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CHAPTER 1 
 

General introduction 
 

UDP-Glucuronosyltransferases (UGTs, EC 2.4.1.17) are a family of phase II 

drug-metabolizing enzymes that play key roles in the metabolism of endogenous and 

exogenous compounds (Mackenzie et al., 2005). UGTs mediate the transfer of glucuronic 

acid from UDP-glucuronic acid (UDPGA) to hydroxyl, carboxyl, or amine groups of 

hydrophobic compounds, facilitating their elimination into bile and urine (Ritter, 2000). 

While glucuronidation usually inactivates biologically active molecules, there are exceptions 

such as morphine and retinoic acids, which are converted to pharmacologically active 

glucuronides (Formelli et al., 1996; Shimomura et al., 1971). Human UGTs are classified by 

evolutionary divergence into three subfamilies, including UGT1A, UGT2A, and UGT2B 

(Mackenzie et al., 2005). The human UGT1A gene cluster is located on chromosome 2q37 

and contains multiple unique first exons, as well as the conserved exons 2-5, which can give 

rise to nine kinds of functional UGT1A isoforms, including UGT1A1, UGT1A3, UGT1A4, 

UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 (Ritter et al., 1992; Gong 

et al., 2001) (Fig. 1). The UGT2A and UGT2B genes are located on chromosome 4q13, 

encoding three and seven functional proteins, respectively. The UGT2A1 and UGT2A2 are 

formed by alternative splicing of variable first exons and common exons 2 to 6, likely 

the UGT1A gene, while UGT2A3 and each UGT2B are encoded by individual genes (Fig. 1). 

The expression of UGT enzymes is subject to genetic polymorphism (Guillemette, 2003) 

and can be induced by various endogenous and exogenous compounds (Sutherland et al., 

1993; Mackenzie et al., 2003). These features would be the possible reasons of interindividual 

variability of expression level and enzymatic activity, which may be associated with the 

interindividual variability of drug efficacy and toxicity. Thus, knowledge of tissue distribution 

and interindividual variability of UGT expression allows to predict pharmacokinetics of drugs. 

Recent studies uncovered the expression of UGTs in human tissues at mRNA levels (Izukawa 

et al., 2009; Court et al., 2012). However, there is little information on the protein expression 

levels of UGTs. One of the reasons for this is the limited availability of isoforms-specific 

antibody, since UGT isoforms share a high degree of amino acid similarity. In chapter 2, 

isoform-specific antibodies were prepared and subsequently tissue distribution and 
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interindividual variability in the enzyme expression of UGTs were investigated using these 

antibodies.  

Fig. 1. Gene structure and phylogenic tree of human UGT superfamily. The numbers in the phylogenic tree 
represent amino acid identities. “P” after the gene number denotes a pseudogene. Arrows indicate the direction 
of transcription. 

 

Human UGTs show tissue-specific expression. Although most UGTs are predominantly 

expressed in the liver, UGT1A7, UGT1A8, and UGT1A10 are exclusively expressed in the 

gastrointestinal tract (Strassburg et al., 1997, 1998a and 1998b). UGT1A1 is expressed in the 

liver, small intestine and colon, but not in the kidney (Nakamura et al., 2008; Ohno and 

Nakajin, 2009; Court et al., 2012). The expression of UGT2A1 and 2A2 are limited to the 

olfactory epithelium (Court et al., 2012). UGT2B7 is abundantly expressed in the liver, 

kidney, small intestine, and colon, whereas UGT2B10 is expressed only in the liver (Court et 

al., 2012). To understand the underlying mechanisms of the tissue-specific expression of 

UGTs, some studies were conducted with a focus on transcriptional regulation 

(Gardner-Stephen and Mackenzie, 2008; Mackenzie et al., 2010). It has been demonstrated 

that the intestine-specific transcription factor, caudal-type homeobox protein 2 (Cdx2), Sp1 

and hepatocyte nuclear factor (HNF) 1α regulate UGT1A8 and UGT1A10 expression in the 
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intestine (Gregory et al., 2004b). HNF1α and Cdx2 cooperatively regulate UGT2B7 

expression in the intestine, whereas HNF1α and octamer transcription factor-1 cooperatively 

regulate its expression in the liver and kidney (Gregory et al., 2006). HNF1α is also involved 

in the regulation of UGT1A1 expression in the liver (Bernard et al., 1999). Thus, knowledge 

of the transcriptional regulation of the tissue-specific expression of the UGTs is accumulating. 

Nevertheless, a fundamental question that remains to be answered is defective expression 

of some UGTs in a given tissue even under the presence of trans-acting factor. For example, 

UGT1A1 and UGT1A10 are not expressed in the kidney and liver, respectively, even though 

HNF1α is expressed in these tissues (Rey-Campos et al., 1991). This study sought to clarify 

the mechanisms underlying the defective expression of UGT1A1 and UGT1A10, with a focus 

on epigenetic regulation. It is well known that epigenetic mechanisms including DNA 

methylation and histone modification are key regulators of tissue-dependent gene expression 

(Shiota, 2004; Ohgane et al., 2008). In chapters 3 and 4, it was investigated whether DNA 

methylation of the promoter and histone modification might be determinants of the 

tissue-specific expression of human UGT1A1 and UGT1A10.  
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CHAPTER 2 
 

Generation of specific monoclonal antibodies against human 
UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and 

UGT2B10 and evaluation of their protein levels in human tissues 
 

ABSTRACT 

Glucuronidation is a major detoxification pathway of drugs and xenobiotics that is 

catalyzed by the UGT superfamily. Determination of the protein levels of the individual UGT 

isoforms in human tissues is required for the successful extrapolation of in vitro metabolic 

data to in vivo clearance. Most previous studies evaluating UGT isoform expression were 

limited to the mRNA level because of the high degree of amino acid sequence homology 

between UGT isoforms that has hampered the availability of isoform-specific antibodies. In 

this study, monoclonal antibodies against human UGT1A6, UGT1A8, UGT1A9, UGT1A10, 

UGT2B4, and UGT2B10 were generated using each UGT isoform-specific peptide. It was 

confirmed that these antibodies did not cross-react with the other human UGT isoforms. 

Using these antibodies, it was demonstrated that UGT1A6 and UGT1A9 proteins were 

expressed in both the kidney and the liver, but not in the small intestine, UGT2B4 and 

UGT2B10 were expressed only in the liver, and UGT1A10 was expressed only in the small 

intestine, that are consistent with previous reports of mRNA expression. In a panel of 20 

individual human livers, the UGT1A6, UGT1A9, UGT2B4, and UGT2B10 protein levels 

exhibited 10-, 9-, 6-, and 7-fold variability, respectively. Interestingly, their relative protein 

and mRNA levels were not correlated, suggesting the importance of evaluating UGT isoform 

expression at protein levels. In conclusion, specific monoclonal antibodies against UGT1A6, 

UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B10 were successfully generated and 

the distribution and relative expression levels of their protein in human tissues were evaluated. 

These antibodies would serve as a useful tool for further studies of UGTs to evaluate their 

physiological, pharmacological, and toxicological roles in human tissues. 
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INTRODUCTION 

Drug disposition and metabolism are key factors that determine interindividual differences 

in the pharmacokinetics of drugs. Therefore, the activities and the expression levels of 

drug-metabolizing enzymes and transporters have been a focus of interest for 

pharmacokinetic research for a long time and have been analyzed in attempts to evaluate 

individual differences of hepatic disposition and metabolism. Variability of UGT expression 

can be evaluated by measuring enzyme activity in vitro using specific substrates. However, 

substrates that are specifically metabolized by a single UGT isoform are limited because of 

the broad and overlapping substrate specificities of UGTs. Inappropriate selection of 

substrates may lead to misevaluation. An alternative approach is to measure mRNA levels of 

individual UGT isoforms. Indeed, earlier studies evaluated the interindividual difference in 

the expression or tissue distribution of UGT isoforms at the mRNA level (Izukawa et al., 

2009; Ohno and Nakajin, 2009; Strassburg et al., 2000). However, it was reported that certain 

individual UGT mRNA levels correlate poorly with their respective protein levels (Izukawa et 

al., 2009, Ohtsuki et al., 2012). Therefore, it should be noted that the mRNA levels might not 

necessarily reflect the actual UGT protein levels. Immunochemical technique is the most 

conventional approach for the assessment of protein levels. However, this approach is limited 

by the specificity of available antibodies. Currently, specific antibodies for human UGT 

isoforms are only commercially available for UGT1A1 and UGT2B7. Antibodies against 

UGT1A4 and UGT1A9 are also available for purchase, but their specificity is not guaranteed. 

Because UGTs share a high degree of sequence similarity, it is a great challenge to generate 

an isoform-specific antibody against each UGT. Indeed, the antibody against UGT1A9 

prepared by Girard et al. (2004) exhibits cross-reactivity against highly conserved enzymes 

UGT1A7, UGT1A8, and UGT1A10. In this study, specific monoclonal antibodies against 

human UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B10 were generated 

to evaluate the variability of UGT protein levels in human tissue samples by Western blot 

analysis. 
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MATERIALS AND METHODS 

Chemicals and reagents 

Recombinant human UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, 

UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17 expressed 

in baculovirus-infected insect cells (Supersomes) as well as insect cell control Supersomes, 

human liver microsomes (a pooled sample, n = 50) and human small intestine microsomes (a 

pooled sample, n = 6) were purchased from BD Gentest (Woburn, MA). Human kidney 

microsomes (a pooled sample, n = 6) was purchased from Tissue Transformation 

Technologies (Edison, NJ). Endoglycosidase H (Endo H) and peptide: N-glycosidase F 

(PNGase F) were purchased from New England Biolabs (Ipswich, MA). A goat anti-human 

hepatocyte nuclear factor (HNF) 1α polyclonal antibody (C-19) and mouse anti-β-actin 

monoclonal antibody (C-14) were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA). All the other reagents were of the highest grade commercially available. 

 

Human tissues 

Human liver samples from 14 individual donors were supplied by the National Disease 

Research Interchange (NDRI, Philadelphia, PA) through the Human and Animal Bridging 

Research Organization (Chiba, Japan), and those from six Japanese donors were obtained 

from autopsy materials that were discarded after pathological investigation (Izukawa et al., 

2009). Microsomes were prepared as described previously (Tabata et al., 2004). The use of 

the human livers was approved by the Ethics Committees of Kanazawa University (Kanazawa, 

Japan) and Iwate Medical University (Morioka, Japan). 

 

Cell culture 

A human embryonic kidney-derived cell line HEK293 stably expressing UGT1A9 was 

previously established in my laboratory (Fujiwara et al., 2007b). 
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Preparation of monoclonal antibodies against UGT1A6, UGT1A8, UGT1A9, UGT1A10, 

UGT2B4, and UGT2B10 

The selection of antigenic peptide, peptide synthesis, and keyhole limpet hemocyanin 

conjugation were performed by Biogate (Gifu, Japan). Hydrophilicity, secondary structure, 

surface probability, and antigenicity were considered in the designation of the antigenic 

peptide sequence as follows: The hydrophilicity was evaluated by the method of Hopp and 

Woods (Hopp and Woods, 1981). The secondary structure was evaluated by the method of 

Chou-Fasman (Chou and Fasman, 1974) and the method of Robson (Garnier et al., 1978) 

using the GENETYX-MAC software (Software Development, Tokyo, Japan). The surface 

probability was evaluated by the method of Emini (Emini et al., 1985). Antigenicity was 

evaluated by the method of Welling (Welling et al., 1985) and the method of Parker (Parker et 

al., 1986) using original software. The designed peptide sequence was subjected to BLASTP 

search (http://www.ncbi.nlm.nih.gov/blast/) to screen its homology with known protein 

sequences. Based on these evaluations, sequences within the N-terminal half of each UGT 

isoforms were raised as candidate peptides (Table 1). At the N terminus of the synthesized 

peptides, a cysteine residue was added to facilitate conjugation to the carrier protein, keyhole 

limpet hemocyanin. The mouse monoclonal antibodies against the peptides were prepared by 

CLEA Japan (Tokyo, Japan) using a standard protocol. The hybridomas producing the 

antibodies were screened by ELISA with the synthesized peptide. Reactivity and specificity of 

antibody clones were evaluated by Western blotting as described below. A clone that 

specifically reacted with each UGT was expanded by intraperitoneal injection into mineral 

oil-primed mice. Monoclonal antibodies from mouse ascitic fluids were partially purified by 

precipitation with 33% ammonium sulfate. 
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Table 1. Sequence alignment of the candidate peptide of UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, 
and UGT2B10 as the antigens with the corresponding region of the other UGTs. 

Isoform Accession No. Sequence 
UGT1A1 P22309 84QREDVKESFVSLGHNVFEN--DSFLQRVIKTYKKIKKDSA121 

UGT1A3 P35503 85TQDEFDRHVLGHTQLYFET--EHFLKKFFRSMAMLNNMSL122 

UGT1A4 P22310 85TQKEFDRVTLGYTQGFFET--EHLLKRYSRSMAIMNNVSL122 

UGT1A5 P35504 85TQDEFDRLLLGHTQSFFET--EHLLMKFSRRMAIMNNMSL122 

UGT1A6 P19224 83DQEELKNRYQSFGNNHFAE--RSFLTAPQTEYRNNMIVIG120 

UGT1A7 NP_061950 82TLEDQDREFMVFADARWTAPLRSAFSLLTSSSNG---IFD118 

UGT1A8 AAB8425 82TLEDLDREFMDFADAQWKAQVRSLFSLFLSSSNG---FFN118 

UGT1A9 NP_066307 82TLEDLDREFKAFAHAQWKAQVRSIYSLLMGSYND---IFD118 

UGT1A10 AAB81537 82TLEDQNREFMVFAHAQWKAQAQSIFSLLMSSSSG---FLD118 

UGT2B4 P06133 86EFEDIIKQLVKRWAEZLPKDTFWSYFSQVQEIMWTFN121 

UGT2B7 P16662 86ELENFIMQQIKRWSZDLPKDTFWLYFSQVQEIMSIFG121 

UGT2B10 P36537 84EFENIIMQLVKRLS-EIQKDTFWLPFSQEQEILWAIN119 

UGT2B11 AAC27891 86EFENIIMQQVKRWS-DIRKDSFWLYFSQEQEILWELY120 

UGT2B15 P54855 86YLEDSLLKILDRWIYGVSKNTFWSYFSQLQELCWEYY121 

UGT2B17 AAC25491 86DLEDFFMKMFDRWTYSISKNTFWSYFSQLQELCWEYS121 

UGT2B28 NP_444267 86EFENIIMQQVKRWS-DIQKDSFWLYFSQEQEILWEFH120 

The peptides used as antigens in this study are shown in bold letters.  

 

SDS-PAGE and Western blot analysis 

For the analysis of UGTs, UGT Supersomes and microsomes from human, mouse, or rat 

tissues were separated by 10% SDS-polyacrylamide gel electrophoresis (PAGE) and 

transferred to Protran nitrocellulose membranes (Whatman GmbH, Dassel, Germany). The 

quantity of protein loaded onto gels was decided to be in the range showing linearity. In some 

cases, human liver microsomes or recombinant UGT1A9 proteins were treated with Endo H 

which cleaves the bond between two N-acetylglucosamines directly proximal to asparagine 

residue or PNGase F which cleaves the bond between asparagine and the 

N-acetylglucosamine residue. The enzyme sources were adjusted to a 2 mg/ml protein 

concentration with a denaturing buffer containing a final concentration of 0.5% SDS and 40 

mM dithiothreitol and subsequently were denatured at 95°C for 10 min. An aliquot was 

incubated with 250 U of Endo H in 50 mM sodium citrate buffer (pH 5.5) or 500 U of 

PNGase F in 50 mM sodium phosphate buffer (pH 7.5) containing 1% NP-40 at 37°C for 1 h.  

For the analysis of HNF1α, 50 µg of human liver homogenates were separated by 7.5% 
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SDS-PAGE and transferred to a polyvinylidene difluoride (PVDF) Immobilon-P membrane 

(Millipore, Billerica, MA). For the analysis of β-actin, 10 µg of human liver microsomes or 

homogenates were separated by 7.5% SDS-PAGE and transferred to PVDF membranes.  

After incubation in Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE) for 1 h, 

the membranes were probed with either 1:500 diluted anti-each UGT antibody, 1:200 diluted 

anti-HNF1α antibody, or 1:200 diluted anti-β-actin antibody for 3 h followed by incubation 

with the corresponding fluorescent dye-conjugated secondary antibodies. The UGTs or 

HNF1α protein levels in individual human liver samples were normalized to β-actin protein 

levels. The band densities were quantified with the Odyssey Infrared Imaging system 

(LI-COR Biosciences).  

 

Glucuronide formation assays 

Serotonin O-glucuronide formation was measured according to Krishnaswamy et al. 

(2003) with slight modifications. Briefly, a typical incubation mixture (100 µl of total 

volume) contained 25 mM potassium phosphate buffer (pH 7.4), 2.5 mM MgCl2, 5 mM 

UDPGA, 25 µg/ml alamethicin, 0.25 mg/ml microsomal preparation or UGT Supersomes, and 

5 mM serotonin. The reactions were initiated by the addition of UDPGA and were then 

incubated at 37°C for 30 min. The reactions were terminated by addition of 100 µl of 

acetonitrile. After removal of the protein by centrifugation at 13,000 g for 5 min, a 20-µl 

portion of the sample was subjected to HPLC. 

Propofol O-glucuronide formation was measured according to Fujiwara et al. (2007b) with 

slight modifications. Briefly, a typical incubation mixture (200 µl of total volume) contained 

50 mM potassium phosphate buffer (pH 7.4), 10 mM MgCl2, 3 mM UDPGA, 25 µg/ml 

alamethicin, 0.5 mg/ml microsomal preparation or UGT Supersomes, and 500 µM propofol. 

The reaction were initiated by addition of UDPGA and were then incubated at 37°C for 30 

min. The reactions were terminated by addition of 200 µl of acetonitrile. After removal of the 

protein by centrifugation at 13,000 g for 5 min, a 50-µl portion of the sample was subjected to 

HPLC.  
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Nicotine N-glucuronide formation was measured according to Nakajima et al. (2002) with 

slight modifications. Briefly, a typical incubation mixture (200 µl of total volume) contained 

20 mM Tris-HCl buffer (pH 7.4), 5 mM MgCl2, 2.5 mM UDPGA, 25 µg/ml alamethicin, 

0.25 mg/ml microsomal preparation or UGT Supersomes, and 50 µM nicotine. The reactions 

were initiated by addition of UDPGA and were then incubated at 37°C for 60 min. The 

reactions were terminated by boiling for 10 min. After removal of protein by centrifugation at 

10,000 rpm for 5 min, a 9-μl solution containing phosphoric acid and heptane sulfonate 

sodium to make the concentrations of these chemicals the same as those in the mobile phase. 

A 20-µl portion of the sample was subjected to HPLC. The quantification of nicotine 

N-glucuronide was performed by comparing the HPLC peak height to that of the authentic 

standard. For the quantification of the other glucuronides, the eluate from the HPLC column 

containing each glucuronide was collected and a part of the eluate was hydrolyzed with 

NaOH at 75°C for 30 min (Hawes, 1998). The hydrolyzed glucuronides were quantified using 

HPLC by comparison of peak heights to those of external standard curve of the aglycones. 

   

Statistical analyses 

Correlation analyses were performed by the Pearson’s product-moment method. 

Differences between groups were determined by analysis of variance followed by the Tukey’s 

multiple comparison test. A value of p < 0.05 was considered statistically significant. 

 

RESULTS 

Selection of peptide antigens to generate UGT1A6, UGT1A8, UGT1A9, UGT1A10, 

UGT2B4, and UGT2B10 antibodies 

Initially, preparation of a mouse monoclonal antibody against UGT1A9 was attempted 

using a histidine-tagged full-length UGT1A9 protein as an antigen. However, all of the 

resulting antibody clones (30 clones) cross-reacted with other UGT1A isoforms (data not 

shown). The full-length amino acid sequence of UGT1A9 exhibits homology with UGT1A7, 

UGT1A8, and UGT1A10 in excess of 89% (Table 2). Therefore, next the monoclonal 
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antibody was sought to be prepared using a UGT1A9 peptide as an antigen. Although 

peptides ranging from 10-20 amino acid residues in length are generally employed for 

antigens, a relatively longer peptide was employed expecting that it could recognize 

three-dimensional structure. Residues 87 to 118 of UGT1A9 (32 amino acids) were selected 

as an antigen (Table 1)—this peptide sequence is contained within the longer peptide antigen 

(82 amino acids, residues 61 to 142) used by Girard et al. (2004). The amino acid homology 

of the two different antigenic peptides with the corresponding residues of UGT1A7, UGT1A8, 

and UGT1A10 was 59-63% (32 residue peptide) versus 80% (82 residue peptide) (Table 2). 

Thus, the peptide comprising the 87 to 118 amino acid residues of UGT1A9 was used as an 

antigen. Each peptide of the other UGT isoforms, UGT1A6, UGT1A8, UGT1A10, UGT2B4, 

and UGT2B10 was also selected (Table 1). The amino acid homology of the selected 

antigenic peptides with the corresponding residues of the other peptides was 78% at the 

highest (Tables 2 and 3). 
 
Table 2. Amino acid identities of antigenic peptides or full-length sequences within UGT1As. 

UGT1A 
isoform 

Amino acid identity (%) 

 
UGT1A6 

 
UGT1A8 

 
UGT1A9 

 
UGT1A10 

Peptide Full-length Peptide Full-length Peptide Full-length Peptide Full-length 
UGT1A1  30 68  10 66  9 67  13 66 
UGT1A3  18 67  7 67  6 67  13 66 
UGT1A4  12 67  7 66  6 68  3 65 
UGT1A5  12 68  7 68  13 68  7 66 
UGT1A6  - -  10 68  9 69  7 68 
UGT1A7  6 68  72 94  59 93  69 90 
UGT1A8  9 68  - -  63 94  69 90 
UGT1A9  9 69  69 94  - -  66 89 
UGT1A10  6 68  69 90  63 89  - - 
 
Table 3. Amino acid identities of antigenic peptides or full-length  
sequences within UGT2Bs. 

UGT2B 
isoform 

Amino acid identity (%)  

 
UGT2B4 

 
UGT2B10 

 
Peptide Full-length Peptide Full-length 

UGT2B4  - -  67 86  
UGT2B7  67 86  58 88  
UGT2B10  64 86  - -  
UGT2B11  58 86  75 91  
UGT2B15  45 79  31 78  
UGT2B17  45 78  39 77  
UGT2B28  61 84  78 89  
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Specificity of the prepared antibodies against each UGT isoform 

The specificity of the candidate antibody clones was evaluated by Western blot analysis 

using a panel of recombinant human UGT1A or UGT2B isoforms. Fifteen out of 62 clones, 

11 out of 48 clones, 5 out of 40 clones, 4 out of 60 clones, 8 out of 54 clones, and 4 out of 139 

clones reacted with recombinant UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and 

UGT2B10, respectively, without cross-reacting with the other UGT isoforms (data not shown). 

From them, each one clone exhibiting the highest reactivity for the corresponding UGT 

isoform was selected for expansion and antibody production. The specificity of the purified 

antibodies was then confirmed (Fig. 2).  

 
 

Fig. 2. Western blot analyses using the monoclonal antibodies against UGT1A6, UGT1A8, UGT1A9, 
UGT1A10, UGT2B4, and UGT2B10. Recombinant UGTs (1 µg) expressed in baculovirus-infected cells 
(Supersomes) were subjected to 10% SDS-PAGE.  

 

Reactivity of the antibody toward glycosylated or deglycosylated UGT1A9 

UGT1A9 is glycosylated at three asparagine residues at position 71, 292, and 344 

(Nakajima et al., 2010). Three bands observed in UGT1A9 Supersomes (Fig. 2) would 

represent differently glycosylated species of UGT1A9, because none of them were observed 

in the control Supersomes. It was investigated whether the antibody could recognize both 

glycosylated and de- or un-glycosylated UGT1A9. When the UGT1A9 Supersomes were 
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treated with Endo H, the upper two bands observed in the non-treated sample disappeared, 

and a band with higher mobility was observed. The density of the faster migrating band 

appeared higher than that of the sum of the upper two bands (Fig. 3, left). The fastest 

migrating band in the non-treated sample might be glycosylated form that is tolerable to Endo 

H or other post-translationally modified form. The recombinant UGT1A9 stably expressed in 

HEK293 cells also showed three bands (Fig. 3, left), but the upper two bands would be 

non-specific bands because they were observed in homogenates from mock HEK293 cells too 

(data not shown). The difference in the band patterns between UGT1A9 Supersomes and 

UGT1A9 in HEK293 cells might reflect the differences in the extent of glycosylation and/or 

size of the glycan in insect or mammalian cells. When the recombinant UGT1A9 in HEK293 

cells was treated with Endo H, the fastest migrating band was clearly shifted (Fig. 3, left). The 

band density was higher than that in the non-treated sample. As for HLM, the mobility of 

UGT1A9 was similar to that of UGT1A9 expressed in HEK293 cells, and UGT1A9 in HLM 

appeared to show some tolerance to Endo H. Next, PNGase F, which can cleave Endo 

H-resistant N-glycans (likely N-glycans from which two mannose subunits are removed by 

Golgi a-mannosidase II) was used. By the treatment of HLM with PNGase F, only a band 

with faster mobility was observed, indicating that the upper band observed in Endo H-treated 

HLM would be the Endo H-resistant glycosylated UGT1A9 (Fig. 3, right). In the cases of 

UGT1A9 Supersomes and UGT1A9 in HEK293 cells, the results with PNGase F treatment 

were the same with those with Endo H treatment. It is interesting that the deglycosylated 

UGT1A9 in UGT1A9 Supersomes, UGT1A9 in HEK293, and HLM differently migrated, 

although it is still unclear that other post-translational modification such as phosphorylation 

may be involved. Taken together, these results suggest that the antibody can recognize 

UGT1A9 regardless of glycosylation status, although the reactivity seems to be enhanced for 

unglycosylated UGT1A9. 
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Fig. 3. Western blot analyses using the monoclonal antibody against human UGT1A9. Endo H (left panel) or 
PNGase F (right panel)-treated (+) and non-treated (-) UGT1A9 Supersomes (2.5 µg), recombinant UGT1A9 
stably expressed in HEK293 (40 µg), and HLM (30 µg) were subjected. The arrowhead and asterisk represent 
UGT1A9 and non-specific band, respectively. HLM, human liver microsomes; M, marker. 

 

UGT protein expression in microsomes from liver, kidney, and small intestine of human, 

rat, and mouse 

Although previous studies revealed the expression profiles of UGT mRNA in human 

tissues (Nakamura et al., 2008; Ohno and Nakajin, 2009; Court et al., 2012), the expression 

profiles of UGTs at protein levels have not been fully clarified. Thus, microsomes from 

human liver, kidney, and small intestine were subjected to Western blot analysis (Fig. 4). 

Commercially available anti-UGT1A and anti-UGT2B antibodies non-specifically detected 

UGT1A and UGT2B isoforms, respectively, in the tissues. The expression levels were 

expressed relative to the value in recombinant expression system set at 100. UGT1A6 protein 

was highly expressed in the liver (7.0 ± 0.4 unit/µg, mean ± SD) and kidney (6.7 ± 0.1), but 

negligible expression (0.6 ± 0.1) was observed in the small intestine. High expression of 

UGT1A9 protein was detected in the kidney (21.4 ± 2.1), followed by the liver  (10.6 ± 1.8), 

but no expression was observed in the small intestine. UGT1A10 was detected only in the 

small intestine (1.8 ± 0.3). UGT2B4 (27.6 ± 2.3) and UGT2B10 (105.2 ± 1.1) were detected 

only in the liver. UGT1A8 was detected in the liver (5.6 ± 0.1) and to a lesser extent kidney 

(1.3 ± 0.2) as well as small intestine (6.0 ± 0.4). These protein expression profiles were 

largely consistent with the previously reported mRNA expression profiles except UGT1A8 

detected in the liver and kidney (Ohno and Nakajin, 2009; Court et al., 2012).  
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Fig. 4. Western blot analyses of tissue microsomes from human, rat, and mouse using the monoclonal antibodies 
against UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B10. Tissue microsomes were subjected 
to 10% SDS-PAGE. UGT expression levels (unit/µg) are the mean of triplicate determinations. rUGT: 
recombinant UGT Supersomes; ND: not detected; SI: small intestine. 

 

Next, reactivity of the antibodies toward Ugts in mouse and rat liver, small intestine, and 

kidney microsomes was examined. As shown in Fig. 4, no clear band was detected in rat and 

mouse tissue microsomes, suggesting that the antibody does not react with any Ugt in mouse 

and rat tissues microsomes. 

 

Normalized activities of UGT1A6, UGT1A9, and UGT2B10 in recombinant systems and 

human tissue microsomes 

The UGT protein expression levels determined with the prepared antibodies enabled to 

know normalized activities per unit of each UGT. The serotonin O-glucuronidation activities 

in recombinant UGT, HLM, HKM, and HIM were 2,744 ± 38, 10,149 ± 465, 6,874 ± 745, 

and 706 ± 34 pmol/min/mg protein, respectively (Fig. 5A). The propofol O-glucuronidation 

activities in these enzyme sources were 3,849 ± 176, 3,136 ± 378, 8,386 ± 170, and 4,020 ± 

1,162 pmol/min/mg protein, respectively (Fig. 5A). The nicotine N-glucuronidation activities 

in recombinant UGT2B10 and HLM were 0.92 ± 0.81 and 22.40 ± 1.42 pmol/min/mg protein, 

respectively, and was not detected in HKM and HIM (Fig. 5A). These enzyme activities were 

normalized to the corresponding UGT protein expression level (Fig. 5B). The normalized 

serotonin O-glucuronidation activity per unit of UGT in UGT1A6 Supersomes was 37- to 
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52-fold lower than those in human tissue mcirosomes (Fig. 5B). The normalized propofol 

O-glucuronidation activity per unit of UGT in UGT1A9 Supersomes was 8- to 10- fold lower 

than those in human tissue mcirosomes (Fig. 5B). The normalized nicotine N-glucuronidation 

activity per unit of UGT in UGT2B10 Supersomes was 19-fold lower than that in human liver 

mcirosomes (Fig. 5B). Thus, it was demonstrated that the normalized activities per unit of 

each UGT in UGT Supersomes were remarkably lower than those in human tissue 

microsomes.  
 

Fig. 5. Serotonin O-, propofol O-, and nicotine N-glucuronidations in recombinant UGT and human tissue 
microsomes. The activities were expressed as pmol/min/mg protein (A) and pmol/min/unit of UGT (B). Each 
column represent mean ± SD (n = 3). **p < 0.01 and ***p < 0.001. ND: not detected; NA: not applicable. 
 

Expression levels of UGT1A6, UGT1A9, UGT2B4, and UGT2B10 protein in individual 

human livers and the correlation of protein levels with mRNA levels and enzymatic 

activities 

The relative expression levels of UGT1A6, UGT1A9, UGT2B4, and UGT2B10 protein in 

a panel of 20 human liver microsomes were determined (Fig. 6A). The interindividual 

variabilities of UGT1A6, UGT1A9, UGT2B4, and UGT2B10 were 10-, 9-, 6-, and 7-fold, 

respectively (Fig. 6A). The UGT1A6, UGT1A9, and UGT2B10 protein levels were correlated 

with serotonin O-glucuronidation (r = 0.82, p < 0.0001), propofol O-glucuronidation (r = 0.48, 
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p < 0.05), and nicotine N-glucuronidation (r = 0.61, p < 0.01), respectively (Fig. 6B). 

However, their protein levels besides those of UGT2B4 were not correlated with the 

corresponding mRNA levels that were determined in the previous study (Fig. 6C) (Izukawa et 

al., 2009). UGT2B4 protein levels also were not correlated with its mRNA levels. 

 

 

 

 

 
 
 

Fig. 6. Interindividual variability of UGT protein levels in human liver and its correlation with enzyme activity, 
UGT1A9 mRNA or HNF1α protein levels. (A) The expression levels of UGT1A6, -1A9, -2B4, and -2B10 
proteins in 20 human liver microsomes were determined by Western blot analysis. Data are representative of two 
experiments. Relationships (B) between UGT protein levels and serotonin O-glucuronosyltransferase activities, 
propofol O-glucuronosyltransferase activities, or nicotine N- glucuronosyltransferase activities, and (C) between 
UGT protein levels and UGT mRNA levels were analyzed. The serotoninl O-, propofol O-, and nicotine 
N-glucuronosyltransferase activities were measured at a substrate concentration of 5000, 500, and 50 µM, 
respectively. The UGT mRNA levels were normalized to β-actin mRNA levels. The UGT protein levels were 
normalized to β-actin protein levels. The values represent the levels relative to that of the lowest sample. Each 
data point is the mean of duplicate experiments. N.S. not significant. 

 

Relationship between HNF1α  protein levels and UGT protein or mRNA levels in 

individual human livers 

C 

A 

B 
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Previous studies reported that HNF1α and HNF4α mRNA levels were strongly correlated 

with UGT1A6 and UGT1A9 mRNA levels in a panel of human livers (Aueviriyavit et al., 

2007; Ramírez et al., 2008). This is consistent with the finding that HNF1α and HNF4α 

contribute to the regulation of UGT1A9 (Barbier et al., 2005; Gardner-Stephen and 

Mackenzie, 2007). In addition, potential binding sites for HNF1α and HNF4α have been 

identified in the proximal promoter of most known UGTs (Gardner-Stephen et al., 2005). 

However, the HNF protein levels rather than mRNA level should be considered. Thus, the 

relationship between the HNF1α protein levels and the UGT protein or mRNA levels was 

examined. As the results, it was demonstrated that the HNF1α protein levels were 

significantly correlated with the UGT1A6 (r = 0.49, p < 0.05) and UGT1A9 mRNA levels (r 

= 0.52, p < 0.05), but not with UGT2B4 and UGT2B10 mRNA levels (Fig. 7A). In contrast, 

neither UGT protein levels were correlated with the HNF1α protein levels (Fig. 7B). These 

data suggest that while HNF1α would regulate UGT1A6 and UGT1A9 at the transcriptional 

level, their protein levels are being regulated at the post-transcriptional level.  
 

Fig. 7. Correlation analyses between HNF1α protein levels and UGT mRNA or protein levels in a panel of 20 
human livers. Relationships (A) between HNF1α protein levels and UGT mRNA levels, and (B) between 
HNF1α protein levels and UGT protein levels were analyzed. The UGT mRNA levels were normalized to 
β-actin mRNA levels were analyzed. The UGT and HNF1α protein levels were normalized to β-actin protein 
levels. The values represent the levels relative to that of the lowest sample. Each data point is the mean of 
duplicate experiments. N.S. not significant. 

B A 
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DISCUSSION 

Among the 19 human UGT isoforms, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, 

UGT2B7, and UGT2B15 are the isoforms of greatest importance in hepatic drug elimination, 

although pre-hepatic glucuronidation by UGT1A7, UGT1A8, and UGT1A10 may 

additionally influence bioavailability (Miners et al., 2006). In addition to them, hepatic 

UGT2B10 was recently found to show high affinity for clinically important drugs (Kato et al., 

2013). There is now accumulating evidence for the expression profiles of UGTs in human 

tissues at mRNA level (Nakamura et al., 2008; Ohno and Nakajin, 2009; Court et al., 2012). 

However, information regarding their protein has been limited by the lack of isoform-specific 

antibodies. Although there were previous attempts to generate specific antibodies against 

UGT1A9 (Ikushiro et al., 2006; Girard et al., 2004), the antibodies recognized other UGT1A 

isoforms such as UGT1A6 (Ikushiro et al., 2006), UGT1A7, UGT1A8, and UGT1A10 

(Girard et al., 2004). Furthermore, when we evaluated the specificity of commercially 

available antibodies against UGT1A9 (Abcam, Cambridge, UK and Abnova, Taipei, Taiwan), 

it was observed that these antibodies cross-reacted with other UGT1A isoforms (unpublished 

data). Although an antibody against UGT2B4 was prepared (Pillot et al., 1993), the specificity 

was not evaluated. Based on the background, this study was performed to prepare specific 

antibodies against each human UGT and succeeded in generation of antibodies that 

specifically recognize UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B10. 

Upon Western blotting using the prepared antibodies, there were no aggregated UGTs at 

the interface between upper and lower gels or the bottom of the wells in any enzyme source 

(data not shown). It was confirmed that these antibodies did not cross-react with the other 

human UGT isoforms. The tissue distribution of UGT1A6, UGT1A9, UGT1A10, UGT2B4, 

and UGT2B10 protein was largely consistent with previously reported mRNA data 

(Nakamura et al., 2008; Ohno and Nakajin, 2009). Unexpectedly, UGT1A8 protein was 

detected in the liver and kidney as well as small intestine, which was inconsistent with the 

mRNA expression showing the exclusive expression in the gastrointestinal tract but not in the 

liver and kidney (Ohno and Nakajin, 2009; Court et al., 2012). It was surmised that the 
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prepared antibody against UGT1A8 non-specifically reacted with proteins other than UGTs in 

human tissues.  

It was interesting that the expression of UGT1A9 protein was higher in the kidney than 

that in liver (Fig. 4). Although the kidney plays a role in the excretion of polar xenobiotics 

and metabolites, increasing evidence reveals that the kidney significantly contributes to 

metabolic clearance of therapeutic drugs, such as non-steroidal anti-inflammatory drugs, 

propofol, and mycophenolic acid, and to the maintenance of renal homeostasis through 

inactivating mediators, such as prostaglandins, leukotrienes, epoxyeicosatrienoic acids, and 

hydroxyeicosatetraenoic acids (Knights and Miners, 2010). Because these drugs or 

endobiotics are known to be substrates of UGT1A9 (Knights and Miners, 2010), it has been 

speculated that UGT1A9 would contribute to their clearance. There has been only one report 

of the immunohistochemical detection of UGT1A in kidney (Gaganis et al., 2007), although 

the precise isoforms detected remain unknown. The present study supports the role of 

UGT1A9 in the kidney, as indicated by the substantial expression of UGT1A9 protein 

detected by Western blotting. The antibodies that were prepared in the present study will be 

useful for future immunohistochemical studies of UGTs. 

An interesting finding using the prepared antibodies was that the normalized activities of 

UGT1A6, UGT1A9, and UGT2B10 in recombinant systems were unambiguously lower than 

those in human tissue microsomes (Fig. 5). This might be attributable to the differences in 

membrane circumstance including lipid components and/or post-translational modification 

between recombinant systems and human tissue microsomes. Another possible explanation is 

the presence of other UGT isoforms in human tissue microsomes. Previous studies (Fujiwara 

et al., 2007a, 2007b, and 2010) demonstrated that the co-expression of another UGT isoform 

increases the UGT1A6-catalyzed serotonin O-glucuronidation and UGT1A9-catalyzed 

propofol O-glucuronidation in HEK293 cells. Apart from these reasons, it is notable that the 

activities of recombinant UGTs do not directly and quantitatively mirror the actual UGT 

activities in human tissues. In this regard, the relative activity factor approach (Crespi and 

Miller, 1999), which uses the ratio of activity of tissue microsomes and recombinant enzymes, 
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would be useful to estimate the contributions of individual UGTs to a given metabolic 

pathway in tissue microsomes, as recent studies reported (Kato et al., 2012; Zhu et al., 2012).  

Moderate interindividual variability (6- to 10-fold) was found in the hepatic UGT1A6, 

UGT1A9, UGT2B4, and UGT2B10 expression at the protein level (Fig. 6). Several studies 

have sought to uncover the underlying mechanisms of the variability in the UGT expression, 

with particular focus on cis- or trans-acting factors. As cis-acting factors, genetic 

polymorphisms can be raised. The -275 T>A and -2152 C>T alleles, which are linked to each 

other, have been shown to be associated with higher hepatic UGT1A9 protein expression and 

increased rates of propofol and mycophenolic acid glucuronidation (Girard et al., 2004). In 

addition, homozygotes for the intronic SNP at position IVS1+399C>T have been shown to 

exhibit higher (1.3 fold) hepatic UGT1A9 protein levels (Girard et al., 2006). In these studies, 

UGT1A9 protein was assessed using the UGT1A7-10 antibody. The fact that UGT1A7, 

UGT1A8, and UGT1A10 are not expressed in liver made such studies possible. In contrast, 

antibodies prepared in this study would be applicable for the evaluation of the effects of this 

SNP on UGT1A9 expression in extrahepatic tissues expressing UGT1A9 and the closely 

related isoforms UGTs 1A7, 8, and 10, such as kidney and adrenal tissues (Ohno and Nakajin, 

2009). For the UGT1A6 gene, although several polymorphisms were identified in the 5’- 

regulatory region, there were no associations between the polymorphisms and UGT1A6 

expression levels in a panel of human 54 livers (Krishnaswamy et al., 2005). Transcription 

factors might be another factor determining the variability of UGT expression. It has been 

reported that HNF1α and HNF4α positively regulate the expression of UGT1A9 (Barbier et 

al., 2005; Gardner-Stephen and Mackenzie, 2007). A significant positive correlation between 

these factors and UGT1A6 or UGT1A9 at the mRNA level in human livers has been reported 

(Aueviriyavit et al., 2007; Ramírez et al., 2008). Beyond these reports, this study 

demonstrated that HNF1α protein levels are significantly correlated with UGT1A6 or 

UGT1A9 mRNA levels (Fig. 7). However, HNF1α protein levels were not correlated with 

UGT1A6 or UGT1A9 protein levels (Fig. 7), as any correlation was not observed between 

mRNA and protein levels of UGT1A6 or UGT1A9 (Fig. 6). Lack of correlation between the 
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mRNA and protein levels was also observed with other UGTs, such as UGT2B4, UGT2B10 

(Fig. 6), UGT1A4 and UGT2B7 in the present and previous studies (Izukawa et al., 2009). 

Therefore, it is reasonable to speculate that post-transcriptional and/or post-translational 

regulation plays a role in UGT protein levels. MicroRNAs (miRNAs) have recently received 

considerable attention as a critical factor of post-transcriptional regulation. My laboratory 

have reported that some cytochrome P450 isoforms and transcription factors, such as 

pregnane X receptor, vitamin D receptor, and HNF4α are regulated by miRNAs (Nakajima 

and Yokoi, 2011), implicating a role of miRNA in clearance of drugs and endobiotics. It 

would be of interest to investigate whether miRNAs may be involved in the regulation of 

UGTs. Generally mammalian miRNAs bind to the 3’-untranslated region (3’-UTR) of the 

target mRNA to cause translational repression or mRNA degradation. Because the 3’-UTR 

sequences of UGT1As are common, it is possible that UGT1As may be commonly regulated 

by the same miRNA. 

The UGT1A9 protein levels in a panel of 20 individual human livers were moderately (r = 

0.48, p < 0.05) correlated with propofol glucuronidation (Fig. 6). The moderate correlation 

was consistent (r = 0.5, p < 0.0001, n = 48) with the results reported by Girard et al. (2004). 

Because it was previously demonstrated that UGT enzyme activity could be modulated 

through formation of heterodimers with other UGT isoform (Fujiwara et al., 2007a and 

2007b), such modulation might account for the moderate correlation. The prepared antibodies 

in this study might be useful tool to for studying heterodimers of UGTs. 

In summary, specific monoclonal antibodies against human UGT1A6, UGT1A8, UGT1A9, 

UGT1A10, UGT2B4, and UGT2B10 were generated in this study. By Western blot analysis 

using these antibodies, it was demonstrated that human UGT proteins showed tissue-specific 

expression, supporting previous findings at mRNA levels. These antibodies can be used to 

assess tissue distribution and interindividual variability of UGT protein expression, and such 

evaluation may promote the understanding of physiological, pharmacological and 

toxicological role of UGTs. 
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CHAPTER 3 
 

Epigenetic regulation is a crucial factor in the repression of 
UGT1A1 expression in the human kidney 

 

ABSTRACT 

Human UGT1A1 catalyzes the metabolism of numerous clinically and pharmacologically 

important compounds such as bilirubin and SN-38. UGT1A1 is predominantly expressed in 

the liver and intestine, but not in the kidney. The purpose of this study was to uncover the 

mechanism of the tissue-specific expression of UGT1A1, focusing on its epigenetic 

regulation. Bisulfite sequence analysis revealed that the CpG-rich region near the human 

UGT1A1 promoter (-85 to +40) was hypermethylated (83%) in the kidney, whereas it was 

hypomethylated (24%) in the hepatocytes. A chromatin immunoprecipitation assay 

demonstrated that histone H3 near the promoter was hypoacetylated in the kidney but was 

hyperacetylated in the liver; this hyperacetylation was accompanied by the recruitment of 

HNF1α to the promoter. The UGT1A1 promoter in human kidney-derived HK-2 cells that do 

not express UGT1A1 was fully methylated, but was relatively unmethylated in human 

liver-derived HuH-7 cells that express UGT1A1. Treatment with 5-aza-2’-deoxycytidine 

(5-Aza-dC), an inhibitor of DNA methylation, resulted in an increase of UGT1A1 mRNA 

expression in both cell types, but the increase was much larger in HK-2 cells than in HuH-7 

cells. The transfection of an HNF1α expression plasmid into the HK-2 cells resulted in an 

increase of UGT1A1 mRNA only in the presence of 5-Aza-dC. In summary, this study 

demonstrated that DNA hypermethylation along with histone hypoacetylation interferes with 

the binding of HNF1α, resulting in the defective expression of UGT1A1 in the human kidney. 

Thus, epigenetic regulation is a crucial determinant of tissue-specific expression of UGT1A1. 
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INTRODUCTION 

Human UGTs show tissue-specific expression. Although most UGTs are predominantly 

expressed in the liver, UGT1A7, UGT1A8, and UGT1A10 are exclusively expressed in the 

gastrointestinal tract (Strassburg et al., 1997 and 1998b). UGT1A1 is expressed in the liver, 

small intestine and colon, but not in the kidney (Nakamura et al., 2008; Ohno and Nakajin, 

2009; Court et al., 2012). The expression of UGT2A1 and 2A2 are limited to the olfactory 

epithelium (Court et al., 2012). UGT2B7 is abundantly expressed in the liver, kidney, small 

intestine, and colon, whereas UGT2B10 is expressed only in the liver (Court et al., 2012). To 

understand the underlying mechanisms of the tissue-specific expression of UGTs, some 

studies were conducted with a focus on transcriptional regulation (Gardner-Stephen 

and Mackenzie, 2008; Mackenzie et al., 2010). It has been demonstrated that the 

intestine-specific transcription factor, Cdx2, Sp1 and HNF1α regulate UGT1A8 and 1A10 

expression in the intestine (Gregory et al., 2003, 2004a, and 2004b). HNF1α and Cdx2 

cooperatively regulate UGT2B7 expression in the intestine, whereas HNF1α and octamer 

transcription factor-1 cooperatively regulate its expression in the liver and kidney (Gregory et 

al., 2006). HNF1α is also involved in the regulation of UGT1A1 expression in the liver 

(Bernard et al., 1999). Thus, knowledge of the transcriptional regulation of the tissue-specific 

expression of the UGTs is accumulating. 

However, a question that has yet to be answered is why UGT1A1 is not expressed in the 

kidney, even though HNF1α is expressed in this tissue (Rey-Campos et al., 1991). This study 

was performed to clarify the mechanisms underlying the defective expression of UGT1A1, 

with a focus on epigenetic regulation. It is known that epigenetic changes including DNA 

methylation and histone modification are key regulators of tissue-dependent gene expression 

(Shiota, 2004; Ohgane et al., 2008). Supporting this hypothesis, a previous study found that 

the DNA methylation status of the proximal promoter region of the UGT1A1 gene affects 

UGT1A1 expression in colon cancer cell lines (Gagnon et al., 2006). In this study, DNA 

methylation and histone modification of human UGT1A1 in human liver and kidney were 

investigated. 
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MATERIALS AND METHODS 

Chemicals and reagents 

5-Aza-2’-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) were purchased from 

Sigma-Aldrich. Goat anti-human HNF1α polyclonal antibody (C-19), mouse anti-β-actin 

monoclonal antibody (C-14), and control rabbit and goat IgGs were purchased from Santa 

Cruz Biotechnology. Rabbit anti-human acetyl histone H3 polyclonal antibody was purchased 

from Millipore. Primers were commercially synthesized at Hokkaido System Science 

(Sapporo, Japan). All other chemicals and solvents were of the highest grade commercially 

available.  

 

Human tissues 

Human liver and kidney samples from five Japanese donors (donor 1, an 80-year-old 

female; donor 2, a 54-year-old male; donor 3, a 39-year-old female; donor 4, a 13-year-old 

male; donor 5, a 40-year-old male) were obtained from autopsy materials that were discarded 

after pathological investigation. The use of the human livers and kidneys was approved by the 

Ethics Committees of Kanazawa University (Kanazawa, Japan) and Iwate Medical University 

(Morioka, Japan).  

 

Cell culture 

Human kidney tubular epithelial cell line HK-2 and human hepatocellular carcinoma cell 

line HuH-7 were obtained from the American Type Culture Collection (Manassas, VA) and 

the RIKEN BioResource Center (Ibaraki, Japan), respectively. These cells were cultured as 

previously described (Nakamura et al., 2008). 

 

RNA isolation and real-time reverse transcription (RT)-polymerase chain reaction 

(PCR) 

Total RNA was isolated from human liver and kidney samples using RNAiso (Takara Bio, 

Otsu, Japan) according to the manufacturer’s protocol. The cDNA was synthesized from the 
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total RNA using ReverTraAce (Toyobo, Osaka, Japan). The UGT1A1 mRNA levels were 

determined by real-time RT-PCR and normalized to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) mRNA levels as described previously (Izukawa et al., 2009). 

 

Genomic DNA extraction and bisulfite reaction 

Genomic DNA samples were prepared from human liver (donor 3) and kidney (donor 1) 

samples, cell lines, or human hepatocytes (HH268, a 54-year-old Caucasian female, Tissue 

Transformation Technologies, Edison, NJ) with a Gentra Puregene Tissue kit (Qiagen, 

Valencia, CA). Five hundred nanograms of genomic DNA digested with EcoR I was treated 

with bisulfite using the EZ DNA Methylation kit (Zymo Research, Orange, CA). The DNA 

fragment near the transcription start site (TSS) of the UGT1A1 gene was amplified by PCR 

using the primer pair shown in Table 4. The PCR products were cloned into the pT7Blue 

T-Vector (Novagen, Madison, WI), and randomly picked clones were sequenced. The DNA 

methylation status of the sequence was analyzed using the web-based tool QUMA (Kumaki et 

al., 2008). 

 
 
 
Table 4. Oligonucleotides used for the UGT1A1 bisulfite analysis and ChIP assay and for the cloning of 
HNF1α.  

Nucleotides are numbered with the TSS designated as +1 in the UGT1A1 genomic DNA sequence and base A in 
the initiation codon ATG designated as +1 in the HNF1α cDNA sequence. 

 

Oligonucleotides 5’ to 3’ sequence Position 

Bisulfite analysis of UGT1A1 

Forward TTTGTGGATTGATAGTTTTTTATAG -113 to -89 

Reverse CAATAACTACCATCCACTAAAATC +134 to +111 

ChIP assay of UGT1A1 

Forward CTACCTTTGTGGACTGACAGC -118 to -98 

Reverse CAACAGTATCTTCCCAGCATG +111 to +91 

Cloning of HNF1α  

Forward GCAGCCGAGCCATGGTTTCT -11 to +9 

Reverse GGTGCCGTGGTTACTGGGA +1906 to +1888 
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Chromatin immunoprecipitation (ChIP) assay 

The ChIP assay was performed using the ChIP assay kit (Millipore) with slight 

modifications. Approximately 200 mg of frozen human liver (donor 3) or kidney (donor 1) 

was minced on ice and suspended in 1% (v/v) formaldehyde to cross-link proteins to DNA. 

After centrifugation, the precipitate was resuspended in cell lysis buffer and homogenized 

using a Dounce homogenizer. After centrifugation, the precipitate was resuspended in nuclei 

lysis buffer and sonicated to shear the genomic DNA. After centrifugation, the supernatant 

(100 µL) was diluted ten-fold with IP dilution buffer and incubated with Dynabeads protein G 

(Life Technologies, Gaithersburg, MD) conjugated to antibodies against acetylated histone 

H3 (5 µg) or HNF1α (2 µg). A proportion of the diluted supernatant was kept as an input. The 

Dynabeads protein G was precipitated and was washed sequentially one time each with a 

low-salt immune complex wash buffer, a high-salt immune complex buffer, and a LiCl 

immune complex buffer. The DNA-protein complex was eluted with elution buffer twice, and 

the cross-links were reversed by adding NaCl. DNA was extracted by phenol-chloroform 

extraction and ethanol precipitation. The -118 to + 91 region of the UGT1A1 gene was 

amplified by real-time PCR with the primers shown in Table 4. The protocol for the PCR was 

as follows: 95°C for 30 s followed by 45 cycles of 94°C for 4 s and 62°C for 20 s. DNA 

extraction and real-time PCR were also performed for the input samples, and the data were 

used as a control to evaluate the enrichment of DNA in the immunoprecipitates. 

 

Construction of an HNF1α  expression plasmid 

Human HNF1α cDNA was amplified by PCR using the primer pair shown in Table 4 and 

human liver cDNA as a template. The PCR product was subcloned into the pTARGET vector 

(Promega, Madison, MI). The nucleotide sequence was confirmed by DNA sequencing 

analysis. 

 

Chemical treatment and transfection of expression plasmid into the cells 

HK-2 and HuH-7 cells were seeded onto a 12-well plate at 0.5 × 105 cells/well and 
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incubated for 24 h. For dose response experiments, the cells were treated with 0.01, 0.1, 1 or 

10 μM 5-Aza-dC for 120 h or treated with 50, 100, or 300 nM TSA for 24 h and then 

subjected to RNA isolation. For the overexpression of HNF1α, the cells were transiently 

transfected with 0.5 µg of an HNF1α expression plasmid or an empty pTARGET plasmid 

using the X-tremeGENE HP DNA transfection reagent (Roche Applied Science, Indianapolis, 

IN). After 12 h, the cells were treated with 0.1 µM 5-Aza-dC for 96 h, followed by treatment 

with TSA for an additional 24 h. The UGT1A1 mRNA levels were determined as described 

above.  

 

Preparation of nuclear extract and immunoblot analysis of HNF1α  

Nuclear extract was prepared from HK-2 and HuH-7 cells transfected with the HNF1α 

expression plasmid or empty plasmid using NE-PER Nuclear and Cytoplasmic extraction 

reagents (Thermo Fisher Scientific, Rockford, IL) according to the manufacturer’s protocols. 

The protein concentration was determined using Bradford protein assay reagent (Bio-Rad 

Laboratories, Hercules, CA) with γ-globulin as a standard. The nuclear extract (40 μg) was 

separated by 7.5% SDS-PAGE and transferred to an Immobilon-P transfer membrane 

(Millipore). The membranes were probed with goat anti-human HNF1α or rabbit anti-human 

GAPDH antibodies followed by fluorescent dye-conjugated second antibodies. The 

membranes were then scanned using the Odyssey Infrared Imaging system. 

 

Statistical analyses 

For DNA methylation status, the statistical significance was evaluated by the 

Mann-Whitney U-test or Fisher’s exact test using the web-based tool QUMA. For mRNA 

expression, statistical significance was determined using an unpaired, two-tailed Student's t 

test or one-way analysis of variance followed by Dunnett’s test. When the p value was less 

than 0.05, the differences were considered to be statistically significant. 
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RESULT 

UGT1A1 mRNA expression in human liver and kidney 

UGT1A1 mRNA expression in human liver and kidney was determined by real-time 

RT-PCR. As shown in Fig. 8, UGT1A1 mRNA was detected in the liver, but was negligible in 

the kidney. The results supported previous studies (Nakamura et al., 2008; Ohno and Nakajin, 

2009) that reported the repressed expression of UGT1A1 in the human kidney. 
 

 
Fig. 8. UGT1A1 mRNA expression in human 
kidney and liver. The expression levels of UGT1A1 
mRNA were determined by real-time RT-PCR and 
normalized to GAPDH mRNA levels. Each kidney 
and liver sample with a given number of donors 
came from the same donors. The values are 
expressed as relative to the UGT1A1 levels in the 
liver from donor 1. Each column represents the 
mean ± SD of triplicate determinations. K, kidney; 
L, liver; ND, not detectable.  

 

 

 

DNA methylation status of the UGT1A1 promoter region in human liver and kidney 

Genomic DNA extracted from the liver and kidney was treated with bisulfite, and the 

promoter region of UGT1A1 spanning -113 to +111 was amplified by PCR. The PCR product 

was subcloned into a vector, and 14 clones from each sample were sequenced. The DNA 

methylation status of the CpG dinucleotides at -85, -54, -12, +12, +36, and +40 of the 

UGT1A1 gene is shown in Fig. 9. In the liver, 31 out of 84 CpG sites (37%) were methylated, 

whereas in the kidney, 70 out of 84 CpGs (83%) were methylated (p = 0.07, Mann-Whitney 

U-test). Notably, the methylated CpG sites were biased in five clones in the liver. It was 

surmised that these clones might be from hepatic nonparenchymal cells. Hence, the UGT1A1 

promoter in human hepatocytes was investigated and only 20 out of 84 CpG sites (24%) were 

found to be methylated. In particular, nucleotide positions -85, -54, and -12 were 

unmethylated in all hepatocyte clones, but were hypermethylated in the kidney (p < 0.001, p < 

0.01, and p < 0.0001, respectively, Fisher’s exact test). Thus, the DNA methylation status of 
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the UGT1A1 promoter region is different in the liver and kidney.  

Fig. 9. DNA methylation status of the UGT1A1 promoter region in human liver, kidney or hepatocytes. Top, a 
schematic diagram of the UGT1A1 5’-flanking region. The vertical lines and numbers represent the position of 
the cytosine residues of the CpGs relative to the TSS as +1. The HNF1 binding site and TATA box are 
represented by rectangles. Arrows indicate the positions of the primers used for ChIP analysis. Bottom, DNA 
methylation status of CpG sites. Bisulfite sequencing analysis was performed using genomic DNAs extracted 
from human liver (donor 3), kidney (donor 1) or hepatocytes (HH268). Fourteen clones from each sample type 
were sequenced. The open and closed circles represent unmethylated and methylated cytosines, respectively. 

 

Histone H3 acetylation status and recruitment of HNF1α  to the UGT1A1 promoter 

region 

DNA methylation induces chromatin condensation by recruiting chromatin-remodeling 

factors such as methyl-CpG-binding protein and histone deacetylase, thus limiting the access 

of transcription factors (Bird and Wolffe, 1999). ChIP assays were performed to determine the 

extent of histone H3 acetylation at the UGT1A1 promoter in the liver and kidney. In addition, 

the extent of the recruitment of HNF1α to the UGT1A1 promoter in the liver and kidney was 

also determined because it has been demonstrated that HNF1α regulates UGT1A1 expression 

(Bernard et al., 1999). As shown in Fig. 10A, acetylated histone H3 was enriched at the 

UGT1A1 promoter in the liver, but not in the kidney. In addition, it was demonstrated that 

HNF1α was highly recruited to the UGT1A1 promoter in the liver, but not in the kidney (Fig. 

10B). Western blot analysis demonstrated that HNF1α is expressed in kidney and liver 

equally (Fig. 10C). These results suggest that the DNA hypermethylation in the kidney could 

be linked to abolished histone H3 acetylation and HNF1α binding. 
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Fig. 10. Histone H3 acetylation and recruitment of HNF1α in the UGT1A1 promoter region in human kidney 
and liver. (A and B) ChIP assay of acetyl histone H3 and HNF1α in kidney and liver. Human kidney (donor 1) 
and liver (donor 3) chromatin was precipitated with anti-acetyl histone H3 antibody (A) or anti-HNF1α antibody 
(B). The precipitated DNA was quantified by real-time PCR with a primer pair that amplified the region from 
-118 to +111 of the UGT1A1 gene. The results are expressed as the percentage of input. Normal rabbit or goat 
IgGs (open columns) were included as negative controls. (C) Western blot analysis of HNF1α in kidney and 
liver. Homogenates (50 µg) from kidney and liver samples were subjected to 10% SDS-PAGE and probed with 
anti-HNF1α or anti-β-actin antibodies. Each column represents the mean ± SD of triplicate determinations. 

 

Effects of the inhibition of DNA methylation and histone deacetylation and the 

transfection of exogenous HNF1α  on UGT1A1 expression 

To investigate the significance of the DNA methylation at the promoter region in the 

repression of UGT1A1 expression, a series of experiments using cell lines was performed. 

Two cell lines, the human kidney-derived HK-2 line and liver-derived HuH-7 cells, were 

selected. It was found that the UGT1A1 promoter region was hypermethylated (98%) in HK-2 

cells but was moderately methylated (47%) in HuH-7 cells (p < 0.0001, Fig. 11A). UGT1A1 

mRNA was marginally expressed in HK-2 cells but was substantially expressed in HuH-7 

cells (~4800 fold difference) (Fig. 11B), suggesting that DNA methylation negatively 

regulates UGT1A1 expression in HK-2 cells. To investigate whether the inhibition of DNA 

methylation could induce UGT1A1 expression, the cells were treated with 5-Aza-dC, an 

inhibitor of DNA methylation. Although this treatment increased UGT1A1 mRNA in both cell 

lines, the induction was higher in HK-2 cells (~400 fold at maximum) than in HuH-7 cells (~6 

fold at maximum) (Fig. 11B). It was confirmed that 5-Aza-dC treatment efficiently decreased 

the methylation status in HK-2 to 33% (p < 0.001) and in HuH-7 cells to 7% (p < 0.001) (Fig. 

11C).  
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Fig. 11. Effects of 5-Aza-dC and/or TSA treatment and transfection of HNF1a on the UGT1A1 expression in 
HK-2 and HuH-7 cells. (A) DNA methylation status of the UGT1A1 promoter region in HK-2 and HuH-7 cells. 
Ten clones each were sequenced. The open and closed circles represent unmethylated and methylated cytosines, 
respectively. (B) Effects of 5-Aza-dC on the UGT1A1 expression in HK-2 and HuH-7 cells. UGT1A1 mRNA 
level was determined by real-time RT-PCR and normalized to the GAPDH mRNA levels. (C) Effects of 
5-Aza-dC on the DNA methylation status of the UGT1A1 promoter region in HK-2 and HuH-7 cells. Bisulfite 
sequencing analysis was performed using genomic DNA extracted from 5-Aza-dC-treated cells. (D) Western 
blot analysis of HNF1a in HK-2 and HuH-7 cells. Nuclear extracts from HK-2 and HuH-7 cells transfected with 
HNF1α expression plasmid (+) or empty plasmid (-) were analyzed. (E) Effects of 5-Aza-dC and/or TSA 
treatment and transfection of HNF1α on the UGT1A1 mRNA expression in HK-2 and HuH-7 cells. The cells 
were transiently transfected with HNF1α expression plasmid (+) or empty plasmid (-), followed by treatment 
with 5-Aza-dC and/or TSA. The expression level of UGT1A1 mRNA was determined by real-time RT-PCR. 
Data were expressed as relative to UGT1A1 expression compared with non-treated HK-2 cells. Each column 
represents the mean ± SD of triplicate determinations. **p < 0.01, compared with non-treated cells. †††p < 0.001. 
 

The UGT1A1 mRNA level in HK-2 cells treated with 0.1 µM 5-Aza-dC was still low in 

comparison to that in HuH-7 cells. It was suspected that HNF1α might be lacking in HK-2 

cells, thus causing the lower UGT1A1 levels. Western blot analysis demonstrated that 

HNF1α is expressed at very low levels in HK-2 cells (Fig. 11D). To investigate the 
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significance of the DNA methylation status in the suppression of UGT1A1 expression, 

HNF1α was exogenously expressed in HK-2 cells. The HNF1α protein level was 

dramatically increased by the transfection of the HNF1α expression plasmid into HK-2 cells 

(Fig. 11D), but UGT1A1 mRNA expression was not increased (Fig. 11E). These results 

suggested that DNA methylation inhibits the binding of HNF1α to the promoter of UGT1A1. 

However, under 5-Aza-dC treatment, the overexpression of HNF1α resulted in a significant 

increase of UGT1A1 mRNA expression (4.3 fold) in HK-2 cells. This phenomenon was not 

observed in HuH-7 cells, implying that endogenous HNF1α expression levels might be 

sufficient for UGT1A1 in HuH-7 cells (Fig. 11D).  

Finally, it was investigated whether histone deacetylation is also involved in the repression 

of UGT1A1 expression. When the HK-2 and HuH-7 cells were treated with TSA, an inhibitor 

of histone deacetylation, UGT1A1 mRNA expression was unchanged (Fig. 11E). However, 

TSA treatment facilitated (by 1.7 fold) the increase of UGT1A1 mRNA by 5-Aza-dC 

treatment in HK-2 cells in the presence of exogenously expressed HNF1α. This result was not 

observed in HuH-7 cells. Collectively, these results suggest that DNA methylation status, and 

to a lesser extent histone deacetylation status, are critical determinants of UGT1A1 

expression. 

 

 DISCUSSION 

Human UGT1A1 is predominantly expressed in the liver and the intestine, but not in the 

kidney. Previous studies demonstrated that HNF1α and HNF1β are involved in the 

constitutive (Bernard et al., 1999) and inducible expression of UGT1A1 (Sugatani et al., 

2008) by binding to a site approximately 30 bp upstream of the TATA box. The expression of 

HNF1α and HNF1β is not confined to the liver, as these genes are expressed in various 

tissues including the kidney, intestine, stomach, and pancreas (Harries et al., 2006). Therefore, 

the reason for the repressed expression of UGT1A1 in the kidney remained to be clarified. To 

uncover the underlying mechanism, this study was conducted focusing on epigenetic 

regulation. HNF1α and HNF1β form homodimers or heterodimers, and equally trans-activate 
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the UGT1A1 gene (Bernard et al., 1999). Therefore, HNF1α was focused as the representative 

UGT1A1 activator. 

It was demonstrated that the CpG island at the promoter region of the UGT1A1 gene in the 

kidney was hypermethylated, whereas it was hypomethylated in the liver (Fig. 9). Upon DNA 

methylation, gene silencing occurs by two mechanisms: 1) the methyl group physically 

interrupts the binding of transcription factors to their recognition sequences, and 2) 

methyl-CpG-binding proteins bind to the methylated DNA and recruit corepressor molecules 

including histone deacetylase to induce chromatin structure condensation (Shiota, 2004). 

Previously, it was shown by gel shift assay that the methylated CpG sites at the UGT1A1 

promoter did not prevent the binding of HNF1α (Bélanger et al., 2010). In contrast, the 

present study demonstrated that DNA hypermethylation of the UGT1A1 promoter in the 

kidney was accompanied by increased acetylation of histone H3 and defective recruitment of 

HNF1α (Fig. 10). Therefore, gene silencing of UGT1A1 in the kidney would be due to the 

latter mechanism with the abolished binding of HNF1α. 

The cell lines based study clearly demonstrated the significance of DNA methylation in the 

regulation of UGT1A1 as follows: 1) substantial expression of UGT1A1 mRNA is observed 

in HuH-7 cells with DNA hypomethylation status, 2) 5-Aza-dC treatment resulted in an 

increase of UGT1A1 expression that reflected the change in methylation status, and 3) the 

exogenously expressed HNF1α could increase UGT1A1 expression only in the presence of 

5-Aza-dC in HK-2 cells. These findings clearly illustrated that unmethylated DNA is a 

prerequisite for the transcriptional activation of UGT1A1.  

The study using TSA demonstrated that histone acetylation is a supplemental factor for 

transactivation, supporting the general perception (Cameron et al., 1999). In contrast to the 

present study, a previous study reported a significant increase of UGT1A1 mRNA expression 

following treatment with 3 mM TSA in HepG2 cells (Mackenzie et al., 2010). When the 

HK-2 and HuH-7 cells were treated with 1 mM TSA, a prominent decrease of cell viability 

was observed (data not shown). Thus, it is possible that there are inter-cell line differences in 

the response toward TSA. Collectively, DNA methylation at the promoter region of UGT1A1 
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may evoke the condensed chromatin structure through histone deacetylation, thereby 

inhibiting the binding of transcription factors such as HNF1α. This theory would explain the 

defective expression of UGT1A1 in kidney, where HNF1α is substantially expressed. 

Although the simultaneous overexpression of HNF1α and inhibition of DNA methylation 

tremendously induced UGT1A1 mRNA in HK-2 cells, the UGT1A1 level was still lower than 

the level in HuH-7 cells (Fig. 11). It was surmised that some factors regulating UGT1A1 

expression might be insufficient in HK-2 cells. Previous studies have reported that pregnane 

X receptor (Sugatani et al., 2008), glucocorticoid receptor (Usui et al., 2006), constitutive 

androstane receptor (Sugatani et al., 2008), peroxisome proliferator-activated receptor α 

(Senekeo-Effenberger et al., 2007), NF-E2-related factor-2 (Yueh and Tukey, 2007), and aryl 

hydrocarbon receptor (Yueh et al., 2003) are involved in UGT1A1 regulation. It is possible 

that such factors may be insufficient in HK-2 cells, although experimental proof is required. 

As another possibility, differences in histone modifications other than acetylation, namely 

H3K4 methylation (activating mark), H3K9 methylation (silencing mark), and H3K27 

methylation (silencing mark), are feasible. Thus, such factors might also be involved in the 

regulation of the basal expression of UGT1A1 in cell lines and tissues. 

Each member of UGT1A family has a unique promoter. The tissue-specific expression of 

UGT1As could be attributed to the differences in their promoter activation (Gong et al., 2001). 

It is reasonable to assume that UGT isoforms other than UGT1A1 showing tissue-specific 

expression might also be epigenetically regulated.  

In conclusion, the present study clearly demonstrated that the DNA methylation status of 

the human UGT1A1 promoter is different in the liver and kidney. DNA methylation, 

hypoacetylation of histone H3, and diminished binding of HNF1α could explain the defective 

expression of UGT1A1 in the kidney. A remaining future challenge is the elucidation of the 

effects of factors affecting epigenetic status such as aging, sex, disease, and habits on 

UGT1A1 expression. 
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CHAPTER 4 
 

Tissue-specific expression of human UGT1A10 by epigenetic 
regulation 

 

ABSTRACT 

Human UDP-glucuronosyltransferase (UGT) 1A10 is not expressed in liver, but is 

exclusively expressed in the intestine, contributing to presystemic first-pass metabolism. 

Earlier studies revealed that hepatocyte nuclear factor (HNF) 1α and Sp1 as well as an 

intestine-specific transcription factor, caudal type homeobox (Cdx) 2 are involved in the 

constitutive expression of UGT1A10. However, the reason why UGT1A10 is not expressed in 

the liver in which HNF1α and Sp1 are abundantly expressed remains unknown. The purpose 

of this study was to uncover the mechanism of the tissue-specific expression of UGT1A10, 

focusing on its epigenetic regulation. Bisulfite sequence analysis revealed that the CpG-rich 

region (-264 to +117) around the UGT1A10 promoter was hypermethylated (89%) in the 

epithelium of small intestine, whereas it was hypomethylated (6%) in the hepatocytes. 

Luciferase assay revealed that methylation of the UGT1A10 promoter by SssI methylase 

abrogated transactivity even with the overexpressed Cdx2 and HNF1α. The UGT1A10 

promoter was highly methylated (86%) in liver-derived HuH-7 cells in which UGT1A10 is 

not expressed, whereas that was hardly methylated (19%) in colon-derived LS180 cells in 

which UGT1A10 is expressed. Treatment with 5-Aza-dC, an inhibitor of DNA methylation, 

resulted in an increase of UGT1A10 mRNA expression only in HuH-7 cells. Moreover, 

overexpression of HNF1α and Cdx2 further increased UGT1A10 mRNA only in the presence 

of 5-Aza-dC. A ChIP assay demonstrated that H3K27 around the promoter was trimethylated 

in the liver but not in the small intestine. In summary, this study found that DNA 

hypermethylation and H3K27 trimethylation would interfere with binding of 

HNF1α and Cdx2, resulting in the defective expression of UGT1A10 in the human liver. 

Epigenetic regulation is a crucial determinant of tissue-specific expression of UGT1A10. 
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INTRODUCTION  

Human UGT enzymes are expressed in a tissue-specific manner. Most UGTs including 

UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, and UGT2B7 are 

predominantly expressed in the liver (Izukawa et al., 2009; Court et al., 2012) and to a lesser 

extent expressed in extrahepatic tissues. Several UGTs are preferentially expressed in 

extrahepatic tissues, including kidney, small intestine, colon, stomach, lungs, ovaries, testis, 

mammary glands and prostate. In particular, UGT1A7, UGT1A8, and UGT1A10 are 

exclusively expressed in the gastrointestinal tract, but not in the liver. This expression limits 

the bioavailability of orally administered drugs such as raloxifene, naloxon, and 

mycophenolic acid as well as xenobiotics such as resveratrol and quercetin (Ritter, 2007; 

Basu et al., 2004). To elucidate the underlying mechanisms of tissue-specific expression of 

UGTs, some studies were conducted focusing on transcriptional regulation (Gardner-Stephen 

and Mackenzie, 2008; Mackenzie et al., 2010). It has been demonstrated that the 

intestine-specific transcription factor, Cdx2, Sp1, and HNF1α regulate UGT1A8 and 

UGT1A10 expression in the intestine (Gregory et al., 2003, 2004a and 2004b). However, a 

question why UGT1A10 is not expressed in the liver even though HNF1α is abundantly 

expressed remains unsolved. The purpose of this study is to clarify the mechanisms 

underlying the defective expression of UGT1A10, focusing on epigenetic regulation.  

 

MATERIAL AND METHODS 

Chemicals and reagents 

5-Aza-dC, TSA, BIX-01294 trihydrochloride, and 3-deazaneplanocin A hydrochloride 

(Dznep) were purchased from Sigma-Aldrich. Goat anti-human HNF1α polyclonal antibody 

(C-19), goat anti-human Cdx2 polyclonal antibody (C-20), and control rabbit and goat IgGs 

were purchased from Santa Cruz Biothechnology. Rabbit anti-trimethyl-Histone H3 (Lys27) 

polyclonal antibody (07-449) was purchased from Millipore. Primers were commercially 

synthesized at Hokkaido System Science. All other chemicals and solvents were of the 

highest grade commercially available. 
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Human tissues 

Human liver (a 39-year-old Japanese female) and small intestine (a 49-year-old Caucasian 

female) were obtained from autopsy materials that were discarded after pathological 

investigation. The use of the human livers and small intestines was approved by the Ethics 

Committees of Kanazawa University (Kanazawa, Japan) and Iwate Medical University 

(Morioka, Japan). 

 

Cell culture 

Colorectal adenocarcinoma cell lines LS180, Caco-2, HT-29, and SW480, and a 

hepatocellular carcinoma cell line HepG2 were obtained from the American Type Culture 

Collection (Manassas, VA). A hepatocellular carcinoma cell line HuH-7 was obtained from 

the RIKEN BioResource Center. HT-29 and SW480 cells were cultured in RPMI1640 (Nissui 

Pharmaceutical, Tokyo, Japan) supplemented with 10% fetal bovine serum (FBS) (Invitrogen, 

Carlsbad, CA). The other cells were cultured as previously described (Nakamura et al., 2008).  

 

RNA isolation and real-time RT-PCR 

Total RNA was isolated from cell lines using RNAiso (Takara Bio) according to the 

manufacturer’s protocol. The cDNA was synthesized from the total RNA using ReverTraAce 

(Toyobo). The UGT1A10 mRNA levels were determined by real-time RT-PCR and 

normalized to GAPDH mRNA levels as described previously (Izukawa et al., 2009). 

 

Genomic DNA extraction and bisulfite reaction 

Genomic DNA samples were prepared from human hepatocytes (HH268, a 54-year-old 

Caucasian female, Tissue Transformation Technologies), whole small intestine or epithelium 

of small intestine, and cell lines with a Gentra Puregene Tissue kit (Qiagen). Five hundred 

nanograms of genomic DNA digested with EcoR I was treated with bisulfite using the EZ 

DNA Methylation kit (Zymo Research). The DNA fragments spanning the TSS of the 

UGT1A10 or UGT1A8 genes and the 5’-flanking region of UGT1A9 were amplified by PCR 
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using the primer pairs shown in Table 5. The PCR products were cloned into the pT7Blue 

T-Vector (Novagen, Madison, WI). Since the primer pair for bisulfite analysis of UGT1A8 

and UGT1A10 amplifies the corresponding regions of not only UGT1A8 and UGT1A10 but 

also UGT1A9, clones containing UGT1A9 sequence were precluded by digestion with an 

appropriate restriction enzyme and clones containing UGT1A8 or UGT1A10 sequences were 

subjected to sequence analysis. The DNA methylation status of the sequence was analyzed 

using the web-based tool QUMA (Kumaki et al., 2008). 

 
Table 5. Sequences of oligonucleotides used in the present study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Nucleotides are numbered with the TSS designated as +1 in the genomic DNA sequence of UGTs and base A in 
the initiation codon ATG designated as +1 in the Cdx2 cDNA sequence. The restriction sites used for cloning are 
underlined. The restriction sites used for cloning are underlined. 
a The numbers refer to the nucleotide position of UGT1A10. 
 

Construction of expression plasmids and luciferase reporter plasmids 

A luciferase reporter plasmid, pCpGL-basic, which completely lacks CpG dinucleotides, 

was kindly provided by Dr. Rehli (Klug and Rehli, 2006). The 5’-flanking regions of 

Oligonucleotides 5’ to 3’ sequence Position 

Bisulfite analysis of UGT1A8 and UGT1A10 

Forward AGAGAGTATTTGGTTGGTTAAAG -365 to -343a 

Reverse ACACTACCAACAACTTCCCTACC +118 to +140a 

Bisulfite analysis of UGT1A9  

Forward TTTGAAGGAGGGTATTGGAGTGATG -754 to -730 

Reverse CCAAACCCTAAAAAACCTCTAAAATAC -540 to -514 

Cloning of promoter region of UGT1A10  

Forward CTTTGGATCCAGAGAGTATTTGGTTGGC -365 to -347 

Reverse CCATAGATCTGCACTACCAGCAGCTTCCC +122 to +140 

Cloning of promoter region of UGT1A9  

Forward GGCAGCTGCAGTTGATCTTTTCCCTTTAAG -955 to -937 

Reverse CAGAGATCTGCAGCTGAGAG +17 to +29 

ChIP assay of UGT1A10 

Forward AATGATACTCGTGTGTTATC -135 to -116 

Reverse AGACACACACATAAAGGAAC +76 to +95 

Cloning of Cdx2  

Forward CCGGACCCTCGCCACCATGTA -16 to +5 

Reverse GTGGGTCACTGGGTGACGGT +927 to +947 
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UGT1A9 (-955 to +29) or promoter region of UGT1A10 (-365 to +140) amplified by PCR 

using human liver genome as a template was cloned into the pCpGL-basic plasmid and the 

products were termed UGT1A9/pCpGL and UGT1A10/pCpGL, respectively. HNF4α and 

HNF1α expression plasmids were constructed in the previous study (Takagi et al., 2010) and 

in chapter 3, respectively. For the construction of Cdx2 expression plasmid, human Cdx2 

cDNA was amplified by PCR using the primer pair shown in Table 5 with human small 

intestine cDNA as a template. The PCR product was subcloned into the pTARGET vector 

(Promega, Madison, MI). The nucleotide sequence was confirmed by DNA sequencing 

analysis. 

 

Luciferase reporter assays 

The pCpGL-basic, UGT1A9/pCpGL, and UGT1A10/pCpGL plasmids were treated with a 

CpG methylase SssI (New England Biolabs, Beverley, MA). For the luciferase assays, HuH-7 

cells were seeded onto a 24-well plates at 1 × 105 cells/well. After 24 h, 200 ng of 

pCpGL-basic plasmid and 300 ng each of human Cdx2, HNF1α, and HNF4α expression 

plasmids or pTARGET empty plasmid were transfected into the cells using Lipofectamine 

2000 (Invitrogen). The cells were harvested 48 h after the transfection and lysed to measure 

the luciferase activity using a Dual Luciferase Reporter Assay System (Promega). The protein 

concentration was determined using Bradford protein assay reagent with γ-globulin as a 

standard. The relative luciferase activities were normalized to the protein content. 

 

Chemical treatment and transfection of expression plasmid into the cells 

HuH-7 or LS180 cells were seeded onto a 12-well plate at 0.5 × 105 cells/well and 

incubated for 24 h. For dose response experiments, the cells were treated with 0.01 to 10 μM 

5-Aza-dC for 120 h, 0.1 to 5 µM BIX-01294 or Dznep for 120 h, or treated with 50 to 300 nM 

TSA for 24 h, and then subjected to RNA isolation. For the overexpression of HNF1α and 

Cdx2, the cells were treated with 0.1 µM 5-Aza-dC for 120 h. Sixty hours before harvesting, 

the cells were transiently transfected with 0.5 µg of an HNF1α and/or Cdx2 expression 
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plasmids using the X-tremeGENE HP DNA transfection reagent. The UGT1A10 mRNA 

levels were determined as described above.  

 

Western blot analysis of HNF1α  and Cdx2 

Total cell homogenates (40 μg) from HuH-7 and LS180 cells transfected with HNF1α and 

Cdx2 expression plasmids were separated by 10% SDS-PAGE and transferred to an 

Immobilon-P transfer membrane. The membranes were probed with goat anti-human HNF1α 

or rabbit anti-human Cdx2 antibodies followed by fluorescent dye-conjugated second 

antibodies. The membranes were then scanned using the Odyssey Infrared Imaging system. 

 

ChIP assay 

The ChIP assay of trimethylation at H3K27 (H3K27me3) around UGT1A10 TSS in human 

liver or epithelium of small intestine samples was performed as previously described (Oda et 

al., in press). Rabbit anti-H3K27me3 antibodies (07-449) and normal rabbit IgG were used 

for immunoprecipitation of the protein–DNA complexes. The -135 to +95 region of the 

UGT1A10 gene was amplified by real-time PCR with the primers shown in Table 5. The 

protocol for the PCR was as follows: 95°C for 30 s followed by 45 cycles of 94°C for 4 s and 

64°C for 20 s. DNA extraction and real-time PCR were also performed for the input samples, 

and the data were used as a control to evaluate the enrichment of DNA in the 

immunoprecipitates. 

 

Statistical anayses 

For DNA methylation status, the statistical significance was evaluated by the 

Mann-Whitney U-test or Fisher’s exact test using the web-based tool QUMA. For mRNA 

expression and luciferase assay, statistical significance was determined using an unpaired, 

two-tailed Student’s t test or one-way analysis of variance followed by Dunnett’s test. 

Correlation analyses were performed by the Spearman’s rank method. When the p value was 

less than 0.05, the differences were considered to be statistically significant.  
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RESULTS 

DNA methylation status of the 5’-flanking regions of UGT1A8, UGT1A9, and UGT1A10 

in human hepatocytes and small intestine 

The location of CpG dinucleotides were searched from 300 bp upstream to 200 bp 

downstream of the TSS for human UGT1A8, UGT1A9, and UGT1A10 genes (Fig. 12A). Five 

and 12 CpG dinucleotides were found around TSS (-365 to +140 bp) for UGT1A8 and 

UGT1A10, respectively, whereas only two CpG dinucleotides were observed around TSS for 

UGT1A9. In the case of UGT1A9, there were multiple CpG dinucleotides spanning 800 to 600 

bp upstream of the TSS. The DNA methylation status of the promoter regions of UGT1A10 

spanning -365 to +140 in the small intestine and liver was determined by bisulfite sequence 

analysis (Fig. 12B). Because my previous study demonstrated that the use of liver tissue 

sample displayed a mixed pattern of DNA methylation in parenchymal and non-parenchymal 

cells (Oda et al., in press), this study used human hepatocytes for the analysis. As shown in 

Fig. 12B, 89% of CpG sites (128 out of 144 CpG sites) in the promoter region of the 

UGT1A10 gene were methylated in hepatocytes, whereas, 51% of CpG sites (86 out of 168 

CpGs) were methylated in the whole small intestine. Notably, in the whole small intestine, the 

methylated CpG sites were biased in specific clones. It was surmised that these clones 

showing hypermethylation might be from submucosa of small intestine, where UGT enzymes 

are not expressed (Strassburg et al., 2000). Hence, epithelium cells prepared from small 

intestine was used to determine the DNA methylation status of the UGT1A10 promoter. The 

methylation status was found to be only 11% (18 out of 168 CpG sites). Collectively, the 

DNA methylation status of the UGT1A10 promoter region was found to be quite lower in the 

small intestine epithelium than hepatocytes (p < 0.0001, Mann-Whitney U-test). 

Next, DNA methylation status of promoter of UGT1A8, which shows highly sequence 

similarity with UGT1A10, was investigated (Fig. 12B). In the promoter of UGT1A8 from 

hepatocytes, 79% of CpG sites (51 out of 65 CpG sites) were methylated whereas in the small 

intestine epithelium, 16% of CpG sites (9 out of 55 CpGs) were methylated (p = 0.0004, 

Mann-Whitney U-test). The difference in DNA methylation pattern of UGT1A8 between two 
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Fig. 12. DNA methylation status of UGT1A8, UGT1A9, and UGT1A10 in human small intestine and hepatocytes. 
(A) A schematic diagram of the 5’-flanking region of UGT1A8, UGT1A9, and UGT1A10. The vertical lines and 
numbers represent the position of the cytosine residues of the CpGs relative to the TSS as +1. The transcription 
factor binding sites are represented by rectangles. Bisulfite sequence was performed in the region outlined with 
dashed rectangles. (B) DNA methylation status of CpG sites. Bisulfite sequencing analysis was performed using 
genomic DNAs extracted from human small intestine epithelium (donor 1) or hepatocytes (HH268). For 
UGT1A10, DNA methylation status in the genomic DNAs extracted from total small intestine was also 
investigated. At least ten clones from each sample type were sequenced. The open and closed circles represent 
unmethylated and methylated cytosines, respectively. 
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tissues was almost identical to that of UGT1A10. Because there are only two CpG sites in the 

promoter of UGT1A9, we investigated the further upstream CpG-rich region (-765 to -639 bp) 

for DNA methylation status. In the 5’-flanking region of UGT1A9 from hepatocytes, 93% of 

CpG sites (65 out of 70 CpG sites) were methylated and in the small intestine epithelium, 

96% of CpG sites (67 out of 70 CpGs) were methylated (p = 0.34, Mann-Whitney U-test). 

Thus, DNA methylation status of this region would not be associated with tissue-specific 

expression of UGT1A9. 

 

Effects of DNA methylation on transactivity of UGT1A10 and UGT1A9 

To determine the effects of DNA methylation on the promoter activity, luciferase assays 

were performed using methylated and unmethylated luciferase constructs (Fig. 13). In the 

case of unmethylated UGT1A10/pCpGL construct, overexpression of either Cdx2 (p < 0.05) 

or HNF1α (p < 0.01) highly increased the luciferase activity, and synergistic increase of the 

activity was observed by coexpression of these factors (p < 0.01), supporting the previous 

study (Gregory et al., 2004a). In the case of the methylated UGT1A10/pCpGL construct, 

overexpression of Cdx2 and/or HNF1α did not significantly increased luciferase activities. 

Luciferase activities of unmethylated UGT1A10/pCpGL constructs were significantly higher 

than methylated constructs, indicating that DNA methylation status have a great impact on the 

transcriptional activity of UGT1A10. Overexpression of HNF4α did not increase the 

luciferase activity of UGT1A10. This would be because the sequence of the HNF4α 

recognition element in the UGT1A10 gene was different by one nucleotide from the 

consensus HNF4α response element sequence (Barbier et al., 2005). In the case of 

UGT1A9/pCpGL construct, the overexpressed HNF4α increased (p < 0.01) the activity 

regardless of methylation status, although the overexpressed Cdx2 and HNF1α did not 

significantly increase the luciferase activity. These results suggest that DNA methylation of 

5’-flanking region was not associated with the transcriptional activity of UGT1A9.  
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Fig. 13. Effects of DNA methylation on the transactivity of UGT1A10 and UGT1A9. pCpGL-basic plasmids 
containing either -365 to +140 of UGT1A10 or -955 to +29 of UGT1A9 as well as pCpGL-basic plasmid were 
treated with Sss I DNA methylase. Either the treated or untreated reporter construct and Cdx2, HNF1a or HNF4a 
expression plasmids were transiently transfected into HuH-7 cells. After 48 h, the cells were harvested and the 
luciferase activities were measured. Each column represents the mean ± SD of relative activities (firefly/µg 
protein) of triplicate determinations. * p < 0.05 and ** p < 0.01, compared with no transfection. ## p < 0.01 and 
### p < 0.001, compared with unmethylated construct. 

 

DNA methylation status of the UGT1A10 promoter regions in colon- or liver-derived 

carcinoma cell lines 

DNA methylation status of the UGT1A10 promoter region in six kinds of human cell lines: 

colon adenocarcinoma cell lines, LS180, Caco2, HT29, and SW480 and hepatocellular 

carcinoma cell lines, HepG2 and HuH-7 were investigated. The degree of DNA methylation 

in UGT1A10 promoter was, in ascending order, HT-29 < LS180 < HepG2 < SW480 < HuH-7 

< Caco-2 (Fig. 14). The expression level of UGT1A10 mRNA in theses cells was measured 

and relationship with DNA methylation status was analyzed. DNA methylation levels tended 

to be inversely correlated with the UGT1A10 mRNA expression levels (Spearman’s r = -0.54, 

p = 0.29). These results suggest that DNA methylation status would determine the basal 

expression level of UGT1A10 in cell lines. In the subsequent experiments, two cell lines, the 

human colon adenocarcinoma LS-180 and hepatocellular carcinoma HuH-7 cells were 

selected as representatives of UGT1A10-positive and -negative cells, respectively. 
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Fig. 14. Relationship between DNA methylation status of 
the promoter region of UGT1A10 and mRNA expression 
levels of UGT1A10 in colon- (circle) and liver-derived 
(triangle) carcinoma cells lines. DNA methylation status of 
UGT1A10 was analyzed by bisulfite sequence analysis of at 
least five clones for each cell. Methylation status was 
expressed as percentage of methylated cytosines per total 
CpG dinucleotides among all the sequenced clones. The 
expression levels of UGT1A10 mRNA were expressed as 
relative to levels in HepG2 cells. 

 

 

 

 

Effects of 5-Aza-dC and TSA on the UGT1A10 mRNA expression 

To investigate the significance of the DNA methylation at the promoter region in the 

UGT1A10 expression, the experiments using epigenetic modulatory agents were performed. 

When these cells were treated with 5-Aza-dC, an inhibitor of DNA methylation for 5 days, 

UGT1A10 mRNA expression was dramatically increased in HuH-7 cells (~16 fold at 

maximum), whereas was marginally increased in LS180 cells (~1.6 fold at maximum) (Fig. 

15A). It was confirmed that 5-Aza-dC treatment decreased the methylation status in HuH-7 

cells from 86% to 60% (p = 0.15) (Fig. 15B). Theses results demonstrated that UGT1A10 

expression is silenced by DNA methylation. Unexpectedly, the methylation status in LS180 

cells was slightly increased from 19% to 41% (p = 0.09) by 5-Aza-dC treatment, although the 

reason is unknown (Fig. 15B). Next, the involvement of histone acetylation for the expression 

of UGT1A10 was investigated. When these cells were treated with TSA, an inhibitor of 

histone deacetylase, for 1 day, the expression of UGT1A10 mRNA was not increased in the 

both cell lines, suggesting histone acetylation has no impact on the UGT1A10 regulation (Fig. 

15A). The different expression level (~3-fold) of UGT1A10 in LS180 cells between the 

controls for 5-Aza-dC and TSA treatment may be due to the difference in culture time.  
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Fig. 15. Effects of 5-Aza-dC and/or TSA treatment on the UGT1A10 expression in HuH-7 and LS180 cells. (A) 
UGT1A10 mRNA levels in HuH-7 and LS180 cells treated with 5-Aza-dC or TSA, which were normalized to 
the GAPDH mRNA levels. Each column represents the mean ± SD of triplicate determinations. ** p < 0.01, 
compared with non-treated cells. (B) DNA methylation status of the UGT1A10 promoter region in HuH-7 and 
LS180 cells before and after the treatment with 0.1 µM 5-Aza-dC. Bisulfite sequencing analysis of at least eight 
clones for each cell was performed. 

 

Effects of 5-Aza-dC and overexpression of HNF1α  and Cdx2 on the UGT1A10 

expression 

It was investigated whether demethylation of DNA allows transcription factors to bind to 

the promoter of UGT1A10 and thereby to activate the transcription (Fig. 16). In the intact 

B 

A 
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HuH-7 and LS180 cells, HNF1α was marginally expressed, and Cdx2 was not expressed (Fig. 

16). The transfection of the HNF1α and Cdx2 expression plasmids into HuH-7 cells resulted 

in dramatic increase of HNF1α and Cdx2 proteins (Fig. 16), but this did not increase the 

UGT1A10 expression (Fig. 16). However, under the 5-Aza-dC treatment, the overexpression 

of HNF1α and Cdx2 resulted in a significant increase of UGT1A10 mRNA expression (11 

fold) in HuH-7 cells. These results suggested that DNA methylation inhibits the binding of 

HNF1α and Cdx2 to the promoter of UGT1A10. Overexpression of HNF1α and Cdx2 under 

the 5-Aza-dC treatment did not result in upregulation of UGT1A10 in LS180 cells probably 

because extent of DNA methylation was originally low and the endogenous HNF1α 

expression levels might be sufficient for the interaction with unknown components which 

might be essential for UGT1A10 expression in LS180 cells (Fig. 16).  

Fig. 16. Effects of 5-Aza-dC treatment and transfection of HNF1α and Cdx2 on the UGT1A10 expression in 
HuH-7 and LS180 cells. The cells were treated with 5-Aza-dC followed by transient transfection of 
HNF1α and/or Cdx2 expression plasmids (+) or empty plasmid (-). The expression level of UGT1A10 mRNA 
was determined by real-time RT-PCR. Data were expressed as relative to UGT1A10 expression compared with 
non-treated HuH-7 cells. The expression of HNF1α and Cdx2 were analyzed by Western blot of total cell 
homogenates from the cells. Each column represents the mean ± SD of triplicate determinations. * p < 0.05, ** p 
< 0.01, and *** p < 0.001, compared with non-treated cells.  
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Effects of histone methylation on the expression of UGT1A10 

As another factor to repress UGT1A10 expression in the liver, histone methylation was 

surmised. Methylation at H3K9 and H3K27 is known to repress expression of a number of 

genes (Cedar and Bergman, 2009). When HepG2 cells were treated with BIX-01294, which 

was recently identified as an inhibitor of H3K9 methyltransferase G9a (Kubicek et al., 2007), 

UGT1A10 mRNA expression was unchanged (Fig. 17). In contrast, Dznep, which is an 

inhibitor of methylation of H3K27 (Tan et al., 2007), facilitated the UGT1A10 mRNA 

expression in a dose-dependent manner (Fig. 17), suggesting that H3K27 trimethylation was 

involved in the repressed expression of UGT1A10 in HepG2 cells. 

 
Fig. 17. Effects of BIX-01294 and Dznep treatment on the 
UGT1A10 expression in HepG2 cells. UGT1A10 mRNA level was 
determined by real-time RT-PCR and normalized to the GAPDH 
mRNA levels. Each column represents the mean ± SD of triplicate 
determinations. ** p < 0.01, compared with non-treated cells. 

 

 

 

 

 

 

Trimethylation status of H3K27 in the promoter of UGT1A10 in human small intestine 

and liver 

ChIP assays were performed to investigate the trimethylation status of H3K27 in the 

promoter of UGT1A10 in the liver and small intestine. As shown in Fig. 18, trimethylated 

H3K27 was enriched at the UGT1A10 promoter in the liver, but not in the small intestine. It 

was considered that the H3K27me3 in the liver could be linked to silencing of UGT1A10, 

probably through hampering the binding of transcription factor such as HNF1α to the 

promoter. 
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Fig. 18. Trimethylation of H3K27 in the promoter of 
UGT1A10 in human liver and small intestine. ChIP assay of 
trimethyl H3K27 in the liver and small intestine. Human liver 
and small intestine chromatin was precipitated with 
anti-trimethyl H3K27 antibody. The precipitated DNA was 
quantified by real-time PCR with a primer pair that amplified 
the region from -135 to +95 of the UGT1A10 gene. The 
results are expressed as the percentage of input. Normal 
rabbit IgG (open columns) was used as negative controls. 
Each column represents the mean ± SD of triplicate 
determinations. 

 

DISCUSSION 

Human UGT1A10, which is exclusively expressed in the small intestine and colon, but not 

in the liver, contributes to presystemic first-pass metabolism (Ritter, 2007; Mizuma, 2009). 

Previous studies demonstrated that HNF1α and Sp1 as well as intestine-specific transcription 

factor Cdx2 are involved in the constitutive expression of UGT1A10 (Gregory et al., 2003, 

2004a and 2004b). However, HNF1α and Sp1 cannot solely account for the intestine-specific 

expression of UGT1A10, because the expression of these transcription factors are not 

confined to intestines, but rather abundantly expressed in the liver, where UGT1A10 is absent. 

In the present study, underlying mechanism of defective expression of UGT1A10 in the liver 

was investigated focusing on the epigenetic mechanism.  

It was demonstrated that the CpG-rich region at the promoter of the UGT1A10 gene in the 

hepatocyte was hypermethylated, whereas it was hypomethylated in the small intestine 

epithelium (Fig. 12). Furthermore, reporter gene assays revealed that methylation of the 

UGT1A10 promoter leads to an almost complete loss of transcriptional activity even under the 

overexpression of Cdx2 and HNF1α (Fig. 13). These results clearly suggest that DNA 

methylation status is critical for UGT1A10 expression. Cell lines-based studies clearly 

demonstrated the significance of DNA methylation in the regulation of UGT1A10 as follows: 

1) substantial expression of UGT1A10 mRNA expression was observed in LS180 cells with 

DNA hypomethylation status, 2) 5-Aza-dC treatment resulted in the increase of UGT1A10 
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expression reflecting the change in DNA methylation status, and 3) exogenously expressed 

HNF1α and Cdx2 could increase UGT1A10 expression only under the 5-Aza-dC treatment in 

HuH-7 cells (Figs. 15 and 16). These findings clearly illustrated that DNA methylation 

inhibits the expression of UGT1A10 and unmethylated DNA status is a prerequisite for the 

transcriptional activation of UGT1A10. With regard to UGT1A8, which is also expressed in 

the gastrointestinal tract but not liver as with UGT1A10, the promoter was hypomethylated in 

the small intestine epithelium and hypermethylated in the hepatocytes (Fig. 12). It was 

anticipated that the expression of UGT1A8 would be also regulated by DNA methylation, 

although the UGT1A8 expression was not examined in this study.  

In general, gene silencing by DNA methylation is mediated by following two mechanisms: 

1) the methyl group physically interrupts the binding of transcription factors to their 

recognition sequences, and 2) methyl-CpG-binding proteins bind to the methylated DNA 

followed by the recruitment of corepressor molecules including histone deacetylase to induce 

chromatin structure condensation (Shiota, 2004). In the case of UGT1A10, the former 

mechanism is unlikely to be involved, because there is no CpG dinucleotide in Cdx2 or 

HNF1α recognition element at the UGT1A10 promoter. Nevertheless the possibility that 

methylated CpGs outside the elements affect the binding of transcription factors could not be 

denied. The latter mechanism is also unlikely to be involved, because TSA treatment to inhibit 

histone deacethylation did not result in activation of UGT1A10 expression. Although this 

study has no exclusive explanation, the other mechanisms may be involved in the DNA 

methylation-dependent repression of UGT1A10.  

Inhibition of DNA methylation and concomitant overexpression of HNF1α and Cdx2 

tremendously increased the UGT1A10 mRNA in HuH-7 cells. However, even under the 

condition, the UGT1A10 level was still lower than the level in intact LS180 cells (Fig. 16). 

The result prompted me to assume the involvement of other repressive chromatin 

modifications. To ensure this hypothesis, BIX-01294 and Dznep, which are inhibitor for 

methylation at H3K9 and H3K27, respectively, were added to the cells and found that Dznep 

increased the expression of UGT1A10 in HepG2 cells (Fig. 17). These results suggest that 
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trimethylation at H3K27 around UGT1A10 promoter would be an additional underlying 

mechanism of the repressed expression of UGT1A10 in HepG2 cells. Trimethylation at 

H3K27 is mediated by Enhancer of zeste 2 (EZH2), the catalytic subunit of Polycomb 

repressive complex 2 (PRC2), while PRC1 is recruited to the H3K27me3 and is involved in 

gene silencing (Simon and Kingston, 2009). The presence of trimethylation at H3K27 in 

UGT1A10 promoter in the liver and the absence in the small intestine further support the 

defective expression of UGT1A10 in liver (Fig. 18). Both DNA methylation and H3K27 

trimethylation at the UGT1A10 promoter were observed in liver. It is known that chromatin 

modifications and DNA methylation are strictly linked and can associate or interfere with 

each other (Klose and Bird, 2006). As for linkage between DNA methylation and H3K27 

trimethylation, EZH2 directly recruits DNA methyltransferases to increase DNA methylation 

in cancer (Viré et al., 2006), which supports coexistence of these modifications of the 

UGT1A10 promoter in liver. However, the generality of this mechanism is currently unclear 

as EZH2-mediated recruitment of DNA methyltransferases is not observed in all cancers or in 

normal cells (Reddington et al., 2013). Further study is needed to elucidate the association 

between DNA methylation and H3K27 trimethylation. 

In contrast to UGT1A10 and UGT1A8, UGT1A9, of which promoter sequence (-1 kb from 

TSS) shares 80% and 79% similarity with those of UGT1A10 and UGT1A8 gene, respectively, 

is expressed in the liver but not in intestines. As supported by the present study (Fig. 13), it 

has been reported that UGT1A9 is not transactivated by Cdx2, but is transactivated by 

HNF1α and HNF4α (Gregory et al., 2004a; Barbier et al., 2005). The present study found that 

DNA methylation status at 5’-flanking region of UGT1A9 was almost the same between the 

small intestine and liver (Fig. 12) and that the methylation status did not affect the 

transcriptional activity (Fig. 13). The results suggest that the DNA methylation in the 

5’-flanking region of UGT1A9 is not associated with the tissue-specific expression of 

UGT1A9. Although the reason of the defective expression of UGT1A9 in small intestine 

remains to be studied, the involvement of histone modification or repressive transcription 

factors may be possible. 
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The present study revealed that DNA methylation and trimethylation at H3K27 repress the 

expression of UGT1A10 in the liver. UGT1A10 mRNA was significantly lower in breast 

carcinoma than that in normal breast specimens (Starlard-Davenport et al., 2008). Since 

aberrant DNA methylation and H3K27 trimethylation patterns were observed in some cancers 

(Jones and Baylin, 2002; Sharma et al., 2010; Portela and Esteller, 2010), it is possible that 

the alteration of UGT1A10 expression in breast carcinoma can be explained by epigenetic 

mechanism. UGT1A10 is responsible for the detoxification of 

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a major procarcinogenic metabolite 

of the potent tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(NNK), as well as other potent carcinogens (Balliet et al., 2010), variation in UGT1A10 

expression may be related with individual susceptibility to the carcinogenicity of these agents. 

Further studies are warranted to better understand the role of the epigenetic regulation of 

UGT1A10 in cancer susceptibility. 

My previous study demonstrated that DNA hypermethylation and histone H3 

hypoacetylation results in the defective expression of UGT1A1 in the kidney, revealing the 

impact of the epigenetic modification in the tissues-specific expression of UGT1A1 (Oda et 

al., in press). This study found that UGT1A10 expression is distinctly regulated by DNA 

methylation. Previous studies have revealed that the expression of UGT1A6, UGT2B15, and 

UGT2B28 (Dannenberg and Edenberg, 2006) and UGT2B7 and UGT2B11 (Valentini et al., 

2007) in cancer cell lines were increased by treatment with 5-Aza-dC or valproate which is 

also a DNA methylation inhibitor. Although DNA methylation status of these five UGT 

isoforms has not been investigated, it is possible that tissue- or cell-specific expression of 

most UGTs may be epigenetically regulated. 

In summary, this study found that DNA methylation and H3K27 trimethylation of the 

UGT1A10 gene would limit the binding of transcription factors to repress the expression of 

UGT1A10 in liver. The findings provide novel mechanisms of the tissue-specific expression 

of UGT1A10. 
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CHAPTER 5 
 

Conclusion 
 

Glucuronidation is an important pathway for the clearance of therapeutic drugs, 

environmental toxins, and endogenous compounds from the body. The reaction is catalyzed 

by UGTs. There are 19 different human UGTs, which are expressed in various tissues 

including liver, kidney, small intestine, and brain. The purpose of this study was to generate 

isoform-specific antibodies and to investigate the interindividual variability of their 

expression levels in the tissues and the underlying mechanism of tissue-specific expression of 

UGTs. 

The expression profiles of UGTs in human tissues at mRNA level had been studied. 

However, information regarding their protein levels was limited because of the lack of 

isoform-specific antibodies, since UGTs share a high degree of amino acid similarities. In 

chapter 2, peptide-specific monoclonal antibodies against human UGT1A6, UGT1A8, 

UGT1A9, UGT1A10, UGT2B4, and UGT2B10 were prepared and were used to investigate 

the UGTs expression at protein levels. It was confirmed that the prepared antibodies did not 

cross-react with the other human UGT isoforms. Using these antibodies, it was found that 

UGT1A6 and UGT1A9 proteins are expressed in the kidney and the liver, but not in the small 

intestine, UGT2B4 and UGT2B10 are expressed only in the liver, and UGT1A10 are 

expressed only in the small intestine, that are consistent with previous reports of mRNA 

expression. In a panel of 20 individual human livers, the UGT1A6, UGT1A9, UGT2B4, and 

UGT2B10 protein levels exhibited 10-, 9-, 6-, and 7-fold variabilities, respectively. Their 

relative protein levels were not correlated with the corresponding mRNA levels, suggesting 

the potential importance of post-transcriptional regulation of UGT expression. An interesting 

finding using the prepared antibodies was that the normalized activities of recombinant UGTs 

were unambiguously lower than those in human tissue microsomes. Thus, differences in 

glucuronidation activity between recombinant UGT expression systems and human tissues 
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should be taken into account when predicting in vivo metabolic clearance using data from 

recombinant expression system. In addition, the prepared monoclonal antibodies against 

UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B10 enabled to know the 

distribution and relative expression levels of their proteins in human tissues.  

Human UGTs show tissue-specific expression. UGT1A1 is predominantly expressed in the 

liver and intestine, but not in the kidney. Meanwhile UGT1A10 is exclusively expressed in 

the gastrointestinal tract but not in liver. In chapters 3 and 4, the underlying mechanism of 

the tissue-specific expression of UGT1A1 and UGT1A10, respectively, were investigated 

focusing on epigenetic mechanism. It was found that the CpG-rich region near the UGT1A1 

promoter (-85 to +40) was hypermethylated (83%) in the kidney, whereas it was 

hypomethylated (24%) in the hepatocytes. A chromatin immunoprecipitation assay 

demonstrated that histone H3 near the promoter was hypoacetylated in the kidney but was 

hyperacetylated in the liver; this hyperacetylation was accompanied by the recruitment of 

HNF1α to the promoter. Thus, it was suggested that DNA hypermethylation along with 

histone hypoacetylation interferes with the binding of HNF1α, resulting in the defective 

expression of UGT1A1 in the human kidney. As for UGT1A10, it was found that CpG island 

near the promoter (-365 to +140) was hypermethylated (89%) in the hepatocytes, whereas it 

was hypomethylated (6%) in the epithelium of small intestine. Reporter gene assays revealed 

that methylation of the UGT1A10 promoter leads to an almost complete loss of transcriptional 

activity. In a UGT1A10-negative cell line, treatment with 5-Aza-dC, an inhibitor of DNA 

methylation, resulted in an increase of UGT1A10 mRNA expression and overexpression of 

HNF1α and Cdx2 further increased UGT1A10 mRNA in the presence of 5-Aza-dC. A 

chromatin immunoprecipitation assay demonstrated that H3K27 around the promoter was 

trimethylated in the liver but not in the small intestine. Thus, DNA hypermethylation and 

H3K27 trimethylation would interfere with the binding of HNF1α and Cdx2, resulting in the 

defective expression of UGT1A10 in the human liver. Epigenetic mechanisms are the crucial 

factor in the tissue-specific expression of UGTs.  

In summary, this study succeeded to prepare peptide-specific monoclonal antibodies 
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against human UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B10 and 

could provide valuable information on the tissue distribution and interindividual variability of 

UGTs. In addition, it was found that the tissue-specific expression of UGTs is regulated by 

epigenetic mechanism including DNA methylation and histone modifications. Aging, sex, 

disease, and habits are known to affect epigenetic status. It would be of interest to investigate 

whether such factors affect drug response thorough the modulation of epigenetics of UGT. 
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