない bcc-Fe 結晶との形成エネルギー の差 δ Eの格子定数依存性を Fig. 3.2.8 に示した。図の破線は第一原理計算 で求めた水素分子の形成エネルギーの半分の値を示しており、 δ E との差が bcc-Fe 中の水素の固溶エネルギーに対応する。この体積依存性から、格子間 水素は体積歪み1%当たり5kJ/molの形成エネルギー変化することが分か る。

Fig. 3.2.3の FEM 計算の結果と上記の形成エネルギーの歪み依存性から、 V₄C₃の整合歪み場は、等方的に V₄C₃が大きい場合に最大 6 kJ/mol、z 軸に 垂直な整合面のみ大きい V₄C₃の場合に最大 1 5 kJ/mol のトラップエネルギ ーを持つことが分かった。TiC の場合にも、同様の評価を行った結果、整合 歪み場は最大 2 9 kJ/mol のトラップエネルギーを持つことが分かった。

Fig. 3.2.8 Relation between lattice parameter and the difference of formation energy between 54 bcc-Fe atoms and those with a hydrogen atom. Broken line is the half energy to form a hydrogen molecule. Arrow shows the natural lattice constant of bcc-Fe.

3.3 炭化物中の水素トラップ状態

TiC および V₄C₃炭化物中の格子間位置の水素トラップ状態を計算するために、Fig. 3.3.1 に示すユニットセルに水素原子を配置し、格子緩和させて、 最安定位置を求めた。その結果、水素は、Fig. 3.3.1 の黒球に示す位置で最 も安定であった。Fig. 3.3.2 から分かるように、水素は炭素からは等距離に あるが、近接した二つの Ti 原子の一方の原子に近づいている。これは、負 に帯電した水素が、正に帯電した Ti と引き合い、負に帯電した炭素と反発 したためと考えられる。

さらに、Fig. 3.3.3 に示すユニットセルの C 空孔の中央からずれた位置に 水素を置いて、格子緩和させ、水素の C 空孔でのトラップ状態を計算した。 その結果、水素は空孔の中央で安定化した。Fig. 3.3.1 の格子間位置の水素 の形成エネルギーは Fig. 3.3.2 の C 空孔内の水素の形成エネルギーよりも 183kJ/mol 大きかった。

V₄C₃ についても、同様の計算を行った結果、水素の安定位置はほぼ同じ であったが、格子間位置の水素の形成エネルギーは C 空孔内の水素の形成エ ネルギーよりも 222kJ/mol 大きく、TiC の場合より 39kJ/mol 大きかった。 両者ともに、格子間位置と C 空孔位置とのエネルギー差が大きく、空孔に

トラップされた水素は容易に抜け出せないと考えられる。

Fig. 3.3.1 Unit cell of TiC and stable site of an interstitial hydrogen. White spheres, gray spheres and a black sphere are Ti, C and H respectively.

Fig. 3.3.2 Distribution of electron density on (100) plane of TiC with a gydrogen on it. Brighter is higher density.

Fig. 3.3.3 Unit cell of TiC with Carbon vacancy and a trapped hydrogen. White spheres, Gray spheres and a black sphere are Ti, C and hydrogen.

C 空孔を多く含む V₄C₃については、C 空孔に複数個の水素をトラップす る場合のトラップエネルギーについても次のように求めた。C 空孔に水素を n 個含む場合について、同様に格子緩和させてトータルエネルギーEn を計 算した。比較となる V₄C₃格子間位置に水素がいる場合のトータルエネルギ ーを *Eint* とすると、C 空孔に n 個水素を含む場合の V₄C₃格子間位置に対す るトラップエネルギー<u>∠</u>E は

 $\angle E = n \times Eint \cdot (n \cdot 1) \times E0 - En \qquad \cdots \qquad (6)$

ここで E0は H 原子を含まない V₄C₃のトータルエネルギーである。 bcc-Fe の固溶状態と比較するには、超格子の計算から求めた V₄C₃格子間水 素と bcc-Fe の固溶水素のエネルギー差を \triangle E から引けばよい。この結果を Fig. 3.2.4 に示した。水素の数が増えるほど、トラップエネルギーは浅くな り、3 個では、V₄C₃格子間の状態よりも安定であるが、bcc-Fe の固溶状態 よりも不安定となるため、bcc-Fe 中では V₄C₃炭化物は、熱平衡的には、C 空孔1個当たり2個まで水素をトラップできることが分かる。

Fig. 3.2.4 Trap energy of hydrogen at a carbon vacancy in V_4C_3 . Two broken lines are the energy levels of interstitial site in V_4C_3 and bcc-Fe respectively.

3. 4 炭化物/bcc-Fe 界面の水素トラップ状態

整合界面の水素トラップ状態を評価するために、炭化物/bcc-Fe 界面を含 む超格子のモデルを次のようして決定した。Table 3.2.1 に示したように、 炭化物のヤング率は母相の bcc-Fe の 2 倍程度あるので、整合面の格子定数 は炭化物の格子定数とした。界面での Fe 格子と TiC 格子と相対的な位置関 係を決めるために、Fig. 3.4.1 に示すような Fe 原子が Ti 原子の直上にくる 場合と隣接する二つ C 原子の中央の直上に来る場合と C 原子の直上にくる 場合について、Fe と TiC がそれぞれ 5 層の超格子の計算を行った。その結 果得られた、界面に垂直な方向のユニットセルの長さとトータルエネルギー との関係を Fig.3.4.1 に示す。Fe 原子と C 原子とが隣接する場合が最もエネ ルギーが低く安定であることが分かる。これは Jung²⁷⁾らの計算結果とも一 致している。また、Fe 原子と Ti 原子が隣接する配置は不安定で、かつ界面 での炭化物と Fe との間隔が、Fe 原子と C 原子と隣接する場合にくらべて 大きいことが分かる。

Fig. 3.4.1 Relation between the formation energy of superlattice and the ratio c/a. *C* is the thickness of superlattice and *a* is lattice parameter of TiC. The following three cases are shown. The iron atoms at the interface are on Ti atoms, at bridge site and on C atoms. Right figure is a front view of superlattice. Middle figure is the view from <001> of atomic configuration at interface.

界面および TiC 格子間での水素のトラップエネルギーを求めるために、 2.2 節で示した方法にしたがって、Fig. 3.4.2 に示す超格子を用いて第一原理 計算を行った。超格子は、最も安定な Fe 原子と C 原子が隣接する配置で、 界面に垂直な方向のユニットセルの長さは前述の最もエネルギーの低い値 に固定した。

Fig. 3.4.2 TiC/bcc-Fe superlattice used for the calculation of hydrogen trap energy. White, black and gray spheres are Ti, C and Fe respectively.

Fig. 3.4.3 に、計算で得られた TiC 格子間と界面および bcc-Fe 格子間での安定位置を示す。TiC 格子間および bcc-Fe 格子間位置の安定位置は前述のそれぞれのバルクの計算結果と一致した。界面では、図 3.4.4 に示すように、3 個の Fe 原子と1 個の Ti 原子を頂点とする4 面体の中央から Fe 側に寄った位置が安定で、bcc-Fe の T サイトに類似している。この超格子と同じ歪

みを持った Fe 原子 54 個の bcc-Fe 中に水素を置いてトータルエネルギーを 計算し、2.2 節の(1)式を用いて、TiC 格子間位置のトラップエネルギーは -58kJ/mol、即ち TiC 格子間の方が bcc-Fe 格子間よりもエネルギーが高いこ とが分かった。このエネルギーを用いて、TiC 中の C 空孔は 125kJ/mol の トラップエネルギーを持つことになる。界面は 48kJ/mol のトラップエネル ギーを持つことが得られた。

V4C3についても、同様な計算を行った結果、以下のことが分かった。TiC と同様に界面では Fe 原子と C 原子が隣接する配置が安定であり、V4C3格子 間は bcc-Fe 格子間よりも 106kJ/mol エネルギーが高く、C 空孔は 116kJ/mol のトラップエネルギーを持つことが分かった。一方、界面のトラップエネル ギーは-6kJ/mol となり、トラップ能力がないことが分かった。

Fig.3.4.3 Stable sites of trapped hydrogen atoms in TiC/bcc-Fe superlattice.

left) interface center) TiC interstitial right) bcc-Fe interstitial Large white, small black, grays and small white spheres are Ti, C, Fe and H respectively.

Fig. 3.4.4 Stable site of $\,$ a hydrogen at TiC/bcc-Fe interface $\,$

3.5 第3章の考察

bcc-Fe 中の NaCl 型炭化物の Fig. 3.5.1 に示すサイトの水素トラップエネ ルギーを表 3.5.1 にまとめた。TiC、V4C3 ともに、整合歪みによるトラップ エネルギーは 30kJ/mol 以下で小さく、有効ではない。また、両者共に C 空 孔のトラップエネルギーは 100kJ/mol より大きく、強いトラップサイトと なり得る。しかし、共に格子間のエネルギーが bcc-Fe よりも大きく、水素 が進入しにくい。また、TiC には C 空孔が少ないので、TiC 中の C 空孔も 水素トラップサイトとして有効ではないと考えられる。一方、V4C3 は C 空 孔を多く含むものの、格子間のエネルギーが 100kJ/mol 以上あり、拡散障 壁が高いため、界面近傍の C 空孔のみがトラップサイトとして有効と考えら れる。整合界面は、TiC は 48kJ/mol のトラップエネルギーを持ち、有効な トラップサイトと考えられる。一方、V4C3 の場合は、トラップ能力はない。 これらのことから、TiC は整合界面、V4C3 は界面近傍の C 空孔が有効な水 素トラップであると考えられる。

本研究では扱わなかった側面の非整合面は、整合歪み分布の計算結果から、 側面が圧縮場となるため、水素をトラップし難いと推定される。殊に、母相 の空孔を吸収して、厚み方向の膨張が小さい場合、圧縮場がより大きく、水 素トラップ能をより低下させると考えられる。

ミスフィット転位を伴う半整合界面では、界面での原子間距離が大きくなることや転位の部分では、Fig. 3.4.1の界面の Fe 原子は金属原子と隣接する場合に相当し、C 原子が5 個の金属原子でしか囲まれないため、水素原子が共有結合的に C 原子と結合して、安定化する可能性があると推定される。

Fig. 3.5.1 Schematic diagram of hydrogen trap sites in NaCl type carbide in bcc-Fe $\,$

Table 3.5.1 Trap energy of hydrogen by V_4C_3 and TiC in bcc-Fe The energy unit is kJ/mol.

	V ₄ C ₃	TiC
Coherent strain	< 15	<29
Interstitial site	-106	-58
C vacancy	116	125
Coherent interface	-6	48

高橋ら³⁻⁴⁾が最近開発した手法によって、微小な TiC や炭化物を含む鋼材 に重水素をチャージして、3 DAP によって、重水素の三次元分布を原子レ ベルで観測できるようになった。Fig. 3.5.2 と Fig. 3.5.3 にその観察像を示 す。TiC では、整合界面に重水素が観察されるが、側面には重水素が観察さ れない。フェライト中にも重水素が観察されるが、整合ひずみの大きいエッ ジ部や TiC 整合界面近傍に集中的に観察されてはいない。V4C3 でも同様で あるが、小さな炭化物では界面や内部には観察されていない。

この観察においては、水素チャージ後急冷して、数十 K の極低温で測定 している。試料の針先端部の直径は 100nm 程度であり、深いトラップサイ トにトラップされた重水素でなければ、観測することは困難である。このた め、トラップエネルギーの小さな整合歪場では、重水素は観察されていない と考えられる。側面は、大きな圧縮場であるために、トラップエネルギーが 小さく、観察されなかったと解釈できる。TiC および V4C3の内部は、C 空 孔が大きなトラップエネルギーを有するが、TiC では空孔の数が少なく、 V4C3 では拡散障壁が高いために、有効なトラップサイトとならならず、観 測されていないと解釈できる。

TiC の整合界面にのみ重水素がトラップされており、計算で得られた整合 界面のトラップサイトまたはミスフィット転位または表面の C 空孔と考え られる。計算で得られたトラップエネルギーは整合ひずみよりも大きいもの の、通常の粒界程度であり、この観測では捉えられない可能性がある。その 場合は、C 空孔かミスフィット転位と考えられる。

一方、TDA 測定から報告されている TiC 炭化物の水素のトラップエネル ギーが約 30-60kJ/mol の範囲にあり、脱離の活性化エネルギーが約 90 k J/mol という報告²²⁾もある。計算で得られた整合界面のトラップエネルギー が、報告のものと一致するが、脱離エネルギーは一致しない。

V₄C₃も同様に整合界面にのみ重水素が観測されているが、TiC と異なり サイズの小さな炭化物では観測できていない。このことから、観測で捉えら れたトラップサイトはミスフィット転位である可能性が高い。V₄C₃では、C 空孔の数は多いものの、薄い場合や表面でのトラップエネルギーが小さいと 推定される。

一方、TDA 測定による報告³³⁾では、V 以外の金属を含む V 炭化物の脱離 の活性化エネルギーは 30~35 k J/mol であり、歪み場のトラップよりも大 きく、C 空孔よりもかなり小さい。この実験結果との対応については、合金 化の効果をさらに取り入れて計算をする必要がある。

このように、計算結果は実験結果を十分に説明するものではないが、実験

の方も、析出形態の違い、実験手法の違いがあり、統一的な結果にはなって いない。本研究のような第一原理計算は、水素のトラップ状態の有力なツー ルであり、析出形態の違いや実験手法の違いを含めた統一的理解を進めるに は、より大規模な第一原理計算が必要となり、今後の課題である

Fig. 3.5.2 Three dimensional distribution of deuteriums trapped by TiC in bcc-Fe observed by 3DAP $^{\rm 3)}$

Fig. 3.5.3 Three dimensional distribution of deuteriums trapped by V₄C₃ in bcc-Fe observed by 3DAP ⁴
(a) V₄C₃ with 20nm in diameter (b)another V₄C₃ with 20nm in diameter
(c) V₄C₃ withd less than 10nm in diameter

第4章 セメンタイトによる水素トラップ状態

4.1 bcc-Fe 中のセメンタイト

セメンタイトは Fig. 4.1.1 に示した結晶構造を持ち、ユニットセル中に4 個の炭素原子を含んでいる。各炭素原子は6 個の鉄原子が頂点となる三角柱 のほぼ中央に位置する。各三角柱は2 個の三角柱とそれぞれ稜線を共有し、 2 個の三角柱とそれぞれ頂点を共有する形で、層状のネットワークを形成し ている。この層が、Fig. 4.1.1 の上下方向に重なって、結晶を成している。 全ての鉄原子は、二つの三角柱を共有することになる。

フェライト (bcc-Fe) 中のセメンタイトは、パーライトと呼ばれるフェラ イトとセメンタイトが互いに層状に相分離するラメラ構造と、フェライトあ るいはオーステナイト中に析出物として孤立した状態との二つに分類され る。セメンタイト分率の多いパーライト相の水素トラップ状態については、 多くの実験がなされており、TDA の実験では、生成後のパーライト相では、 シングルピークとなり、加工を加えていくと、元のピークはほとんど変化し ないが、高温側に新たにピークが現れることが知られている²⁷⁾。Hong ら²⁸⁾ は、低温側のピークは、水素透過実験から、10.85kJ/molのトラップエネル ギーを持ち、界面が原因であろうと推定している。南雲ら 29)と Kim30)らも TDA の実験から、加工前の単一ピーク即ち低温ピークは、界面と対応して いると結論している。Weiら31)はマルテンサイト中のセメンタイトは転位や 粒界に比べてトラップ能は小さいとした。花田 32)と秋山 33)は、焼きなまし マルテンサイトについて、トリチウム・オートラジオグラフィーやマイクロ プリント法で水素分布を観察し、フェライトにのみ水素が分布する結果を得 ている。高井ら³⁴⁾は、パーライトの TDA の実験から、加工前の単一ピーク は 20-46kJ/mol のトラップエネルギーであり、加工後に現れる高温側のピー クは 64-93kJ/mol のトラップエネルギーに対応することを示した。

高井らを含む研究者らが、低温側のピークはセメンタイト/フェライト界 面起因で高温側のピークは加工によって界面に生じた転位やセメンタイト 中に発生した粒界が起因であろうと推測されている。しかしながら、実際に トラップ状態がそうであるかどうかは検証されてはいない。

Fig. 4.1.1 Crystal structure of cementite

また、パーライト中のセメンタイトとフェライトとの結晶方位関係も調べられている。この方位関係は強いものではなく、いくつかの方位関係があることが報告されているが、代表的な方位関係は以下の3種類である。³⁵⁾

Bagaryatsky

 $[100]_{\theta} / / [1\overline{1}0]_{\alpha}$ $[010]_{\theta} / / [111]_{\alpha}$ $(001)_{\theta} / / (11\overline{2})_{\alpha} (Habit Plane)$

Isaichev

$$\begin{split} & [010]_{\theta}//[111]_{\alpha} \\ & (101)_{\theta}//(11\bar{2})_{\alpha}(\text{Habit Plane}) \end{split}$$

Pitsch-Petch

 $[100]_{\theta} 2.6 \text{ deg from } [3\overline{11}]_{\alpha}$ $[010]_{\theta} 2.6 \text{ deg from } [13\overline{1}]_{\alpha}$ $[010]_{\theta} / / [111]_{\alpha}$

ここで θ はセメンタイト相、 α はフェライト相を意味する。このうち最も 多く報告されているのが Bagaryatsky の方位関係である。Bagaryatsky の 方位関係において、[010]_{θ}//[111]_{α}の格子ミスマッチは 2.4%と小さいものの、 [010]_θ//[111]_αの格子ミスマッチは 11.5%である。後者の格子ミスマッチは、 整合界面を形成しうる 5%を越えており、観察されているように、非整合界 面となる。

4.2 セメンタイト中の水素トラップ状態

セメンタイト中の水素のトラップ状態を決定するために、Fig. 4.1.1 に示 したユニットセル中の空間の広いエリアに水素原子を置き、構造のエネルギ ーが極小となるように、構造緩和させた。その結果、得られた安定位置およ び準安定位置を、Fig. 4.2.1 に示す。対称性を考慮すると、安定サイトは、6 個の Fe 原子に囲まれた O サイトであり、4 個の Fe 原子で囲まれた 3 種類 の準安定サイト T₁,T₂,T₃があることが分かった。C 原子の近傍には安定サイ トも準安定サイトもないことが分かる。さらに、これらのサイト間の拡散経 路を Fig. 図 4.2.2 に示した。O サイトから隣接した O サイトに移動するに は、T₁-T₃-T₁の経路 A と T₁-T₂の経路 B の二種類ある。経路 B は、前節で 述べた二つの三角柱の層の間を拡散する経路であり、経路 A は三角中の層の 中を貫通する経路である。したがって、三次元的に拡散するには、両方の経 路を拡散する必要がある。

Fig. 4.2.1 Stable sites and metastable sites of hydrogen in cementite Center of pink octahedron, center of yellow tetrahedron, center of green tetrahedron and center of blue tetrahedron are O site, T_1 site, T_2 site and T_3 site respectively. Black spheres and corners of polyhedrons are C and Fe respectively.

Fig.4.2.2 Diffusion path of hydrogen between stable sites and metastable sites.

Pink spheres, yellow spheres, green spheres, blue spheres, black spheres and white spheres are O sites T_1 site, T_2 sites, T_3 sites, C atoms and Fe atoms respectively.

これらの経路での拡散障壁を評価するために、2.4 節で示した NEB 法に よって、各サイト間のポテンシャルの変化を計算した。その結果を、Fig. 4.2.3 に示す。安定な O サイトから脱出する経路のうち O→T₁ の障壁 54.7kJ/mol が最も低く、これを超える程度の温度であれば、T₁ サイトに他 の T₁→T₂、T₂→O、T₁→T₃、T₃→T₁、T₁→O の拡散障壁はいずれも、容易 に乗り超えられる。従って、実効的な拡散障壁は O→T₁の障壁 54.7kJ/mol だと考えられる。

Fig. 4.2.3 Schematic diagram of potential energy of hydrogen stable and various metastable sites in cementite

'-' are potential energy at each sites and saddle points between O site and $T_1\,\mathrm{site.}$

拡散障壁が 10kJ/mol 以下の小さい場合があるので、零点振動の影響をさ らに考慮した。2.5 節の方法に従って計算した零点振動補正の結果を表 4.2.1 にまとめた。零点振動補正の大きさはいずれも 20kJ/mol で、補正によるエ ネルギー差の差異は 10kJ/mol 以下なので、元のエネルギー差が大きいとき には、零点振動の影響は小さいことが分かる。しかしながら、T₁ サイトと O-T₁ 間の鞍点とのエネルギー差はわずか 2.2kJ/mol となり、計算誤差程度 であることから、T₁サイトが必ずしも準安定とはならない可能性も考えられ る。その場合には、実効的な拡散障壁のエネルギーは T₁-T₂ 間の鞍点の高さ となり、約 70kJ/mol と大きくなる。

Table 4.2.1 Energy difference between each metastable sites and stable O site and zero point energy at each sites. Upper column and lower column are the energy differences before zero point energy correction and after that respectively

	0	T_1	T_2	T_3	$O-T_1$
relative energy /k*mol ⁻¹	0.0	49.4	66.6	76.9	54.7
ZPE (zero point energy) /k*mol ⁻¹	16.4	23.4	24.5	21.7	20.3
relative energy with ZPE correction $/k^*mol^{\cdot 1}$	0.0	56.4	74.7	82.2	58.6

4.3 セメンタイト/フェライト界面の水素トラップ状態

セメンタイト/フェライト界面の水素トラップ状態を解析するために、以 下に述べる超格子モデルを用いた。セメンタイト/フェライト間の結晶方位 関係は、報告例の多い Bagaryatsky の対応関係を用いた。4.1 節に述べたよ うに、セメンタイト/フェライト界面は非整合であるが、第一原理計算でき るように整合界面として取り扱った。界面に平行なユニットセルの長さはセ メンタイトと同じとし、垂直方向のユニットセルの長さは、トータルエネル ギーが最小となる長さとした。セメンタイト層はセメンタイトのユニットセ ルと同じにとり、フェライト相が上下でうまくセメンタイト層と繋がるよう に6原子層とした。セメンタイトとフェライトとの相対的な位置関係は、エ ネルギーが最小となるように、格子緩和させることで、Fig. 4.3.1 の超格子 を得た。

フェライト相は歪んでいるので、2.2 節で述べた方法に従って、歪んでいないフェライト中格子間とのエネルギー差を求めた。この際に用いたフェライト単相の計算セルを Fig. 4.3.2 に示した。この歪み場でも、安定な格子間位置は T サイトであった。

セメンタイト格子間サイトおよびフェライト格子間サイトは界面から最 も離れた位置の近くに水素を置き、格子緩和して、安定位置を求めた。界面 には、空間の広い数箇所に水素を置き、格子緩和し、非等価な安定位置を求 めた。さらに、2.4節の方法で、各サイトの零点振動補正を行った。

Fig. 4.3.1 Structure of cementite/ferrite superlattice White and black spheres are Fe and C respectively.

Fig.4.3.2 Unit cell used for the calculation of effects of uniform strain in ferrite

Big and small spheres are Fe and C respectively. Fe atoms are connected between second nearest neighbors to clarify bcc unit cell. Black circles are Fe atoms near H atom. 計算で得られた超格子での水素の安定サイトを Fig. 4.3.3 に示す。セメン タイト中とフェライト中は、各バルクの計算で得られた安定サイトと一致す る。界面は、2種類の安定サイトが見つかった。2.2節の(1)式の(*Elt – Elf*) および(*Esf – Euf*)の計算結果を表 4.3.1 に示した。界面では、場所により トラップエネルギーが大きく異なることが分かる。零点振動エネルギーは NaCl型炭化物の場合と同様に、約 20kJ/mol で相対的な変化は小さい。

歪みと零点補正後のエネルギー差を比較すると、セメンタイト内部は 40.8kJ/molのトラップエネルギーを持つ。仮想的な整合界面は、(b)の界面 サイトのように 47.4kJ/molのトラップエネルギーを持つが、トラップ能を 持たない(c)のようなサイトもあることが分かった。

Fig. 4.3.3 Stable sites of hydrogen in cementite/ferrite interface

(a)interstitial sites in cementite (b)interface site (c)another interface site (d)interstitial site in ferrite

Gray, black and small white spheres are Fe, C and H respectively. Black circles are Fe atoms near H atom.

cell	superlattice			ferrite cell		
	$(E_{lt}-E_{lt})$			$(E_{sf}-E_{uf})$		
site	cementite	interface1	interface2	ferrite	strained	unstrained
relative energy /k*mol ⁻¹	0.2	-5.0	28.4	0.0	-33.5	0.0
ZPE (zero point energy) /k*mol ⁻¹	16.3	14.9	23.4	20.8	20.7	23.7
relative energy with ZPE correction /k*mol ⁻¹	-4.3	-10.9	31.0	0.0	-36.5	0.0
relative energy with ZPE	$(E_{lt}-E_{lt})+(E_{sf}-E_{uf})$		$(E_{sf}-E_{uf})$			
correction /k*mol ⁻¹ reference=unstrained ferrite cell	-40.8	-47.4	-5.5	-36.5	-36.5	0.0

Table 4.3.1Relative energy of hydrogen in superlattice and ferrite, andzeropoint energy at each sites.

4.4 第4章の考察

以上の計算結果から、セメンタイト内部のOサイトは 40.8kJ/mol のトラ ップエネルギーを持つが、拡散するには、58.6kJ/mol のO \rightarrow T₁への拡散障 壁を越える必要がある。T₁が準安定サイトでないと仮定すると、拡散障壁は 約 70kJ/mol となり、拡散がより困難となる。したがって、セメンタイト界 面近傍を除けば、セメンタイト内部のOサイトは有効なトラップサイトと はならないと考えられる。

次に、セメンタイト/フェライト非整合界面のトラップ状態を考察するた めに、セメンタイトとフェライト系での水素に対するポテンシャルエネルギ ーについて、考察する。Fig. 4.3.3 に、各安定サイトを囲む Fe 原子を示して いる。(b)の界面サイトは、6 個の Fe 原子で囲まれ、(a)のセメンタイト内部 の O サイトと類似しており、そのトラップエネルギーはほぼ同じである。 ー方、(c)の界面サイトは 4 個の Fe 原子に囲まれ、(d)のフェライト中の T サイトと類似しているが、トラップエネルギーは大きく異なる。(c)と(d)の 差は、4 個の Fe 原子で形成される 4 面体の近傍に、C 原子が何個存在する かが、関係しているとすると、そのエネルギーの差を説明できる。C の存在 を考慮すると、(c)の界面サイトは、むしろ、C 原子を周囲に多く持つセメン タイト内部のT サイトと類似していると考えられ、トラップエネルギーも類 似している。

水素がOサイトにあるときのセメンタイトの電子状態密度をFig. 4.4.1 に 示す。Hの1s軌道、Cの2s、2p軌道は、Feの3d軌道より、低エネルギ 一側にあるため、H原子もC原子も、周囲のFe原子から電子を奪い、共に 負イオンになっていると考えられる。従って、H原子は、フェライト中と同 様に電子濃度の薄く空間の広い位置の方が安定で、さらに、C原子が近接し ない方がより安定だと推定できる。ただし、C原子近傍の金属原子が6個未 満で、空間があれば、H原子はC原子と共有結合して、より安定化するこ とも考えられる。

セメンタイト/フェライト非整合界面は、共に磁化した Fe 原子と C 原子で 構成された不規則な界面なので、C 原子を多く含むフェライト粒界と類似し ていると考えられる。水素のトラップエネルギーが、Fe 原子で構成される 空きスペースと近傍の C 原子の数でほぼ決定されるとすれば、非整合界面は、 C 原子が偏析したフェライト粒界と同程度の水素トラップエネルギーを有 すると考えられる。山口ら³⁶⁰によれば、フェライト粒界では、C 原子と H 原子とが共に偏析する場合、C 原子が深いトラップサイトを優先的に占め、 H の平均的なトラップエネルギーは浅くなるとしている。非整合界面も同様 に考えると、水素のトラップエネルギーは通常の粒界偏析エネルギーより少 し小さくなり、TDA の低温側のピークのトラップエネルギー20-46kJ/mol と一致する。

次にパーライトを加工後に観測される高温側の 64-93kJ/mol の活性化エ ネルギーを持つピークについて考察する。パーライトを加工すると、セメン タイトとフェライトの層が共に薄くなる。このとき、フェライト中、特にセ メンタイト/フェライト界面に転位が集積すると共に、セメンタイト内に粒 界が発生する。転位の水素トラップエネルギーは 30kJ/mol 程度で、高温側 のピークのエネルギーとは一致せず、むしろ低温側のピークの活性化エネル ギーの中に含まれる。加工により発生するセメンタイト中の粒界のトラップ エネルギーは、上記の水素原子のトラップエネルギーが周囲の Fe 原子と C 原子の配置でほぼ決定されることを考慮すると、C 原子が偏析したフェライ ト粒界と同等と考えられ、40kJ/mol 以下となり、高温側のピークの活性化 エネルギーとは一致しない。しかし、セメンタイトの粒界内にトラップされ た水素の拡散過程を考えると、セメンタイト内の O サイト間の拡散の活性 化エネルギーと同程度と予想される。ただし、欠陥のないセメンタイトでは 安定な O サイト間の距離が長いのに対して、加工後のセメンタイトの粒界 では多数の O サイトに近い準安定サイトが存在うる可能性があり、完全な セメンタイトよりも拡散し易いと予測される。この拡散の活性化エネルギー が、高温ピークの原因である可能性があると考えられる。

非整合な界面でのトラップエネルギーやセメンタイト粒界のトラップエ ネルギーや拡散過程に関する本モデルは、より大規模な第一原理計算などで 検証する必要性がある。

Fig. 4.4.1 Density of state and its integral of cementite with hydrogen at O site.

Solid lines and broken lines are density of state and its integral respectively.

第5章 鋼中の水素分布予測

5.1 水素分布計算モデル

フェライト中の水素は、bcc-Feの四面体位置に固溶しているが、3.2節で 述べたように、bcc-Feの歪に応じて、固溶エネルギーが変化する。固溶エネ ルギーは主にはその体積変化の影響が大きいが、Psiachos³⁷⁾らが第一原理計 算で示しているように歪量が大きいと非線形性や異方性の影響も大きくな る。その変化量は1GPa程度の応力で約3kJ/molであり、必ずしも大きく ないが、そのサイト数の多さと固溶エネルギーの小ささのために、固溶量の 変化は無視できない。一方、欠陥のトラップエネルギーの歪の影響は相対的 に小さい。そこで、本研究では、歪場は固溶状態にのみ影響し、欠陥のトラ ップ状態には影響しないものとして扱った。

複数種の欠陥による水素トラップ量の時間変化は、局所平衡モデルにおい ては、固溶水素と欠陥でのトラップ水素とが熱平衡状態にあると仮定する。 すると、固溶水素の拡散が十分に速いと見なせる範囲内での欠陥によるトラ ップ水素量は、総水素量、欠陥量および温度で決まり、振動のエントロピー の違いを無視すれば、次式のように表わされる。

ただし、 $\epsilon_{int}(\sigma)$ は歪み場 σ 中の母相鉄中の格子間水素のトラップエネルギー、 n_{int} は母相鉄中の格子間水素の数、 n_i はi種の欠陥の1番目の種類のサイトにトラップされた単位体積当たりの水素量、 N_i はi種の欠陥の1番目の種類のサイトの単位体積当たりの量、 n_{int} は単位体積当たりの固溶水素量、

 N_{int} は単位体積当たりの格子間位置の個数、 $\varepsilon_{int}(\sigma)$ は歪み場 σ 中の格子間水

素のトラップエネルギーである。局所平衡状態は、トータルの水素濃度が一 定の条件下で、この自由エネルギーが極小となるようにして、各欠陥へのト ラップ量を求めればよい。到達した平衡状態は、各欠陥にトラップされた水 素および固溶水素の化学ポテンシャルが等しい状態になっている。 温度変化や格子間水素量が変化した場合には、上記の熱平衡状態からずれ てくるが、この時の欠陥からのトラップ、デトラップ速度は次式で与えられ る。

$$\frac{\partial n_{int}}{\partial t} = \nabla (D \nabla n_{int}) \qquad (8)$$

$$n_{int} = c_{total} - \sum_{ik} n_i^k \qquad \cdots \qquad \cdots \qquad (9)$$

$$\frac{\partial n_i^k}{\partial t} = -\omega \sigma_i^k \left(n_i^k \left(1 - \frac{n_{int}}{c_0} \right) exp\left(-\frac{\varepsilon_i^k + \delta_i^k}{kT} \right) - \left(1 - \frac{n_i^k}{N_i^k} \right) n_{int} exp\left(-\frac{\delta_i^k}{kT} \right) \right)$$

ただし、 n_{total} は総水素濃度、 n_{int} は格子間水素濃度、 C_0 は固溶水素濃度の pre-exponential factor、 m_i^k は i 番目の欠陥の k 番目のトラップサイトにト ラップされた水素の単位体積あたりの個数、 ω は水素の振動数、 σ_i^k は i 番目 の欠陥の k 番目のトラップサイトと固溶水素との反応断面積、 ε_i^k は i 番目の 欠陥の k 番目のトラップサイトのトラップエネルギー、 δ_i^k は i 番目の欠陥の k 番目のトラップサイトのトラップエネルギー、 N_i^k は i 番目の欠陥の k 番目のトラップサイトのドラップの活性化エネルギー、 N_i^k は i 番目の欠陥 陥の k 番目のトラップサイトの単位体積あたりの濃度である。第一式は格子 間水素の拡散方程式、第二式は格子間水素濃度とトラップされた水素濃度と

の関係式、第三式は n_i^kの時間発展を表す方程式で、第一項がトラップサイトから格子間へ脱離する速度、第二項が格子間からトラップサイトにトラップされる速度に対応している。

転位の場合、転位芯を中心に周囲に歪場によるトラップサイトが周りを囲 んでおり、厳密にはこの不均一な空間配置を考慮した速度論的方程式を解く 必要がある。しかしながら、これらの距離は nm 以下であり、転位芯以外の 歪によるトラップエネルギーは小さいことと、水素の拡散の速さを考慮する と、室温以上では周囲の格子間から直接トラップサイトにトラップされたり、 デトラップしたりするとして扱ってよい。

5.2 複合欠陥トラップ状態の局所平衡モデルと速度論モデルの比較

粒界への水素トラップ量に対する他の欠陥の影響を評価するめに、粒界と

転位を内在する bcc-Fe において、結晶サイズと転位量の異なる場合の水素 トラップの温度依存性を計算した。用いた水素トラップに関するトラップエ ネルギーは南雲がまとめた実験値³⁸⁾を参考にして、Table 5.2.1 に示した値 を使用し、トラップ密度は最近の第一原理計算の結果³⁹⁾を参考にして決定し た。単位体積当たりの総水素量は、溶接時に混入する水素の典型的な値であ る 2wppm とした。粒径(10 µ m、100 µ m)と転位密度(1×10¹⁵/m²、1× 10¹⁶/m²)の系での水素の熱平衡分布の温度依存性を Fig. 5.2.1 にまとめた。 粒径が大きくなると、単位体積あたりの粒界面積が減少し、総水素トラッ プ量が減少するが、占有率は大きくなる。転位が増えると、粒界へのトラッ

ノ重が減少するが、西有率は入さくなる。転位が増えると、粒界へのトラッ プ量は減少するが、低温になると、粒界の方に水素がよりトラップされるため、転位の効果は小さくなる。

Table 5.2.1 Trap energy of hydrogen by grain boundary and dislocation

defect	grain boundary	dislocation
trap energy/ kJ*mol ⁻¹	40	30

(a) Grain boundary diameter 100 μ m, dislocation density $1 \times 10^{15} \mbox{m}^2$

(b) Grain boundary diameter $100\,\mu$ m, dislocation density $1\!\times\!10^{16}\!/\mathrm{m^2}$

(c) Grain boundary diameter 10 μ m, dislocation density $1 \times 10^{15} \text{/m}^2$

(d) Grain boundary diameter 10 μ m, dislocation density $1 \times 10^{16} \text{/m}^2$

Fig. 5.2.1 Temperature dependence of thermal equilibrium distribution of hydrogen in the system of grain boundary diameter $(10 \,\mu$ m, $100 \,\mu$ m) and dislocation density $(1 \times 10^{15}/\text{m}^2, 1 \times 10^{16}/\text{m}^2)$. Vertical axis is amount of hydrogen at each sites par unit volume. Blue broken lines are the level of hydrogen capacity at grain boundary.

温度変化が急速に変化する場合には、局所平衡は必ずしも成り立たない。 粒界や転位の場合に、どの程度の冷却速度になると、反応速度論的取り扱い が必要となるかを見積もるために、粒径 100 µm と転位密度 10¹⁶/m²の場合 で、冷却速度を大きくした計算を行った。水素の拡散係数は南雲がまとめた 実験値³⁸⁾の 5.8×10⁻⁸exp(-4.5[kJ/mol]/RT)[m²/s]を用い、欠陥のトラップ障 壁は拡散障壁と同じとし、トラップ水素の振動数は母相鉄の格子間と同等と 仮定した。溶接プロセスは、冷却速度が大きいが、大きくとも 10.000K/sec 程度であるが、図 5.2.2 に示すように 30,000K/sec の冷却速度でも1 割程度 の差にしかならない。冷却過程では、浅いトラップサイトから深いトラップ サイトへと水素が移動して、熱平衡分布になる。このとき律速するは、転位 からのデトラップ過程であり、30kJ/mol である。粒界よりも、深いトラッ プサイトを持つ欠陥がある場合には、欠陥の相対的な量にも依存するが、粒 界からのデトラップ過程が律速することになる。転位や粒界は、いわゆる拡 散性水素の原因であり、約 50kJ/mol 以下のトラップサイトに分類され、水 素脆化の一指標となっており、熱的挙動も似ていることが知られている。通 常プロセスでの温度変化においては、拡散性水素は局所平衡が成り立つと考 えられる。

しかし、非拡散性水素に分類されるような深いトラップサイトについては、 反応速度論に基づく計算が必要である。また、オーステナイト相のように拡 散の遅い相がある場合には、その拡散を考慮する必要がある。その際に、形 状や空間分布がどのように全体の拡散に影響を与えるかを次節で述べる。

Table 5.2.2 Thermal equilibrium distribution and non-equilibrium distribution during cooling at 30,000K/sec in cooling rate for the system whose grain size is 100μ m and dislocation density is 1×10^{15} /m². Vertical axis is hydrogen occupancy at each site.

5.3 欠陥の不均一分布の影響の評価

オーステナイト相はフェライト相に比べて、水素の固溶度が数倍大きく、 水素の拡散係数が1桁以上小さいため、オーステナイト相は拡散障壁になる と共に、水素のバッファとしても働く。したがって、オーステナイト相の形 状や分布は、水素の拡散やトラップサイトへの分配の動的挙動に大きく影響 すると考えられる。また、パーライト相も、水素の拡散障壁となるセメンタ イトが層状に分布しており、熱処理によってセメンタイト相が球状化した場 合とでは、拡散挙動が大きく異なると考えられる。粒界水素量を予測するに は、このような不均一に分布する異相の影響を考慮する必要がある。

そこで、水素の拡散挙動に対して、拡散障壁となる相の形状がどのような 影響を与えるかを、フェライト相中のオーステナイト相を例に、差分法計算 により評価した。

フェライト/オーステナイト界面に深いトラップサイトがあると仮定した 場合、下記に示すように、粒界でのトラップ・デトラップの効果を考慮した。

1) 粒界に接する γ 側のセル:

$\Delta x \cdot \dot{C_n} = D_{\gamma} \frac{C_{n-1} - C_n}{\Delta x}$

$$+\omega d^{2}\left\{C_{I}\left(1-C_{n}/C_{\gamma}^{0}\right)exp\left(-\frac{\varepsilon_{d}+\varepsilon_{I}-\varepsilon_{\gamma}}{kT}\right)-\left(1-C_{I}/C_{I}^{0}\right)C_{n}exp\left(-\frac{\varepsilon_{d}}{kT}\right)\right\}$$

$$\cdots$$

$$(1 1)$$

2) 粒界に接する α 側のセル:

 $\Delta x \cdot \dot{C} = D_{\alpha} \frac{C_{n-1} - C_n}{C_{n-1} - C_n}$

差をそれぞれ

ただし、オーステナイト相、粒界、フェライト相の溶解度の pre-exponential factor を南雲のまとめたデータ³⁸⁾に基づいて、それぞれ $C_{\gamma}^{\ o}=2.84\times10^{20}$ $C_{I}^{\ o}=2.0\times10^{20}$ $C_{\alpha}^{\ o}=1.85\times10^{20}$ [cm⁻³] オーステナイト相、粒界、フェライト相のフェライト相との固溶エネルギー

 $\epsilon_{\gamma} = 0.0003$ $\epsilon_{I} = 0.3$ $\epsilon_{\alpha} = 0$ [eV] オーステナイト相、粒界、フェライト相のフェライト相に対する拡散係数を それぞれ

$$D_{\gamma} = 4.41 \times 10^{-3} \exp(-6437.3/T)$$
 $D_{I} = 0.$ $D_{\alpha} = 5.8 \times 10^{-3} \exp(-6437.3/T)$
$10^{-4} \exp(-541.35/T)$ [eV]

水素の最近接の安定サイト間距離と粒界トラップの活性化エネルギーと水素の振動数をそれぞれ

 $d = 4.9 \times 10^{-8}$ [cm] $\varepsilon_d = 0.03$ [eV]

 $\omega = 1.4 \times 10^{12}$ [sec⁻¹]

計算メッシュのサイズを

 $\Delta x = 10^{-7}$ [cm]

とした。粒界トラップがない場合の粒界での単位時間当たりのオーステナイ ト側とフェライト側の流量をそれぞれ

$$C_{\gamma}(C_{\alpha}^{0} - C_{\alpha})/C_{\alpha}^{0} \cdot d^{2}\omega \cdot exp\left(-\frac{\varepsilon_{d}}{kT}\right)$$
$$C_{\alpha}(C_{\gamma}^{0} - C_{\gamma})/C_{\gamma}^{0} \cdot d^{2}\omega \cdot exp\left(-\frac{\varepsilon_{\gamma} + \varepsilon_{d}}{kT}\right)$$

として、両者が等しいとした。

層状のオーステナイト相の空間配置について Fig. 5.3.1 のオーステナイ ト相の分率が同じ 4 種類で比較した。左端と右端での水素濃度をそれぞれ 1.8×10¹⁹[cm⁻³]、 0.9×10¹⁹[cm⁻³]、初期濃度を 0.9×10¹⁹[cm⁻³]として、左端 での流量の時間変化を計算した。その結果を Fig. 5.3.2 に示す。オーステ ナイト相の空間分布によって、定常状態での流量が異なる、即ち、実効的拡 散係数が異なることが分かる。また、定常状態に達する時間も異なり、ほぼ、 実効的拡散係数と同じ傾向にある。オーステナイトとフェライト間の粒界の トラップサイトがあると、ない場合に比べて、定常状態の流量が減り、定常 状態に達するまでの時間が大きくなることが分かる。Case4の場合、定常状 態に達するまでに不規則な変化が見られるが、拡散の速いフェライト相の幅 が二種類あり、オーステナイト相の上下の界面に濃度差が生じて、オーステ ナイト相内に流れを生じさせるためである。

このように、オーステナイト相の空間分布によって、実効的拡散係数が異 なることが分かる。したがって、マクロな水素分布の計算には、体積分率だ けではなく、サイズや空間分布も考慮する必要がある。

(a

(b)

(c)

(a),(b),(c) and (d) are case1,case2,case3 and case4 respectively. The areas enclosed by red or yellow region are austenite.

(b)

Fig. 5.3.2 Time dependence of total flux at right side in Fig. 5.3.1.

(a) without grain boundary trap (b) with grain boundary trap

5.4 第5章の考察

転位と粒界が共存する系において、粒径や転位量に応じて、熱平衡の粒界 水素量が変化する。したがって、多種類の欠陥を含む鋼材において、粒界水 素量を予測するには、各欠陥の量を知る必要がある。粒界や転位などのいわ ゆる拡散性水素に分類される約 50kJ/mol 以下トラップエネルギーの欠陥に トラップされた水素量は、通常の冷却条件の範囲内では、局所平衡が成り立 っと考えて良い。拡散性水素に分類される欠陥にトラップされた水素の場合、 冷却速度や加熱速度が大きい場合には、動的な効果を考慮した方程式を用い て分配を計算する必要がある。局所平衡が成り立つ場合でも、固溶水素だけ が拡散するので、マクロな拡散計算を行う場合には、実効的拡散係数、即ち、 固溶水素の拡散係数×(固溶水素量/総水素量)を拡散係数として用いる必 要がある。

局所平衡が成立しない場合の計算には、トラップエネルギーだけではなく、 デトラップの活性化エネルギーと共に欠陥に隣接する格子間サイト数など の反応断面積の詳細な情報が必要となる。これらを見積もるには、各欠陥に 対する TDA 測定の詳細な解析によって、実効的な活性化エネルギーと反応 断面積を決定する必要がある。また、その妥当性の理論的検証は、さらに大 規模な第一原理計算によってなされる必要がある。

また、オーステナイト相やセメンタイトのように拡散の遅い相を内在する 場合には、それらの量だけではなく、サイズや形状および空間分布の情報が 必要となることが、5.3 節の結果から分かる。オーステナイト相のような拡 散の遅い相は、拡散の障害として働くので、局所応力集中部への拡散のよう に、拡散を抑えたい場合には、粒界析出のように層状にかつ方位が拡散方向 に垂直もしくはランダムになるように析出させることが有効であると考え られる。一方、拡散を阻害させたくない場合には、拡散方向に平行な層状も しくは球状の空間分布が有効と考えられる。

オーステナイト相は、フェライト相よりも水素固溶濃度が高いことや粒界の トラップ能によって、水素濃度変化のバッファとしての機能もあるので、高 温で吸蔵した水素を低温で緩やかに排出することで、水素脆化を引き起こす 応力集中部での水素濃度の上昇を抑える効果も期待できる。

さらに、これらの空間的不均一性の効果を直接計算するには、サブミクロ ンオーダーの空間精度が必要となり、溶接部全体をシミュレーションするミ リオーダーのマクロ計算は通常の計算機では不可能である。したがって、空 間不均一性に応じた実効的な拡散係数や反応断面積を決定する方法を開発 する必要がある。

第6章 結言

6.1 本論文の成果

bcc-Fe中のTiCとV₄C₃炭化物の格子間、整合歪場、整合界面、炭素空孔の水素トラップエネルギーを第一原理計算により、以下のことを初めて明らかにした。

・格子間はトラップサイトとならず、固溶し難い

・整合歪み場は弱いトラップサイトである

・TiC の整合界面はトラップサイトであるが、V₄C₃の整合界面はトラップサイトにならない

・炭素空孔は強いトラップサイトである

・側面の非整合界面部は大きな圧縮場であり、深いトラップサイトになり 難い

これらの結果は、3DAPの実験結果と矛盾しない。

bcc-Fe 中のセメンタイト内部および界面の水素の状態を第一原理計算で 初めて明らかにした。

・セメンタイト内部には安定な O サイトと準安定な 3 種類の T サイトが存在する

• O サイト間の拡散には大きな活性化エネルギーと距離が障壁となり、有効なトラップサイトにならない

・界面はC原子が偏析したフェライト粒界と同等で深いトラップサイトではなく、TDAの低温ピークに対応すると考えられる

・加工後に生じるセメンタイト内の粒界もC原子が偏析したフェライト粒 界と同等で深いトラップサイトではないが、セメンタイト外への拡散が可能 で、その活性化エネルギーによって、TDAの高温ピークが生じると推定し た

粒界、転位および不均一なオーステナイト相を含む bcc-Fe 中の水素分布 を数値解析し、以下のことを明らかにした。

・粒界、転位などの浅い欠陥にトラップされた拡散性水素は、局所平衡が 成り立つと考えて良い

・深い欠陥にトラップされた非拡散性水素は、温度変化の大きさに応じて、 反応速度に基づく計算が必要である

・オーステナイト相やセメンタイト相のように拡散が遅い相が不均一に分 布する場合には、分布によって拡散挙動やトラップ挙動が異なる

・拡散を抑制するには、拡散方向に垂直もしくはランダムな層状の空間分

布が有効である。拡散を阻害させないようにするには、球状もしくは拡散方 向に平行な層状な空間分布が有効である。

・オーステナイト相や水素をトラップする欠陥を有効に活用することで、水素脆化を引き起こす応力集中部での水素濃度上昇を抑制する効果を期待できる。

6.2 今後の課題

本研究では扱えなかった TiC、V4C3の半整合界面や非整合界面および界 面近傍の空孔のトラップ状態の解析が、TiC、V4C3の3DAPの結果の解釈 する上で課題である。そのためには、大規模な第一原理計算が不可欠である。 セメンタイトの非整合界面や内部の粒界での水素トラップ能の解析も、TDA の高温ピークの起因を検証する上で課題であり、大規模な第一原理計算が必 要となる。また、その他の炭化物や析出物も実用鋼材での水素トラップ挙動 を予測するために必要である。

また、溶接部などの実プロセスでの水素の挙動を予測するには、mm オー ダーのマクロな計算となるため、拡散の遅い相の空間分布を反映したモデル の構築が課題となる。

さらに、本研究では対象としなかったが、水素脆化の有無を予測するには水 素脆化機構に基づく破壊応力モデルや、水素侵入機構に基づく水素侵入量予 測モデルも、今後の課題である。

参考文献

- T. Fujita and Y. Yamada: SCC and HE of iron base alloys NACE-5, (1971) 736
- 2) M. Wang, E. Akiyama, K. Tsuzaki: Corrosion Science 49 (2007) 4081
- J. Takahashi, K. Kawakami, Y. Kobayashi and T. Tarui: Scripta Materialia 63 (2010) 261
- J. Takahashi, K. Kawakamia and T. Tarui: Scripta Materialia 67 (2012) 213
- 5) A. McNabb and P.K. Foster : Trans. Metall. Soc. AIME 227 (1963) 618
- 6) 坂本芳一、片山浩: 日本金属学会誌 46 (1982) 805
- 7) 南雲道彦: 材料と環境 56 (2007) 343
- 8) 南雲道彦: 材料と環境 56 (2007) 382
- 9) J. R. Rice and J. S. Wang: Mater. Sci. Eng. A 107 (1989) 23
- M. Yamaguchi, J. Kameda, K. Ebihara, M. Itakura, H. Kaburaki: Phil. Mag. 92 (2012) 1349
- S. H. Vosko, L. Wilk and M. Nusair: Can. J. Phys. 58 (1980) 1200,
 J. P. Perdew and A. Zunger: Phys. Rev. B 23 (1981) 5048, L. A. Cole and J. P. Perdew: Phys. Rev. A 25 (1982) 1265, John P. Perdew and Yue Wang: Phys. Rev. B 45 (1992) 13244
- 12) W. Kohn, L. J. Sham: Phys. Rev. 140 (1965) A1133
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais: Phys. Rev. B 46 (1992) 6671, J. P. Perdew and Y. Wang: Phys. Rev. B 45 (1992) 13244, J. P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865, G. Kresse and D. Joubert: Phys. Rev. B 59 (1999) 1758
- 14) T. Asada, K. Terakura: Phys. Rev. B 46 (1992) 13599, T. Asada, K. Terakura; Phys. Rev. B 48 (1993) 17649
- 15) D. R. Hamann, M. Schlüter and C. Chiang: Phys. Rev. Lett. 43 (1979) 1494, G. B. Bachelet, D. R. Hamann and M. Schlüter: Phys. Rev. B 26 (1982) 4199, A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos: Phys. Rev. B 41 (1990) 1227
- 16) D. Vanderbilt, Phys. Rev. B 41 (1990) 7892
- 17) P. E. Blöchl, Phys. Rev. B 50 (1994) 17953
- 18) G. Kresse and J. Furthmüller: Phys. Rev. B 54 (1996) 116169
- Flexpde, Finite Element Solver for Partial Differential Equation, PDE Solutions Inc., WA, USA, (2009), www.pdesolutions.com.

- 20) H. Jonsson, G. Mills, and K. W. Jacobsen: Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapore, 1998) 385
- 21) M.F.Stevens and I.M.Bernstein: Metall. Trans. A, 20A (1989) 909
- 22) H. G. LEE and J. Y. LEE: Acta Metall. 32 (1984) 131, S. M. LEE and J. Y. LEE: Acta Metall. 35(1987) 2695
- 23) F. G. Wei and K. Tsuzaki : Metall. Mater. Trans. A 37 (2006) 331
- 24) 土田武広, 原 徹, 津崎兼彰: 鉄と鋼 88, (2002) 69
- 25) H. Asahi, D. Hirakami and S. Yamasaki: ISIJ Int. **43** (2003) 527
- 26) J. F. Shackelford and W. Alexander: *CRC Materials Science and Engineering Handbook*, (CRC Press, 2000)
- 27) W. S. Jung, S. C. Lee and S. H. Chung: Solid State Phenom. **124** (2008) 1625
- 28) G-W Hong and J-Y Lee: J. Mat. Sci. 18 (1983) 271
- M. Nagumo, K. Takai, N. Okuda: J. Alloys and Comp. 293-295 (1999) 310
- 30) J-S Kim, Y-H Lee, D-L Lee, K-T Park and C-S Lee: Mat. Sci. and Eng. A 505 (2009) 105
- 31) F-G Wei and K Tsuzaki: Scripta Mat. 52 (2005) 467
- 32) H. Hanada, T. Otsuka, H. Nakashima, S. Sakai, M. Hayakawa and M. Sugisaki: Scripta Mat. 53 (2005) 1279.
- 33) E. Akiyama, S. Li, T. Shinohara, Z. Zhang and K. Tsuzaki: Electrochimica Acta 56 (2011) 1799
- 34) K. Takai and R. Watanuki: ISIJ Int. 43 (2003) 520
- 35) D.S. Zhou and G.J. Shiflet: Metal. Trans. A23 (1992) 1259
- 36) 山口正剛, 亀田純, 海老原健一: 材料とプロセス 25 (2012) 256
- 37) D.Psiachos, Modelling Simul. Mater. Sci. Eng. 20 (2012) 035011
- 38) 南雲道彦: 水素脆性の基礎、(内田老鶴圃, 2008)
- 39) M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, H. Kaburaki: Metall. Mater. Trans. A 42 (2011) 330, H. Kaburaki: Annual Report of the Earth Simulator Center April 2009 - March 2010 (2011) 151

付録 A

TDA 測定(Thermal Desorption Analysis)

試料に水素をチャージした後、温度を一定速度で上昇させながら、脱離し た水素の量を測定して、試料中の水素のトラップ状態を解析する実験方法で ある。元々は表面に吸着したガスの吸着エネルギーと量を見積もるための手 法であり、TDA (Thermal Desorption Analysis) と呼ばれていた。試料内 の水素の場合には、トラップされた状態からの乖離と表面までの拡散が混在 しており、トラップエネルギーを見積もるために、昇温速度を変化させたと きのピーク温度の変化から、トラップエネルギーを見積もる手法がよく用い られている。トラップサイトが複数ある場合、トラップエネルギーが近いと 分離することは困難である。しかしながら、トラップサイトが一種類であっ ても、トラップからの脱離ピークと試料表面までの拡散ピークとがうまく分 離するように実験条件を選ぶ必要がある。また、標準的な TDA では、室温 から昇温するために、空孔や転位などより浅いトラップサイトは分離できな いため、液体窒素温度から昇温する低温 TDA が近年実用化され、いわゆる 拡散性水素の詳細な解析が可能となってきた。

各種の欠陥を多く含む試料を用い、さらに、拡散の効果を極力抑えるため に、試料の厚みを極限まで薄くするなどの工夫した上で、低温 TDA で測定 した結果のまとめを図 A.1 に示す。従来の室温から測定する TDA では、格 子間水素、転位、空孔、粒界にトラップされた水素によるピークを分離でき ないのに対して、低温 TDA では分離できる。ただし、トラップエネルギー が近いトラップサイトは原理的に区別できない。

Fig. A.1 Schematic diagram of the measured spectrum by conventional TDA and Low temperature TDA

付録 B

3 DAP 測定

試料中の元素毎の三次元分布を測定する方法で、測定原理の模式図を図 B.1 に示す。先端がサブミクロンの曲率になるまで尖らせた試料に、真空中 で高電圧をかける先端部の原子が電界蒸発する。高電圧はパルス状に掛けら れ、蒸発した原子は、掛けられた電界から一定の運動エネルギーを得て、表 面から放射状に進み、イオンが衝突した位置と時間を検出するセンサーに衝 突する。衝突した位置から、試料から飛び出した位置が、パルスを掛けた時 刻からの経過時間からイオン種(原子量/電荷比)が分かる。最近では質量 分解能を上げるために、蒸発したイオンを電界で反射させて、蒸発時の運動 エネルギー差を補償するリフレクトロンと呼ばれる「エネルギー補償」機構 を付けることが多い。

本論文で述べた水素の測定においては、測定機内に残存する水素と区別す るために重水素をチャージしたことと、チャージ後急速冷却することで微小 なサンプルから重水素が抜けてしまうことを防いだことで、世界で初めてト ラップ水素を原子オーダーで捉える事ができた。この手法の開発においては、 事前に脱離・拡散挙動を計算で評価することで、冷却条件を十分に検討した ことも一因である。

Fig. B.1 Schematic diagram of 3DAP

謝辞

本研究を遂行し学位論文をまとめるに当たり、多くの方々に御世話になりました。 ここに深く感謝の意を表します。

本研究を進めるにあたり、研究活動全般にわたり格別なる御指導と御高配を賜りま した金沢大学大学院自然科学研究科 松宮徹教授に甚大なる謝意を表します。私が曲 がりなりにも博士論文をまとめることができたのは、先生が、時に厳しくご指導し てくださったことや、やさしく励ましてくださったおかげに他なりません。

本論文の作成と学位論文審査において、貴重なご指導とご助言を頂いた金 沢大学大学院自然科学研究科 門前亮一教授、三木理教授、下川智嗣准教授、石川和 宏准教授に心より感謝申しあげます。先生方の御助言により、本論文の完成度が 高まりました。本当にありがとうございました。

三次元アトムプローブによる水素分布の直接観察を中心とする実験方面でのご協 力とご助言とをいただいた新日鐵住金株式会社の高橋淳博士に深く感謝いたします。 本研究の、実験的側面での重要なデータとして活用することができました。

また、会社に在籍したまま、博士課程への入学や在学中の便宜を図っていただいた 新日鐵住金株式会社の山田亘部長を始めとする上司や同僚に心より感謝いたします。

最後になりましたが、博士課程に入学する機会を与え、ありとあらゆる場面で私を 温かく見守り支え続けてくれた家族に深く感謝いたします。

本研究の成果が皆々様のご期待に沿うものかどうか甚だ疑問ではありますが,ここ に重ねて厚く謝意を表し,謝辞といたします。